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Abstract 14 
Recently, the European Space Agency Sea Ice Climate Change Initiative (ESA SICCI) released ice concentration 15 
data complete with error estimates that depend on space and time. These data are used to in data assimilation 16 
experiments that aim at improving summer ice concentration and thickness forecasts in Arctic. The data 17 
assimilation system uses the MIT general circulation model (MITgcm) and a local Singular Evolutive 18 
Interpolated Kalman (LSEIK) filter. The effect of using sea ice concentration satellite data products with 19 
appropriate uncertainty estimates is assessed by three different experiments: in one experiment the SICCI 20 
concentration data is used with constant uncertainties; in two further experiments the same SICCI data are 21 
included along with their provided uncertainties; they differ only in imposing different minimum uncertainties. 22 
Using the observation uncertainties that are provided with the data improves the ensemble mean state of ice 23 
concentration compared to using constant data errors, but ice thickness is not affected in a systematic way. 24 
Further investigating this lack of impact on the sea ice thicknesses leads us to a fundamental mismatch between 25 
the satellite-based radiometric concentration and the modelled physical ice concentration in summer: the passive 26 
microwave sensors used for deriving the vast majority of the sea ice concentration satellite-based observations, 27 
cannot distinguish ocean water (in leads) from melt water (in ponds). New data assimilation methodologies that 28 
fully account or mitigate this mismatch must be designed for successful assimilation of sea ice concentration 29 
satellite data in summer melt conditions. In our study, thickness forecasts can be slightly improved by adopting 30 
the pragmatic solution of raising the minimum observation uncertainty, to inflate the data error and ensemble 31 
spread.  32 
 33 
1. Introduction 34 
For the past 30 years, the Arctic sea ice extent and volume consistently decreased in all seasons with a maximum 35 
decline in summer (Vaughan et al., 2013). This retreat has large effects on the climate system. For example, the 36 
strong contrast between the albedo of sea ice and open water has a profound effect on the Arctic surface heat 37 
budget. This retreat also influences the lower-latitude weather and climate, and can be linked to extreme events 38 
at mid-latitudes, for example, unusually cold and snowy winters in Europe, the US and Eastern Asia (Liu et al., 39 
2012; Cohen et al., 2012), heat waves and droughts in the US and in Europe (Tang et al., 2014) and anomalous 40 
anticyclone circulation over eastern European and Russia (e.g., Semmler et al., 2012; Yang and Christensen, 41 
2012). Apart from its relevance to local and global climate, Arctic sea ice decline opens new economic 42 
opportunities. Accurate summer sea ice forecasts are therefore urgently required to thoroughly manage the 43 
opportunities (e.g., shipping, tourism) and risks (e.g., oil spill, marine emergencies) associated with Arctic 44 
opening (Eicken, 2013).  45 
 46 
Sea ice data assimilation (DA) plays a pivotal role in sea ice forecasting, as it can provide realistic initial model 47 
states, and continuously constrain the model state closer to reality. Data assimilation requires both reliable 48 
observed quantities and realistic uncertainty estimates. These requirements, especially regarding data 49 
uncertainties, are now also increasingly recognized by the sea ice remote sensing community. Previous studies 50 
have shown that the assimilation of sea ice concentration data can improve sea ice concentration estimates (e.g., 51 
Lisæter et al., 2003; Lindsay and Zhang, 2006; Stark et al., 2008; Tietsche et al., 2013; Buehner et al., 2014) and 52 
also constrain the ice thickness and volume (Schweiger et al., 2011; Yang et al., 2015a). Given that error 53 
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estimates in the studies mentioned above were assumed to be constant, there is scope for further improvement 54 
through the use of more realistic uncertainty estimates. 55 
 56 
In 2010, the European Meteorological Satellite Agency (EUMETSAT) Ocean and Sea Ice Satellite Application 57 
Facility (OSISAF, www.osi-saf.org) released a climate data record of sea ice concentration based on SMMR and 58 
SSM/I data (Eastwood et al., 2011; Product OSI-409). This dataset features an explicit correction of the satellite 59 
signal due to weather contamination, dynamic adaptation of algorithm tie-points, and spatio-temporally varying 60 
maps of uncertainties. In fact, this OSI-409 dataset and its uncertainties were already successfully used for data 61 
assimilation purposes (e.g., Massonnet et al. 2013).  62 
 63 
In May 2014, the European Space Agency (ESA)-Sea Ice Climate Change Initiative (SICCI) released a sea ice 64 
concentration data set with associated uncertainty estimates (Version 1.11) to the public. In many respects, the 65 
SICCI sea ice concentration dataset features an update of the algorithms and processing methodologies used for 66 
the OSISAF OSI-409 dataset and, importantly, revised uncertainty estimates (Lavergne and Rinne, 2014). At 67 
the time of writing these two datasets, SICCI and OSISAF OSI-409, are the only algorithms or products that 68 
come with a physically based sea ice retrieval uncertainty information - as opposed to an estimate of the spatio-69 
temporal variation of the ice concentration within a certain grid area and time window. Besides the SSM/I time-70 
series covering from 1992 to 2008, SICCI (v1.11) also includes sea ice concentration maps from AMSR-E (2002-71 
2011). This new data set provides an opportunity to study the effect of the revised local (i.e., spatially varying) 72 
uncertainties on the assimilation of sea ice concentration data, and hence sea ice prediction skill.  73 
 74 
In this study, we follow the approach of Yang et al. (2015a) and Yang et al. (2015b) by focusing on the summer 75 
of 2010 and using the same ensemble-based Singular Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 76 
1998; Pham, 2001) in its local form (LSEIK, Nerger et al., 2006). The SEIK filter algorithm is selected to 77 
assimilate the sea ice concentration because it is computationally efficient when applied to nonlinear models 78 
(Nerger et al., 2005), and the LSEIK filter has already been successfully used for the sea ice concentration data 79 
assimilation (Yang et al., 2015a). The purpose of the study is to quantify the impact of different uncertainty 80 
approximations on sea ice data assimilation through a comparison with independent ice concentration and ice 81 
thickness observations. 82 
 83 
2. Forecasting experiment design 84 
We use the MITgcm sea ice-ocean model (Marshall et al., 1997; Losch et al., 2010; Losch et al., 2014). Following 85 
Yang et al. (2015a) and Yang et al. (2015b), this study employs an Arctic regional configuration with a horizontal 86 
resolution of about 18 km and open boundaries in the North Atlantic and North Pacific (Losch et al., 2010; 87 
Nguyen et al., 2011). To explicitly include flow dependent uncertainty in atmospheric forcing, the approach by 88 
Yang et al. (2015a) was used in which UK Met Office (UKMO) ensemble forecasts from the TIGGE archive 89 
(THORPEX Interactive Grand Global Ensemble; http://tigge.ecmwf.int/) drive the ensemble of sea ice-ocean 90 
models. Each of the selected UKMO ensemble forecasts consists of one unperturbed ‘control’ forecast and an 91 
ensemble of 23 forecasts with perturbed initial conditions. For further details the reader is referred to Bowler et 92 
al. (2008) and Yang et al. (2015a).  93 
 94 
Following Yang et al. (2015a) and Yang et al. (2015b), the system's forecasting skills are evaluated with a series 95 
of 24h forecasts over the period of 1 June to 30 August 2010 during which the LSEIK filter is applied every day. 96 
This particular period is chosen as the open water was first found in the interior pack ice near the North Pole as 97 
early as 12 July 2010 (NSIDC, http://nsidc.org/arcticseaicenews/2010/07/). During this summer melting period 98 
the Arctic sea ice extent (area with at least 15% sea ice concentration) shrank from 11.8 million km2 on 1 June 99 
to 5.3 million km2 on 30 August 2010 (data from NSIDC), which shows a clear picture of sea ice melting in 100 
Arctic summer: on 1 June, most of the Arctic Ocean was covered with closed  ice pack, while on 30 August, the 101 
sea ice area was shrunk to the central Arctic and the concentration was also much reduced (Fig. 1).  102 
 103 
The simulated and satellite observed sea ice concentration are combined using a sequential SEIK filter with 104 
second order exact sampling (Pham et al., 1998; Pham, 2001) coded within the Parallel Data Assimilation 105 
Framework (PDAF, Nerger and Hiller, 2013; http://pdaf.awi.de). The filter algorithm includes the following 106 
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phases: initialization, forecast, analysis and ensemble transformation. The sequence of forecast, analysis and 107 
ensemble transformation is repeated.  108 
 109 
The required initial ensemble approximates the uncertainty in the initial state of the physical phenomena. 110 
Following Losa et al. (2012) and Yang et al. (2015a), we used a model integration driven by the 24-h UKMO 111 
control forecasts over the period of 1 June to 31 August 2010 to estimate the initial state error covariance matrix 112 
of sea ice concentration and thickness. The leading Empirical Orthogonal Functions (EOFs) of this covariance 113 
matrix representing the model variability are transformed by the second-order exact sampling to generate the 114 
initial ensemble of ice concentration and thickness. An ensemble size of 23 states is chosen to match with the 115 
ensemble size of UKMO perturbed forcing. In the forecast phase, all ensemble states are dynamically evolved 116 
in time with the fully nonlinear sea ice model driven by the UKMO ensemble atmospheric forcing. The analysis 117 
step combines the predicted model state with the observational information and computes a corrected state every 118 
24 hours. The error covariance matrix and ensemble of model state are also updated. With the SEIK filter as a 119 
reduced-rank square-root approach, the updated ensemble samples the analyzed model uncertainties according 120 
to the leading EOFs.  121 
 122 
The SEIK analysis is performed locally for each water column of the model surface grid by assimilating the 123 
observational information only within a radius of 126 km (~7 model grid points). Within the radius, we weighted 124 
the observations assuming quasi-Gaussian (Gaspari and Cohn, 1999) dependence of the weights on the distance 125 
from the analyzed grid point (see Janjić et al., 2012, Losa et al., 2012). As the atmospheric errors are already 126 
explicitly accounted for by the ensemble forcing, an ensemble inflation simulating model errors is not needed in 127 
this LSEIK configuration (Yang et al., 2015a).  128 
 129 
Two daily sea ice concentration data sets are used in this study. The SICCI fields from AMSR-E (Lavergne and 130 
Rinne, 2014; http://icdc.zmaw.de/projekte/esa-cci-sea-ice-ecv0.html) are used in the data assimilation. This 131 
product consists of daily fields provided on a 25 km polar-centered EASE2 grid (Brodzick et al. 2012). In the 132 
SICCI data set, the North Pole data gap is filled by interpolation, and daily maps of total standard error (the sum 133 
of algorithm uncertainties and smear uncertainties which refers to the representative error on a different grid 134 
resolution) are provided. The ice concentration data used for comparison are from the National Snow and Ice 135 
Data Center (NSIDC; Cavalieri and others, 2012; 136 
http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html). This product also consists of daily fields with 137 
25 km grid spacing on a polar stereographic projection. For summer 2010, the NSIDC ice concentration fields 138 
are derived from a different passive microwave instrument (SSMIS onboard DMSP F-17) and with a different 139 
algorithm (NASA-Team). We note that both the SICCI and NSIDC products are computed from channel 140 
combinations of relatively similar passive microwave instruments and that they cannot be regarded as strictly 141 
independent. Using a different instrument and a different algorithms is nevertheless often the best we can use 142 
for passive microwave sea ice concentration data.  143 
 144 
Currently, satellite-based observations of ice thickness are a challenge (Kwok and Sulsky, 2010; Kern et al. 145 
2015), and there are very few reliable summer sea-ice thickness products available. Instead of remote-sensing 146 
data we compare our simulation results to measurements of sea ice draft from the Beaufort Gyre Experiment 147 
Project (BGEP) Upward Looking Sonar (ULS) moorings located in the Beaufort Sea (BGEP_2009A, 148 
BGEP_2009D; http://www.whoi.edu/beaufortgyre; see Fig. 1 for the locations). The error in ULS 149 
measurements of ice draft is estimated as 0.1 m (Krishfield and Proshutinsky, 2006). Following Rothrock et al. 150 
(2008), drafts are converted to thickness by multiplying by a factor of 1.1. It should be noted that different ice 151 
types have different effects on the draft-thickness conversion, as we have not any information of ice types so 152 
these effects are ignored in this study. 153 
 154 
Three experiments, which mainly differ in the way uncertainties are represented, form the backbone of this study:  155 
1. LSEIK-1: SICCI sea ice concentration data are assimilated with a constant uncertainty value of 0.25, e.i., the 156 
observation errors are assumed to be Gaussian distributed with standard deviations (STD) of 0.25. 157 
This constant uncertainty value is larger than the measurement error to account for a representation error which 158 
due to the used projection of the observation to the model space.  159 
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 160 
2. LSEIK-2: Same as LSEIK-1 but using the uncertainty fields provided with the SICCI product (see Figure 2). 161 
A minimum uncertainty of 0.01 is imposed to avoid complications due to divisions by very small numbers. 162 
3. LSEIK-3: Same as LSEIK-2, but with a minimum uncertainty of 0.10. 163 
 164 
To reflect the uncertainties in the interpolated or possibly less accurate sea ice concentration data from SICCI 165 
(e.g., over the data-void North Pole), a constant uncertainty of 0.30 is assigned in these regions for all 166 
experiments.  167 
 168 
The original observational data uncertainties of ice concentrations that are provided with the SICCI data set and 169 
used in LSEIK-2 and LSEIK-3 are displayed in Fig. 2. In Fig 2, we show the provided observation uncertainties 170 
on 1 June, 16 June, 1 July, 16 July, 1 August and 16 August 2010. The uncertainties are about 0.05 over packed 171 
ice and open water, but larger uncertainties up to and beyond 0.3 are present at the ice edge, and region of 172 
intermediate ice concentration values. The SICCI total uncertainties are indeed the sum of two components, one 173 
characterizing the algorithm uncertainties, and the other measuring the uncertainties due to representativity of 174 
25 km daily averages, geo-location and instrument foot-print mismatch (Lavergne and Rinne, 2014). The second 175 
component to the total uncertainties is only pronounced in areas of gradients in the sea ice concentration 176 
observations – typically at the ice edge –, and amount for the inability of such coarse resolution satellite 177 
observations to accurately locate sea ice edge. Should the SICCI sea ice concentrations be assimilated in models 178 
with significantly better spatial resolution, the enlarged uncertainties allow the model to freely locate its ice edge 179 
within the 25×25 km grid cells showing intermediate ice concentration values in the data. 180 
 181 
3. Results 182 
Figure 3 compares the root mean square error (RMSE) for ensemble mean ice concentration forecasts with and 183 
without data assimilation with respect to the assimilated SICCI (Fig. 3a) and the non-assimilated NSIDC (Fig. 184 
3b)  ice concentration for the period 1 June to 30 August 2010. Note that Fig. 3 reports only the RMSE for grid 185 
location where the satellite products reports and ice concentration lower than 0.35. These are thus mostly location 186 
along the ice edge. Fig. 3 thus mostly assesses how the data assimilation experiments constrain the envelope of 187 
Arctic sea ice, not the interior (cyan color on Fig. 1). The reason for choosing this range is that all sea ice 188 
concentration products from passive microwave instruments have challenges with high concentration values in 189 
the summer (Ivanova et al., 2015). In such a case, documenting that the assimilated state is closer to the NSIDC 190 
product is not very conclusive, since NSIDC and SICCI products are probably likewise challenged at high 191 
concentration values. Looking away from the ice concentration values and focusing on the outskirt of the sea ice 192 
cover make the conclusions somewhat more robust as the influence of melt-ponds is reduced, and the approaches 193 
over open water are different in both products (weather filters in NSIDC and explicit correction for atmosphere 194 
perturbations for SICCI). It should be also noted that for this comparison, the observations are linearly 195 
interpolated to the model grids. Such interpolation could lead to small local changes in sea ice concentration, 196 
and the related biases are not discussed in this study.  197 
 198 
All the data assimilation experiments reduce deviations of the forecasted ice concentration from the satellite-199 
based data sets. The RMSE temporal evolutions are associated with the number of available data points that can 200 
be used for comparison or with surface forcing. Compared to the free run without data assimilation, mean RMSE 201 
of LSEIK-1, LSEIK-2 and LSEIK-3 ensemble mean forecasts with respect to the SICCI data are reduced from 202 
on average, 0.56 to 0.18, and 0.07, 0.16, respectively. Similarly, the RMSE with respect to the NSIDC data are 203 
reduced from 0.55 to 0.20, 0.13 and 0.19. At all times, LSEIK-2 and LSEIK-3, using the SICCI-provided 204 
uncertainty estimates and adjusted minimum uncertainties, agree better with both the assimilated SICCI and non-205 
assimilated NSIDC observations than LSEIK-1, which employs a constant uncertainty. Furthermore, it is worth 206 
pointing out that LSEIK-2, with the SICCI-provided uncertainties, agrees best with both SICCI and NSIDC 207 
observations. This shows that the forecasting system produces a better ensemble mean state for sea ice 208 
concentration when the full range of  uncertainties provided with the satellite observations are used.  209 
 210 
The time series of daily 24-hr forecast of sea ice thickness are compared to in-situ ULS-observations 211 
BGEP_2009A (Fig. 4a) and BGEP_2009D (Fig. 4b). Note, that the numerical model carries mean thickness 212 
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(volume over area) as a variable. The observed thickness is multiplied by SICCI or NSIDC local ice 213 
concentration to arrive at the observed ULS-SICCI or ULS-NSIDC mean thicknesses shown in Fig. 4. Although 214 
there are some small differences between ULS-SICCI or ULS-NSIDC, both reveal a very similar variation: At 215 
BGEP_2009A, the mean thickness on 1 June was about 2.5m. With ice melting, the thickness was rapidly 216 
reduced in July, and reached about 0.2m on 30 August (Fig. 4a). Similarly, the mean thickness at BGEP_2009D 217 
was about 3.5m on 1 June and was reduced to less than 0.1m on 30 August (Fig. 4b). All forecasts with data 218 
assimilation show improvements over the free-running MITgcm after late July. The ice thickness RMSE with 219 
respect to ULS-SICCI at BGEP_2009A has been reduced from 0.86m in the free model run to 0.43m in LSEIK-220 
1, 0.61m in LSEIK-2, and 0.43 m in LSEIK-3 (Table 1). Similarly, the RMSE with respect to ULS-SICCI at 221 
BGEP_2009D has been reduced from 0.93m in the free model run to 0.55m in LSEIK-1, 0.51m in LSEIK-2, 222 
and 0.59m in LSEIK-3 (Table 1). By using the original SICCI uncertainty, LSEIK-2 gives a good agreement 223 
with the in-situ observations at BGEP_2009D (Fig. 4b), but over-estimates the mean sea ice thickness at 224 
BGEP_2009A (Fig. 4a), especially from mid-July to mid-August. By imposing a minimum uncertainty of 0.10 225 
in the original uncertainties, the LSEIK-3 thickness agrees better with the BGEP_2009A data, and is basically 226 
equivalent to LSEIK-1. The reason is discussed in the following section. 227 
 228 
4. Discussion 229 
Based on the recently released SICCI sea ice concentration data that provides uncertainty estimates, a series of 230 
sensitivity experiments with different data error statistics have been carried out to test the impact of sea ice 231 
concentration uncertainties in data assimilation. Compared to a data assimilation configuration with constant 232 
uncertainty of 0.25, the data assimilation of SICCI data with provided uncertainties can give a better short-range 233 
ensemble mean forecasts for sea ice concentration in summer. For ice thickness forecasts the influence of 234 
observational uncertainties is ambiguous (beneficial in one case while seemingly detrimental in another). As 235 
there is still no available satellite based sea ice thickness data in summer, the ice thickness validation in this 236 
study are only based on two local ULS based observations. Also because we calculate the mean ice thickness 237 
using the local SICCI or NSIDC sea ice concentration data which is not real and certainly has potential bias, this 238 
introduces further uncertainties to the thickness calculations.  239 
 240 
The main message from Fig. 3 is in fact the high sensitivity of the data assimilation to the observation 241 
uncertainties can be explained by the employed (atmospheric) model and data error statistics in the LSEIK 242 
assimilation system. Although we have not directly included the model errors due to the possible suboptimal sea 243 
ice internal parameters, the ensemble forcing approach used here was shown to be very effective at representing 244 
model uncertainty associated with atmospheric forcing fields (Yang et al. 2015a). Given this high sensitivity, 245 
and given that observation uncertainties that are prescribed by data assimilation teams (LSEIK-1 and LSEIK-3) 246 
perform worse than observation uncertainties derived by the data producers, Fig. 3 clearly supports that data 247 
providers do compute and deliver data uncertainties along with their products. 248 
 249 
The ensemble-represented standard deviations (STDs) of sea ice concentration for LSEIK-2 turn out to be 250 
relatively small. For example, on 30 August 2010, most of the STDs in the Arctic central area and the sea ice 251 
edge area are less than 0.01 and 0.03, respectively (Fig. 5c). This means that all members are very close to the 252 
ensemble mean and the data assimilation will have only little effect. LSEIK-3 has a similar spread distribution 253 
pattern of higher STDs in the sea ice edge area and lower STDs in the concentrated central ice area but overall 254 
higher STDs than LSEIK-2. Together with the fact that LSEIK-2 does not fit the thickness observations as well 255 
as LSEIK-3, this suggests that the ensemble forecast spread for sea ice concentration is too low and cannot reflect 256 
the uncertainty. As only observations of sea ice concentration are assimilated, sea ice thickness is influenced 257 
indirectly during the data assimilation through the point-wise covariance between the ice concentration and 258 
thickness, thus through a linear update. Here, the very small sea ice concentration variance leads to a very small 259 
sea ice thickness spread (Fig. 6b). This probably explains why the LSEIK-2 system is not very effective at 260 
improving the sea ice thickness estimates while LSEIK-3 does somewhat better. The increased spread in the sea 261 
ice concentration allows the system to better represent the uncertainties and leads to a larger ice thickness spread 262 
(Fig. 6c). The sea ice thickness forecasts are improved accordingly. 263 
 264 
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The relative enhanced skill of sea ice thickness forecasts by LSEIK-3 with respect to LSEIK-2, does thus point 265 
to a possible issue with assimilating the summer SICCI ice concentration with the provided uncertainties. At 266 
first sight, the data uncertainties in summer sea ice pack seem to be too low (Fig. 2). For example, on 16 July 267 
2010 when surface ice melting prevails and the microwave radiometry based ice concentration estimates are 268 
known to underestimate the physical sea ice cover (Ivanova et al. 2015), the provided uncertainties at the sea ice 269 
pack area are still lower than 0.06 with few regions exhibiting values around 0.1 (Fig. 2d). 270 
 271 
In fact, Ivanova et al., (2015, section 5.3 "Melt ponds") report that AMSR-E and SSM/I, like all other passive 272 
microwave sensors, cannot distinguish ocean water (in leads) from melt water (in ponds) because of the very 273 
shallow penetration depths of the microwave signal in water. Therefore, these radiometric sea ice concentrations 274 
are closer to one minus the open water fraction (ponds and leads), than to the physical sea ice concentration in 275 
our models. This mismatch between the observed and modelled ice concentration (radiometric vs. physical) does 276 
not exist in winter when there is no surface melting. But in summer melt conditions, the observed ice 277 
concentration includes an unknown area of pond water. The provided uncertainties are not larger since the 278 
radiometric concentration is not more uncertain. This mismatch results in a systematic difference between the 279 
two quantities (the physical concentration is larger than the radiometric concentration) that cannot be fully 280 
mitigated by enlarged standard deviations of a Gaussian uncertainty model in Ivanova et al. (2015). The influence 281 
of melt-ponds on the accuracy of the SICCI dataset is documented in Lavergne and Rinne (2014, section 2.2.1.1 282 
"summer melt-ponding").  283 
 284 
This mismatch between the measured and modelled quantities calls for adopting more advanced data assimilation 285 
methodologies, e.g. embedding a matching relation in form of an observation operator, that would necessarily 286 
include modelled melt pond fraction, for successful assimilation of sea ice concentration satellite observations 287 
(from passive microwave instruments). Given the scope of this study and the comparisons with the in-situ BGEP 288 
ice thickness, the solution implemented in LSEIK-3, that is to enlarge the observation uncertainties using a 289 
minimum value of 0.10, is a pragmatic but effective approach. 290 
 291 
5. Conclusion 292 
In this study, we assimilate  the summer SICCI sea ice concentration data taking into account the data 293 
uncertainties provided by the distributors. Even with a constant data uncertainty for the SICCI data, comparing 294 
the assimilated SICCI and non-assimilated NSIDC ice concentration and BGEP in-situ thickness data, its 295 
assimilation results in better estimates of the sea ice concentration and thickness. The estimates are further 296 
improved when the SICCI-provided uncertainty estimates are taken into account.  297 
 298 
However, it was found that our data assimilation system cannot give a reasonable ensemble spread of sea ice 299 
concentration and thickness if we use the provided uncertainty directly. This is because 1) there is a mismatch 300 
between the summer sea ice concentration as observed by the passive microwave sensors (radiometric 301 
concentration) and that simulated by our model (physical concentration), and 2) the provided observation 302 
uncertainties are not enlarged to accommodate this mismatch. A simple and pragmatic approach appears to 303 
bypass this by imposing a minimum threshold value on the provided uncertainties in summer. Fully resolving 304 
the mismatch calls for more research, for example by considering melt-pond cover and evolution in the models, 305 
and using observation operators in the data assimilation schemes. 306 
 307 
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 415 
Table 1. RMSE of the four forecasting experiments from mean ice thickness calculated by the ULS moorings 416 
BGEP_2010A, BGEP_2010D and the satellite ice concentration observations. The two values refer to the 417 
calculation using two different data sets SICCI-NSIDC. 418 
 419 

  BGEP_2010A BGEP_2010D 

1 MITgcm 0.86-0.89 m 0.93-0.97 m 

2 LSEIK-1 0.43-0.46 m 0.55-0.59 m 

3 LSEIK-2 0.61-0.64 m 0.51-0.55 m 

4 LSEIK-3 0.43-0.46 m 0.59-0.62 m 

 420 

  421 
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 422 

 423 
Figure 1. The NSIDC (a, b) and SICCI (c, d) sea ice concentration on 1 June (a, c) and 30 August 2010 424 

(b, d). The locations of BGEP_2009A and BGEP_2009D are shown as a square with white line and a 425 

triangle with white line, respectively.  426 
 427 
 428 
  429 
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 430 
 431 

 432 
 433 

Figure 2. The SICCI sea ice concentration uncertainty on (a) 1 June, (b) 16 June, (c) 1 July, (d) 16 July, 434 

(e) 1 August and (f) 16 August, 2010. 435 

 436 

  437 
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 438 

 439 
 440 

Figure 3.Temporal evolution of RMSE differences between sea ice concentration forecasts and the 441 

SICCI (a) and NSIDC (b) ice concentration data. The RMSE of the MITgcm free-run, LSEIK-1, 442 

LSEIK-2 and LSEIK-3 24-h forecasts are shown as gray, blue, magenta and red solid lines, 443 

respectively.  444 

 445 

  446 

(a) 
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 447 

 448 
Figure 4. Evolution of mean sea ice thickness (m) at (a) BGEP_2009A and (b) BGEP_2009D 449 

Beaufort Sea from 1 June to 30 August 2010. The black solid and dashed lines show the obtained 450 

mean ice thickness using SICCI and NSIDC sea ice concentrations, respectively. The MITgcm 451 

free-run, LSEIK-1, LSEIK-2 and LSEIK-3 24 h ice thickness forecasts are shown as gray, blue, 452 

magenta and red solid lines, respectively. 453 

  454 
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 455 

 456 
Figure 5. Sea ice-concentration standard deviation for the individual grid cells as calculated from the 457 

24-h ensemble forecasts on 30 August 2010. (a) LSEIK-1, (b) LSEIK-2, and (c) LSEIK-3. 458 
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 462 
Figure 6. Sea ice thickness standard deviation for the individual grid cells as calculated from the 24-h 463 

ensemble forecasts on 30 August 2010. (a) LSEIK-1, (b) LSEIK-2, and (c) LSEIK-3. 464 

 465 


