
Author Response
We want to thank the Referees for their reviews which helped us a lot to revise and (we 
think) improve the manuscript. The main concern was the resolution of MODIS and its 
limits for the identification of narrow leads. We analyzed the spread of the SSH which is 
smaller for a threshold on the maximum power of the waveform than for all classifiers 
compared with.  We hope that this result helps to dispel some concerns and feel that it is
a great complement to the original manuscript.

Referee 1

P2168L4: suggest “comparison” instead of “a combination”.
Corrected

P2168L16: suggest “strongly reduces” instead of “is strongly reducing”. This statement isn’t 
necessarily true for momentum – see Martin et al. (2014), “Seasonality and long-term trend of 
Arctic Ocean surface stress in a model”, JGR Oceans, and what they found about the ‘optimal 
sea ice concentration’. I would say something like: “Sea ice strong modifies air-ocean 
interaction etc ...”
You are right sea ice does not reduce momentum transports in all cases, but only if a 
compact sea ice cover is present. This is typically the case outside of the marginal ice 
zone. Taking into account that the other mentioned transports (heat and mass) between 
ocean and atmosphere are always reduced by sea ice we consider the statement (which 
includes the word 'most') as true. As 'reduce' (correctly) stresses the importance of leads 
more than 'modify' we prefer to keep using 'reduce' but in the suggested way.

P2168L20-25: What is the resulting heat balance of leads? There is loss of latent heat as new 
ice is formed, but more absorption of solar radiation – what is the net effect?
The latent heat flux per lead area is largest in winter due to the higher temperature 
differences. The absorption of solar radiation is largest (as mentioned in the opposite 
direction) in summer, as it is directly connected to the incoming solar radiation. The latter
has a larger impact on the annual mean net flux and is expected to play a mayor role in 
the Arctic amplification (e.g. Yoshimori et al., 2013). However it would be misleading to 
compare their amplitudes as they appear at different times and the lead area is likely to 
change from summer to winter.

P2169L16-17: Do you have a citation for this statement?
A citation (Andreas et al., 1979) has been added

P2169L18: Suggest “dampens” rather than “is dampening”.



Corrected

P2169L28: Suggest “utilise” rather than “are utilising”.
Corrected

P2170L1: Are the authors aware of the paper by Renner et al. (2014), “Evidence of Arctic sea 
ice thinning from direct observations”, GRL? It is not true that studies using airborne data are 
limited to just individual seasons.
You are right, the results of individual campaigns can clearly be combined to investigate 
temporal changes (like also done in Renner et al., 2013). The mentioned citation has been
added and the statement clarified. It is still a regional study.

P2170L16-18: Laxon et al. (2013) showed excellent agreement between CS2 and in situ data. I 
understand what you mean by this sentence but to say that altimeter estimates are not 
“satisfying” is unfair. I think it is more appropriate to say that knowledge of the snow loading 
and the radar interaction with the snow layer currently limits the accuracy of altimeter 
derived sea ice thickness estimates.
Corrected

P2170L23: Reverse this sentence i.e. “SSH is crucial for altimeter based ice thickness retrievals”
Done

P2170L26-28: What do you mean by thin ice? Ice < 10cm thick will have a fairly negligible ∼
effect on SSH retrieval as freeboard will be 1cm and speckle noise >10cm.∼
A SSH bias due to thin ice is in contrast to speckle noise not reduced by averaging (multi-
looking), as it is always positive. The effect on ice thickness estimates is comparable to 
the mean ice thickness of lead measurements. If this is e.g. ~5cm we get a bias of a few 
percent of the derived ice thickness (for typical thicknesses) which we consider as small 
but noteworthy.

P2171L14-16: Do you have a citation for this statement? Not everyone in the altimeter sea ice 
community will know anything about MODIS interpretation so a citation would be useful.
The word 'sufficient' has been removed as this is now discussed separately. A citation is 
given.

P2171L18: “this” should be “these”
Corrected

P2171L12-P2172L2: For the ground truth dataset, I worry about the effect of very small leads. 
It is known that even very small amounts (even 1% of the footprint area) of open water can ∼
cause specular reflections that will dominate the echo [Drinkwater, 1991], but would these 



small leads show up in MODIS data? Maybe using MODIS data means that the analysis is valid
for leads over a certain size, but there might be some caveats for smaller leads?

The following parts have been added:

'Note that this method is limited by the resolution of MODIS. CryoSat-2 measurements 
which look like originating from ice in MODIS scenes can actually contain small amounts 
of leads. See section 4.2 for a discussion of this circumstance.'

'It has been shown that leads which cover only a small fraction of a radar altimeter 
footprint can dominate the signal, due to the high amplitude of specular returns 
(Drinkwater, 1991). Therefore CS-2 detects leads which are simply not visible for MODIS 
despite its higher resolution. The fraction of this leads in the ice class of the ground truth 
cannot be quantified by our approach. Those narrow leads either cover the nadir point 
or not, while leads covering the whole footprint ('True Leads') do for sure. Therefore one 
could expect True Lead measurements to ensure a higher quality (see section 4.3) for the
derivation of the SSH.

This expectation is supported by the smaller spread of the SSH estimate based on the 
MAX_1 compared to the PP_1 with nearly the same amount of lead detections (True + 
False Leads, Table 1). This advantage is on the other hand certifying that narrow, 
unnoticed leads in the ice class do not reverse the ROC analysis.'

In addition the focus on the False Lead Rate has been reduced, e.g. by replacing its 
mention it in the abstract and conclusion.

P2172L3-P2173L7: You should provide some references/citations for this section.
Done

P2173L4-7: This isn’t a very clear explanation. This is just summing the power in each beam 
and fitting a Gaussian. Maybe explain how the summed beam power relates to/varies with 
specular or rough surfaces.
This part has been revised and the expected behavior of the SSD and SK has been added 
in section 2.3.

P2173L16: I don’t think that Laxon et al. (2013) give an explicit definition of pulse peakiness 
(PP). The PP of Peacock and Laxon (2004) is multiplied by 31.5 so I don’t know where the 
factor of 100 comes from. I think you should be careful when you refer to “the Laxon et al. 
(2013) classification” throughout the paper as the classification is not explicitly stated in Laxon
et al. (2013).
You are right, the PP definition used by Laxon et al. (2013) is not stated clearly at all. A 



threshold of 18 in combination with a factor of 31.5 does not detect any leads. Kurtz et al.
(2014) state (P1227): 'In this study, we used the pulse peakiness and stack standard 
deviation thresholds used by Laxon et al. (2013)[...]' and they use a PP threshold of 0.18 
instead of 18. We trust this conversion as Nathan Kurtz is co-author of Laxon et al. (2013).

We have to mention, that the PP definition of Kurtz et al. (2014) is different to our and 
those by Peacock and Laxon (2004), Laxon (1994) and Armitage and Davidson (2014) 
(which is the reference within Kurtz et al. (2014)) as it is written as sum(1/P_i) instead of 
1/(sum(P_i)). This has also been noted in the review of John Padon (http://www.the-
cryosphere-discuss.net/8/C74/2014/tcd-8-C74-2014-supplement.pdf) but has not been 
corrected (or mentioned) in the final version. We take this as a typing error, like Robert 
Ricker has confirmed that it is in Ricker et al. (2014) (Robert Ricker, personal 
communication, January 2015).

We have introduced abbreviations for the classifiers used by Laxon et al. (2013) and 
Ricker et al. (2014) and avoid the mentioned term as well as terms like 'defined by Laxon 
et al. (2013)'.

P2174L16-19: The trailing edge of CS2 waveforms follows a 1/sqrt(t) shape, not exponential 
[Wingham et al, 2006]
This statement is, for our understanding, not completely accurate. Inserting the last case 
of A2 in A1 yields to 1/sqrt(t)*exp(-a*t), which is also illustrated in Fig. 15a in Wingham et 
al. (2006).

, so why the choice of an exponential fit?
The short answer is that 1/sqrt(t) has no parameter describing the scale at which the 
trailing edge of the waveform drops down. In addition we maintain consistency with 
other studies (e.g. Zygmuntowska et al., 2013).

P217420-P2175L3: Again, this isn’t a particularly clear explanation of the beam behaviour 
parameters. Refer to the fact that a Gaussian function is used to approximate the summed 
power in each beam
Done

P2175L4-10: Describe what the kurtosis represents intuitively i.e. the ‘peakedness’ of a 
distribution. Not all readers will be aware of this.
Done

P2175L12-P2176L11: This seems like a good methodology, although I am unfamiliar with it 
myself. I also imagine that a lot of readers in the sea ice altimetry community are unfamiliar 
with this methodology as well. Please provide some references in this section for interested 



readers.
Done

I would also encourage you to provide a slightly longer and more detailed explanation here. 
For example, it is not clear how you derive the thresholds in the training subset. Perhaps it 
would be instructive to walk through the methodology in more detail for a given example (e.g. 
PP with w=0.05) and include one or two figures.

The thresholds are derived by minimizing the cost function on the training set. This is 
done for each classifier separately. In the two parameter case both thresholds are 
derived at the same time (the combination of both with the smallest value of the cost 
function is considered as optimal). As the cost function is dependent of w, different 
thresholds are found for different w. We revised the explanation and added a flow chart.

P2177L2-5: What do these waveforms look like? If they are specular what else (apart from 
leads) could have caused them? This links back to my comments about the resolution of the 
MODIS data, it’s ability to detect very small leads and the sensitivity of altimeters to very small 
leads. Section 3.2: Would it be possible to quantify the classification performance in terms of 
the retrieved elevation? For altimetry, and in particular for estimating sea ice thickness, we are
actually interested in the SSH determination. Perhaps for the best performing classification 
parameters and thresholds the authors could compare the elevation transects? Another way 
SSH precision is usually quantified is to calculate the along track variance of the SSH at 20Hz, 
40H, 100Hz. This would be an excellent addition to the paper. Whilst the authors have shown 
that lead detection is of interest in itself (for lead distribution and lead width studies), this 
paper would be of a much broader interest to the altimetric community if the classification 
parameters were assessed based on their ability to measure SSH and not just detect leads in 
the first place.
An analysis of the SSH has been performed and the issue of very small leads discussed. 
Each measurement detected as lead by the classifier used by Laxon et al. (2013) is to 
some amount specular, as it has a PP>0.18
The question whether this is a good threshold is part of this study and we can not 
answer it on a theoretical basis.

P2179L3-14: Do the authors have an explanation for the apparent discrepancy between CS2 
and AMSR-E? It seems that CS2 is detecting many more leads in the Marginal Ice Zone – 
perhaps CS2 is more sensitive to smaller leads that are not detected by AMSR-E?
We agree, see P2184L6-14

Section 3.3: Surely CS2 will consistently over estimate the lead width? The CS2 tracks will not 
always be orthogonal to the leads and when CS2 crosses leads at oblique angles the lead 
width as you have defined it will always be over estimated.



We agree, that's why we distinguish (in contrast to earlier studies) between apparent and
actual lead width. Section 4.5 now states that the apparent lead width is typically larger 
than the actual.

P2181L8-14: The ‘false lead rate’ again leads me to question whether the grounds truth you 
have presented are simply missing small leads, that could still dominate the CS2 return. If the 
waveforms are being identified as specular then there must be a very flat surface within the 
pulse-limited footprint (i.e. not sea ice), so what other explanations can the authors think of 
for these echoes? Also, it seems that these classifiers are performing very similarly in terms of 
the lead detection rates, but I would stress again that what really matters to CS2 users is the 
SSH determination. How do the MAX and PP classifiers perform when it comes to SSH 
determination? I would strongly encourage the authors to include this in the study.
We agree and included such analysis.

P2182L20-P2183L3: This paragraph is very unclear and I do not really understand what you 
are saying. Suggest it is re-written more clearly.
Done

P2183L5-6: This is not a ‘possibility’ as you say here - it has been shown to be true.
Corrected.

Section 4.2: Whilst I think that you may be correct here, this section is all just vague 
speculation. Again, I encourage the authors to include some comparison of the elevation 
transects using the optimised classification threshold, and/or the along track SSH variance. 
This is an easy step to take and you would then be able to say for sure whether the MAX 
classifier is better than PP at getting rid of off-nadir leads. This is what is of interest to the 
altimetry community.
Yes, this section is very speculative (all but the last sentence is speculated by Armitage 
and Davidson (2014)). Due to the importance of off-nadir leads and the physically 
reasonable argumentation, we feel that it is still worth mentioning. Especially as it is now 
supported by the SSH estimate.

P2184L14-19: The ice edge from CS2 seems to extend right into the central Norwegian Sea, 
which isn’t very realistic – so there seems to be some lead detection where there is no ice 
present?
In Fig. 5a all grid cells with at least 2000 measurements are displays. This is the case in 
the central Norwegian Sea but none of this measurements is detected as lead (lead 
fraction=0, colored in black)

P2185L5-7: I am not convinced by this explanation – it is known that leads can dominate the 
return if they cover a few percent of the footprint.



The following, alternative explanation has been added:
'The MAX_1 is optimized mainly on leads wider than a single measurement which could 
also cause the relative small number of apparent lead width of 300 m.'

Section 4.3 & 4.4: Again, surely the CS2 lead width and spatial distribution will be affected by 
the fact that CS2 will not necessarily cross leads orthogonally?
This is the case for the lead width but for our understanding not for the lead fraction.

Lead fraction:
Imagine for example parallel leads. The width of the ice between the leads appears in the
same way larger than the width of the leads. We see no reason why this should be 
different in more realistic scenarios. Each measurement can be regarded separately. It is 
classified as lead or ice, depending on the surface properties within its footprint. This is 
not influenced by the track orientation.
 
Is it possible to account for this effect or correct for it in some way?
Lead width:
As mentioned in section 4.5, a transformation of the lead width is not possible without 
further assumptions. This has not been done so far (all previous studies also consider 
the apparent lead width distribution) and it is not necessary for some applications like 
the turbulent heat transport. It is clearly stated, that this is not the actual lead width i.e. 
the short dimension of a lead but the width how it appears to CS2.

P2187L16-19: You haven’t shown this to be true – it might be the case that using the different 
parameters and thresholds you have presented makes no difference to the SSH 
determination, or it might be that the MAX parameter is worse than PP. I don’t think that this 
is necessarily the case, but you could easily show if it is true or not by including a comparison 
of SSH using the optimised lead classifications parameters.
Corrected

Figure 2: It would be instructive to plot the across track extent of the CS2 pulse limited 
footprint if possible – this would give an indication of where off-nadir leads are dominating 
the return.
This would in deed be instructive on a smaller scale (like in Fig.5 in Armitage and 
Davidson (2014)). On this scale (the Y-Axis has a length of about 200km) some markers 
750m to the left and right of the track would be obstructive to compare the visible leads 
with the CS2 detections. As the main purpose of this figure is to show the differences in 
lead detections (and (a) to visualize the method) and not the influence of off-nadir leads, 
we feel that the clearness of the illustration prevails. The resolution of MODIS is not 
sufficient to correctly visualize the presence of most off-nadir leads anyways.



Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., & Businger, J. A. (1979). The 
turbulent heat flux from Arctic leads. Boundary-Layer Meteorology, 17(1), 57-91.

Yoshimori, M., Watanabe, M., Abe-Ouchi, A., Shiogama, H., & Ogura, T. (2014). Relative 
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Referee 2

Does it mean, that leads of smaller size (<250 m) are not considered?
It basically does. We expect to see some indications for a lead in MODIS even if it is not 
covering the whole pixel. In this case the CS-2 measurements have been excluded from 
the analysis. However we do agree that leads which are too narrow to be seen by MODIS 
can be correctly detected by CS-2 which reduces the value of the ROC analysis. Those 
small leads either cover the nadir point or not, while leads covering the whole footprint 
('True Leads') do for sure. As we are not able to distinguish between nadir and off-nadir 
leads in the first case, it is comprehensible to privilege the latter. The validity of the 
optimization analysis is supported by the reduced SSH variance of MAX_1 leads to those 
from other classifiers (e.g. PP_1). We interpret this reduced variance as a sign for less ice 
measurements being detected as lead and/or less off-nadir leads.

In any case, uncertainties of the “ground truth” and limits of the statistical analysis should be 
discussed in more detail.
The following parts have been added:

'Note that this method is limited by the resolution of MODIS. CryoSat-2 measurements 
which look like originating from ice in MODIS scenes can actually contain small amounts 
of leads. See section 4.2 for a discussion of this circumstance.'

'It has been shown that leads which cover only a small fraction of a radar altimeter 
footprint can dominate the signal, due to the high amplitude of specular returns 
(Drinkwater, 1991). Therefore CS-2 detects leads which are simply not visible for MODIS 
despite its higher resolution. The fraction of this leads in the ice class of the ground truth 
cannot be quantified by our approach. Those narrow leads either cover the nadir point 
or not, while leads covering the whole footprint ('True Leads') do for sure. Therefore one 
could expect True Lead measurements to ensure a higher quality (see section 4.3) for the
derivation of the SSH.



This expectation is supported by the smaller spread of the SSH estimate based on the 
MAX_1 compared to the PP_1 with nearly the same amount of lead detections (True + 
False Leads, Table 1). This advantage is on the other hand certifying that narrow, 
unnoticed leads in the ice class do not reverse the ROC analysis.'

'Deficiencies of the ground truth which might be caused by ice drift and opening/closing 
of leads between the data acquisition, collocation and unnoticed narrow leads increase 
the error rates which might therefore be overestimated.'

The authors further state, that all measurements with a mixture of both classes within the 
footprint are excluded. But a lead could be still detected if the CryoSat-2 footprint contains 
both classes and therefore be a valuable tie point, given that it is not off-nadir.
Those measurements are excluded from the ground truth as they would complicate the 
threshold optimization. The ground truth is not used in context of the lead width and 
fraction estimates as well as for the SSH, where all measurements are included with the 
previously optimized classifiers.
It is now clearly stated, that there might be some narrow leads in the ice which cannot be
seen by MODIS and can therefore not be excluded from the optimization.

Detailed comments:

P2168 L15: “affects” instead of “modulates” seems to fit better here.
corrected

P2169 L15: may be replace “Not only” by “Apart from the lead area, also the”.
corrected

P2170 L10-L18: I think here it needs a better clarification of the term "freeboard“ with respect 
to laser and radar altimetry.
We now introduce the terms 'snow freeboard' and 'ice freeboard'

P2170 L12-13: may be replace “into an ice thickness in hydrostatic equilibrium” by “into ice 
thickness by assuming hydrostatic equilibrium”.
Done

P2170 L14: from Ku band radar altimetry.
corrected

P2170 L21: It should be stated that the interferometric mode is not performed across the 



entire Arctic, but only in the “Wingham Box” (which is now abrogated) and the coastal areas.
Done

P2171 L4: Some short introduction/description of MODIS is required here from my point of 
view.
Has been added

What is the minimum size of a lead that can be detected with MODIS images?
We are not aware of any study which answers this question for the visual (250m 
resolution) bands. We do speculate that there is some sign of a lead even if the pixel is 
covered completely. However we can not prove this and therefore have to assume that 
the minimum size is the resolution of 250m.

P2171 L14: Can the authors provide a reference and short description of the MODIS data used
in this study?
Done

P2171 L20-21: Does this mean that if when MODIS shows a lead but also any fraction of ice 
within a CS-2 footprint, the measurement is excluded?
Yes

Wouldn’t this only allow leads of a remarkable size?
Yes, this allows only leads which are large enough to cover the CS-2 footprint

This needs some clarification. which size is assumed for the CS-2 footprint?
The assumed footprint size (300 in and 1500m across track) has been added.

P2171 L24: Can the authors provide information about the location and record time of the 
used MODIS granules? An additional map (may be incorporated in one of the other figures) 
would be beneficial.
The granules are quite large because of which the location of them is not very instructive.
Therefore we plotted the positions of the CS-2 tracks within those granules. We would 
prefer not to incorporate a map in Figure 3 (which is the only one really related to the 
ground truth) as it would reduce its size and we feel that it is already on its maximum 
regarding the amount of provided information. Including this map as a new figure would 
on the other hand be of very limited interest for most readers. A description of the 
measurement positions is added to section 2.1



The start times (UTC) of the 5 min acquisition intervals is provided in the following:
Terra  March        05 2013; 22:20
Terra  March        12 2013; 22:25
Terra  March        03 2013; 22:30
Terra  March        16 2013; 22:00
Terra  February   28 2013; 22:00
Aqua   May           02 2012; 12:25
Aqua   May           05 2012; 12:55

P2172 L4-7: What do the authors mean with "elevation differences“? Large or small scale 
roughness? Some clarification regarding the influence of surface roughness on Ku band radar 
altimetry is needed here.
Here we mean large scale roughness, which is now clarified.

P2172 L17-18: But with the presence of a wet snow surface (like with the melt onset), shouldn’t
this favor rather narrow waveforms, because the wet layer on top prevents the radar signal 



from penetration which also excludes scattering within the snow layer? 
There is a transition from cold, dry snow which is transparent for the signal to a layer of 
water at the surface which has the characteristics of water. 'wet snow' has been replaced 
by 'snow with moderate temperature'.

P2172 L20: To which thickness is “thin ice” associated? It would be also interesting to know the
fraction of frozen leads that are detected.
We agree, this would be very interesting. Unfortunately the thin ice thickness has so far 
not been derived directly from MODIS measurements in the visual range (in contrast to 
infrared but with a worse resolution). Another approach would be to estimate the time a 
lead exists to approximate the thickness of its ice cover. This is time intensive, not always
possible (e.g. if the previous days are cloudy) and difficult to consider in the optimization.
We define leads (including those covered by thin ice) as areas which are explicitly darker 
(less reflective) in the visual range than the surrounding ice. We expect the latest state of 
ice considered as a lead to be light nilas (5-10cm) but can not rule out the inclusion of 
grey ice (10-15cm).

Figure 2 slightly addresses the issue of frozen lead detection but it is at this point not 
possible to us to give a precise answer to this questions.

Depending on the freeboard of the “thin ice”, this could introduce a positive bias in the sea-
surface hight and hence a negative bias in freeboard.
We agree. This is mentioned at P2170L26-28

P2175 L14: Of which dimension is THETA?
This depends on the used classifier. It is now clarified:
'THETA consists of one threshold for each parameter used for the respective classifier.'

P2176 L5: Can the authors provide some more information (reference) about the Nelder-Mead
simplex algorithm?
Done

P2175-P2176 Section 2.4: A structure chart of the analysis might improve the description of 
this method.
Included

P2176 L17-19: Does it mean that if there is a delay of +/-1 hour, measurements are discarded?
They are from the ground truth, yes. This is done in order to reduce the influences of ice 
drift and opening/closing of leads.

Figure 2a: What causes the gap between 71.3 and 71.5N ? Is it ambiguous regarding lead or 



ice classification? On the image it clearly looks like ice only.
Yes it is ambiguous regarding lead or ice. After zooming in one can see a gray area 
slightly darker than the surrounding area crossing the track from the South-west to the 
North-east. Those areas are generally excluded as they might consist of narrow leads 
which are blurred due to the resolution of MODIS. It is part of our effort to exclude even 
narrow leads.

Figure 2: The color bar needs a label and units.
Corrected (it is unitless)

P2178 L26: But on the other hand the South Eastern Laptev Sea shows almost no leads which 
reveals the fast ice area in this region quite well!
We missed that, thank you.

Figure 5 and 6: Can the authors add that the data gap north of Canada is caused by the 
interferometric mode (“Wingham Box”)?
Done

P2182 L5: Can the authors specify those “deficiencies”?
The following has been added:
'which might be caused by ice drift and opening/closing of leads between the data 
acquisition, collocation and unnoticed narrow leads'

P2182 L7: I think “effects” needs to be replaced by “affects”.
corrected

P2183 Section 4.2: How do off-nadir leads affect the optimization? Are they completely 
excluded since CS-2 measurements with a mixture of classes in the footprint
are discarded?
They are excluded as far as possible. Narrow off-nadir leads might still occur in the 'ice' 
class of the ground truth (due to the limited resolution of MODIS). This is now clearly 
stated. Narrow leads in the 'ice' class (nadir and off-nadir) shift the optimized threshold 
in the direction of the 'lead' class (i.e. increase it in the case of MAX and PP). We expect 
this shift to be small due to the limited amount of this leads (narrow leads are frequent 
compared to wide leads but still rare compared to ice). This shifts are further of minor 
importance as it only concerns the weight - threshold relation and not the more 
important threshold/parameter - performance relation.

P2185 Section 4.4: Can it be that the MAX threshold is optimized only for “large” leads due to 
the rejection of measurements with mixtures of both classes within the CS-2 footprint as well 
as the limited resolution of MODIS which was used as a reference in the optimization analysis?



This could also cause the small number of apparent lead widths of 300m.
This is another possible explanation and has been added.

Referee 3

However, I think the authors are too ambitious in labeling the false detection of leads with the 
MODIS data. The 250 m spatial resolution of MODIS is far too coarse to capture small leads 
(which are still seen by CryoSat-2) and have been found to be the most common type of leads 
in high resolution submarine sonar data. Based on the available data set, it would seem 
possible that only the true lead detection for large leads can be reliably stated, there is too 
much uncertainty in stating that false detections are present in other methods given the 
inability of MODIS to resolve small leads. This scaling back still provides worthwhile results, 
but better bounds the data within the lead detection ability of the control data set.
We agree. This problem is now clearly stated and addressed by an analysis of the SSH 
fluctuations.

'Note that this method is limited by the resolution of MODIS. CryoSat-2 measurements 
which look like originating from ice in MODIS scenes can actually contain small amounts 
of leads. See section 4.2 for a discussion of this circumstance.'

'It has been shown that leads which cover only a small fraction of a radar altimeter 
footprint can dominate the signal, due to the high amplitude of specular returns 
(Drinkwater, 1991). Therefore CS-2 detects leads which are simply not visible for MODIS 
despite its higher resolution. The fraction of this leads in the ice class of the ground truth 
cannot be quantified by our approach. Those narrow leads either cover the nadir point 
or not, while leads covering the whole footprint ('True Leads') do for sure. Therefore one 
could expect True Lead measurements to ensure a higher quality (see section 4.3) for the
derivation of the SSH.

This expectation is supported by the smaller spread of the SSH estimate based on the 
MAX_1 compared to the PP_1 with nearly the same amount of lead detections (True + 
False Leads, Table 1). This advantage is on the other hand certifying that narrow, 
unnoticed leads in the ice class do not reverse the ROC analysis.'

In addition the focus on the False Lead Rate has been reduced, e.g. by replacing its 
mention it in the abstract and conclusion.



Another point that needs clarification is specification of the angles which are considered off-
nadir (and therefore not used) in the classification scheme and control data sets.
As we use only SARM data we can not derive an angle between nadir and the main 
backscattering surface (lead) from CS-2 data like it has been done by Armitage and 
Davidson (2014). This is only possible if the SARInM is used (e.g. in the Wingham Box). If 
MODIS shows a lead within the CS-2 footprint (approximated by 300 X 1500 m) which 
does not cover it entirely, the measurement is discarded from the ground truth (and 
therefore from the optimization and control set). This is independent of the position of 
the lead (nadir/off-nadir). So there is no specific angle which separates nadir from off-
nadir leads in the analysis. If taking about off-nadir leads we mean those leads which do 
not cover the nadir point but this is a purely linguistic definition.

Off-nadir data are always going to be present in the data so long as the pulse shape is 
broader than the transmit pulse, so this needs to be considered.
This is true, even though we are mainly interested in those cases where the off-nadir 
data is dominating the waveform as those can introduce a SSH bias.

Both of these main points tie in to a suggestion made by another reviewer, namely that the 
retrieval of surface elevation from identified lead points could be used to determine the 
impact on SSH determination. In my opinion, this would greatly enhance the results of the 
study.
We agree and added such analysis.

Other comments

2171, 14-16: What wavelengths are the MODIS bands? It would be helpful to have this in the 
text for those unfamiliar with MODIS.
Added

Section 2.1: It should be noted that the spatial resolution is quite different between CryoSat-2 
and MODIS for the comparison. The CryoSat-2 footprint is not constant, and is largely a 
function of surface roughness. A rough surface will have a rectangular footprint size of 380 m 
x 1650 m, while a coherent scattering return from a smooth surface can still dominate the 
return even when the area is small, see Drinkwater 1991.
We agree and this is now noted. Besides the roughness (which has a stonger influence 
on the pulse limited (across track) part) also the satellite altitude is influencing the 
footprint size. We used the approximation of 300 X 1500m as given in Wingham et al. 
(2006).

Also one distinction to make is that the leads detected can be off-nadir, these need not be 



labeled as false detections, but they should be accounted for if used in the retrieval of surface 
elevation.
As mentioned above, off-nadir leads are excluded (thereby not being labeled at all) if 
visible in the MODIS data. We derived the surface elevation without accounting for them 
and deduce from the lower SSH fluctuations of MAX_1 that the amount of off-nadir leads 
might be smaller. We are not able to say whether the more stable SSH is caused by less 
lead detections of off-nadir leads or of less actual ice measurements (or a combination of
both). However we are confident, that the MAX_1 increases the quality of SSH estimate 
compared to other classifiers.

2171, 15-18: It is a bit ambiguous how leads are identified in the MODIS imagery, in 
particular, are only nadir leads considered, if not, how far off-nadir can a lead be?
Only leads covering the whole footprint (including the nadir point) are considered.

2172, 5-7: I am not sure what is meant by “favoring surface scattering instead of reflection”? 
This is just a confusion over word choice, perhaps it is meant that more energy is scattered 
away from the receiver?
corrected

2172, 13-18: The reflection and transmission of energy between the air and ice/ snow layers is 
probably not important compared to the geometric factors which affect the angular 
dependence of the backscattered energy.
This might be the case. But on the other hand we only state that there 'might' be an 
influence and Willat et al. (2011) state that the dominant scattering surface is somewhere
within the snow layer if it has a temperature close to the freezing point. In addition Laxon
(1994a) Page 918 reads: '[...] changes in return waveform power depend both on small 
scale surface roughness and on changing electrical properties.'.

2174, 3-5: What specific angle is defined as being off-nadir? This is an important
distinction to make.
As mentioned above there is no specific angle (neither here nor in Ricker et al. (2014)). 
This lines have been rewritten in order to account for the existence of narrow, unnoticed 
off-nadir leads.

2176, 5: A description of the Nelder-Mead simplex algorithm would be beneficial here, along 
with some rationale for the chosen parameters.
Has been added.

The amount of initial guesses (i.e. repetitions of minimization from different starting 
points) has been increased until the global minimum was consistently found in several 
test cases. In a next step the number has been doubled (i.e. the interval between two 



starting points was divided by two).

Section 3.1: A point brought up by another reviewer is that the MODIS data may not be 
showing some of the smallest leads due to 250 m resolution of the imagery. Lead width 
statistics are available from submarine sonar data (e.g. McLaren, 1989; Wadhams, 1981; 
Wadhams and Horne, 1980) and show that most leads are < 20 m. Thus, it is difficult to say 
with confidence that leads detected by CryoSat-2 and not by MODIS are false detections. Only 
the TLR for the largest leads can be determined with such a data set.
This problem is now discussed and addressed by estimates of the SSH.

2180, 8: The CS-2 track is very much two dimensional, the pulse-limited across-track footprint 
size is not negligible and could impact the results.
At this point we only describe the differences between the apparent lead width (CS-2 lead
crossings) and actual lead width (short dimension of a lead). We focus on the difference 
between measurements fields (like images/MODIS) and line measurements (CS-2). The 
two dimensional nature of the footprint and its implications (e.g. off-nadir leads) are 
noted at several occasions throughout the text.

2187, 20: Some caution is needed in the lower threshold value as this number will depend on 
factors such as the altitude and that the transmit power is stable over time.
This is a good point, the waveform amplitude is dependent on the altitude and 
transmitted power. Changes of the transmitted power can be expected to influence the 
received power proportionally. Based on the relative high stability of the transmitter, we 
expect it to have a minor influence. We further expect the amplitude to be reduced with 
altitude (alt) by 1/(alt*2)^2 = 0.25*1/alt^2 (circular wave propagation). A typical CS-2 
altitude is 717 km and we consider 10 km a typical variation (based on the data of 
January 2011), 727^2 / 717^2 = 1.028. The amplitude variation due to 10km change in 
altitude is therefore around 3%. This is much less than the variability within the class of 
assured leads (ground truth class 'lead') and can therefore be neglected. The MAX 
parameter has shown its advantages in lead detection on the ground truth and on a four 
year record of SSH estimates despite this two factors.
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Abstract

Leads cover only a small fraction of the Arctic sea ice but they have a dominant effect on
the turbulent exchange between the ocean and the atmosphere. A supervised classification
of CryoSat-2 measurements is performed by a combination

::::::::::::
comparison with visual MODIS

scenes. For several parameters thresholds are optimized and tested in order to reproduce
this prior classification. The maximum power of the waveform shows the best classifica-
tion properties amongst them, including the Pulse Peakiness. With the same correct lead
detection rates as of published classifiers, the amount of ice being detected as lead can be
reduced by up to 40

::::
The

:::::
sea

::::::::
surface

::::::
height

:::
is

::::::::
derived

::::
and

:::
its

::::::::
spread

::
is

::::::::
clearly

::::::::
reduced

::::
for

:
a
::::::::::
classifier

:::::::
based

:::
on

::::
the

::::::::::
maximum

:::::::
power

:::::::::::
compared

::
to

::::::::::
published

::::::
ones. Lead area fraction

estimates based on CryoSat-2 show a major fracturing event in the Beaufort Sea in 2013.
The resulting Arctic wide lead width distribution follows a power law with an exponent of
2.47±0.04 for the winter seasons from 2011 to 2014, confirming and complementing a
regional study based on a high resolution SPOT image.

1 Introduction

Sea ice modulates
:::::::
affects

:
all interaction between ocean and atmosphere, namely heat,

mass and momentum transports in ice covered regions. It is strongly reducing
::::::::
strongly

::::::::
reduces

:
most of these transports and thereby leaving these processes basically to open-

ings in the ice. These openings, called leads, appear even in regions which are typically
covered by thick ice, like the central Arctic. Shear and divergence in the ice cover create
new leads (Miles and Barry, 1998). Those areas can exhibit huge temperature differences
between cold air and relative warm water. The resulting heat loss causes fast formation of
new ice. Even leads covered by thin ice show much higher heat fluxes than the surrounding
thick ice (Maykut, 1978). The low albedo of leads promotes an energy flow in the opposite
direction which increases the amount of absorbed insolation, resulting in a warming of the
underlying water. Leads reduce the internal strength of the sea ice, enabling higher drifting

2
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velocities (Rampal et al., 2009) and are expected to influence the atmospheric boundary
layer chemistry (e.g. Moore et al., 2014).

Large scale satellite remote sensing studies of lead occurrences have been done based
on visual and thermal imagers (e.g. Lindsay and Rothrock, 1995; Willmes and Heinemann,
2015). They are generally limited by the resolution of thermal infrared measurements of
about one kilometer and by the influence of clouds. By using passive microwave data, Röhrs
et al. (2012) avoided the requirement of free sky conditions but reduced the resolution even
further to 6.25 km. A good agreement with CryoSat-2 (CS-2) and ASAR based estimates
of the lead occurrence for leads wider than 3 km has been reported (Röhrs et al., 2012).
CryoSat-2 based lead detection is expected to be a good complement to previous estimates
as it combines an increased resolution of some hundred meters with a strong atmospheric
independence. The quality of this approach has been assessed by Zygmuntowska et al.
(2013) for airborne surveys and is topic of this study for CS-2 measurements.

Not only
::::::
Apart

:::::
from

:
the lead areabut

:
,
:
also the width distribution is important for the

turbulent heat transport in ice covered regions. A convective boundary layer evolves over
leads which increases in thickness towards the downwind side of the lead

:
(Andreas et al.,

1979). This boundary layer is dampening
::::::::::
dampens

:
the heat flux per lead area which is

therefore higher for narrow leads than for wider ones. This has led to different lead-width
dependent heat transfer formulations (e.g. Andreas and Murphy, 1986). Marcq and Weiss
(2012) show that the turbulent heat flux over leads is up to 55 % higher if using a power-law
distribution down to a lead width of 10 m instead of considering all leads as one large area
of open water.

The Arctic sea ice extent declined substantially over the last decades (Serreze et al.,
2007), while comparable studies for the ice thickness are rare and struggle with uncer-
tainties (Lindsay and Schweiger, 2015). Ice thickness estimates based on upward looking
sonars on submarines (e.g. Rothrock et al., 2008) or moorings (Proshutinsky et al., 2009)
have a relatively sparse temporal and spatial coverage. Airborne and helicopter based thick-
ness measurements are utilizing

:::::
utilize

:
the strong difference between the electromagnetic

inductances of seawater and ice. They are of great value for regional studies and valida-

3
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tion, but are limited to individual campaigns
:::::::::
restricted

:::
by

::::
the

:::::::
limited

:::::::::
number

::
of

::::::::::::
conducted

::::::::
surveys (Haas et al., 2010; Renner et al., 2013, 2014; Maaß et al., 2015).

Sea ice thickness is retrieved from satellites by radiometry, i.e. the influence of the ice
thickness, salinity and temperature on the emissivity and transmittance. Various passive
thermal to microwave sensors have been used (AVHRR, MODIS, SSM/I, AMSR-E, MI-
RAS) (Yu and Rothrock, 1996; Singh et al., 2011; Martin et al., 2005; Kaleschke et al.,
2012; Tian-Kunze et al., 2014). As the ice thickness information saturates for all these sen-
sors at a certain level, this approach is only capable of relatively thin ice, typically well below
one meter (e.g. Kaleschke et al., 2010).

Another approach utilizes laser or radar altimetry in order to derive the
:::::
snow

:::
or

:::
ice

:
free-

board, i.e. the elevation difference between the Sea Surface Height (SSH) and snow or
ice surface

:
,
:::::::::::::
respectively.

::::::
Laser

::::::::
signals

:::::
only

::::::
reach

::::
the

::::::
snow

::::::::
surface,

::::::
while

::::::
radar

:::::::::::
altimeters

:::
are

::::::::::
basically

:::::::::
showing

::::
the

:::::::::
snow-ice

::::::::::
interface

::::::::::
elevation. By considering the relevant densi-

ties and the snow thickness the freeboard
:::::
those

::::::::::::
freeboards

:
can be converted into an ice

thickness in
:::
ice

::::::::::
thickness

:::
by

:::::::::::
assuming hydrostatic equilibrium. Sea ice thickness has been

derived from radar altimetry in the Ku band
:::::
radar

:::::::::
altimetry

:
from the European Remote

Sensing Satellites ERS-1 and ERS-2 as well as Envisat and CS-2 (Laxon et al., 2003;
Giles et al., 2008; Laxon et al., 2013; Ricker et al., 2014). These radars are not restricted to
clear sky conditions, but a satisfying handle for the influence of a snow cover on the signal is
still not found

:::::::
limited

:::::::::::
knowledge

:::
of

::::
the

:::::
snow

::::::::
loading

:::::
and

:::
the

::::::
radar

:::::::::::
interaction

:::::
with

::::
the

::::::
snow

:::::
layer

:::::::::
currently

::::::
limits

::::
the

::::::::::
accuracy

:::
of

:::::::::
altimeter

::::::::
derived

:::::
sea

:::
ice

:::::::::::
thickness

::::::::::
estimates (Willatt

et al., 2011; Kwok, 2014). Advantages of the radar on CS-2, over earlier Ku band altimeters
are the reduced footprint size and noise due to the synthesis of overlapping measurements,
its orbit which allows a coverage up to 88◦ North and South and the potential of interfero-
metric measurements (Wingham et al., 2006)

:
.
::
In

::::::
most

::::::
parts

::
of

::::
the

::::::
Arctic

::::
the

:::::::
SARM

::
is

::::::
used

:::::::
except

:::
for

:::::
most

::::::::
coastal

::::::
areas

:::::
and

::::
the

:::
so

::::::
called

:::::::::::
’Wingham

:::::
Box’

:::::::
(80-85◦

::
N

::::
and

:::::::::
100-140◦

:::
W)

::::::
where

::::
the

:::::
SAR

::::::::::::::::
Interferometric

::::::
mode

:::::
finds

::::::::::::
application.

A crucial information for each
::::
The

:::::
SSH

::
is

:::::::
crucial

:::
for

:
altimeter based ice thickness retrieval

is the SSH
:::::::::
retrievals. For this reason the altimeter measurements are separated into those

4



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

from ice and those from leads (see Fig. 1 for examples from CS-2). The lead measurements
are used to derive the SSH, which acts as reference for the freeboard. Leads covered by
thin ice and falsely detected leads (i.e. thick ice) result in an overestimation of the SSH and
therefore in a negative bias in the derived freeboard and thickness. If considering only a very
few, assured lead measurements the statistical error increases (Armitage and Davidson,
2014). It is therefore of high interest to find a lead detection method which is very trustworthy
and detects as many leads as possible.

In this study the quality of CS-2 based lead detection procedures is assessed by a com-
parison with MODIS measurements. Previously published classifiers are implemented and
compared with newly derived ones in a Receiver Operating Characteristics (ROC) graph.
The most promising one is subsequently used to derive the lead area fraction and the lead
width distribution. Thereby this study attempts to close a gap of knowledge about the differ-
ences of lead detection procedures from CS-2 and makes suggestions for improvements,
which has direct implications for sea ice thickness estimates.

2 Methods

2.1 The ground truth

In order to optimize and compare the performance of different classification routines, we
choose a supervised classification approach. The

::::::
Visual

:::::::::::
Moderate

::::::::::::
Resolution

:::::::::
Imaging

:::::::::::::::::::
Spectroradiometer

::::::::::
(MODIS)

:::::::::::::::
measurements

:::::
can

::::
be

:::::
used

:::
to

::::::::::::
distinguish

:::::::::
between

:::::
sea

::::
ice

::::
and

::::::
water (Su et al., 2012)

:
.
::::
Two

::::::::
MODIS

:::::::::::::
instruments

::::
are

::
in

::::::::::
operation

:::
on

::::
the

::::::
NASA

::::::::::
satellites

:::::
Terra

:::::
and

::::::
Aqua.

::::::
They

::::::
cover

:::
the

::::::
earth

::::::::
surface

::::::
every

::
1
:::
to

::
2

:::::
days

::::
and

::::::::::
measure

::
in

:::
36

:::::::::
spectral

::::::
bands

:::::
from

:::::::
visual

::::::
(used

::::::
here)

:::
to

::::::::
infrared

:
(Barnes et al., 1998).

::::
We

::::::::
identify

:::::
land

:::::
and

::::::
cloud

::::::::::
influences

::::::::::
manually

::::
and

::::
are

::::::::::
therefore

::::
able

:::
to

::::
rely

:::::
only

:::
on

::::
the MODIS band 2 swath product

is used
:::::::
(around

:::::
857

::::
nm

:::::::::::::
wavelength)

::::::
level

::::
1B

::::::::::::
reflectance

:
as reference dataas it has a

sufficient .
::
It
:::::
has

::
a resolution of 250 m and seems to be even more suited to identify leads

than band 1 (not shown). Dark areas with sharp edges and linear shapes in the MODIS

5
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images are interpreted as leads. CS-2 measurements from this
::::::
these areas, recorded less

than one hour before or after the MODIS acquisition, are manually labeled as lead. In the
same way we identify CS-2 measurements of ice while all measurements with a mixture of
both classes within the footprint are excluded from this study (see also Fig. 2a). This

::::
The

:::::
CS-2

:::::::::
footprint

::
is
::::::::::
assumed

:::
to

:::
be

:::::
300 m

::
in

::::
and

::::::
1500 m

:::::::
across

:::::
flight

::::::::::
direction.

:::::
This

:::::::::
ice/lead

information is in the following considered as ground truth, regardless of possible mislabeling
for example caused by unexpected high ice velocities.

The ground truth consists 722 lead and 5768 ice measurements
:
.
::::::
Note

::::
that

::::
this

:::::::::
method

::
is

:::::::
limited

:::
by

::::
the

::::::::::
resolution

:::
of

:::::::::
MODIS.

::::::::::
CryoSat-2

::::::::::::::::
measurements

:::::::
which

::::
look

:::::
like

:::::::::::
originating

:::::
from

:::
ice

:::
in

::::::::
MODIS

::::::::
scenes

:::::
can

::::::::
actually

::::::::
contain

:::::::
small

:::::::::
amounts

:::
of

:::::::
leads.

:::::
See

::::::::
section

::::
4.2

:::
for

:
a
::::::::::::
discussion

::
of

::::
this

:::::::::::::::
circumstance.

:::::
The

:::::::
ground

::::::
truth

::
is

:
acquired from February to end of

April
::::
the

::::::::::
beginning

:::
of

:::::
May

:
in 2012 and 2013 from seven MODIS granules

:
in

::::
the

:::::::::
eastern

:::::::::
Beaufort

::::
sea

::::
and

::::::
north

:::
of

:::
the

:::::::::::
Canadian

::::::
Arctic

:::::::::::::
Archipelago. For this time of the year optical

MODIS scenes are available and surface melting can be ruled out. Within this study we
use CryoSat-2 Level 1b data with processor versions “SIR1SAR/4.0” and “SIR1SAR/4.1”
(Baseline B). This two SAR mode versions are equivalent.

2.2 Relation to physical properties

When the emitted CS-2 signal reaches a rough surface the elevation differences result

::::::
Large

::::::
scale

:::::::::::
roughness

::::::::
results in a spread in time of the received signal. Especially if the

roughness is close to the signal wavelength of 2.2in Ku band it is favoring
:::::
CS-2

:::::::
signal

:::
as

:::::::::
exposed

::::::
parts

::
of

::::
the

:::::::::
surface

::::
are

:::::::::
reached

:::::::
earlier

::::::
than

::::
low

:::::
lying

:::::::
parts.

:::::::::::::
Additionally

::::::
small

:::::
scale

::::::::::::
roughness

::
is

:::::::::::
promoting

:
surface scattering instead of reflection, resulting in a more

uniform distribution in terms of angle dependency
::::::::
meaning

:::::
that

::::::
more

:::::::
energy

::
is
::::::::::
scattered

:::
in

:::::::
oblique

:::::::::::
directions. Therefore measurements of the same position from altering look angles

are more similar for rough surfaces (Wingham et al., 2006). Additionally areas further away
from the nadir point have a stronger contribution, leading to an emphasized signal following
the first (nadir) peak for rough surfaces . As (Laxon, 1994a)

:
.
::::::::
Energy

:::::::::::::
conservation

:::::::::::
conditions

6
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:
a
:::::::::
reduced

:::::::::
maximal

:::::::::::
receivable

:::::::
signal

::
if
:
the emitted power is more strongly scattered in all

directions , the maximal receivable signal is reduced
:::
by

::
a

::::::
rough

::::::::
surface.

The characteristic impedance of the surface layer might also influence the signal

::::::::::
amplitude

:
(Laxon, 1994a). If the difference in impedance at 13.5 GHz of the uppermost

layer and the air is small, there is less reflection and more transmission into the ice/snow.
Within the medium it is partly absorbed and scattered by inhomogeneities, again leading
to a spread of the signal with lower maximum values and a more homogeneous angular
distribution. This process could for example be favored by a layer of wet snow

:::::
snow

:::::
with

::::::::::
moderate

::::::::::::
temperature.

As leads are locally bound, the fetch is too small for bigger waves to evolve in the water.
The thin ice cover, if present, is yet neither physically deformed nor covered with snow.
Furthermore the microstructure of young ice is more compact than of older ice as most brine
pockets are filled and less connections have evolved. Therefore leads can be characterized
by their commonly flat surface with relatively high impedance difference to the air. The
returns originating from leads are expected to be compressed in time with higher maximum
values and stronger incidence angle dependency (specular returns).

In the SAR Mode, CS-2 returns from the same position on the ground are received from
different look angles. After allocating them by using the Doppler Shift, they are combined to
one waveform (Wingham et al., 2006) i.e. the returned power as function of time (see Fig. 1
for examples). The following waveform based parameters are used: Maximum Power, Pulse
Peakiness, Leading Edge Width and Trailing Edge Width.

In addition to stacking the beams to one waveform, they are also integrated over time
separately. In this case

::::::::::
(summed)

::::::::::::
separately.

:::
A

:::::::::::
Gaussian

::::::::::::
distribution

::::::
curve

:::
is

::::::
used

:::
to

::::::::::::
approximate

:
the returned energy of the individual beams (the stack) with different incidence

angles is achieved
::
as

:::::::::
function

::
of

::::::::
beams

::::
(i.e.

:::::::::::
incidence

:::::::
angle). We use the Stack Standard

Deviation and the Stack Kurtosis as stack based parameters
:::::::::::
parameters

:::::::
which

::::
are

:::::::
based

:::
on

::::
this

::::::
curve.

7
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2.3 Parameter definition

– The Maximum Power (MAX) is the highest recorded power of the calibrated waveform
in Watts.

– The Pulse Peakiness (PP) has been established by Laxon (1994b) and is defined as
the MAX divided by the accumulated power (PWF) of all bins constituting the wave-
form:

PP =
max

(
PWF

)
128∑
i=1

PWF
i

, (1)

which is the same definition as used by Armitage and Davidson (2014), while the
values of Laxon et al. (2013) are divided by 100 and those of Ricker et al. (2014) by
128 for consistency.

– The Left and Right Pulse Peakiness (PPL and PPR) from Ricker et al. (2014) for Base-
line B data are defined as (Robert Ricker, personal communication, January 2015):

8
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PPL =
15 ·max

(
PWF

)
imax−2∑

i=imax−6
PWF
i

, (2)

PPR =
15 ·max

(
PWF

)
imax+6∑

i=imax+2
PWF
i

, (3)

where imax is the index of the maximal value of the waveform. The PPL and PPR
are

:::::
have

::::::
been proposed in order to reject off-nadir leadswhich are,

:
,
::::
the

::::::::::
influence

::
of

::::::
which

::::
can

::::
not

:::
be

:::::::::::
quantified based on our methodology (see Sect. 2.1), not expected

to appear in our data. Therefore the PPL and PPR are not fully included in this study.
However, they are defined as we use the classifier of Ricker et al. (2014) for compar-
isons.

– The Leading Edge Width (LEW) is defined as the width between 1 and 99 % of the
amplitude of a Gaussian fit to the leading edge of the waveform. The fitted area starts
at the first bin reaching one percent of the Maximum Power and ends at the second
bin, following the first peak. The first peak is the first local maximum reaching at least
50 % of the Maximum Power. To avoid bimodal waveforms, we completely exclude
measurements with a first peak smaller than 80 % of the Maximum Power from this
study. Similar fits and constrains are used by Kurtz et al. (2014).

– The Trailing Edge Width (TEW) is defined as the width between 99 and 1 % of the
amplitude of an exponentially decaying fit to the trailing edge of the waveform. The
fitted area starts at the position of the Maximum Power and ends at the last bin (e.g.
Legresy et al., 2005).

– The Stack Standard Deviation (SSD) is the standard deviation (SD) a random vari-
able would have, if the Gaussian fit to the integrated power (i.e. energy )

::::::::::
mentioned

9
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::::::::::
Gaussian

:::::::::::::::
approximation

::
of

::::
the

::::::::
energy

:
as function of beams would be its Probability

Density Function. It is therefore describing its width and not the SD of the energy val-
ues itself. The used unit is “Beams” which can also be expressed in terms of angles .

::::
Due

:::
to

:::
the

::::::
more

:::::::::
specular

::::::::::::::::
characteristics

::
of

:::::::
leads,

::::
the

:::::::
spread

:::
of

::::::
power

:::::
with

::::::::::
incidence

::::::
angle

::
is

::::::::::
expected

::
to

::::::::
narrow

::::
and

:::
so

::
is
::::
the

:::::
SSD

:
(Wingham et al., 2006).

– The Stack Kurtosis (SK) is also obtained from the Gaussian fit to
::::::::::::::
approximation

:::
of the

energy as function of beams. In contrast to the SSD it is not derived as a fitting variable
but from the function, evaluated at the positions of the beams (Veit Helm, personal
communication, June 2014; Wingham et al., 2006). While all Gaussian functions have
in general a kurtosis of three, discrete points of them do not have if the Gaussian is
badly represented. This is the case for very narrow (badly resolved) and extremely
wide functions (only partly covered).

::::
The

:::::::::
Kurtosis

:::
is

::
a

:::::::::
measure

:::
of

::::
the

:::::::::::::
peakedness

::::::
which

::
is

::::::::::
expected

::
to

::::
be

::::
high

::::
for

::::::
leads.

:

2.4 Threshold optimization

Threshold based classifications are widely used to identify leads from Ku band altimeters.
We use a repeated random sub-sampling validation

::::::::::::::::
Cross-Validation

:
technique to derive

and test thresholds (Θ). This
:::::::::::
(interested

:::::::::
readers

::::
are

:::::::::
referred

::
to

:::::::::
chapter

::
9

::
in
:

Duda et al.
(2001)

:
).

:::
Θ

::::::::
consists

:::
of

:::::
one

::::::::::
threshold

:::
for

::::::
each

:::::::::::
parameter

:::::
used

::::
for

::::
the

:::::::::::
respective

::::::::::
classifier.

::::
The

:::::::::::::::::
Cross-Validation involves a random separation of the samples into a training and a test-

ing subset, each of which consist of 50 % of all samples. From the training subset we derive
Θ

::
by

::::::
using

::::
Eq.

::
4
:
and apply it to the testing set to investigate its performance. The random

assignment into subsets and the testing of the newly derived Θ is repeated 200 times
:::
for

:::::
each

:::::::::
classifier

:
to get an overall performance and an estimation of its spread.

:::::::
These

::::::
steps

:::
are

:::::::::::
illustrated

::
in

::::
Fig.

:::
3.

:

As mentioned in Sect. 1 there are different applications for lead detection algorithms
also resulting in different demands on its characteristics. One plausible aim is to reduce
the total amount of false detections to a minimum. But one might also be interested in

10
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a more conservative lead detection by reducing the amount of ice being detected as lead
(False Leads) at the cost of less correctly detected leads (True Leads). A more conservative
detection might be used for a freeboard retrieval as False Leads might result in a bias while
high True Lead Rates are not always of high importance.

To take these different demands into account we include a weighting factor w in the cost
function.

cost(Θ) = w ·False_Ice(Θ) + False_Leads(Θ), (4)

where False_Ice represents the amount of lead samples classified as ice. Θ is derived
by minimizing the cost function on the training subset using the Nelder–Mead simplex al-
gorithm (Nelder and Mead, 1965) with up to 400 initial guesses to find the global min-
imum. For 0 <w < 1 False Leads are primarily reduced

::::
The

::::::::::::::
Nelder–Mead

:::::::::
method

::
is

::::
an

::::::::::::::
unconstrained

::::::
direct

::::::::
search

::::::::::
algorithm

:::
for

::::::::::::::::::
multidimensional

::::::::::::::
minimization.

:::::
This

:::::::::::::
optimization

::::::::
reduces

:::::::::
primarily

::::::
False

:::::::
Leads

::::
for

::::::::::
0 <w < 1, while for w = 1 the total amount of false clas-

sifications
::::::
(False

:::
Ice

::
+
:::::::
False

:::::::
Leads)

:
is minimized. We use the parameter acronym with the

weight as index to point at the corresponding one dimensional classifier.
This methodology is applied to all single parameters and all possible pairs of them, in .

:::
In

the latter case forming two dimensional feature spaces
:
Θ

:::
is

::::::::
derived

:::
as

::::
the

:::::::::::::
combination

:::
of

::::
both

::::::::::::
thresholds

::::
with

::::
the

:::::::::
smallest

::::::
value

::
of

::::
the

:::::
cost

:::::::::
function.

3 Results

3.1 Classification performance

In Fig. 2 the CS-2 track is essentially crossing three wider leads, two of which are brighter
at the northern side. This indicates that they are covered by ice on this side, while the
southern side might exhibit open water. The third wider lead around 71.2◦ N and a thinner
one at 71.75◦ N seem both to be completely covered by thin ice. The manual classification
in Fig. 2a only visualizes the methodology as the time difference is larger than one hour

11
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and this scene is therefore not part of the ground truth. Gaps in the track occur when the
MODIS information of CS-2 footprints cannot be assigned unambiguously to leads or ice.
In Fig. 2b the MAX0.5 classifier detects only some leads and those only partly. It shows
an accentuation on newly formed parts of the leads. The MAX1 classifier and the one

::::
and

:::
the

::::::::::
classifier

:
developed by Ricker et al. (2014)

:::::
(from

:::::
now

::::
on

:::::::
called

::::::
RI14)

:
show strong

similarities as both detect all relevant leads while lead detections are very rare where the
MODIS scene shows ice. However for wider leads they can show a mixture of ice and lead
detections, which is in some cases stronger for the MAX1 classifier and in other cases
for the classifier

:::::
RI14

:
(not shown). The classifier from

:::::
used

:::
by Laxon et al. (2013)

::::::
(from

::::
now

:::
on

:::::::
called

:::::::
LX13)

:
detects all visible leads without a significant amount of missing lead

detections, but it also detects leads where no or only weak indications for them can be found
in the MODIS scene.

Figure 4 shows a Receiver Operating Characteristics (ROC) graph of all tested classifiers.
Each classifier is represented by one point in the graph, the position of which is defined by
its True Lead Rate (TLR, the amount of correctly detected leads divided by the amount of
tested lead samples) and False Lead Rate (FLR, the amount of ice measurements

::
in

::::
the

:::::::
ground

::::::
truth detected as lead divided by the amount of tested ice samples). The upper

left corner corresponds to ideal classifiers and the principle diagonal represents random
assignments. For each parameter and pairs of them, we use different weights resulting in
different Θ and corresponding performances. For single parameter classifiers 15 different
weights (0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 2, 5, 10, 30, 100) are applied to
capture the development of the performance (from the lower left corner to the upper right in
Fig. 4) while w = 0.001, w = 0.5 and w = 1 are used in the two dimensional case. To follow
the performance of e.g. MAX based classifiers one can start with small w, implying high
values of Θ which is detecting only a few leads (lower left corner in Fig. 4). With increasing
w and decreasing Θ the TLR increases in the beginning much faster than the FLR. At some
point the amount of correct lead detections is mostly constant while a further lowering of Θ is
mainly increasing the amount of ice measurements which are detected as lead. As relative
performances are shown the classifier closest to the upper left corner is not necessarily the

12
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“best” one but if one classifier is on the upper left side of another it can be considered as
superior. Further remarks on ROC graphs are given by Fawcett (2006).

It is at this point not important how the thresholds (Θ) are derived but only the combination
of its value and performance. This allows us to compare the classifiers found here with those
other authors have developed, independent from the optimization routine.

Classifiers based on the Maximum Power (MAX) appear on the upper left side of all
others on the whole range of Fig. 4. Only classifiers using two parameters including the
MAX (black marker) reach the single feature MAX classifications and are in all cases very
close to them. All other classifiers based on pairs also show very similar results to that
classifier based on the single, more suited parameter within its pair.

The PP and LEW based classifiers show strong similarities and have the second-best
combinations of True and False Lead Rates.

Figure 5a illustrates the spread within the runs in terms of the SD of the True and False
Lead Rates. The differences between all shown one dimensional classifiers and the corre-
sponding two dimensional ones are clearly smaller than the inherent fluctuations and are
therefore considered as not significant. The classifiers based on the MAX are separated
from the others by more than their SDs for small weights, while they are not for higher
weights. However, Fig. 5b shows that the fluctuations occur mostly in the direction of neigh-
boring weights, which shows that the performance of MAX based classifiers is even stronger
separated from the others.

3.2
::::
Sea

:::::::::
Surface

::::::::
Height

::::
The

:::::
SSH

:::
is

:::::::::::
calculated

:::
as

::
a

::::::::
second

::::::
stage

:::
of

:::::::::::
accessing

:::
the

::::::::
quality

::
of

::::::::::::
classifiers.

:::
To

:::::::
derive

:::
the

:::::
SSH

::::::
from

::::::
leads

::
is

::
a
::::::::
popular

::::::::::::
application,

:::
to

::::
test

::::
the

::::::::::
classifier

:::::::::
behavior

::
in

::::
this

::::::::
context

:::
is

:::::::::
therefore

::
a
:::::
very

:::::::::
practical

:::::::::::
approach.

:::::
This

::
is

:::::
done

::::::::::::
statistically

:::
by

:::::::::::::
investigating

::::
the

::::::::
stability

:::
of

:::::
SSH

::::::::::
estimates

:::::
from

:::::::::
different

:::::::::::
classifiers.

:

::::
We

::::
use

:::::
the

::::::::::
threshold

::::
first

:::::::::::
maximum

:::::::::::
re-tracker

::::::::::
(TFMRA,

:::::::::
TL=0.4)

:
(Helm et al., 2014)

::
to

::::::::::
calculate

::::
the

:::::::
delay

:::::
time

:::::::
which

:::
is

::::::::::
assumed

:::
to

::::::::::::
correspond

:::::
the

:::::::
return

:::::
from

:::::
the

::::::
main

::::::::::
scattering

::::::::
surface.

:::::
The

::::::
range

:::
is

::::::::::
corrected

:::
for

:::::::::::::
atmospheric

:::::::::::
influences

:::::::::::::
(ionosphere,

::::
wet

:::::
and

13



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

:::
dry

:::::::::::::
troposphere,

:::::::::
dynamic

:::::::::::::
atmosphere

::::
and

::::
the

::::::::
inverse

:::::::::::
barometric

:::::::
effect)

::::
and

:::::
tides

::::::::::
(namely:

:::::::
ocean,

:::::
long

:::::::
period,

::::::
solid

::::::
earth,

::::::
polar

::::
and

:::::::
ocean

::::::::
loading

::::::
tides)

:::
as

:::::::::
provided

:::
in

:::
the

::::::
CS-2

:::::
L1B

:::::
data.

:::::
The

::::::::
surface

:::::::::
elevation

:::
of

:::::
lead

::::::::::::::::
measurements

::
is

::::::::::::
considered

:::
as

:::::
SSH

:::::
and

:::
the

::::::::::
variance

::
is

:::::::::::
calculated

:::
on

::
a
:::::::::::::::
10km× 10km

::::::
north

::::::
polar

::::::::::::::
stereographic

:::::
grid.

::::
All

:::::::
SARM

::::::::::::::::
measurements

:::::
from

::::::::
January

:::
to

:::::::
March

::
of

::::
the

::::::
years

::::::
2011

::
to

::::::
2014

::::
are

::::::
used.

:

::::
The

:::::::
mean

::::
field

:::::::::::
represents

::::
the

:::::::
stable

:::::
SSH

::::::
signal

:::::::
which

::::::
could

:::
be

:::::
used

:::
as

::::::::::
reference

:::
for

::::
ice

:::::::::
thickness

::::::::::::
estimates.

::::
The

::::::::::
variance

:::::::
around

::
it
:::
is

:::
an

:::::::::
indicator

::::
for

:::
its

::::::::::
reliability.

::::::::::::
Differences

:::
of

:::
the

:::::::::
variance

::::::::::
between

::::
the

::::::::::
classifiers

::::
are

::::::::::
expected

:::
to

:::
be

::::::::
caused

:::
by

::::
the

::::::::::::::::::::
inclusion/exclusion

::
of

::::
ice

::::::::::::::::
measurements

:::::::
and/or

:::::::::
off-nadir

:::::::
leads.

::::::::
Figure

::
6
:::::::
shows

::::
the

::::::::::
variance

::::::::::::
distribution

:::
of

::::::::
selected

::::::::::::
classifiers.

::::
The

::::::::
MAX1:::::::

shows
::
in

:::::::::
general

:::
the

:::::::::
smallest

:::::::::::
variances,

::::::
while

::::
the

::::::::
amount

::
of

::::
grid

:::::
cells

:::::
with

:::::
high

:::::::
values

:::::::::::
converges

:::
to

:::::
zero

:::
for

:::
all

::::::::::
classifiers

:::
in

::
a

:::::::
similar

:::::
way.

:

3.3 Spatial distribution

In the following sections we are using the MAX1 classifier which has been derived by min-
imizing the total amount of false classifications and its results are therefore taken as the
best representation of the overall lead occurrence.

Figure 7 shows the lead fraction in the Arctic region as derived from CS-2 by dividing the
amount of detected lead measurements by the total amount of measurements from January
to March 2011. The AMSR-E Arctic lead area fraction (Röhrs and Kaleschke, 2012; Röhrs
et al., 2012) (downloaded in September 2014) is also shown, combined over the same
period and brought to the same spatial resolution.

Lead detections from CS-2 are most common in the Baffin Bay, the Fram Strait region,
the northern Barents Sea and the Kara Sea, as well as in the

::::::::
western

:
Laptev and the

Chukchi Sea, all with lead fractions up to around 15 % (Fig. 7a). The central Arctic including
the area north of the Canadian Arctic Archipelago and the northern Canada Basin show
low lead fractions of around 0–1.5 %. In the southern Beaufort sea and especially its shear
zone next to the coast line, lead fraction values of up to 6 % occur.

A somewhat different picture of the lead fraction pattern emerges by using the AMSR-E
Arctic lead area fraction from Röhrs et al. (2012) (Fig. 7b). In areas covered by both esti-
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mates the CS-2 based one mostly appears to be higher than the AMSR-E based estimate.
This is not the case in the south eastern Beaufort sea where the AMSR-E product shows
values of 15 % and more while they reach from 1.5 to 5 % for the CS-2 based estimate. We
observe reasonable agreements in the Fram Strait region, the East Siberian Sea and the
Chukchi Sea. Increased values occur for both estimates near islands like Svalbard, Franz
Josef Land, Severnaya Zemlya and the Wrangel Island. However there are big differences
between the datasets in the Baffin Bay, the Fram Strait regions close to the ice edge, the
northern Barents Sea and the Kara Sea where CS-2 consistently detects more leads than
the AMSR-E lead area fraction indicates.

While a daily open ocean mask is provided for the AMSR-E product, we consider all
areas north of 65◦ N for the CS-2 based estimates. The ice edge on the Atlantic side, as
indicated by the AMSR-E mask agrees well with the transition of CS-2 lead fractions from
zero to higher values.

By the end of February 2013 the whole Beaufort Sea was pervaded by leads. Favored by
storms the ice started in mid February to move into the direction of the Bering Strait, causing
a divergence in the pack ice. This is the reason for the opening of leads, beginning in the
western part and propagating to the east. This process accelerated around 27 February
after which all but the fast ice at the Canadian coast and the sea ice at the Canadian Arctic
Archipelago was fractured. See also Beitsch et al. (2014) for further descriptions.

By comparing the CS-2 lead fractions from February and March 2013 (Fig. 8) the pattern
of this fracture event are reproduced with a proper shape and amplitude. Most lead pattern
can be observed in both months, in many cases slightly decreasing in amplitude towards
March. However, while in February only in the western part of the Beaufort Sea noticeable
amounts of leads are detected, the complete region shows 8 to 15 % lead coverage in
March.

3.4 Apparent lead width

To investigate the lead width distribution we use a proxy which we call apparent lead width.
The apparent lead width is the amount of consecutive MAX1 lead detections multiplied by
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the approximate distance between two positions of 300 m. It can be seen as a measure of
the CS-2 track interval over a crossed lead or as the width of a lead how it appears in the
one dimensional domain of the CS-2 track. If the lead orientation is orthogonal to the CS-2
track, the apparent lead width is our best estimate of the actual lead width. We do not allow
any ice detection within a lead which will in case of false detections split a lead into smaller
ones.

The apparent lead width distribution follows a power-law in winter months with an ex-
ponent of 2.47 for values of 600 m and more (Fig. 9). A quantity z is called power-law
distributed if its Probability Density Function p(z) satisfies:

p(z)∝ z−a, (5)

where a is the power-law exponent. It is derived following the approximation of Clauset et al.
(2009) for discrete distributions with a simple adjustment for a step size of 300 m as shown
in Eq. (6).

a≈ 1 +NZ

(
NZ∑
i=1

ln
zi

zmin− 1
2 · 300m

)−1

(6)

For the calculation of the power-law exponent only apparent lead widths zi with a width
equal or higher than zmin = 900m are considered with NZ being the amount of them. A line
representing a power-law with the calculated exponent is displayed in Fig. 9. It shows the
validity of this approximation down to 600 m, as both lines show a strongly parallel develop-
ment.

The interannual variability is small with exponents between 2.42 in 2013 and 2.52 in
2011 with a SD of 0.04 amongst all four years. Differences between January, February and
March of the same year are even smaller while the exponent decreases towards spring and
autumn. All calculated distributions are following a power-law for apparent lead widths of
600 m and more.
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4 Discussion

4.1 Classification performances

Classifiers based on the MAX parameter show generally the best ratio between correctly
detected leads and ice being falsely detected as lead

::::
True

:::::
and

::::::
False

:::::
Lead

::::::
Rate. A classifier

using MAX > 2.58× 10−11 W as threshold (MAX1) detects 68.18 % of all leads correctly
while only 3.41 % of the tested ice measurements

::
in

:::
the

::::::::
ground

:::::
truth

:
are detected as leads.

The PP1 classifier using 0.35 as threshold has a TLR of 64.66 % (instead of 68.14 %) and
a FLR of 4.09 % (instead of 3.41 %). The differences are even stronger for higher thresholds
of 1.22× 10−10 W and 0.425, respectively (MAX0.5 and PP0.5, Table 1).

The performances of individual runs overlap only slightly for w = 1 and are well separated
for w = 0.5. This shows that the performance improvement is significant. The increased fluc-
tuation in the direction of neighboring weights in Fig. 5b is likely to be caused by a variability
of the thresholds caused by the repeated optimization.

For airborne surveys with an
:
a
:
device very similar to SIRAL on CS-2, Zygmuntowska

et al. (2013) also found the MAX parameter to have less false lead classifications than all
other parameters. The best combination of parameters (MAX & TEW) with an

::
a Bayesian

classifier improves its rate only little from 6.5 to 6.2 %. Zygmuntowska et al. (2013) define
the False Lead Classification Rate (FLCR) as percentage of all lead detections originating
from sea ice. This is different to our False Lead Rate as we use the amount of true ice
measurements as base. The FLCR calculated from the absolute values in Table 1 are 28.6
and 12.5 % for the MAX1 and MAX0.5classifier, respectively. One reason for higher error
rates of CS-2 is the reduced resolution of 300m×1500 m in contrast to around 10m×50 m
for the airborne device. Thereby it becomes much more likely that different surface types
occur within one footprint. Further we have to allow for some temporal differences in the data
acquisition and have to collocate the datasets, while for the airborne surveys optical images
are taken simultaneously. Deficiencies of the ground truth

::::::
which

::::::
might

::::
be

::::::::
caused

:::
by

::::
ice

::::
drift

::::
and

:::::::::::::::::
opening/closing

::
of

:::::::
leads

:::::::::
between

::::
the

:::::
data

::::::::::::
acquisition,

::::::::::::
collocation

::::
and

:::::::::::
unnoticed

:::::::
narrow

::::::
leads

:
increase the error rates which might

:::::::::
therefore

:
be overestimated.
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However, as this effects all parameters it is likely that the influence on the comparison is
small.

Compared to their MAX classifier, the PP classifier of Zygmuntowska et al. (2013) is
detecting more leads from both, ice and lead measurements. This is directly connected to
applied thresholds and is not a parameter property. For a solid decision which parameter is
suited best for lead detection it is necessary to vary the thresholds. We are able to propose
the use of the MAX parameter instead of the PP.

Three classifiers developed by other authors are included in this study. With the same
amount of False Lead detections

:::::::
Leads, the True Lead Rates can be increased for our

dataset from 9 to ∼ 13 % (Röhrs et al., 2012), from 83 to ∼ 89 %
:::::::
(LX13)

:
or from 61 to

∼ 79 % if an optimized threshold of the MAX parameter
:::::::
(RI14)

:
if
::
a
::::::
MAX

:::::::
based

:::::::::
classifier

:
is

used instead . On the other hand the False Lead Rate can be reduced for a constant True
Lead Rate from 13 to ∼ 7(−38) or from 5 to ∼ 3(−40)for the and classifier, respectively
(Fig.

::::
(Fig. 4).

So far we defined a lead detection as a measurement reaching both thresholds , but the
same procedure has been performed by taking it as sufficient to reach only one of them.
This results in more demanding thresholds but like before in

::::
The

::::::::
shown

::::::::::
classifiers

:::::::
using

::::
two

::::::::::::
parameters

:::::::
detect

::
a

:::::
lead

::
if

:::::
both

:::::::::::
thresholds

::::
are

::::::::::
reached.

:::::
This

:::::::
logical

:::::
’and’

:::::::::
criterion

:::
is

::::
now

:::::::::
replaced

:::
by

:::
an

:::::
’or’.

::
A

:::::::::
classifier

:::::::
based

:::
on

::::
the

:::::
MAX

::::
and

::::
the

::::
PP

::::::
could

:::
for

:::::::::
example

:::::::
define

:
a
:::::::::::::::
measurement

:::
as

::
a
:::::
lead

::
if
::::

its
:::::
MAX

:::::::
value

::
is

:::::::
above

:::::::
10−11

:::
W

:::
or

::
if
:::
its

::::
PP

::::::
value

:::
is

:::::::
above

:::
0.3

:::::
(one

:::
of

::::::
those

:::
is

:::::
now

:::::::::::
sufficient).

:::::
This

::
is
::::::::::::
influencing

::::
the

::::::::
amount

:::
of

::::::
False

::::
Ice

::::
and

:::::::
False

:::::
Lead

:::::::::::
detections

::::
(i.e.

::::
the

:::::
cost

::::::::::
function).

:::
As

::
a
::::::
result

::::
our

:::::::::
example

:::::
has

:::::::
higher

:::::::::::
thresholds

:::::
than

:
it
:::::::
would

:::::
have

:::
for

::::
the

:::::::
same

:::::::
weight

::::
and

::::::::::::
parameters

::::::
using

::::
the

::::::
’and’

:::::::::
criterion.

::::::::::::
Performing

::::
the

::::::
same

::::
test

:::
as

:::::::
before

::::
but

:::::
now

::::::
using

::::
the

::::
’or’

:::::::::
criterion

:::
for

:::
all

::::::
pairs

:::
of

::::::::::::
parameters

::::::::
brought

:
no

improvement of the classification (not shown).
There seems to be no benefit in including a second feature, because of which the

optimization shifts the second threshold to some level where it does not harm. The lack
of improvement
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::::
The

:::::
fact

::::
that

::::::::::::
combining

::::
two

::::::::::::
parameters

::::::::
seems

:::
to

:::::
have

::::
no

:::::::
benefit

:::
at

:::
all

:
indicates that

the parameters are basically all utilizing the same physical information and that the in-
strument and fading noises have either an correlated influence on all parameters or the
influence is not significant at all. As some of the parameters are derived in a very differ-
ent way , firstly by stacking different beams and secondly by integrating them over time
separately,

:::::
(e.g.

::::::::::
waveform

:::::
and

:::::
stack

:::::::
based

::::::
ones)

:
we do not expect the noise to affect them

in the same way. We further conclude that the spread of the parameters within one class is
predominantly caused by variations of surface properties which produces a correlation of all
parameters

::::::::
equally.

::::
We

::::::::::
conclude

::::
that

::::::
noise

::::::
plays

:::::::::
probably

::
a

::::::
minor

::::
role

::::
for

:::
the

::::::::::::::
classification

:::::::
errors.

4.2
::::::::
Narrow

:::::::
leads

::::
and

:::::
Sea

:::::::::
Surface

::::::::
Height

:
It
:::::
has

:::::
been

:::::::
shown

:::::
that

::::::
leads

::::::
which

::::::
cover

:::::
only

::
a
::::::
small

::::::::
fraction

:::
of

::
a

::::::
radar

:::::::::
altimeter

:::::::::
footprint

::::
can

::::::::::
dominate

::::
the

:::::::
signal,

::::
due

:::
to

::::
the

:::::
high

::::::::::
amplitude

:::
of

:::::::::
specular

::::::::
returns (Drinkwater, 1991)

:
.

::::::::::
Therefore

::::::
CS-2

::::::::
detects

:::::::
leads

::::::
which

::::
are

::::::::
simply

::::
not

:::::::
visible

::::
for

::::::::
MODIS

::::::::
despite

:::
its

::::::::
higher

::::::::::
resolution.

:::::
The

::::::::
fraction

::
of

:::::
this

::::::
leads

::
in

::::
the

:::
ice

::::::
class

::
of

::::
the

::::::::
ground

:::::
truth

:::::::
cannot

:::
be

:::::::::::
quantified

::
by

:::::
our

:::::::::::
approach.

:::::::
Those

::::::::
narrow

:::::::
leads

:::::::
either

::::::
cover

:::::
the

::::::
nadir

::::::
point

:::
or

:::::
not,

::::::
while

:::::::
leads

:::::::::
covering

::::
the

::::::
whole

:::::::::
footprint

:::::::
(’True

::::::::
Leads’)

::::
do

:::
for

::::::
sure.

:::::::::::
Therefore

:::::
one

::::::
could

:::::::
expect

::::::
True

:::::
Lead

::::::::::::::::
measurements

:::
to

:::::::
ensure

::
a
::::::::

higher
:::::::
quality

:::::
(see

::::::::
section

:::::
4.3)

:::
for

::::
the

:::::::::::
derivation

:::
of

::::
the

:::::
SSH.

4.3 Off-nadir leads

::::
This

:::::::::::::
expectation

::
is
:::::::::::

supported
::::

by
::::
the

::::::::
smaller

::::::::
spread

:::
of

::::
the

::::::
SSH

:::::::::
estimate

:::::::
based

::::
on

::::
the

:::::::
MAX1:::::::::::

compared
:::
to

:::
the

:::::
PP1:::::

with
:::::::
nearly

:::
the

:::::::
same

::::::::
amount

::
of

:::::
lead

:::::::::::
detections

::::::
(True

::
+

::::::
False

:::::::
Leads,

::::::
Table

:::
1).

:::::
This

:::::::::::
advantage

::
is

:::
on

::::
the

::::::
other

:::::
hand

::::::::::
certifying

::::
that

::::::::
narrow,

:::::::::::
unnoticed

::::::
leads

::
in

::::
the

:::
ice

::::::
class

:::
do

::::
not

::::::::
reverse

::::
the

:::::
ROC

::::::::::
analysis.

Due to the high amplitude of returns from leads it is possible that
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4.3
::::::::::
Off-nadir

::::::
leads

:::
As

:::::::::::
mentioned

::::::::
before,

:
leads which are not directly in nadir direction are dominating

::::
can

:::::::::
dominate

:
the signal. As this can cause a bias in elevation estimates Ricker et al. (2014) in-

troduced the Left and Right Pulse Peakiness to avoid off-nadir leads. It has further been
shown that it is, to some extent, possible to reduce the influence of off-nadir leads by
increasing the Pulse Peakiness threshold of a single parameter classifier (Armitage and
Davidson, 2014). This is done at the cost of discarding ∼ 60 % of the lead detections and
thereby increasing the statistical error. The underlying process allowing for this reduction
is the influence of the surface orientation towards the sensor on the maximum return. The
relative orientation, favoring high maximum values the most, is expected to be found close
to the nadir point. The further away from this point the main scattering surface (i.e. the
lead) is, the more power is reflected away from the sensor instead of back towards it. This
process is influencing the MAX value in the first place which has then implications for the
PP (Armitage and Davidson, 2014). Therefore it is reasonable to assume that the influ-
ence of off-nadir leads is also reduced for high MAX thresholds, potentially even stronger
than for the PP as the process causing this reduction has a more direct impact on it.

:::::
This

::::::::::::
assumption

::
is

:::::::::::
supported

:::
by

::::
the

:::::::::
reduced

:::::
SSH

:::::::::
variance

:::
of

::::
the

::::::::
MAX1 :::::

even
::::::::
though

:::
we

:::::
can

:::
not

::::
say

:::::::::
whether

::::
this

::::::::::
reduction

:::
is

::::::::
caused

:::
by

::::
the

:::::::::::
elimination

:::
of

:::::::::
off-nadir

::::::
leads

:::
or

:::::::::::
incorrectly

:::::::::
classified

::::
ice

::::::::::::::::
measurements

:::
(or

::
a

:::::::::::::
combination

::
of

:::::::
both).

4.4 Spatial distribution

The CS-2 lead fraction shows a reasonable spatial distribution. It is small in the central
Arctic and north of the Canadian Arctic Archipelago which are typical regions of thick multi-
year ice. It shows high values in regions of high drifting velocities or known to favor the
development of polynyas like the Fram Strait, the

::::::::
western

:
Laptev Sea and the Chukchi

Sea. The lead fractions are also increasing around most islands and coasts which introduce
shear between the land fast ice and the drifting pack ice.

:::::
Small

:::::
lead

:::::::::
fractions

:::
in

:::
the

:::::::::
eastern

:::::::
Laptev

::::
sea

:::::
and

:::
the

:::::::::
western

::::::
parts

:::
of

:::
the

::::::
East

:::::::::
Siberian

:::::
Sea

::::::
could

::::::::
indicate

::::
the

::::::::::
presence

:::
of
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:::::
large

:::::::::
amounts

:::
of

:::::
land

::::
fast

:::::
ice. The absolute lead fraction values tend to be higher but are

mostly in agreement with those of Lindsay and Rothrock (1995). They found lead fractions
of 2 to 3 % for the central arctic and 6 to 9 % in the peripheral seas in the winter using the
Advanced Very High Resolution Radiometer (AVHRR).

In nearly all regions the CS-2 lead fraction exceeds the AMSR-E Arctic lead area fraction
from Röhrs et al. (2012) (Fig. 7). While the AMSR-E product only detects most leads with
a width of 3 km and more, a width of

::
at

:::::
least

:
some hundred meters is sufficient for detec-

tion by CS-2. As shown in Sect. 3.4 the apparent lead width is following a power law on
the scale of kilometers, implying that measurements from narrow leads are largely outnum-
bering those from wider leads. In contrast to the CS-2 lead fraction, the AMSR-E product
is additionally not including very large regions of thin ice like huge polynyas as a spatial
high-pass filter is used.

The ice edge towards the North Atlantic is captured by both approaches quite similar. We

::
In

::::
Fig.

:::
7a

::::
we expect the ice edge to be at the interface between areas of no lead detections

around the Norwegian and central Barents Sea and neighboring areas of higher lead frac-
tionsin Fig. 7a. This allows the inference that the MAX1 classifier detects no leads over the
open ocean. For this reason grid cells at the very ice edge are likely to underestimate the
lead fraction relative to the ice covered part of the cell.

While the AMSR-E lead fraction drops relative consistently down to values around 2–3 %
within a belt of around 200 km from the ice edge, CS-2 based estimates show much higher
values of around 12 % in this areas. The high values in the marginal ice zone are reasonable
as this area is likely to be fractured due to the influence of ocean waves. Especially in the
Baffin Bay, the northern Barents Sea and the Kara Sea high rates of new ice formation can
occur in winter which is in good agreement with high CS-2 lead fractions of these regions.
The general reasonable distribution and its alternation increase our confidence in our lead
detection algorithm.
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4.5 Apparent lead width

Compared to the power-law, the found number of apparent lead width of 300 m is smaller
than expected. This is a typical feature on the lower bound of the resolution as leads of this
size are not always covered by a single measurement but partially by more, not necessarily
leading to a detection. This is intensified by the elongated footprint of CS-2 as small leads
may only be detected if they cover most of the width of the footprint.

:::
The

::::::::
MAX1:::

is
::::::::::
optimized

:::::::
mainly

:::
on

::::::
leads

::::::
wider

:::::
than

::
a

::::::
single

::::::::::::::
measurement

:::::::
which

::::::
could

:::::
also

::::::
cause

::::
the

::::::::
relative

::::::
small

::::::::
number

::
of

::::::::::
apparent

:::::
lead

::::::
width

:::
of

:::::
300 m

:
.
:
Therefore it is likely that the bend on the lower

bound of the distribution in Fig. 9 is induced by the measurement characteristics and not by
the actual

:::
an

:::::::
artifact

:::::
and

::::
not

::
a

:::::
valid

::::
part

:::
of

::::
the lead distribution.

Marcq and Weiss (2012) have found a power-law exponent similar to our between 2.1
and 2.6 for scales from 20 m to 2 km by analyzing a single SPOT image with a resolution
of 10 m. In two submarine based surveys, power-laws with exponents of 2 and 2.29 were
found for the regions from the Fram Strait to the North Pole and the Davis Strait, respec-
tively (Wadhams, 1981; Wadhams et al., 1985). In both cases resolutions of about 5 m are
present and the power-law holds for the range from 50 to 1000 m. The examination of sub-
marine and mooring data by Kwok et al. (2009) also indicates a strong accumulation of
lead widths down to 5 m but the distribution has not been analyzed. For the central Arc-
tic, a study of Lindsay and Rothrock (1995) also states a power-law distribution, but with
a mean exponent of 1.6 for scales from one to around 50 km. It is based on thermal to near
visible infrared measurements from the AVHRR, which is despite its resolution of one kilo-
meter expected to detect leads with a minimum width below this size. It has been discussed
whether the lead width distribution might be scale dependent (Lindsay and Rothrock, 1995;
Marcq and Weiss, 2012) which seems not to be the case, as we found a stable power-law
behavior on scales partly covering those of all other studies.

The results of Lindsay and Rothrock (1995) are contradictory to ours as we found a higher
power-law exponent, implying a higher fraction of narrow leads. One explanation would
be the relative coarse resolution of the AVHRR in combination with its high sensitivity to
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leads. This could cause leads to appear wider then they are, as well as several narrow
ones to appear as one wide lead, resulting in a less steep apparent lead width distribution.
Comparisons with MODIS images indicate that the classifier used in this study switches
in some cases between lead and ice detections over refrozen leads. This could result in
an overestimation of the power-low exponent. The estimates might also have a different
tolerance of refrozen leads, while both include at least the early stages of freezing. The size
of leads is often growing with time as the surrounding ice floes keep drifting apart, meaning
that estimates which include older leads are also likely to show less steep apparent lead
width distributions.

Another reason could be an actual shift in the distribution between the periods from
1989 to 1995 and 2011 to 2014. This would be consistent with the results of Marcq and
Weiss (2012) but would not explain the differences to those studies by Wadhams (1981)
and Wadhams et al. (1985). However, this shift could be driven by observed changes in
the amount of perennial ice, the ice thickness and drifting velocities (Nghiem et al., 2007;
Haas et al., 2008; Rampal et al., 2009). Rampal et al. are further linking a found increase
in winter strain rates between 1978 and 2007 to a weakening in mechanical strength of the
ice and increased fracturing. We found no sign for a trend of the power-law exponent within
the four years of CS-2 data.

4.6 Implications of apparent lead width distribution

:::
As

:::::
most

::::::
leads

::::
are

::::
not

:::::::::
crossed

:::::::::::::
orthogonally,

::::
the

:::::::::
apparent

:::::
lead

::::::
width

:::
is

::::::::
typically

:::::::
larger

:::::
than

:::
the

:::::::
actual

::::::
width

::
of

::::
the

:::::
lead.

:
A transformation from apparent to actual lead width

::
to

::::
the

::::::
latter

is not possible without profound knowledge of the sensitivity of lead detections and requires
assumptions about the shape and orientation of leads. This is impeded by a nonuniform
distribution of lead orientation (Bröhan and Kaleschke, 2014). For most applications it is not
necessary to perform this transformation as this is the way leads appear to anything moving
along sea ice, including the wind acting on the ocean surface.

The apparent lead width distribution is showing a strong intensification towards smaller
lead widths. The area contribution of leads having the width z is z · p(z)∝ z−2.47+1, which
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is still relatively fast decreasing with increasing width. This indicates that every lead area
estimate which is not capable of detecting narrow leads is very likely to underestimate the
total lead area. For a parametrization of lead area estimates it is of high interest to know
down to which bound the power law behavior holds. This defines not only the mean lead
width but also the fraction of lead area which is not captured by the estimate.

5 Conclusions

This study presented the potentials of several parameters and combinations of them to dis-
tinguish between CryoSat-2 measurements from leads and those from ice. They have been
tested by deriving thresholds and analyzing their capabilities of reproducing a prior clas-
sification. The combination of parameters, even though common practice, has not shown
any advantage for threshold based classifications. Using the maximum value of the wave-
form has in all cases shown better results than any other tested parameter, including the
Pulse Peakiness. Compared to the classifier of

:::::
used

:::
by Laxon et al. (2013) a threshold of

1.22× 10−10
::::::::::::
2.58× 10−11 W on the MAX detected only half the amount of true leads but

was able to reduce the percentage
::
68

::::::::
instead

:::
of

::::
83 %

::
of

:::::::::
ensured

::::::
lead

::::::::::::::::
measurements

:::
but

:::::::::
showed

::
a

::::::
much

::::::
more

:::::::
stable

::::::
SSH

:::::::::
estimate

:::
by

::::::::::
reducing

::::
the

:::::::::
amount of ice being de-

tected as lead from around 13 to less than 1
:::::::
and/or

:::::::::
off-nadir

::::::
leads. A solid lead detection,

which ensures that nearly all lead classifications are actually originating from leads is the
requirement for

::::::::::
facilitating

:
a precise, unbiased freeboard retrieval. It thereby helps to im-

prove ice thickness estimates, which is one of the major aims of the CryoSat-2 mission.
A lower

::::
The threshold of 2.58× 10−11 W was

::::::
further

:
used as the best representation of

the overall lead occurrence. It showed reasonable spatial distributions with relatively high
lead fractions of around 12 % in the marginal ice zone. The apparent lead width was derived
from the amount of consecutive lead detections. Its distributions is following a power-law
with exponent of 2.47± 0.04 which implies a concentration of both, amount and area contri-
bution at small lead widths. Embedding this work into those of others, a scale independent
lead width distribution from 20 m to 50 km is likely. The implications for a parametrization
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of low resolution lead area estimates were addressed and its dependency on the lower
bound of the found distribution emphasized. The turbulent heat transport over ice covered
regions is known to be strongly lead width dependent on small scales. The found distribu-
tion is suggesting that the work of Marcq and Weiss (2012), based on a single SPOT scene,
can be generalized. This implies a much higher heat transport per lead area than it would
be obtained by wide leads. In this manner the presented findings can help to improve the
parameterization of this fundamental process in coupled ocean–ice–atmosphere models.

The Supplement related to this article is available online at
doi:10.5194/tcd-0-1-2015-supplement.
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Table 1. Selected classifier performance. The lower three classifiers are derived
:::::
used

:
by (from

bottom to top): Ricker et al. (2014), Röhrs et al. (2012) and Laxon et al. (2013). TL: True Leads; FL:
False Leads; TI: True Ice; FI: False Ice; TLR and FLR: True and False Lead Rates [%]; eTLR and
eFLR: SDs of TLR and FLR within runs [%]. A list of all tested classifier performances is provided
as Supplement.

Feat w Θ TL FL TI FI TLR FLR eTLR eFLR

MAX 10−3 4.28× 10−10 10 336 226 576 597 61 841 14.32 0.04 2.07 0.05
MAX 0.5 1.22× 10−10 29 435 4220 572 634 42 711 40.80 0.73 3.26 0.24
MAX 1 2.58× 10−11 49 204 19 689 557 143 22 964 68.18 3.41 5.89 0.73

MAX 1 2.55× 10−11 48 808 19 580 557 305 23 307 67.68 3.39 5.61 0.72
TEW 200

PP 0.5 0.425 22 677 7728 569 244 49 351 31.48 1.34 8.62 0.71
PP 1 0.35 46 602 23 623 553 307 25 468 64.66 4.09 4.94 0.66

PP – 0.18 59 809 73 003 504 042 12 146 83.12 12.65 1.40 0.42
SSD 4

MAX – 6× 10−10 6576 00 576 811 65 613 9.11 0.00 1.12 0.00

PP – 0.3125 43 875 28 599 548 145 28 381 60.72 4.96 1.74 0.27
SSD 4
SK 40
PPL 40
PPR 30
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Figure 1. Example CryoSat-2 waveforms from ice (left panel) and a lead (right panel). The definition
of the Leading Edge Width (LEW), Trailing Edge Width (TEW) and Maximum Power (MAX) are
illustrated while the Pulse Peakiness (PP) is inversely proportional to the gray areas of normalized
waveforms. The Bin number can be converted into delay time. Note the different scaling factors of
the y axis (×10−13 and ×10−10 for the ice and lead example, respectively).
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Figure 2. MODIS band 2 scene from 6 March 2013 in the southern Beaufort sea combined with
a CS-2 track taken 83 min later on. The CS-2 samples have been classified as lead (red) and ice
(blue) manually (a) or by the application of thresholds from the (b) MAX0.5 :::

(b), (c) MAX1 ::
(c),

:::::
RI14 (d)

and
::::
LX13

:
(e) classifier. The classifier from Röhrs et al. (2012) detects no leads within this section.
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Figure 3.
:::::
Flow

:::::
chart

::
of

::::
the

:::::
used

:::::::::::::::
Cross-Validation

:::::::::
scheme.
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Figure 4. ROC graph of tested classifiers with altering thresholds (Θ) on one (connected by lines)
and two (marker) parameters as well as predefined classifiers (magenta markers). In the two dimen-
sional case the color indicates one of the parameters and the shape the other one. The insertion is
a zoom on small False Lead Rates.
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Figure 5. (a) ROC graph including error estimates in terms of SD of the 200 runs for each weight of
the single feature classifiers using the MAX, PP and LEW as well as the performances and SDs of
the predefined classifiers. For comparison the performances of selected two dimensional classifiers
are included. (b) Performances of each individual run being part of the single feature classifiers
using the MAX, PP and LEW with weights of 0.5 and 1 (dots) in combination with mean values for
all weights (lines).
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Figure 6.
:::::::::::
Histograms

::
of
:::::
grid

:::
cell

:::::
SSH

:::::::::
variance

:::::
from

::::::::
different

::::::::::
classifiers.

:::::
Only

:::::::
values

::::::
based

:::
on

:::
at

::::
least

::::::
three

::::
lead

::::::::::
detections

::::
are

:::::::::::
considered.
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Figure 7. Lead fraction derived from CS-2 SAR-mode (a) and from Röhrs et al. (2012) (b) on a North
Polar Stereographic Grid with a resolution of 99.5km×99.5 km, merged from January to March 2011.
Only values based on at least 2000 CS-2 measurements north of 65◦ N (a) or with a grid cell data
coverage of 10 % or more (b) are shown.

:::::::
Missing

:::::
CS-2

::::::::::
estimates

:::::
north

:::
of

::::::::
Canada

:::
are

::::::::
caused

:::
by

:::
the

::::
use

::
of

::
a
::::::::
different

::::::
mode

::
in

:::
the

::::::::::
Wingham

::::
Box.
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Figure 8. Lead fraction derived from CS-2 SAR-mode on a North Polar Stereographic Grid with
a resolution of 99.5km× 99.5 km from February (a) and March 2013 (b). Only lead fraction values
north of 65◦ N based on at least 1000 measurements are shown.

:::::::
Missing

:::::::::
estimates

::::::
north

::
of

::::::::
Canada

:::
are

:::::::
caused

:::
by

:::
the
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use

:::
of

:
a
::::::::
different
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mode
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in
::::
the

:::::::::
Wingham

:::::
Box.
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Figure 9. Apparent lead width distribution from all CS-2 SAR-mode ocean measurements north of
65◦ N in winter season (JFM) from 2011 to 2014. The distribution of a power-law with exponent of
2.47 is included for comparison, forming a straight line in a double logarithmic presentation. See text
for definition of the apparent lead width.
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