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Abstract. Leads cover only a small fraction of the Arctic sea ice but they have a dominant effect

on the turbulent exchange between the ocean and the atmosphere. A supervised classification of

CryoSat-2 measurements is performed by a comparison with visual MODIS scenes. For several

parameters thresholds are optimized and tested in order to reproduce this prior classification. The

maximum power of the waveform shows the best classification properties amongst them, including5

the Pulse Peakiness. The sea surface height is derived and its spread is clearly reduced for a classifier

based on the maximum power compared to published ones. Lead area fraction estimates based on

CryoSat-2 show a major fracturing event in the Beaufort Sea in 2013. The resulting Arctic wide lead

width distribution follows a power law with an exponent of 2.47± 0.04 for the winter seasons from

2011 to 2014, confirming and complementing a regional study based on a high resolution SPOT10

image.

1 Introduction

Sea ice affects all interaction between ocean and atmosphere, namely heat, mass and momentum

transports in ice covered regions. It strongly reduces most of these transports and thereby leaving

these processes basically to openings in the ice. These openings, called leads, appear even in regions15

which are typically covered by thick ice, like the central Arctic. Shear and divergence in the ice cover

create new leads (Miles and Barry, 1998). Those areas can exhibit huge temperature differences

between cold air and relative warm water. The resulting heat loss causes fast formation of new ice.

Even leads covered by thin ice show much higher heat fluxes than the surrounding thick ice (Maykut,

1978). The low albedo of leads promotes an energy flow in the opposite direction which increases20
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the amount of absorbed insolation, resulting in a warming of the underlying water. Leads reduce

the internal strength of the sea ice, enabling higher drifting velocities (Rampal et al., 2009) and are

expected to influence the atmospheric boundary layer chemistry (e.g. Moore et al., 2014).

Large scale satellite remote sensing studies of lead occurrences have been done based on visual

and thermal imagers (e.g. Lindsay and Rothrock, 1995; Willmes and Heinemann, 2015). They are25

generally limited by the resolution of thermal infrared measurements of about one kilometer and by

the influence of clouds. By using passive microwave data, Röhrs et al. (2012) avoided the require-

ment of free sky conditions but reduced the resolution even further to 6.25 km. Despite this resolu-

tion a good agreement with CryoSat-2 (CS-2) and the Advanced Synthetic Aperture Radar (ASAR)

based estimates of the lead occurrence for leads wider than 3 km has been reported in Röhrs et al.30

(2012). CryoSat-2 based lead detection is expected to be a good complement to previous estimates

as it combines an increased resolution of some hundred meters with a strong atmospheric indepen-

dence. The quality of this approach has been assessed by Zygmuntowska et al. (2013) for airborne

surveys and is topic of this study for CS-2 measurements.

Apart from the lead area, also the width distribution is important for the turbulent heat transport35

in ice covered regions. A convective boundary layer evolves over leads which increases in thickness

towards the downwind side of the lead (Andreas et al., 1979). This boundary layer dampens the heat

flux per lead area which is therefore higher for narrow leads than for wider ones. This has led to

different lead-width dependent heat transfer formulations (e.g. Andreas and Murphy, 1986). Marcq

and Weiss (2012) show that the turbulent heat flux over leads is up to 55 % higher if using a power-40

law distribution down to a lead width of 10 m instead of considering all leads as one large area of

open water.

The Arctic sea ice extent declined substantially over the last decades (Serreze et al., 2007),

while comparable studies for the ice thickness are rare and struggle with uncertainties (Lindsay

and Schweiger, 2015). Ice thickness estimates based on upward looking sonars on submarines (e.g.45

Rothrock et al., 2008) or moorings (Proshutinsky et al., 2009) have a relatively sparse temporal and

spatial coverage. Airborne and helicopter based thickness measurements utilize the strong difference

between the electromagnetic inductances of seawater and ice. They are of great value for regional

studies and validation, but are restricted by the limited number of conducted surveys (Haas et al.,

2010; Renner et al., 2013, 2014; Maaß et al., 2015).50

Sea ice thickness is retrieved from satellites by radiometry, i.e. the influence of the ice thickness,

salinity and temperature on the emissivity and transmittance. Various passive thermal to microwave

sensors have been used (AVHRR, MODIS, SSM/I, AMSR-E, MIRAS) (Yu and Rothrock, 1996;

Singh et al., 2011; Martin et al., 2005; Kaleschke et al., 2012; Tian-Kunze et al., 2014). As the ice

thickness information saturates for all these sensors at a certain level, this approach is only capable55

of measuring relatively thin ice, typically well below one meter (e.g. Kaleschke et al., 2010).
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Another approach utilizes altimetry in order to derive the snow or ice freeboard, i.e. the elevation

difference between the Sea Surface Height (SSH) and snow or ice surface, respectively. Laser signals

only reach the snow surface, while radar altimeters are basically showing the snow-ice interface

elevation. By considering the relevant densities and the snow thickness those freeboards can be60

converted into ice thickness by assuming hydrostatic equilibrium. Sea ice thickness has been derived

from Ku band radar altimetry from the European Remote Sensing Satellites ERS-1 and ERS-2

as well as Envisat and CS-2 (Laxon et al., 2003; Giles et al., 2008; Laxon et al., 2013; Ricker

et al., 2014). These radars are not restricted to clear sky conditions, but limited knowledge of the

snow loading and the radar interaction with the snow layer currently limits the accuracy of altimeter65

derived sea ice thickness estimates (Willatt et al., 2011; Kwok, 2014). Advantages of the radar on

CS-2, over earlier Ku band altimeters are the reduced footprint size and noise due to the synthesis

of overlapping measurements, its orbit which allows a coverage up to 88◦ North and South and

the potential of interferometric measurements (Wingham et al., 2006). In most parts of the Arctic

Ocean the Synthetic Aperture Radar (SAR) mode is used except for many coastal areas where the70

SAR Interferometric (SARIn) mode finds application. Until July 2014 the so called ’Wingham Box’

(80-85◦ N and 100-140◦ W) was another area of SARIn mode measurements.

The SSH is crucial for altimeter based ice thickness retrievals. For this reason the altimeter mea-

surements are separated into those from ice and those from leads (see Fig. 1 for examples from

CS-2). The lead measurements are used to derive the SSH, which acts as reference for the freeboard.75

Leads covered by thin ice and falsely detected leads (i.e. thick ice) result in an overestimation of

the SSH and therefore in a negative bias in the derived freeboard and thickness. If considering only

a very few, assured lead measurements the statistical error increases (Armitage and Davidson, 2014).

It is therefore of high interest to find a lead detection method which is very trustworthy and detects

as many leads as possible.80

In this study the quality of CS-2 based lead detection procedures is assessed by a comparison

with MODIS measurements. Previously published classifiers are implemented and compared with

newly derived ones in a Receiver Operating Characteristics (ROC) graph. The most promising one

is subsequently used to derive the lead area fraction and the lead width distribution. Thereby this

study attempts to close a gap of knowledge about the differences of lead detection procedures from85

CS-2 and makes suggestions for improvements, which has direct implications for sea ice thickness

estimates.

2 Methods

2.1 The ground truth

In order to optimize and compare the performance of different classification routines, we choose a su-90

pervised classification approach. Visual Moderate Resolution Imaging Spectroradiometer (MODIS)
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measurements can be used to distinguish between sea ice and water (Su et al., 2012). Two MODIS in-

struments are in operation on the NASA satellites Terra and Aqua. They cover the earth surface every

1 to 2 days and measure in 36 spectral bands from visual (used here) to infrared (Barnes et al., 1998).

We identify land and cloud influences manually and are therefore able to rely only on the MODIS95

band 2 (around 857 nm wavelength) level 1B reflectance as reference data. It has a resolution of

250 m and seems to be even more suited to identify leads than band 1 (not shown). Dark areas with

sharp edges and linear shapes in the MODIS images are interpreted as leads. CS-2 measurements

from these areas, recorded less than one hour before or after the MODIS acquisition, are manually

labeled as lead. In the same way we identify CS-2 measurements of ice while all measurements with100

a mixture of both classes within the footprint are excluded from this study (see also Fig. 2a). The

CS-2 footprint is assumed to be 300 m in and 1500 m across flight direction. This ice/lead informa-

tion is in the following considered as ground truth, regardless of possible mislabeling for example

caused by unexpected high ice velocities.

The ground truth consists of 722 lead and 5768 ice measurements. Note that this method is lim-105

ited by the resolution of MODIS. CryoSat-2 measurements which look like originating from ice

in MODIS scenes can actually contain small amounts of leads. See section 4.2 for a discussion of

this circumstance. The ground truth is acquired from February to the beginning of May in 2012

and 2013 from seven MODIS granules in the eastern Beaufort Sea and north of the Canadian Arctic

Archipelago. For this time of the year optical MODIS scenes are available and surface melting can be110

ruled out. Within this study we use CryoSat-2 Level 1b data with processor versions “SIR1SAR/4.0”

and “SIR1SAR/4.1” (Baseline B). These two SAR mode versions are equivalent.

2.2 Relation to physical properties

Large scale roughness results in a spread in time of the received CS-2 signal as exposed parts of

the surface are reached earlier than low lying parts. Roughness with a scale smaller than the wave-115

length (∼ 2.2cm forKu band) reduces the specularity of the surface. Therefore measurements of the

same position from altering incidence angles are more similar for rough surfaces (Wingham et al.,

2006). In addition areas further away from the nadir point have a stronger contribution, leading to an

emphasized signal following the first (nadir) peak (Laxon, 1994a). Energy conservation conditions

a reduced maximal receivable signal if the emitted power is scattered in all directions by a rough120

surface.

The characteristic impedance of the surface layer might also influence the signal amplitude

(Laxon, 1994a). If the difference in impedance at 13.5 GHz of the uppermost layer and the air

is small, there is less reflection and more transmission into the ice/snow. Within the medium it is

partly absorbed and scattered by inhomogeneities, again leading to a spread of the signal with lower125

maximum values and a more homogeneous angular distribution. This process could for example be

favored by a layer of snow with moderate temperature.
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As leads are locally bound, the fetch is too small for bigger waves to evolve in the water. The

thin ice cover, if present, is yet neither physically deformed nor covered with snow. Furthermore the

microstructure of young ice is more compact than of older ice as most brine pockets are filled and130

less connections have evolved. Therefore leads can be characterized by their commonly flat surface

with relatively high impedance difference to the air. The returns originating from leads are expected

to be compressed in time with higher maximum values and stronger incidence angle dependency

(specular returns).

The Doppler Shift is used in the CS-2 SAR mode to split each returning echo into 64 beams with135

different along track incidence angles. For each processed point on the ground all beams targeting

this point from altering satellite positions are combined to one waveform (Wingham et al., 2006) i.e.

the returned power as function of time (see Fig. 1 for typical ice and lead waveforms). The following

waveform based parameters are used: Maximum Power, Pulse Peakiness, Leading Edge Width and

Trailing Edge Width. While in the process of waveform formation the information of the angular140

dependency is disregarded, the beams are additionally integrated over time (summed) individually.

Thereby the incidence angle information is maintained in exchange for the temporal development.

The returning energy as function of beam number (i.e. incidence angle) is approximated by a fitted

Gaussian distribution curve. We use the Stack Standard Deviation and the Stack Excess Kurtosis

parameters which are based on this curve.145

2.3 Parameter definition

– The Maximum Power (MAX) is the highest recorded power of the calibrated waveform in

Watts.

– The Pulse Peakiness (PP) has been established by Laxon (1994b) and is defined as the MAX

divided by the accumulated power (PWF) of all bins constituting the waveform:150

PP =
max

(
PWF

)
128∑
i=1

PWF
i

, (1)

which is the same definition as used by Armitage and Davidson (2014), while the values

of Laxon et al. (2013) are divided by 100 and those of Ricker et al. (2014) by 128 for consis-

tency.
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– The Left and Right Pulse Peakiness (PPL and PPR) from Ricker et al. (2014) for Baseline B155

data are defined as (Robert Ricker, personal communication, January 2015):

PPL =
15 ·max

(
PWF

)
imax−2∑

i=imax−6

PWF
i

, (2)

PPR =
15 ·max

(
PWF

)
imax+6∑

i=imax+2

PWF
i

, (3)

where imax is the index of the maximal value of the waveform. The PPL and PPR have

been proposed in order to reject off-nadir leads, the influence of which can not be quantified160

based on our methodology (see Sect. 2.1). Therefore the PPL and PPR are not fully included

in this study. However, they are defined as we use the classifier of Ricker et al. (2014) for

comparisons.

– The Leading Edge Width (LEW) is defined as the width between 1 and 99 % of the amplitude

of a Gaussian fit to the leading edge of the waveform. The fitted area starts at the first bin165

reaching one percent of the Maximum Power and ends at the second bin, following the first

peak. The first peak is the first local maximum reaching at least 50 % of the Maximum Power.

To avoid bimodal waveforms, we exclude measurements with a first peak smaller than 80%

of the Maximum Power from the ground truth. About 7.6% of the waveforms are discarded in

this way. Similar fits and constrains are used by Kurtz et al. (2014).170

– The Trailing Edge Width (TEW) is defined as the width between 99 and 1 % of the amplitude

of an exponentially decaying fit to the trailing edge of the waveform. The fitted area starts at

the position of the Maximum Power and ends at the last bin (e.g. Legresy et al., 2005).

– The Stack Standard Deviation (SSD) is the standard deviation (SD) of the mentioned Gaussian

distribution of the energy as function of beam number (i.e. incidence angle). The SSD is175

describing the width of the Gaussian, it is not the SD of the energy values themselves. We use

the SSD in units of “Beams” but it can also be expressed in degrees. Due to the more specular

characteristics of leads, the spread of power with incidence angle is expected to be smaller and

so is the SSD for leads (Wingham et al., 2006).

– The Stack Excess Kurtosis (SK) is also obtained from the Gaussian approximation of the180

energy as function of beam number. Continuous Gaussian functions have in general an excess

kurtosis of zero, so how can the SK reach other values? This is attained by evaluating the

Gaussian at the beam numbers. The Excess Kurtosis of these discrete values is the SK (Veit

Helm, personal communication, June 2014; Wingham et al., 2006). The fitting of the Gaussian

to the measured beam energies and subsequent evaluation of it at the very same positions can185

be understood as a smoothing procedure. It is worth mentioning that this procedure might also

6



limit the information the SK provides. The Kurtosis is a measure of the peakedness which is

expected to be higher for leads.

2.4 Threshold optimization

Threshold based classifications are widely used to identify leads from Ku band altimeters. We use190

a repeated random Cross-Validation technique to derive and test thresholds (Θ)(interested readers

are referred to chapter 9 in Duda et al. (2001)). Θ consists of one threshold for each parameter

used for the respective classifier. The Cross-Validation involves a random separation of the ground

truth samples into a training and a testing subset, each of which consist of 50 % of all samples.

From the training subset we derive Θ by using Eq. 4 and apply it to the testing set to investigate195

its performance. The random assignment into subsets and the testing of the newly derived Θ is

repeated 200 times for each classifier to get an overall performance and an estimation of its spread.

These steps are illustrated in Fig. 3.

As mentioned in Sect. 1 there are different applications for lead detection algorithms also resulting

in different demands on its characteristics. One plausible aim is to reduce the total amount of false200

detections to a minimum. But one might also be interested in a more conservative lead detection by

reducing the amount of ice being detected as lead (False Leads) at the cost of less correctly detected

leads (True Leads). A more conservative detection might be used for a freeboard retrieval as False

Leads might result in a bias while high True Lead Rates are not always of high importance.

To take these different demands into account we include a weighting factor w in the cost function.205

cost(Θ) = w ·False_Ice(Θ) + False_Leads(Θ), (4)

where False_Ice represents the amount of lead samples classified as ice. Θ is derived by minimizing

the cost function on the training subset using the Nelder–Mead simplex algorithm (Nelder and Mead,

1965) with up to 400 initial guesses to find the global minimum. The Nelder–Mead method is an

unconstrained direct search algorithm for multidimensional minimization. This optimization reduces210

primarily False Leads for 0<w < 1, while for w = 1 the total amount of false classifications (False

Ice + False Leads) is minimized. We use the parameter acronym with the weight as index to point at

the corresponding one dimensional classifier.

This methodology is applied to all single parameters and all possible pairs of them. In the latter

case Θ is derived as the combination of both thresholds with the smallest value of the cost function.215

3 Results

3.1 Classification performance

In Fig. 2 the CS-2 track is essentially crossing three wider leads, two of which are brighter at the

northern side. This indicates that they are covered by ice on this side, while the southern side might
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exhibit open water. The third wider lead around 71.2◦ N and a thinner one at 71.75◦ N seem both to220

be completely covered by thin ice. The manual classification in Fig. 2a only visualizes the method-

ology as the time difference is larger than one hour and this scene is therefore not part of the ground

truth. Gaps in the track occur when the MODIS information of CS-2 footprints cannot be assigned

unambiguously to leads or ice. The PP1, MAX1 and the classifier developed by Ricker et al. (2014)

(hereinafter called RI14) show strong similarities as they detect all relevant leads while lead detec-225

tions are very rare where the MODIS scene shows ice. However all of them show in some cases

a mixture of ice and lead detections within wide leads (not shown). The classifier used by Laxon

et al. (2013) (hereinafter called LX13) detects all visible leads without a significant amount of miss-

ing lead detections, but it also detects leads where no or only weak indications for them can be found

in the MODIS scene.230

Figure 4 shows a Receiver Operating Characteristics (ROC) graph of all tested classifiers. Each

classifier is represented by one point in the graph, the position of which is defined by its True Lead

Rate (TLR, the amount of correctly detected leads divided by the amount of tested lead samples)

and False Lead Rate (FLR, the amount of ice measurements in the ground truth detected as lead

divided by the amount of tested ice samples). The upper left corner corresponds to ideal classifiers235

and the principle diagonal represents random assignments. For each parameter and pairs of them, we

use different weights resulting in different Θ and corresponding performances. For single parameter

classifiers 15 different weights (0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 2, 5, 10, 30, 100) are

applied to capture the development of the performance (from the lower left corner to the upper right

in Fig. 4) while w = 0.001, w = 0.5 and w = 1 are used in the two dimensional case. To follow the240

performance of e.g. MAX based classifiers one can start with small w, implying high values of Θ

which is detecting only a few leads (lower left corner in Fig. 4). With increasing w and decreasing Θ

the TLR increases in the beginning much faster than the FLR. At some point the amount of correct

lead detections is mostly constant while a further lowering of Θ is mainly increasing the amount

of ice measurements which are detected as lead. As relative performances are shown the classifier245

closest to the upper left corner is not necessarily the “best” one but if one classifier is on the upper left

side of another it can be considered as superior. Further remarks on ROC graphs are given by Fawcett

(2006).

It is at this point not important how the thresholds (Θ) are derived but only the combination of its

value and performance. This allows us to compare the classifiers found here with those other authors250

have developed, independent from the optimization routine.

Classifiers based on the Maximum Power (MAX) appear on the upper left side of all others on the

whole range of Fig. 4. Only classifiers using two parameters including the MAX (black marker) reach

the single feature MAX classifications and are in all cases very close to them. All other classifiers

based on pairs also show very similar results to that classifier based on the single, more suited255

parameter within its pair.

8



The PP and LEW based classifiers show strong similarities and have the second-best combinations

of True and False Lead Rates.

Figure 5a illustrates the spread within the runs in terms of the SD of the True and False Lead

Rates. The differences between all shown one dimensional classifiers and the corresponding two260

dimensional ones are clearly smaller than the inherent fluctuations and are therefore considered as

not significant. The classifiers based on the MAX are separated from the others by more than their

SDs for small weights, while they are not for higher weights. However, the fluctuation in classifier

performance of individual runs with the same weight occur mostly in the direction of the mean

performances of neighboring weights on the same parameter (i.e. along the lines) as shown in Fig. 5b.265

3.2 Sea Surface Height

The SSH is calculated as a second stage of accessing the quality of classifiers. To derive the SSH

from leads is a popular application, to test the classifier behavior in this context is therefore a very

practical approach. This is done statistically by investigating the stability of SSH estimates from

different classifiers.270

The function Asinc2(πBw(τ − τ0)) is fitted to the waveform from PWF
imax−2 to PWF

imax+2. Where A

is the amplitude, Bw = 320MHz is the received bandwidth and τ the delay time. τ0 is the center

of the fit and is used as tracking point, i.e. the delay time which is assumed to correspond the

return from the main scattering surface. Kurtz et al. (2014) have shown that specular returns are

well approximated by a sinc2 function and that the tracking point should be defined close to the275

maximum of the waveform. The range is corrected for atmospheric influences (ionosphere, wet and

dry troposphere, dynamic atmosphere and the inverse barometric effect) and tides (namely: ocean,

long period, solid earth, polar and ocean loading tides) as provided in the CS-2 L1B data. The surface

elevation of lead measurements is considered as SSH. All SAR mode measurements from January

to March of the years 2011 to 2014 are brought to a 10km× 10km grid.280

Figure 6 shows the SSH anomaly, i.e. the difference of individual measurements along a CS-2

track from the multi-year mean SSH field. The LX13 shows the largest amount of lead detections

and the strongest SSH anomalies. The other three classifiers show a more similar behavior but with

the MAX1 having a notably reduced amount of large (outside of ±0.2m) SSH anomalies.

The mean SSH field could be used as reference for ice thickness estimates. The variance around285

it acts as an indicator for its reliability and is caused by SSH variability, noise and the lead detec-

tion behavior. We expect differences of the variance between the classifiers to be caused only by

the detection behavior, namely the inclusion/exclusion of ice and/or off-nadir lead measurements.

Figure 7 shows the variance distribution of selected classifiers based on the gridded SSH estimates.

The MAX1 shows in general the smallest variances, while the histograms converge to zero with290

increasing variances for all classifiers in a similar way.
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3.3 Spatial distribution

In the following sections we are using the MAX1 which has been derived by minimizing the total

amount of false classifications and its results are therefore taken as the best representation of the

overall lead occurrence.295

Figure 8 shows the lead fraction in the Arctic region as derived from CS-2 by dividing the amount

of detected lead measurements by the total amount of measurements from January to March 2011.

The AMSR-E Arctic lead area fraction (Röhrs and Kaleschke, 2012; Röhrs et al., 2012) (downloaded

in September 2014) is also shown, combined over the same period and brought to the same spatial

resolution.300

Lead detections from CS-2 are most common in the Baffin Bay, the Fram Strait region, the north-

ern Barents Sea and the Kara Sea, as well as in the western Laptev and the Chukchi Sea, all with lead

fractions up to around 15 % (Fig. 8a). The central Arctic including the area north of the Canadian

Arctic Archipelago and the northern Canada Basin show low lead fractions of around 0–1.5 %. In

the southern Beaufort Sea and especially its shear zone next to the coast line, lead fraction values of305

up to 6 % occur.

A somewhat different picture of the lead fraction pattern emerges by using the AMSR-E Arctic

lead area fraction from Röhrs et al. (2012) (Fig. 8b). In areas covered by both estimates the CS-2

based one mostly appears to be higher than the AMSR-E based estimate. This is not the case in the

south eastern Beaufort Sea where the AMSR-E product shows values of 15 % and more while they310

reach from 1.5 to 5 % for the CS-2 based estimate. We observe reasonable agreements in the Fram

Strait region, the East Siberian Sea and the Chukchi Sea. Increased values occur for both estimates

near islands like Svalbard, Franz Josef Land, Severnaya Zemlya and the Wrangel Island. However

there are big differences between the datasets in the Baffin Bay, the Fram Strait regions close to the

ice edge, the northern Barents Sea and the Kara Sea where CS-2 consistently detects more leads than315

the AMSR-E lead area fraction indicates.

While a daily open ocean mask is provided for the AMSR-E product, we consider all areas north

of 65◦ N for the CS-2 based estimates. The ice edge on the Atlantic side, as indicated by the AMSR-E

mask agrees well with the transition of CS-2 lead fractions from zero to higher values.

By the end of February 2013 the whole Beaufort Sea was pervaded by leads. Favored by storms the320

ice started in mid February to move into the direction of the Bering Strait, causing a divergence in the

pack ice. This is the reason for the opening of leads, beginning in the western part and propagating to

the east. This process accelerated around 27 February after which all but the fast ice at the Canadian

coast and the sea ice at the Canadian Arctic Archipelago was fractured. See also Beitsch et al. (2014)

for further descriptions.325

By comparing the CS-2 lead fractions from February and March 2013 (Fig. 9) the pattern of this

fracture event are reproduced with a proper shape and amplitude. Most lead pattern can be observed

in both months, in many cases slightly decreasing in amplitude towards March. However, while in
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February only in the western part of the Beaufort Sea noticeable amounts of leads are detected, the

complete region shows 8 to 15 % lead coverage in March.330

3.4 Apparent lead width

To investigate the lead width distribution we use a proxy which we call apparent lead width. The

apparent lead width is the amount of consecutive MAX1 lead detections multiplied by the approxi-

mate distance between two positions of 300 m. It can be seen as a measure of the CS-2 track interval

over a crossed lead or as the width of a lead how it appears in the one dimensional domain of the335

CS-2 track. If the lead orientation is orthogonal to the CS-2 track, the apparent lead width is our best

estimate of the actual lead width. We do not allow any ice detection within a lead which will in case

of false detections split a lead into smaller ones.

The apparent lead width distribution follows a power-law in winter months with an exponent a

of 2.47 for values of 600 m and more (Fig. 10). A quantity z is called power-law distributed if its340

Probability Density Function p(z) satisfies:

p(z)∝ z−a. (5)

It is derived following the approximation of Clauset et al. (2009) for discrete distributions with

a simple adjustment for a step size of 300 m as shown in Eq. (6).

a≈ 1 +NZ

(
NZ∑
i=1

ln
zi

zmin− 1
2 · 300m

)−1

(6)345

For the calculation of the power-law exponent only apparent lead widths zi with a width equal or

higher than zmin = 900m are considered with NZ being the amount of them. A line representing

a power-law with the calculated exponent is displayed in Fig. 10. It shows the validity of this ap-

proximation down to 600 m as the slopes of both lines agree very well.

The interannual variability is small with exponents between 2.42 in 2013 and 2.52 in 2011 with350

a SD of 0.04 amongst all four years. Differences between January, February and March of the same

year are even smaller while the exponent decreases towards spring and autumn. All calculated dis-

tributions are following a power-law for apparent lead widths of 600 m and more.

4 Discussion

4.1 Classification performances355

Classifiers based on the MAX parameter show generally the best ratio between True and False Lead

Rate. A classifier using MAX> 2.58× 10−11 W as threshold (MAX1) detects 68.18 % of all leads

correctly while only 3.41 % of the tested ice measurements in the ground truth are detected as leads.

The PP1 using 0.35 as threshold has a TLR of 64.66 % (instead of 68.18 %) and a FLR of 4.09 %

11



(instead of 3.41 %). The differences are even stronger for higher thresholds of 1.22× 10−10 W and360

0.425, respectively (MAX0.5 and PP0.5, Table 1).

The performances of individual runs overlap only slightly for w = 1 and are well separated for

w = 0.5. This shows that the performance improvement is significant. The increased fluctuation in

the direction of neighboring weights in Fig. 5b is likely to be caused by a variability of the thresholds

caused by the repeated optimization.365

For airborne surveys with a device very similar to SIRAL on CS-2, Zygmuntowska et al. (2013)

also found the MAX parameter to have less false lead classifications than all other parameters. The

best combination of parameters (MAX & TEW) with a Bayesian classifier improves its rate only little

from 6.5 to 6.2 %. Zygmuntowska et al. (2013) define the False Lead Classification Rate (FLCR) as

percentage of all lead detections originating from sea ice. This is different to our False Lead Rate as370

we use the amount of true ice measurements as base. The FLCR calculated from the absolute values

in Table 1 are 28.6 and 12.5 % for MAX1 and MAX0.5, respectively. One reason for higher error

rates of CS-2 is the reduced resolution of 300m× 1500 m in contrast to around 10m× 50 m for the

airborne device. Thereby it becomes much more likely that different surface types occur within one

footprint. Further we have to allow for some temporal differences in the data acquisition and have375

to collocate the datasets, while for the airborne surveys optical images are taken simultaneously.

Deficiencies of the ground truth which might be caused by ice drift and opening/closing of leads

between the data acquisition, collocation and unnoticed narrow leads increase the error rates which

might therefore be overestimated.

Compared to their MAX classifier, the PP classifier of Zygmuntowska et al. (2013) is detecting380

more leads from both, ice and lead measurements. This is directly connected to applied thresholds

and is not a parameter property. For a solid decision which parameter is suited best for lead detection

it is necessary to vary the thresholds.

Three classifiers developed by other authors are included in this study. With the same amount of

False Leads, the True Lead Rates can be increased for our dataset from 9 to ∼ 13 % (Röhrs et al.,385

2012), from 83 to ∼ 89 % (LX13) or from 61 to ∼ 79 % (RI14) if a MAX based classifier is used

instead (Fig. 4).

The shown classifiers using two parameters detect a lead if both thresholds are reached. This

logical ’and’ criterion is now replaced by an ’or’. A classifier based on the MAX and the PP could

for example define a measurement as a lead if its MAX value is above 10−11 W or if its PP value is390

above 0.3 (one of those is now sufficient). This is influencing the amount of False Ice and False Lead

detections (i.e. the cost function). As a result our example has higher thresholds than it would have

for the same weight and parameters using the ’and’ criterion. Performing the same test as before but

now using the ’or’ criterion for all pairs of parameters brought no improvement of the classification

(not shown).395
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The fact that combining two parameters seems to have no benefit at all indicates that the param-

eters are basically all utilizing the same physical information and that the instrument and fading

noises have either an correlated influence on all parameters or the influence is not significant at all.

As some of the parameters are derived in a very different way (e.g. waveform and stack based ones)

we do not expect the noise to affect them equally. We conclude that noise plays probably only a400

minor role for the classification errors.

4.2 Narrow leads and Sea Surface Height

It has been shown that leads which cover only a small fraction of a radar altimeter footprint can

dominate the signal due to the high amplitude of specular returns (Drinkwater, 1991). Therefore CS-

2 detects leads which are simply not visible for MODIS despite its higher resolution. The fraction405

of this leads in the ice class of the ground truth cannot be quantified by our approach. Those narrow

leads either cover the nadir point or not, while leads covering the whole footprint (’True Leads’) do

for sure. Therefore one could expect True Lead measurements to ensure a higher quality (see section

4.3) for the derivation of the SSH.

This expectation is supported by the smaller spread of the SSH estimate based on the MAX1410

compared to the PP1 with nearly the same amount of lead detections (True + False Leads, Table 1).

This advantage is on the other hand certifying that narrow, unnoticed leads in the ice class do not

reverse the ROC analysis.

4.3 Off-nadir leads

As mentioned before, leads which are not directly in nadir direction can dominate the signal. As415

this can cause a bias in elevation estimates Ricker et al. (2014) introduced the Left and Right Pulse

Peakiness to avoid off-nadir leads. It has further been shown that it is, to some extent, possible

to reduce the influence of off-nadir leads by increasing the Pulse Peakiness threshold of a single

parameter classifier (Armitage and Davidson, 2014). This is done at the cost of discarding up to 60 %

of the lead detections and thereby increasing the statistical error. The underlying process allowing for420

this reduction is the influence of the surface orientation towards the sensor on the maximum return.

The relative orientation, favoring high maximum values the most, is expected to be found close to

the nadir point. The further away from this point the main scattering surface (i.e. the lead) is, the

more power is reflected away from the sensor instead of back towards it. This process is influencing

the MAX value in the first place which has then implications for the PP (Armitage and Davidson,425

2014). Therefore it is reasonable to assume that the influence of off-nadir leads is also reduced for

high MAX thresholds, potentially even stronger than for the PP as the process causing this reduction

has a more direct impact on it. This assumption is supported by the reduced SSH variance of the

MAX1 even though we can not say whether this reduction is caused by the elimination of off-nadir

leads or incorrectly classified ice measurements (or a combination of both).430
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4.4 Spatial distribution

The CS-2 lead fraction shows a reasonable spatial distribution. It is small in the central Arctic and

north of the Canadian Arctic Archipelago which are typical regions of thick multi-year ice. It shows

high values in regions of high drifting velocities or known to favor the development of polynyas like

the Fram Strait, the western Laptev Sea and the Chukchi Sea. The lead fractions are also increasing435

around most islands and coasts which introduce shear between the land fast ice and the drifting pack

ice. Small lead fractions in the eastern Laptev Sea and the western parts of the East Siberian Sea

could indicate the presence of large amounts of land fast ice. The absolute lead fraction values tend

to be higher but are mostly in agreement with those of Lindsay and Rothrock (1995). They found

lead fractions of 2 to 3 % for the central arctic and 6 to 9 % in the peripheral seas in the winter using440

the Advanced Very High Resolution Radiometer (AVHRR).

In nearly all regions the CS-2 lead fraction exceeds the AMSR-E Arctic lead area fraction

from Röhrs et al. (2012) (Fig. 8). While the AMSR-E product only detects most leads with a width

of 3 km and more, a width of at least some hundred meters is sufficient for detection by CS-2. As

shown in Sect. 3.4 the apparent lead width is following a power law on the scale of kilometers,445

implying that measurements from narrow leads are largely outnumbering those from wider leads.

In contrast to the CS-2 lead fraction, the AMSR-E product is additionally not including very large

regions of thin ice like huge polynyas as a spatial high-pass filter is used.

The ice edge towards the North Atlantic is captured by both approaches quite similar. In Fig. 8a we

expect the ice edge to be at the interface between areas of no lead detections around the Norwegian450

and central Barents Sea and neighboring areas of higher lead fractions. This allows the inference that

the MAX1 detects no leads over the open ocean. For this reason the lead fraction of grid cells at the

very ice edge is likely to be underestimated relative to the ice covered part of the cell.

While the AMSR-E lead fraction drops relative consistently down to values around 2–3 % within

a belt of around 200 km from the ice edge, CS-2 based estimates show much higher values of around455

12 % in this areas. The high values in the marginal ice zone are reasonable as this area is likely to be

fractured due to the influence of ocean waves. Especially in the Baffin Bay, the northern Barents Sea

and the Kara Sea high rates of new ice formation can occur in winter which is in good agreement

with high CS-2 lead fractions of these regions. The general reasonable distribution and its alternation

enhance our confidence in the CS-2 lead detection algorithm.460

4.5 Apparent lead width

Compared to the power-law, the found number of apparent lead width of 300 m is smaller than

expected. This is a typical feature on the lower bound of the resolution as leads of this size are not

always covered by a single measurement but partially by more, not necessarily leading to a detection.

This is intensified by the elongated footprint of CS-2 as small leads may only be detected if they465
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cover most of the width of the footprint. The MAX1 is optimized mainly on leads wider than a

single measurement which could also cause the relative small number of apparent lead width of

300 m. Therefore it is likely that the bend on the lower bound of the distribution in Fig. 10 is an

artifact and not a valid part of the lead distribution.

Marcq and Weiss (2012) have found a power-law exponent similar to our between 2.1 and 2.6470

for scales from 20 m to 2 km by analyzing a single SPOT image with a resolution of 10 m. In two

submarine based surveys, power-laws with exponents of 2 and 2.29 were found for the regions from

the Fram Strait to the North Pole and the Davis Strait, respectively (Wadhams, 1981; Wadhams et al.,

1985). In both cases resolutions of about 5 m are present and the power-law holds for the range from

50 to 1000 m. The examination of submarine and mooring data by Kwok et al. (2009) also indicates475

a strong accumulation of lead widths down to 5 m but the distribution has not been analyzed. For the

central Arctic, a study of Lindsay and Rothrock (1995) also states a power-law distribution, but with

a mean exponent of 1.6 for scales from one to around 50 km. It is based on thermal to near visible

infrared measurements from the AVHRR, which is despite its resolution of one kilometer expected

to detect leads with a minimum width below this size. It has been discussed whether the lead width480

distribution might be scale dependent (Lindsay and Rothrock, 1995; Marcq and Weiss, 2012) which

seems not to be the case, as we found a stable power-law behavior on scales partly covering those of

all other studies.

The results of Lindsay and Rothrock (1995) are contradictory to ours as we found a higher power-

law exponent, implying a higher fraction of narrow leads. One explanation would be the relative485

coarse resolution of the AVHRR in combination with its high sensitivity to leads. This could cause

leads to appear wider then they are, as well as several narrow ones to appear as one wide lead,

resulting in a less steep apparent lead width distribution. Comparisons with MODIS images indicate

that the classifier used in this study switches in some cases between lead and ice detections over

refrozen leads. This could result in an overestimation of the power-low exponent. The estimates490

might also have a different tolerance of refrozen leads, while both include at least the early stages

of freezing. The size of leads is often growing with time as the surrounding ice floes keep drifting

apart, meaning that estimates which include older leads are also likely to show less steep apparent

lead width distributions.

Another reason could be an actual shift in the distribution between the periods from 1989 to 1995495

and 2011 to 2014. This would be consistent with the results of Marcq and Weiss (2012) but would not

explain the differences to those studies by Wadhams (1981) and Wadhams et al. (1985). However,

this shift could be driven by observed changes in the amount of perennial ice, the ice thickness and

drifting velocities (Nghiem et al., 2007; Haas et al., 2008; Rampal et al., 2009). Rampal et al. are

further linking a found increase in winter strain rates between 1978 and 2007 to a weakening in500

mechanical strength of the ice and increased fracturing. We found no sign for a trend of the power-

law exponent within the four years of CS-2 data.
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4.6 Implications of apparent lead width distribution

As most leads are not crossed orthogonally, the apparent lead width is typically larger than the actual

width of the lead. A transformation to the latter is not possible without profound knowledge of the505

sensitivity of lead detections and requires assumptions about the shape and orientation of leads. This

is impeded by a nonuniform distribution of lead orientation (Bröhan and Kaleschke, 2014). For most

applications it is not necessary to perform this transformation as this is the way leads appear to

anything moving along sea ice, including the wind acting on the ocean surface.

The apparent lead width distribution is showing a strong intensification towards smaller lead510

widths. The area contribution of leads having the width z is z · p(z)∝ z−2.47+1, which is still rel-

atively fast decreasing with increasing width. This indicates that every lead area estimate which

is not capable of detecting narrow leads is very likely to underestimate the total lead area. For

a parametrization of lead area estimates it is of high interest to know down to which bound the

power law behavior holds. This defines not only the mean lead width but also the fraction of lead515

area which is not captured by the estimate.

5 Conclusions

This study presented the potentials of several parameters and combinations of them to distinguish

between CryoSat-2 measurements from leads and those from ice. They have been tested by deriving

thresholds and analyzing their capabilities of reproducing a prior classification. The combination520

of parameters, even though common practice, has not shown any advantage for threshold based

classifications. Using the maximum value of the waveform has in all cases shown better results than

any other tested parameter, including the Pulse Peakiness. Compared to the classifier used by Laxon

et al. (2013) a threshold of 2.58×10−11 W on the MAX detected only 68 instead of 83 % of ensured

lead measurements but showed a much more stable SSH estimate by reducing the amount of ice525

being detected as lead and/or off-nadir leads. A solid lead detection, which ensures that nearly all

lead classifications are actually originating from leads is facilitating a precise, unbiased freeboard

retrieval. It thereby helps to improve ice thickness estimates, which is one of the major aims of the

CryoSat-2 mission.

The threshold of 2.58× 10−11 W was further used as the best representation of the overall lead530

occurrence. It showed reasonable spatial distributions with relatively high lead fractions of around

12 % in the marginal ice zone. The apparent lead width was derived from the amount of consecu-

tive lead detections. Its distributions is following a power-law with exponent of 2.47 ± 0.04 which

implies a concentration of both, amount and area contribution at small lead widths. Embedding this

work into those of others, a scale independent lead width distribution from 20 m to 50 km is likely.535

The implications for a parametrization of low resolution lead area estimates were addressed and its

dependency on the lower bound of the found distribution emphasized. The turbulent heat transport
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over ice covered regions is known to be strongly lead width dependent on small scales. The found

distribution is suggesting that the work of Marcq and Weiss (2012), based on a single SPOT scene,

can be generalized. This implies a much higher heat transport per lead area than it would be obtained540

by wide leads. In this manner the presented findings can help to improve the parameterization of this

fundamental process in coupled ocean–ice–atmosphere models.

The Supplement related to this article is available online at

doi:10.5194/tc-0-1-2015-supplement.
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Table 1. Selected classifier performance. The last three classifiers are (from bottom to top): RI14, from Röhrs

et al. (2012) and LX13. TL: True Leads; FL: False Leads; TI: True Ice; FI: False Ice; TLR and FLR: True and

False Lead Rates [%]; eTLR and eFLR: SDs of TLR and FLR within runs [%]. A list of all tested classifier

performances is provided as Supplement.

Par. w Θ TL FL TI FI TLR FLR eTLR eFLR

MAX 10−3 4.28× 10−10 10 336 226 576 597 61 841 14.32 0.04 2.07 0.05

MAX 0.5 1.22× 10−10 29 435 4220 572 634 42 711 40.80 0.73 3.26 0.24

MAX 1 2.58× 10−11 49 204 19 689 557 143 22 964 68.18 3.41 5.89 0.73

MAX 1 2.55× 10−11 48 808 19 580 557 305 23 307 67.68 3.39 5.61 0.72

TEW 200

PP 0.5 0.425 22 677 7728 569 244 49 351 31.48 1.34 8.62 0.71

PP 1 0.35 46 602 23 623 553 307 25 468 64.66 4.09 4.94 0.66

PP – 0.18 59 809 73 003 504 042 12 146 83.12 12.65 1.40 0.42

SSD 4

MAX – 6× 10−10 6576 00 576 811 65 613 9.11 0.00 1.12 0.00

PP – 0.3125 43 875 28 599 548 145 28 381 60.72 4.96 1.74 0.27

SSD 4

SK 40

PPL 40

PPR 30

Figure 1. Typical CryoSat-2 waveforms from ice (left panel) and a lead (right panel). The definition of the

Leading Edge Width (LEW), Trailing Edge Width (TEW) and Maximum Power (MAX) are illustrated while

the Pulse Peakiness (PP) is inversely proportional to the gray areas normalized waveforms would have. The Bin

number can be converted into delay time. Note the different scaling factors of the y axis (×10−13 and ×10−10

for the ice and lead waveform, respectively).
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Figure 2. MODIS band 2 scene from 6 March 2013 in the southern Beaufort Sea combined with a CS-2 track

taken 83 min later on. The CS-2 samples have been classified as lead (red) and ice (blue) manually (a) or by

PP1 (b), MAX1 (c), RI14 (d) and LX13 (e). The classifier from Röhrs et al. (2012) detects no leads within this

section.

Figure 3. Flow chart of the used Cross-Validation scheme.
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Figure 4. ROC graph of tested classifiers with altering thresholds (Θ) on one (connected by lines) and two

(marker) parameters as well as predefined classifiers (magenta markers). RO12 corresponds to the classifier

used in Röhrs et al. (2012). In the two dimensional case the color indicates one of the parameters and the shape

the other one. The insertion is a zoom on small False Lead Rates.
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Figure 5. (a) ROC graph including error estimates in terms of SD of the 200 runs for each weight of the single

feature classifiers using the MAX, PP and LEW as well as the performances and SDs of the predefined classi-

fiers. For comparison the performances of selected two dimensional classifiers are included. (b) Performances

of each individual run being part of the single feature classifiers using the MAX, PP and LEW with weights of

0.5 and 1 (dots) in combination with mean values for all weights (lines).
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Figure 6. Sea Surface Height anomaly from different classifiers along a typical descending CS-2 track from 6

March 2013. The shaded segment corresponds to the section shown in Fig. 2.

Figure 7. Histograms of grid cell SSH variance from different classifiers. Only values based on at least three

lead detections are considered.
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Figure 8. Lead fraction derived from CS-2 SAR mode (a) and from Röhrs et al. (2012) (b) on a North Polar

Stereographic Grid with a resolution of 99.5km× 99.5 km, merged from January to March 2011. Only values

based on at least 2000 CS-2 measurements north of 65◦ N (a) or with a grid cell data coverage of 10 % or

more (b) are shown. Missing CS-2 estimates north of Canada are caused by the use of the SARIn mode in the

Wingham Box.

Figure 9. Lead fraction derived from CS-2 SAR mode on a North Polar Stereographic Grid with a resolution of

99.5km× 99.5 km from February (a) and March 2013 (b). Only lead fraction values north of 65◦ N based on

at least 1000 measurements are shown. Missing estimates north of Canada are caused by the use of the SARIn

mode in the Wingham Box.
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Figure 10. Apparent lead width distribution from all CS-2 SAR mode ocean measurements north of 65◦ N in

winter season (JFM) from 2011 to 2014. The distribution of a power-law with exponent of 2.47 is included for

comparison, forming a straight line in a double logarithmic presentation. See text for definition of the apparent

lead width.
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