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ABSTRACT

Five daily, gridded Northern Hemisphere snow water eqenvalSWE)
datasets are analyzed over the 1981-2010 period in ordeatdiy the spa-
tial and temporal consistency of satellite retrievalsdlanrface assimilation
systems, physical snow models, and reanalyses. While ithhatdlogies of
total Northern Hemisphere snow water mass (SWM) vary amioaglatasets
by as much as 50%, their interannual variability and dailyraalies are com-
parable, showing moderate to good temporal correlatioetsvdgen 60% and
85%) on both interannual and intraseasonal time scalestewime trends
of total Northern Hemisphere SWM are consistently negaiixer the 1981—
2010 period among the five datasets but vary in strength bgtarfaf 2—3.
Examining spatial patterns of SWE indicates that the d&g@se most consis-
tent with one another over boreal forest regions comparédgdiic and alpine
regions. Additionally, the datasets derived using redyivecent reanalyses
are strongly correlated with one another and show betteeladions with the
satellite product (GlobSnow) than do those using olderabaes. Finally, a
comparison of eight reanalysis datasets over the 2001428i@d shows that
land surface model differences control the majority of adren the climato-
logical value of SWM, while meteorological forcing differees control the

majority of the spread in temporal correlations of SWM anbesa
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1. Introduction

The seasonal cycle of terrestrial snow cover and snow mass heotable influence on the
Northern Hemisphere energy budget, water balance and geocal cycles. Snow water equiv-
alent (SWE) is expected to respond in a complex way to prejetgmperature and precipitation
changes with the magnitude and sign of the response varyithgcimate regime and elevation
(Brown and Mote 2009). Verification of such responses in atemmodels and the initialization
of snow in seasonal to decadal prediction systems requigeisided, observational SWE dataset
with well-characterized uncertainty (De Lannoy et al. 20Hdr snow cover extent, intercompar-
ison of existing data has led to estimation of uncertaintieSCE anomalies and trends (Brown
et al. 2010; Derksen and Brown 2012) as well as improved deatation and understanding of
systematic differences and inhomogeneities (Brown anét€2er2013; Mudryk et al. 2014).

A similar quantitative understanding of uncertaintieshia Northern Hemisphere is lacking for
SWE datasets apart from some more limited comparisons bgtmlv. To address this gap, we
compare an ensemble of daily, gridded datasets in ordeilyoctharacterize inter-dataset spread
and produce a multi-dataset mean. Out intent is to makeadlaithe mean and spread of the
SWE datasets analyzed here on the National Center for AtneosResearch Climate Data Guide
portal. All of the datasets include observations (e.g. ll#&eneasurements, observed inputs to
reanalysis) as at least a component of the data generatibotherwise draw from a variety of
sources including remote sensing, station data, landsigasimilation systems, and reanalysis-
driven snow models of varying complexity. In particular weeu (1) the GlobSnow (version 2)
analysis, combining satellite-based passive microwavievals and ground-based weather station
data (Takala et al. 2011); (2) the Global Land Data AssimaifaSystem Version 2 (GLDAS-2)

product (Rodell et al. 2004); (3) the European Centre for iM@dRange Forecasts Interim Land
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Reanalysis (ERA-I-Land) which uses a simple snow schemis#@B® et al. 2013); (4) the Modern
Era Retrospective Analysis for Research and ApplicatidiERRA) which uses an intermediate
complexity snow scheme (Rienecker et al. 2011); and, (5) $\& the Crocus snow scheme, a
detailed physical snowpack model driven by meteorologmnfEeERA-Interim (Brun et al. 2013).

Evaluations of the above datasets or of the land surface Isiathel snow schemes used to
produce them have been conducted at specific locations,(8/ang et al. 2010; Dutra et al.
2012; Brun et al. 1992; Langlois et al. 2009; Stieglitz eR@01); however, such local validations
do not necessarily represent the datasets’ hemispherefidielity. Indeed, for coarsely gridded
datasets such as these, a meaningful hemisphere-scalateMalvith ground measurements is not
a trivial undertaking. Single point climate station measoents are inappropriate for validation
of coarse grid cell SWE datasets, and datasets with detiledjrid measurements over multiple
seasons and locations are very limited. Alpine areas, aitiel sub-grid gradients in elevation and
associated snow properties are particularly challendtfigrts to address such scaling challenges
are ongoing, but are outside the scope of this study.

Instead, the objective of this analysis is to exploit theafsaultiple datasets to robustly charac-
terize the spatial and temporal agreement in SWE climatedognd anomalies at the hemispheric
scale. While the climate modeling community has long recoghthe strength in using data from
a large number of climate models, such an ensemble-baseakabhas been less readily adopted
by the observational community. Data assessments andont@arisons have typically focused
on identifying the best product. This approach can prodibegobtentially misleading impression
that a single dataset is capable of characterizing the wdusemal truth for all regions and seasons.
In reality, variables like SWE are particularly challengito characterize with coarse resolution
gridded datasets due to significant subgrid heterogeneitpiizontal (i.e. snow depth) and ver-

tical (i.e. snow stratigraphy) properties. Recent interparisons limited only to snow models
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(Rutter et al. 2009) reinforce this perspective, demotistyahat most models are good at simu-
lating certain aspects of observed snow conditions, bstdesd at simulating others. Therefore,
we argue that the analysis of multiple datasets is necessanderstand current uncertainties and
inconsistencies within SWE datasets. In turn, this undadihg of uncertainty can enhance the
use of observational snow analyses. For instance, dagassidscan inform the assignment of
uncertainty to observations necessary for land surfaceatastimilation in numerical weather pre-
diction and seasonal forecast applications (Orsolini.&@13; De Lannoy et al. 2010; Koster et al.
2010; Jeong et al. 2013; Drewitt et al. 2012). Consideraticspread also reduces the sensitivity
of climate model evaluation to the selection of a single skettéor evaluation (where disagreement
among data sets is large enough to affect the significanceVé Biases depending on the choice
of observational data).

The remainder of this paper is organized as follows. Detdithe SWE datasets and how they
are combined into a multi-dataset mean are provided in @e2tiIn Section 3, several metrics are
used to compare individual datasets with one another asawdéiie multi-dataset average. Section

4 contains a summary and discussion of key results.

2. Data and Methods

a. Datasets

The SWE datasets used in this study are chosen based on twa@mnteria: complete Northern
Hemisphere spatial coverage (with the exception of an elpiask applied to GlobSnow) and
continuous availability through the satellite era (we u881t-2010 as our analysis period). We

also require relatively homogenous SWE time series for titereeanalysis period, which we
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diagnose from trends in the time series of global snow mass gabsec. 2c). The component
datasets analyzed in this study are described below and atiged in Table 1.

The GlobSnow (version 2) product Takala et al. (2011, wwebghow.info) is the only satellite-
based product in our analysis; however, it also uses grivasdd weather station data in the SWE
retrieval. Estimates of snow grain size are first derivedgiwd cells containing weather station
snow depth measurements by optimizing agreement betwesnwiave snow model simulations
and observed satellite passive microwave brightness textypes at 19 and 37 GHz. These local
estimates of grain size are interpolated via kriging actbbesNorthern Hemisphere, and used in a
second round of emission model simulations for which greaa s fixed and SWE is optimized.
Resolution of the product is 25 km. GlobSnow retrievals mamplex terrain(defined in subsec-
tion 2b)are masked from the standard product due to well known weiodds related to sub-grid
heterogeneity in snow properties and microwave signa(liesy et al. 2010).

ERA-Interim-Land is a reanalysis product (Balsamo et all®(that diagnoses SWE using
the Hydrology Tiled ECMWF Scheme for surface Exchanges teerd (HTESSEL, Balsamo
et al. 2009) driven by meteorological forcing from the ER#drim atmospheric reanalysis. The
snow scheme used is a simple single-layer scheme for dry émowiquid water content). Snow
density and albedo changes follow closely the formulatiooppsed by Douville et al. (1995).
The precipitation values used to force the land model aneected using the Global Precipitation
Climatology Product version 2.1. Product resolution i4°3x 3/4°.

MERRA (Rienecker et al. 2011) is a National Aeronautics apdc® Administration (NASA)
atmospheric reanalysis product generated with versior® mPthe Goddard Earth Observing
System (GEOS-5) Atmospheric General Circulation Model Aidospheric Data Assimilation
System (ADAS). SWE is diagnosed from a hydrological catamrimsed land surface model

(called Catchment, Koster et al. 2000). Catchment usestarmediate complexity snow scheme
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with up to three snow layers describing snow accumulatioglting, refreezing and compaction
in response to surface meteorological conditions (Stegti al. 2001). Product resolution is
1/2° x 2/3°. In section 2c we also analyze the related product MERRA-Ldinis second prod-
uct is produced by re-running only the land surface compboeMERRA forced by atmospheric
data from the standard MERRA product except for precimtativhich is forced by the gauge-
based National Oceanic and Atmospheric Adminstration®AN) Climate Prediction Center
"Unified” (CPCU) precipitation dataset. The canonical refece for the MERRA-Land product is
Reichle et al. (2011); however, the current working prodiiffers in several ways from the pre-
liminary version described therein, including in the cleoaf precipitation forcing which Reichle
et al. (2011) lists as the Global Precipitation Climatoldgypject (GPCU) dataset. Henceforth,
unless explicitly referred to as MERRA-Land, all referente MERRA data refer to the standard
Rienecker et al. (2011) product.

The Crocus SWE dataset is from the Interactions betweenBsmphere-Atmosphere (ISBA)
land surface model driven by ERA-Interim meteorology. Thedds snow scheme (Brun et al.
2013) is embedded in ISBA in place of the usual show schemecuSris a detailed snowpack
model with multiple historical snow layers possible, eaghresenting a separate snowfall event.
Each layer is described by the thickness, temperature, ehgity, liquid water content and grain
type (dendricity, spericity, size, and age). Resolutiothefdata is 1 x 1°.

GLDAS version 2 (Rodell et al. 2004) is another NASA produsttestimates SWE based
on the National Centers for Environmental Prediction, @re§tate University, Air Force, and
Hydrologic Research Lab (Noah) land surface model versi8r{Ghen et al. 1996; Koren et al.
1999) constrained by assimilated observations and larfidcgiparameters. This version is forced
using the Princeton meteorological forcing dataset (Stidféit al. 2006). We also use four differ-

ent GLDAS version 1 products that have been forced using tbbabData Assimilation System
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(GDAS) with precipitation adjustments from the Climate dRetion Centers Merged Analysis of

Precipitation (CMAP). Because of changes in the forcingd@aGLDAS version 1 between 1979

to 2001, the products are unsuitable for analysis over tha®81—-2010 period. However there

are no changes to the forcing meteorology after 2001, anchalyze the products over the 2001—
2010 period in Section 3c. The four GLDAS-1 products eachdifserent land surface models to

diagnose SWE: the Variable Infiltration Capacity (VIC) lamudface model (Liang et al. 1994), the
Community Land Model (CLM) version 2.0 (Bonan et al. 2002 Mosaic land surface model

(Koster and Suarez 1994), and the Noah land surface modsbue2.7. The corresponding snow
schemes implemented in these models range from simplesdiagtr schemes in the Noah and
Mosaic models to intermediate complexity schemes in CLM ¥l Resolution of all GLDAS

products used is°1x 1°.

b. Methods

For each dataset we acquired daily SWE at the native resolfitr the 1981-2010 period.
Between 1981 and 1987, GlobSnow is only available appradip&very second day with oc-
casional gaps of longer duration. We linearly interpoleaegt temporal gaps in the data using
the two nearest dates with available SWE, assuming SWE fsramy zero between June 30 and
September 7.

Each dataset was interpolated to a regufax 1° longitude-latitude grid. Before interpolating
we excluded snow from land ice/glaciers and large lakesdas¢he MERRA land fraction mask,
which specifies the fractional area occupied by land icelardan a given grid cell. We upscaled
the MERRA land fraction mask to the native resolution of thieeo datasets and removed snow

from any grid cell containing a nonzero fraction of land ic&ow over lakes in MERRA was
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removed in proportion to the percentage of the grid cell aaaipied by lakes. The remaining
datasets already mask snow over large lakes, which we aesidufficient for our purposes.

In order to treat alpine and non-alpine regions separate\also upscaled the 25km-resolution
binary alpine mask applied in the GlobSnow data processiamdo the 2 grid. Topographic in-
formation for this mask was derived from ETOPO5 (Nationab@eysical Data, 1988) data which
contains global elevation information at a resolution ofr& minutes, an appropriate resolution
given the 25-km scale of the GlobSnow product. Grid cellscmesidered mountainous if the
standard deviation of the elevation within is larger tha@r@0 Once interpolated to the native
resolution of the remaining SWE datasets, the mask repiesies fraction of a given grid cell
which is of non-alpine land type. Multiplying the regridd8dVE data by the fractional alpine
mask provides a second SWE field consisting only of non-alSWE; the difference between the
two fields represents alpine only SWE. Separating the akmtkenon-alpine SWE in this simple
manner is equivalent to evenly partitioning SWE based onptioportion of a given land type
over grid cells which are not 100% alpine or 100% non-alpBeparating alpine and non-alpine
SWE was necessatry firstly because the alpine mask was appl@dbSnow, but also in order
to isolate the relative uncertainty/spread in the datasets complex terrain (which poses unique
challenges due to topographic variability) compared to-alpine regions. Because of the alpine
mask applied to GlobSnow, there is only non-alpine SWE atséel for this product.

We construct the dataset medr_l) from the first five datasets listed in Table 1 by averaging the

datasets available over a given grid cell accounting fod kgpe as follows:

— 1 1 1
h==§% hi+=hgst ——— ) hf, (1)
ifes N N(N-1), %5

whereh; represents the SWE value for a particular product at theagtlidf is the alpine fraction

of the grid cell,N is the total number of data products, amgk refers to the GlobSnow product.
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This procedure reduces to an unweighted average of fouupteall but GlobSnow) over strictly
alpine grid cells and an unweighted average of all five prtglaeer strictly non-alpine cells.

We also perform a time series analysis over three land matkseentire Northern Hemisphere
land mass (referred to as NH), the North American continbi&)( and the Eurasian continent
(EV). We exclude Greenland from all three definitions. Whaossible we further decompose
the time series resulting from each of the land masses inée timutually exclusive land-types:
mid-latitudes (non-alpine land regions below 60N), Ar¢tion-alpine land regions above 60N)
and alpine. We determine the total snow water mass (SWM) bynsng the equivalent volume
of snow water per grid cell over the appropriate spatial danaad converting to mass using
the density of pure water. We use these daily time seriesltulede climatologies, anomalies,
standard deviations and linear trends. Henceforce, wevediee use of SWM to describe SWE
which has been spatially aggregated over a given regionrto #otime series. When discussing

the spatially varying field we will use the term SWE.

c. Diagnosis of temporal discontinuities

For the inclusion of a reanalysis-based dataset in this eoisgn over the 1981-2010 period,
we require a relatively homogenous time series of NH SWMacceptable level of homogeneity
is empirically diagnosed by comparing the sign and mageitoidtrends of NH SWMOn this
basis we reject three established datasets (MERRA-LandC @htd GLDAS-1) for which we
find spurious trends. Figure 1 shows how NH SWM trends fronsehtree datasets compare
with those from GlobSnow, GLDAS-2, MERRA, ERA-I-Land anddCus. While the five latter
datasets exhibit a range of negative SWM trends (solid lindsg. 1), the trends of the three
remaining datasets are exceedingly different (brokerslind=ig. 1). To illustrate how trends are

indicative of inhomogeneities in global SWM, we show a tineeiess of NH SWM for MERRA-

10



216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Land in Figure 2. Except for the first two snow seasons (which have excegdiage positive
anomalies compared to the rest of the time series), anaosnatie almost exclusively negative
before 1998 with a negative trend, and positive after 1998 aiweak, positive trend. Examining
separate time series for EU and NA (not shown) shows someiabiay (12%) but that Eurasian
variability dominates the total (64%) compared to NA (12%yure 2b shows a spatial map of the
difference in climatologies between 1983-1998 and 1998020 he latter period has additional
SWE over most of Eurasia. Comparing the 1981-1982 climgtoto the 1983-2010 climatology
also shows additional SWE uniformly across Eurasia (notsf)oFurther analysis indicates the
additional SWE is a result of discontinuities present in pinecipitation data used to force the
MERRA-Land model. Similar evidence of temporal disconitiles can be found in the other two
datasets with spurious trends. In the case of CMC, changgsiral resolution of the precipitation
forcing that was used to drive the analysis (specificallyre@ased resolution after 2006) resultin a
noticeable discontinuity in SWM anomalies at that time (stmdwn). The discontinuity produces
the positive trend in SWM seen in Figure 1 because the higisalution precipitation forcing
better resolves deep alpine snow. In GLDAS version 1 (trémave in Fig. 1 for the Noah LSM
only) a discontinuity occurs at the end of 1998 and results strongly negative winter season
trend roughly 3—4 times larger than that found in any of theeotlatasets.

Comparing the five principal datasets of our analysis, GpE&iRA-I-Land and MERRA have
more strongly negative NH SWM trends than GlobSnow stemrfrimmm more strongly negative
trends over Eurasia with comparable or more weakly neg#atarels over North America (con-
tinental breakdown not shown). GLDAS-2 shows much wealards through the entire snow
season than the other four datasets. There is some con$endasreasing NH winter SWE over
the 1981-2010 period that is consistent wittsitu trends to less snow cover in many regions of

the NH (Vaughan et al. 2013).
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3. Results

a. Climatological snow water equivalent

Total NH SWM climatologies are shown in Figure 3a for the fiWES datasets and the multi-
dataset mean. A key finding is the large amount of spread mattilogical SWM among the
products — during the seasonal peak they vary by as much as 30%rder to display total
NH SWM for GlobSnow alongside the other datasets we use tbege of the non-Globsnow
datasets in alpine regions so that the additional SWM sedimeitGlobSnow climatology stems
from differences over non-alpine regions.

To better determine which datasets and regions accourtiéapread among the individual cli-
matologies, we decompose the differences between thedodivdatasets and the multi-dataset
mean by continental domain and land type (Fig. 3b). Thresms®d periods are presented (cal-
culated as two-month averages) corresponding to befak-(I2ecember, January), near-peak
(February, March), and after-peak (April, May) SWM. GLDA&Sshows the largest difference
from the multi-dataset mean with less SWM over both contis€niring all month-pairs and for
all land types. The ERA-I-Land product has the largest pa@shias relative to the multi-dataset
mean, stemming primarily from differences with the otheiadats over Eurasia (especially in the
Arctic). SWE in GlobSnow peaks earlier in the season tharmther datasets. The MERRA and
Crocus datasets show the smallest differences from the aldayugh for Crocus the similarity
is in part because of opposite-signed differences in Aratid alpine regions: Crocus has the
most SWM of all the datasets in the alpine regions of bothinents, but it has less SWM in the
Eurasian Arctic than any of the other datasets except for &&-D2.

A close examination of Figure 3b also shows that alpine amtié\regions generally contribute

the most to the differences in climatological SWM, which amsistent with our a priori assump-
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tions that SWE is most poorly constrained in these regioites& regions have poor agreement
among precipitation data, sparse observing networks, amgpiex snow processes that occur, in-
cluding snow redistribution in the Arctic and complex eliwaal gradients in alpine regions, all
of which will increase the uncertainty for the datasets. \Wewsthis result more explicitly in
Figure 4 which shows the total spread (range of dataset iogies) in NH SWM according to
land type. The spread over Arctic and alpine regions is coaipp@to one another but roughly 2—3
times larger than that over mid-latitude regions.

We also examine the spatial distribution of the multi-datasean and its spread in Figure 5.
The climatology compares well with known features of theasbbed SWE distribution (Brown
and Mote 2009). Examining the ratio of climatological SWEhe spread among the component
datasets provides a measure of the signal to noise ratiaofegith a ratio greater than one co-
incide approximately with the boreal forest regions of Kokimerica and Eurasia. That we have
the best agreement in the datasets over these regions anadde for several reasons. These are
regions where snow cover has well-defined start and endtmirihe season and where midlati-
tude winter cyclones are well-represented in numericaktmezgorediction models. Further south
of this zone, differences in air temperature will have iasiagly important impacts on accumu-
lation through differences in snow-on dates and rain/srepasation. Further north of this zone
uncertainty in the precipitation forcing increases. Feanthore, because the taiga snowpack is gen-
erally spatially homogeneous (Sturm et al. 1995), windsteihiution and topographic effects are
minimal. The relative consistency of the datasets acrasslth boreal forest is further supported

by other measures of agreement among the datasets (diddatsesee Figs. 8 and 11).

b. Snow water equivalent variability
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We present time series of anomalous total NH non-alpine SWHMigure 6 (anomalies calcu-
lated separately for each dataset using its own climatoéogy individually detrended)Some
years show good agreement in the sign and evolution of SWNhahes over the winter (e.g.
1986/87, 1990-1992, 2001/02) while other years show lasspgegads in the anomalies (1988/89,
1996/97, 2009/10). Note the datasets evident as an outliex §iven time period varies among
all 5 component datasets (i.e. GLDAS-2 in 1989; Crocus irB1@obSnow in 1994; MERRA in
1999; ERA-I-Land in 2003).

In order to determine the strength of agreement betweersetatave present pair-wise corre-
lations between individually detrended SWM time seriesiguFe 7. Each value is determined
by correlating the detrended SWM anomaly time series fovargpair of datasets for all winter
days (NDJFMA) over the entire 1981-2010 period (such theth &ane series for a given pair con-
tains 181x 30 days). Calculated as such, correlations reflect bothsaisonal and interannual
covariance. Slightly different approaches were also ealit (1) determine the intraseasonal cor-
relation of winter season days (NDJFMA) for each year séprand average the thirty resulting
correlations; and (2) calculate the interannual corretafor each calendar day and average the
correlations over the winter season (NDJFMA), but the tesurk largely insensitive to the method
(within 5%) and the ranking of which datasets correlate batst one another shifts only slightly
among pairs involving GLDAS-2.

Because correlations involving GlobSnow only consideralpine snow, the datasets have been
ranked by their correlations over non-alpine regions omlyich differ slightly from those that
consider all land types. Except for two pairs, using norrateted SWM time series affects the
correlations by less than 5%. The correlations that are stosbgly affected by detrending in-
volve pairs of datasets with the smallest and largest trerRdSLDAS-2 with either MERRA

or Crocus — and these differences in correlation stem frdferdnces over Eurasia rather than

14



309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

North America (not shown). Examining separately the tinreesdor each continent, we note that
all datasets correlate better over NA than over EU. GLDA®%@\s the weakest correlation with
other datasets. GlobSnow has slightly higher correlatiansl the remaining three reanalysis-
based datasets are correlated with one another8i%. An increased correlation among these
three datasets is expected since MERRA and Crocus both esathe forcing meteorology and
the ERA-Interim meteorology is itself well correlated wittat of MERRA. This point is made in
Rienecker et al. (2011) and further investigated in Se®mrFinally we also show the mean SWE
pattern correlation for each dataset pair in Figure 7 (¢ated daily and averaged over all winter-
time days of the thirty year period). The mean pattern cati@h is lower than the corresponding
temporal correlation of total snow mass. This result mayueetd the presence of opposite-signed
spatial biases that cancel when spatially aggregated i8S/l time series.

Figure 8 presents a spatial map of the temporal correlakonthis figure, rather than spatially
aggregating snow water before correlating, we calculaedgmporal correlation between pairs of
SWE datasets for each grid cell individually. Values pldtéee the average among all possible
pairs of datasets (for alpine regions, the correlationsvehare the average of the six dataset pairs
that exclude GlobSnow, and for non-alpine regions theyaeeage of all ten pairs). Interestingly,
alpine regions don’t have noticeably weaker correlatidratneighboring regions despite the
comparatively large climatological spread indicated igufe 4. Correlations are lower in Arctic
regions and the marginal snow zones and peak over the taigsistent with the high signal-to-
noise present in the climatology (Fig. 5b).

Despite the reasonable spatial and temporal correlatioosrsin Figures 7 and 8, the inter-
dataset spread of SWM anomalies is comparable to the imteahvariability. This result can
be approximately assessed from an examination of Figure & lshown explicitly in Figure 9a,

where for each day over the 1981-2010 period, anomaly spvaadalculated as the difference
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between the datasets with the maximum and minimum SWM anonmiiis comparability in
magnitude means that on average at least one of the datadsttofagree on the sign of the
anomaly. When the same analysis is applied to non-detreshatedlit is apparent that differences
in trends among the datasets are not responsible for theitgaybthe spread.

We also quantify the relative contribution of each dataeethe total spread, defined as the
attributable spreadTo calculate this quantity for each grid cell on a given dagt gear, we parti-
tion the total spread between just two of the five datasetsethwith the maximum and minimum
anomaly on that day. The magnitude of spread attributeddb isathe difference between each
dataset’'s anomaly and the multi-dataset mean. This defirétiows a particular dataset to accrue
more of the total spread for the given day if it is further frohe mean value. The remaining
datasets are attributed no spread for the given day, but mattbbuted spread on other days.
This definition may be extended to a time series comprisingramber of datasets as long as
only two component datasets are attributed the full spreaal given day (as expected in the case
with only two datasets, each would always receive half otth& spread). By definition, the sum
of attributed spread across the total number of compondatéis is equal to the total spread.
Figure 9b shows the amount of spread attributed to each diiheomponent datasets averaged
over the 1981-2010 period. In order to account for alpinéregin GlobSnow, the mean of the
remaining four datasets was used to fill in alpine SWM in Glob& This accounting means that
spread is attributed to GlobSnow only when it stems from SWferénces in non-alpine regions.

Ranked in sequence, MERRA is attributed the least spredwied by Crocus, ERA-I-Land
and GLDAS-2 while GlobSnow is attributed the most. While finst three datasets constitute
roughly half of the total spread, GLDAS-2 and GlobSnow tbgetre responsible for the remain-
ing half, each contributing approximately one quarter & tbtal. Note that ERA-I-Land’s at-

tributable spread peaks during the spring and that GlobSramwelatively low attributable spread
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during the spring, but a large amount during the fall andyearhter. We may understand these
two results by considering that attributable spread cam@sthe frequency that a given dataset is
an outlier with its distance from the mean anomaly. Figura d@monstrates that ERA-I-Land’s
standard deviation (which will be related to its distanaarfrthe mean dataset anomaly) peaks
during the spring while that of GlobSnow peaks during thédal early winter. Each of these
two datasets are also more frequently outliers during teeasons (as opposed to Crocus which
shows a similar spring peak in interannual variability linhot a frequent outlier). The combi-
nation of these two traits means each dataset accrues nresdspuring the time of year that it
shows increased variability. It is possible to account li@se separate effects by standardizing the
time series and examining the spread in the standardizeddames (Fig. 10b). The spread now
attributed to each dataset is more constant throughountie season (total spread of all datasets
is around 2 standard deviations) and more closely refleetptbportion of days and years that
the particular dataset is an outlier. Calculated as suabh&iow, Crocus, MERRA and ERA-I-
Land all contribute approximately equally to the total sjoheby contrast, GLDAS-2 contributes
approximately twice as much to the total spread.

The spatial distribution of signal to noise for SWE anonsigeshown in Figure 11a. Consistent
with the relative magnitudes of SWM anoamlies and spreadvsho Figure 9a, the signal-to-
noise ratio of the local SWE distribution is less than onerlyeaverywhere. It is larger in the
boreal forest region than elsewhere consistent with redaitclimatological SWE and for tem-
poral correlations of daily SWE. The signal-to-noise ramong only the MERRA, ERA-I-Land
and Crocus datasets is substantially larger indicatingbagreement among these three datasets

(Fig. 11b).
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c. Relative influence of land model and meteorological fay@n reanalysis-based datasets

Finally, we examine the relative influence of differenceshi@ precipitation forcing versus dif-
ferences in the treatment of snow processes in the land noodtie resulting correlation and
spread of SWM time series. For this analysis we use two sepgraups of reanalysis-based
datasets. The first of these two groups (Group 1) contain8BRRA, ERA-I-Land and Cro-
cus datasets. We consider these datasets to form a singie lpegause they use meteorological
forcing from either the MERRA or ERA-Interim reanalyses,igthhave been shown to be well-
correlated with one another (Rienecker et al. 2011). Thersegroup (Group 2) contains four
GLDAS-1 products. Each of these datasets has been forced tie@ same GDAS forcing data,
however each one uses a different land model as describeztiiof 2 and Table 1. Because the
forcing data for GLDAS-1 contains changes over the 198182#¥iod, we restrict our analysis
to the 2001-2010 period over which the forcing data is coasis

Figure 12a shows that the spread in climatologies withimeddhe two groups is affected by
the particular land models that are included. The spreadsihmthe grey shading (Group 1 plus
GLDAS-2) is comparable to that found among the Group 2 prtsdaied remains comparable with
the exclusion of the Noah-associated products from bothmngs (but is decreased by about
half). Note that both versions of GLDAS that use the Noah Isundace model are outliers with
similar (but especially low) SWM climatologies, despitengsdifferent meteorological forcing.
This shows it is possible to obtain similar climatologiesnfrthe same land surface model while
using different meteorological forcing. We also see thaigithe same meteorological forcing but
different land models (Group 2) results in a large climagatal spread. These results imply that
differences among the land models generate the majorityeaflimatological spread. We examine

the effect on the correlation of the SWM time series in Figilb. Datasets within each of the two
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groups correlate very well with one another over all comtaédomains and over all land types.
However the correlations of SWM time series between the t@ags are substantially lower, es-
pecially over alpine and Arctic regions. This result sugg#sat differences in the meteorological
forcing exert a larger influence on the resulting SWM cotretathan differences in the details of
the land-model used to produce the data. We also note thegmgnt with the GlobSnow product
(an independent estimate of SWM) is higher for Group 1 dé&gsecles, right column) than for

Group 2 datasets (diamonds, right column). Since the mategical forcing data for Group 1 is

more recent, this may represent an improvement in the acofdhe more recent reanalyses.

4. Conclusion

We have presented a comparison of five daily, gridded NantHemisphere SWE datasets over
the 1981-2010 period. Our intent is to make available thairdataset mean and corresponding
spread of both the climatology and anomalies as part of theha Center for Atmospheric Re-
search (NCAR) Climate Data Guide (https://climatedatdguicar.edu/climate-data). Our analy-
sis has shown that the individual datasets exhibit a largeuatrof spread in their total snow water
mass (SWM) climatologies (Figs. 3 and 4) as well as their aal@® (Fig 9a). Despite the large
spread, the SWM time series show moderate to good corneatidh one another, approximately
85% for the three datasets using modern reanalysis metgcal forcings; these correlations are
higher over North America than over Eurasia (Fig. 7). Boregions not only have the lowest
relative amount of spread (highest signal-to-noise) fahletimatological SWE (Fig. 5) and SWE
anomalies (Fig. 11), but these regions also have the higgxegtoral correlation among the SWE
datasets (Fig. 8). We have also examined the relative irdeiefithe particular land surface model
compared to the choice of meteorological forcing using tesafireanalysis-derived datasets. The

former accounts for the majority of the spread in the clifagies while the latter exert a larger
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influence on the resulting SWM correlation (Fig. 12). Moredem reanalysis-derived datasets
also show improved correlation with the satellite prod@ipbSnow, compared to the previous
generation (Fig. 12).

This analysis of gridded SWE data has yielded importanghtsion the amount of spread, and
the strength of spatial and temporal correlation betwedapendent SWE datasets. At this point,
the relatively high agreement between some groups of datése modern reanalysis-derived
datasets such as MERRA, ERA-I-Land, and Crocus) does ndyiloywer bias compared to the
ground truth, only that these datasets are generally densiwith each other. The agreement
between these three datasets is not surprising given thenooalities in how SWE is derived:
modern reanalysis meteorology and high quality precijpitefiorcing coupled with state of the art
land surface models. A product like GlobSnow adopts and@tdifferent approach by blending
in situ snow depth observations and satellite passive microwawasunements through the use
of a microwave snow emission model. Going forward the chgketo the community is how to
combine these unique perspectives with their respectieagths and sources of error.

Given the spread in climatology, these results highlightd@nsitivity of climate analysis to the
selection of an individual SWE dataset for model evaluatiom the available pool of data. For
example, evaluation of simulated SWE with ERA-I-Land (leghpre-melt SWE) versus GLDAS
(lowest pre-melt SWE) could lead to entirely different mpieetations of model performance and
bias. There are also seasonal and regional difference$wahgécalso important for users to con-
sider. For example, ERA-I-Land has very different biasesr A compared to EU, Crocus has
different biases for Arctic versus alpine snow, while Glob® exhibits different seasonality than
the multi-dataset mean.

For applications like climate model evaluation, it is gjtgforward to see the value in using

an ensemble of SWE datasets for evaluation of a multi-mausdmble of simulations. This ap-
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proach would illustrate the overlap (or lack thereof) in glated climate realizations against the
uncertainties in characterizing our current climate, Wwhecevident when a single dataset is used
to characterize reality (for instance Derksen and Browr220Eor land surface data assimilation
applications, an ensemble approach could be used to st@tistharacterize observational uncer-
tainty, an important requirement for the assimilation & thodel first guess with observations.
What remains to be determined is how to select the SWE datisenclusion in an observa-
tional ensemble. Thresholds based on attributable spredetiended anomaly correlations could
be the basis for selecting a sub-group of datasets, but thg&t be done with caution. In the
absence of an evaluation with representative ground measunts, agreement between a subset
of datasets does not necessarily represent better ovecallary in representing reality. Compar-
isons with independent reference measurements in ordetéondine the dataset bias relative to
ground truth are ultimately necessary and currently undgmithin the European Space Agency’s
Satellite Snow Product Intercomparison and Evaluationeirpent (SnowPEX). In advance of a
comparison with high qualityn situ reference datasets quantifying the spread between differe
available products, as was accomplished in this study, isng@ortant step in informing users of
the level of spatial and temporal agreement between predud the relationship of individual

datasets to the multi-dataset mean.
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Table 1.

Summary of products referred to in this study. The first fiviadets are used in
developing the multi-dataset mean over the 1981-2010qbeTibe remaining
datasets (marked with) are established SWE datasets that meet the NH do-
main criteria but which contain temporal discontinuitissaalyzed in Section
2c that compromise their use in the multi-dataset mean. ©he GLDAS-

1 datasets are suitable for analysis over the restricte@ll-22D10 period (see
Sec. 3c).

1 GlobSnow is based on combined information from satellitgsp@ mi-
crowave retrievals anith situ observations from weather stations. See text for
details.

2 CMC computes snow depths based on combined informationifreitu ob-
servations and a simple snow scheme, driven by temperatdrpracipitation
from the Global Environmental Multiscale Model (GEM). Dhgtare converted

to SWE using climatological snow density information. e
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583

584

585

586

587

588

589
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591

Dataset Abbreviation ~ Snow Scheme Land Model  Forcing Data Rolution Reference

GlobSnow GS satellite passive microwavén-situ' 25 km Takala et al. (2011)
ERA-I-Land E simple HTESSEL ERA-Interim  3/4°x 3/4  Balsamo et al. (2013)
MERRA M intermediate Catchment MERRA 1/22x 2/3  Rienecker et al. (2011)
Crocus C complex ISBA ERA-Interim °1x 1° Brun et al. (2013)
GLDAS-2 G2 simple Noah 3.3 Princeton Met. ° % 1° Rodell et al. (2004)
GLDAS-1* Gln simple Noah 2.7 GDAS+CMAP °k 1° Rodell et al. (2004)

G1lm simple Mosaic

Glv intermediate VIC

Glc intermediate CLM
Can. Met. Centre CMC simple +in sitl? GEM 35km Bransnett (1999)
MERRA-Land ML intermediate Catchment MERRA °k1° Reichle et al. (2011)

TABLE 1. Summary of products referred to in this study. The first fla¢asets are used in developing the
multi-dataset mean over the 1981-2010 period. The rentoiétasets (marked witk) are established SWE
datasets that meet the NH domain criteria but which con&itpbral discontinuities as analyzed in Section 2c
that compromise their use in the multi-dataset mean. TheGuDAS-1 datasets are suitable for analysis over
the restricted, 2001-2010 period (see Sec. 3c).

1 GlobSnow is based on combined information from satellitespe microwave retrievals ari situ observa-
tions from weather stations. See text for details.

2 CMC computes snow depths based on combined information fnositu observations and a simple snow
scheme, driven by temperature and precipitation from theb&| Environmental Multiscale Model (GEM).

Depths are converted to SWE using climatological snow dgirdormation.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Trends in NH SWM for the five principal datasets over 1981-@@blors as marked). The
average trend of the four reanalysis-derived datasets alpére regions has been added
to the trend of the GlobSnow product in order to compare tr@adnitudes. Also shown
are trends for CMC (1999-2010, dotted), GLDAS(Noah) verdi§1981-2010, dot-dash),
MERRA-Land (1983-1998, long-dash) and MERRA-Land (1998, short dash).

a) Time series of anomalous NH SWM from MERRA-Land. b) Difiece in climatological
SWE between 1999-2010 and 1983-1998 periods for MERRA-Land . .

a) Climatological total NH SWM for individual datasets ame imulti-dataset mean for the
1981-2010 period. The average of the NH alpine SWM time sénien the four reanalysis
datasets is added to the GlobSnow time series in order tmppately compare total NH
SWM. b) Stacked bar chart of SWM differences between indialdiatasets and the multi-
dataset mean over pairs of months for various regions. Halibidual dataset is colored
as in panel a) and for a given season shows a sequence of dreeedoresponding to NA,
EU and NH regions. Separate contributions from the threg-tgpes are stacked vertically
using different shades for mid-latitudes, Arctic and adpiagions; total difference summed
over all land types on a given continent is shown by the bah e black outline. Cro-
cus and MERRA differences have been multlplled by three; B8E2, ERA-I-Land and
GlobSnow differences are unaltered. . e e

Spread among climatologies for NH SWM by region over the 12810 period.

a) Climatology of multi-dataset mean SWE for February-Naseer 1981-2010 period. b)
Ratio of climatological SWE to spread among the five compbdatasets calculated for
February-March over 1981-2010 period. The black contolimeiges the 1:1 ratio.

a) Anomalous total NH non-alpine SWM for the five individuatdsets (individually de-
trended). Grey shading marks the range of anomalies (spresahg the datasets on a given
day. e

a) Correlations of daily (NDJFMA) SWM time series (1981-@2pbetween pairs of
datasets. Correlations are shown for detrended time sefibi$i (black), NA (red) and

EU (blue) SWM as well as non-detrended NH (grey) SWM. Alsovathare mean values
of the SWE pattern correlation between dataset pairs (greeles), calculated daily and
averaged over the NDJFMA season and 1981-2010 period. .o

a) Spatial map of the mean correlation between pairs of ¢NI3IJFMA) SWE time series
(1981-2010). Correlations of detrended time series artopeed for a given gr|d cell
location between all available pairs of datasets and aeersapether. .

a) Spread in anomalous SWM among detrended datasets (ldalitf), non-detrended
datasets (black, dotted) and interannual variability ofthtlataset mean (grey, solid) over
the 1981-2010 period. b) Spread in anomalous SWM attrilitakeach of the five compo-
nent dataset time series (1981-2010). Total spread (bisch¢asured on left axis. Spread
attributable to individual datasets measured on right éissmaller). A smoothing win-
dow of 30 days has been applied to all curves for clarity. gefor definitions of spread
and attributable spread. . .
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Fig. 10.

Fig. 11.

Fig. 12.

a) NH interannual variability of SWM for each dataset. b)riiitable spread calculated
from standardized SWM for each dataset. A smoothing wmdfoiW)@jays has been applled
to all curvesforclarity. . . . . . . . . . . . 40

a) Ratio of absolute anomaly size for multi-dataset mearatastt spread, calculated daily

and averaged over February-March and 1981-2010 periodarhg &s a) but only for the

MERRA, ERA-I-Land and Crocus datasets (Group 1, see Sec. ‘Bb)e black contour
delineates the 1:1ratio. . . . . 4 |

a) Spread in total NH SWM for Group 1 plus GLDAS-2 (grey shadirClimatologies for

the four GLDAS-1 products (Group 2) are shown in the labelgties. The single GLDAS-2

product is also shown for comparison. b) Mean pairwise tatioen among different groups

of SWM time series (2001-2010). For each of the three gr@spihe average correlation

is calculated for NA (red), EU (blue) and NH (black) SWM timeries. For each land mass

and group, four averages are shown in sequence for SWM suroveedll land types, only
mid-latitude, only the Arctic and only alpine regions. Meamirelations of group 1 (circles)

and group 2 (diamonds) total NH SWM time series (all land $ypeith GlobSnow are also

shown. Correlations with GlobSnow over individual landeégare omitted for clarity. . . . 42
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SWM Trends
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649 FiG. 1. Trends in NH SWM for the five principal datasets over 198110 (colors as marked). The aver-
0 age trend of the four reanalysis-derived datasets ovemalgigions has been added to the trend of the Glob-
1 SNOW product in order to compare trend magnitudes. Also shang trends for CMC (1999-2010, dotted),
2 GLDAS(Noah) version 1 (1981-2010, dot-dash), MERRA-Lah8i83-1998, long-dash) and MERRA-Land
e3  (1999-2010, short dash).
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654 FiG. 2. a) Time series of anomalous NH SWM from MERRA-Land. b)f@&ince in climatological SWE
s between 1999-2010 and 1983-1998 periods for MERRA-Land.
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664

a NH Snow Mass b Difference from Multi-dataset Mean
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FiGg. 3. a) Climatological total NH SWM for individual datasetsdathe multi-dataset mean for the 1981—
2010 period. The average of the NH alpine SWM time series fitwarfour reanalysis datasets is added to the
GlobSnow time series in order to appropriately compard tth SWM. b) Stacked bar chart of SWM differ-
ences between individual datasets and the multi-datasa imeer pairs of months for various regions. Each
individual dataset is colored as in panel a) and for a givas@e shows a sequence of three bars corresponding
to NA, EU and NH regions. Separate contributions from theehand-types are stacked vertically using differ-
ent shades for mid-latitudes, Arctic and alpine regiontsltdifference summed over all land types on a given
continent is shown by the bar with the black outline. Croaus KIERRA differences have been multiplied by
three; GLDAS-2, ERA-I-Land and GlobSnow differences araltared.
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NH Snow Mass Uncertainty
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FiG. 4. Spread among climatologies for NH SWM by region over 188112010 period.
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a Multi-Dataset Mean SWE b Mean SWE / Spread
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665 FiG. 5. a) Climatology of multi-dataset mean SWE for Februargrth over 1981-2010 period. b) Ratio of
s Climatological SWE to spread among the five component dit@sdculated for February-March over 1981—

s 2010 period. The black contour delineates the 1:1 ratio.
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Fic. 6. a) Anomalous total NH non-alpine SWM for the five indivadwatasets (individually detrended).

Grey shading marks the range of anomalies (spread) amomigthsets on a given day.
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Pairwise Correlation
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670 FiG. 7. a) Correlations of daily (NDJFMA) SWM time series (192010) between pairs of datasets. Correla-
en tions are shown for detrended time series of NH (black), Nl iand EU (blue) SWM as well as non-detrended

> NH (grey) SWM. Also shown are mean values of the SWE patterretadion between dataset pairs (green

6

%

&3 Circles), calculated daily and averaged over the NDIJFMAseand 1981-2010 period.
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Inter-dataset Time Series Correlation
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674 FIG. 8. a) Spatial map of the mean correlation between pairs iof ((MDIJFMA) SWE time series (1981—
e 2010). Correlations of detrended time series are perforfimed given grid cell location between all available

es  pairs of datasets and averaged together.
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a NH Interdataset Spread b NH Attributable Spread
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677 FiG. 9. a) Spread in anomalous SWM among detrended datasetk,(btdid), non-detrended datasets (black,
e dotted) and interannual variability of multi-dataset méaurey, solid) over the 1981-2010 period. b) Spread in
so anomalous SWM attributable to each of the five componentsdatime series (1981-2010). Total spread
s (black) is measured on left axis. Spread attributable tividdal datasets measured on right axis (8maller).

s A smoothing window of 30 days has been applied to all curveslarity. See text for definitions of spread and

2 attributable spread.
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NH Attributable Spread
a NH Interannual Variability b (standardizecP)
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683 Fic. 10. a) NH interannual variability of SWM for each datase). Altitributable spread calculated from

e« Standardized SWM for each dataset. A smoothing window ofe8& thas been applied to all curves for clarity.
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a Anomaly Size / Spread b Anomaly Size / Spread
(Group 1 Only)
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685 FiG. 11. a) Ratio of absolute anomaly size for multi-datasetmteadataset spread, calculated daily and
s averaged over February-March and 1981-2010 period. b) Sanag but only for the MERRA, ERA-I-Land
s and Crocus datasets (Group 1, see Sec. 3c). The black calgingates the 1:1 ratio.
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FiG. 12. a) Spread in total NH SWM for Group 1 plus GLDAS-2 (gregding). Climatologies for the four
GLDAS-1 products (Group 2) are shown in the labeled curvég dingle GLDAS-2 product is also shown for
comparison. b) Mean pairwise correlation among differentigs of SWM time series (2001-2010). For each
of the three groupings the average correlation is caladfeNA (red), EU (blue) and NH (black) SWM time
series. For each land mass and group, four averages are s#h@squence for SWM summed over all land
types, only mid-latitude, only the Arctic and only alpingyiens. Mean correlations of group 1 (circles) and

group 2 (diamonds) total NH SWM time series (all land typeghwelobSnow are also shown. Correlations
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with GlobSnow over individual land types are omitted forritia
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