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ABSTRACT

Five daily, gridded Northern Hemisphere snow water equivalent (SWE)

datasets are analyzed over the 1981–2010 period in order to quantify the spa-

tial and temporal consistency of satellite retrievals, land surface assimilation

systems, physical snow models, and reanalyses. While the climatologies of

total Northern Hemisphere snow water mass (SWM) vary among the datasets

by as much as 50%, their interannual variability and daily anomalies are com-

parable, showing moderate to good temporal correlations (between 60% and

85%) on both interannual and intraseasonal time scales. Wintertime trends

of total Northern Hemisphere SWM are consistently negativeover the 1981–

2010 period among the five datasets but vary in strength by a factor of 2–3.

Examining spatial patterns of SWE indicates that the datasets are most consis-

tent with one another over boreal forest regions compared toArctic and alpine

regions. Additionally, the datasets derived using relatively recent reanalyses

are strongly correlated with one another and show better correlations with the

satellite product (GlobSnow) than do those using older reanalyses. Finally, a

comparison of eight reanalysis datasets over the 2001–2010period shows that

land surface model differences control the majority of spread in the climato-

logical value of SWM, while meteorological forcing differences control the

majority of the spread in temporal correlations of SWM anomalies.
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1. Introduction33

The seasonal cycle of terrestrial snow cover and snow mass has a notable influence on the34

Northern Hemisphere energy budget, water balance and geochemical cycles. Snow water equiv-35

alent (SWE) is expected to respond in a complex way to projected temperature and precipitation36

changes with the magnitude and sign of the response varying with climate regime and elevation37

(Brown and Mote 2009). Verification of such responses in climate models and the initialization38

of snow in seasonal to decadal prediction systems requires agridded, observational SWE dataset39

with well-characterized uncertainty (De Lannoy et al. 2010). For snow cover extent, intercompar-40

ison of existing data has led to estimation of uncertaintiesin SCE anomalies and trends (Brown41

et al. 2010; Derksen and Brown 2012) as well as improved documentation and understanding of42

systematic differences and inhomogeneities (Brown and Derksen 2013; Mudryk et al. 2014).43

A similar quantitative understanding of uncertainties in the Northern Hemisphere is lacking for44

SWE datasets apart from some more limited comparisons citedbelow. To address this gap, we45

compare an ensemble of daily, gridded datasets in order to fully characterize inter-dataset spread46

and produce a multi-dataset mean. Out intent is to make available the mean and spread of the47

SWE datasets analyzed here on the National Center for Atmospheric Research Climate Data Guide48

portal. All of the datasets include observations (e.g. satellite measurements, observed inputs to49

reanalysis) as at least a component of the data generation, but otherwise draw from a variety of50

sources including remote sensing, station data, land surface assimilation systems, and reanalysis-51

driven snow models of varying complexity. In particular we use: (1) the GlobSnow (version 2)52

analysis, combining satellite-based passive microwave retrievals and ground-based weather station53

data (Takala et al. 2011); (2) the Global Land Data Assimilation System Version 2 (GLDAS-2)54

product (Rodell et al. 2004); (3) the European Centre for Medium-Range Forecasts Interim Land55
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Reanalysis (ERA-I-Land) which uses a simple snow scheme (Balsamo et al. 2013); (4) the Modern56

Era Retrospective Analysis for Research and Applications (MERRA) which uses an intermediate57

complexity snow scheme (Rienecker et al. 2011); and, (5) SWEfrom the Crocus snow scheme, a58

detailed physical snowpack model driven by meteorology from ERA-Interim (Brun et al. 2013).59

Evaluations of the above datasets or of the land surface models and snow schemes used to60

produce them have been conducted at specific locations (e. g., Wang et al. 2010; Dutra et al.61

2012; Brun et al. 1992; Langlois et al. 2009; Stieglitz et al.2001); however, such local validations62

do not necessarily represent the datasets’ hemisphere-wide fidelity. Indeed, for coarsely gridded63

datasets such as these, a meaningful hemisphere-scale evaluation with ground measurements is not64

a trivial undertaking. Single point climate station measurements are inappropriate for validation65

of coarse grid cell SWE datasets, and datasets with detailedsub-grid measurements over multiple66

seasons and locations are very limited. Alpine areas, with large sub-grid gradients in elevation and67

associated snow properties are particularly challenging.Efforts to address such scaling challenges68

are ongoing, but are outside the scope of this study.69

Instead, the objective of this analysis is to exploit the useof multiple datasets to robustly charac-70

terize the spatial and temporal agreement in SWE climatologies and anomalies at the hemispheric71

scale. While the climate modeling community has long recognized the strength in using data from72

a large number of climate models, such an ensemble-based approach has been less readily adopted73

by the observational community. Data assessments and intercomparisons have typically focused74

on identifying the best product. This approach can produce the potentially misleading impression75

that a single dataset is capable of characterizing the observational truth for all regions and seasons.76

In reality, variables like SWE are particularly challenging to characterize with coarse resolution77

gridded datasets due to significant subgrid heterogeneity in horizontal (i.e. snow depth) and ver-78

tical (i.e. snow stratigraphy) properties. Recent intercomparisons limited only to snow models79
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(Rutter et al. 2009) reinforce this perspective, demonstrating that most models are good at simu-80

lating certain aspects of observed snow conditions, but less good at simulating others. Therefore,81

we argue that the analysis of multiple datasets is necessaryto understand current uncertainties and82

inconsistencies within SWE datasets. In turn, this understanding of uncertainty can enhance the83

use of observational snow analyses. For instance, dataset spread can inform the assignment of84

uncertainty to observations necessary for land surface data assimilation in numerical weather pre-85

diction and seasonal forecast applications (Orsolini et al. 2013; De Lannoy et al. 2010; Koster et al.86

2010; Jeong et al. 2013; Drewitt et al. 2012). Considerationof spread also reduces the sensitivity87

of climate model evaluation to the selection of a single dataset for evaluation (where disagreement88

among data sets is large enough to affect the significance of SWE biases depending on the choice89

of observational data).90

The remainder of this paper is organized as follows. Detailsof the SWE datasets and how they91

are combined into a multi-dataset mean are provided in Section 2. In Section 3, several metrics are92

used to compare individual datasets with one another as wellas the multi-dataset average. Section93

4 contains a summary and discussion of key results.94

2. Data and Methods95

a. Datasets96

The SWE datasets used in this study are chosen based on two main criteria: complete Northern97

Hemisphere spatial coverage (with the exception of an alpine mask applied to GlobSnow) and98

continuous availability through the satellite era (we use 1981–2010 as our analysis period). We99

also require relatively homogenous SWE time series for the entire analysis period, which we100
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diagnose from trends in the time series of global snow mass (see subsec. 2c). The component101

datasets analyzed in this study are described below and summarized in Table 1.102

The GlobSnow (version 2) product Takala et al. (2011, www.globsnow.info) is the only satellite-103

based product in our analysis; however, it also uses ground-based weather station data in the SWE104

retrieval. Estimates of snow grain size are first derived forgrid cells containing weather station105

snow depth measurements by optimizing agreement between microwave snow model simulations106

and observed satellite passive microwave brightness temperatures at 19 and 37 GHz. These local107

estimates of grain size are interpolated via kriging acrossthe Northern Hemisphere, and used in a108

second round of emission model simulations for which grain size is fixed and SWE is optimized.109

Resolution of the product is 25 km. GlobSnow retrievals overcomplex terrain(defined in subsec-110

tion 2b)are masked from the standard product due to well known uncertainties related to sub-grid111

heterogeneity in snow properties and microwave signatures(Tong et al. 2010).112

ERA-Interim-Land is a reanalysis product (Balsamo et al. 2013) that diagnoses SWE using113

the Hydrology Tiled ECMWF Scheme for surface Exchanges overLand (HTESSEL, Balsamo114

et al. 2009) driven by meteorological forcing from the ERA-Interim atmospheric reanalysis. The115

snow scheme used is a simple single-layer scheme for dry snow(no liquid water content). Snow116

density and albedo changes follow closely the formulation proposed by Douville et al. (1995).117

The precipitation values used to force the land model are corrected using the Global Precipitation118

Climatology Product version 2.1. Product resolution is 3/4◦×3/4◦.119

MERRA (Rienecker et al. 2011) is a National Aeronautics and Space Administration (NASA)120

atmospheric reanalysis product generated with version 5.2.0 of the Goddard Earth Observing121

System (GEOS-5) Atmospheric General Circulation Model andAtmospheric Data Assimilation122

System (ADAS). SWE is diagnosed from a hydrological catchment-based land surface model123

(called Catchment, Koster et al. 2000). Catchment uses an intermediate complexity snow scheme124
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with up to three snow layers describing snow accumulation, melting, refreezing and compaction125

in response to surface meteorological conditions (Stieglitz et al. 2001). Product resolution is126

1/2◦×2/3◦. In section 2c we also analyze the related product MERRA-Land. This second prod-127

uct is produced by re-running only the land surface component of MERRA forced by atmospheric128

data from the standard MERRA product except for precipitation which is forced by the gauge-129

based National Oceanic and Atmospheric Adminstration’s (NOAA) Climate Prediction Center130

”Unified” (CPCU) precipitation dataset. The canonical reference for the MERRA-Land product is131

Reichle et al. (2011); however, the current working productdiffers in several ways from the pre-132

liminary version described therein, including in the choice of precipitation forcing which Reichle133

et al. (2011) lists as the Global Precipitation ClimatologyProject (GPCU) dataset. Henceforth,134

unless explicitly referred to as MERRA-Land, all references to MERRA data refer to the standard135

Rienecker et al. (2011) product.136

The Crocus SWE dataset is from the Interactions between SoilBiosphere-Atmosphere (ISBA)137

land surface model driven by ERA-Interim meteorology. The Crocus snow scheme (Brun et al.138

2013) is embedded in ISBA in place of the usual snow scheme. Crocus is a detailed snowpack139

model with multiple historical snow layers possible, each representing a separate snowfall event.140

Each layer is described by the thickness, temperature, dry density, liquid water content and grain141

type (dendricity, spericity, size, and age). Resolution ofthe data is 1◦×1◦.142

GLDAS version 2 (Rodell et al. 2004) is another NASA product that estimates SWE based143

on the National Centers for Environmental Prediction, Oregon State University, Air Force, and144

Hydrologic Research Lab (Noah) land surface model version 3.3 (Chen et al. 1996; Koren et al.145

1999) constrained by assimilated observations and land surface parameters. This version is forced146

using the Princeton meteorological forcing dataset (Sheffield et al. 2006). We also use four differ-147

ent GLDAS version 1 products that have been forced using the Global Data Assimilation System148
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(GDAS) with precipitation adjustments from the Climate Prediction Centers Merged Analysis of149

Precipitation (CMAP). Because of changes in the forcing data in GLDAS version 1 between 1979150

to 2001, the products are unsuitable for analysis over the full 1981–2010 period. However there151

are no changes to the forcing meteorology after 2001, and we analyze the products over the 2001–152

2010 period in Section 3c. The four GLDAS-1 products each usedifferent land surface models to153

diagnose SWE: the Variable Infiltration Capacity (VIC) landsurface model (Liang et al. 1994), the154

Community Land Model (CLM) version 2.0 (Bonan et al. 2002), the Mosaic land surface model155

(Koster and Suarez 1994), and the Noah land surface model version 2.7. The corresponding snow156

schemes implemented in these models range from simple single layer schemes in the Noah and157

Mosaic models to intermediate complexity schemes in CLM andVIC. Resolution of all GLDAS158

products used is 1◦×1◦.159

b. Methods160

For each dataset we acquired daily SWE at the native resolution for the 1981–2010 period.161

Between 1981 and 1987, GlobSnow is only available approximately every second day with oc-162

casional gaps of longer duration. We linearly interpolatedany temporal gaps in the data using163

the two nearest dates with available SWE, assuming SWE is uniformly zero between June 30 and164

September 7.165

Each dataset was interpolated to a regular 1◦×1◦ longitude-latitude grid. Before interpolating166

we excluded snow from land ice/glaciers and large lakes based on the MERRA land fraction mask,167

which specifies the fractional area occupied by land ice or lakes in a given grid cell. We upscaled168

the MERRA land fraction mask to the native resolution of the other datasets and removed snow169

from any grid cell containing a nonzero fraction of land ice.Snow over lakes in MERRA was170
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removed in proportion to the percentage of the grid cell areaoccupied by lakes. The remaining171

datasets already mask snow over large lakes, which we considered sufficient for our purposes.172

In order to treat alpine and non-alpine regions separately,we also upscaled the 25km-resolution173

binary alpine mask applied in the GlobSnow data processing chain to the 1◦ grid. Topographic in-174

formation for this mask was derived from ETOPO5 (National Geophysical Data, 1988) data which175

contains global elevation information at a resolution of 5 arc minutes, an appropriate resolution176

given the 25-km scale of the GlobSnow product. Grid cells areconsidered mountainous if the177

standard deviation of the elevation within is larger than 200m. Once interpolated to the native178

resolution of the remaining SWE datasets, the mask represents the fraction of a given grid cell179

which is of non-alpine land type. Multiplying the regriddedSWE data by the fractional alpine180

mask provides a second SWE field consisting only of non-alpine SWE; the difference between the181

two fields represents alpine only SWE. Separating the alpineand non-alpine SWE in this simple182

manner is equivalent to evenly partitioning SWE based on theproportion of a given land type183

over grid cells which are not 100% alpine or 100% non-alpine.Separating alpine and non-alpine184

SWE was necessary firstly because the alpine mask was appliedto GlobSnow, but also in order185

to isolate the relative uncertainty/spread in the datasetsover complex terrain (which poses unique186

challenges due to topographic variability) compared to non-alpine regions. Because of the alpine187

mask applied to GlobSnow, there is only non-alpine SWE available for this product.188

We construct the dataset mean (h̄) from the first five datasets listed in Table 1 by averaging the189

datasets available over a given grid cell accounting for land type as follows:190

h=
1
N ∑

i 6=GS

hi +
1
N

hGS+
1

N(N−1) ∑
i 6=GS

hi f , (1)

wherehi represents the SWE value for a particular product at the gridcell, f is the alpine fraction191

of the grid cell,N is the total number of data products, andhGS refers to the GlobSnow product.192
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This procedure reduces to an unweighted average of four products (all but GlobSnow) over strictly193

alpine grid cells and an unweighted average of all five products over strictly non-alpine cells.194

We also perform a time series analysis over three land masses: the entire Northern Hemisphere195

land mass (referred to as NH), the North American continent (NA), and the Eurasian continent196

(EU). We exclude Greenland from all three definitions. Wherepossible we further decompose197

the time series resulting from each of the land masses into three mutually exclusive land-types:198

mid-latitudes (non-alpine land regions below 60N), Arctic(non-alpine land regions above 60N)199

and alpine. We determine the total snow water mass (SWM) by summing the equivalent volume200

of snow water per grid cell over the appropriate spatial domain and converting to mass using201

the density of pure water. We use these daily time series to calculate climatologies, anomalies,202

standard deviations and linear trends. Henceforce, we reserve the use of SWM to describe SWE203

which has been spatially aggregated over a given region to form a time series. When discussing204

the spatially varying field we will use the term SWE.205

c. Diagnosis of temporal discontinuities206

For the inclusion of a reanalysis-based dataset in this comparison over the 1981–2010 period,207

we require a relatively homogenous time series of NH SWM.An acceptable level of homogeneity208

is empirically diagnosed by comparing the sign and magnitude of trends of NH SWM.On this209

basis we reject three established datasets (MERRA-Land, CMC and GLDAS-1) for which we210

find spurious trends. Figure 1 shows how NH SWM trends from these three datasets compare211

with those from GlobSnow, GLDAS-2, MERRA, ERA-I-Land and Crocus. While the five latter212

datasets exhibit a range of negative SWM trends (solid linesin Fig. 1), the trends of the three213

remaining datasets are exceedingly different (broken lines in Fig. 1). To illustrate how trends are214

indicative of inhomogeneities in global SWM, we show a time series of NH SWM for MERRA-215
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Land in Figure 2a. Except for the first two snow seasons (which have exceedingly large positive216

anomalies compared to the rest of the time series), anomalies are almost exclusively negative217

before 1998 with a negative trend, and positive after 1999 with a weak, positive trend. Examining218

separate time series for EU and NA (not shown) shows some covariability (12%) but that Eurasian219

variability dominates the total (64%) compared to NA (12%).Figure 2b shows a spatial map of the220

difference in climatologies between 1983-1998 and 1999-2010. The latter period has additional221

SWE over most of Eurasia. Comparing the 1981-1982 climatology to the 1983-2010 climatology222

also shows additional SWE uniformly across Eurasia (not shown). Further analysis indicates the223

additional SWE is a result of discontinuities present in theprecipitation data used to force the224

MERRA-Land model. Similar evidence of temporal discontinuities can be found in the other two225

datasets with spurious trends. In the case of CMC, changes inspatial resolution of the precipitation226

forcing that was used to drive the analysis (specifically, increased resolution after 2006) result in a227

noticeable discontinuity in SWM anomalies at that time (notshown). The discontinuity produces228

the positive trend in SWM seen in Figure 1 because the higher resolution precipitation forcing229

better resolves deep alpine snow. In GLDAS version 1 (trend shown in Fig. 1 for the Noah LSM230

only) a discontinuity occurs at the end of 1998 and results ina strongly negative winter season231

trend roughly 3–4 times larger than that found in any of the other datasets.232

Comparing the five principal datasets of our analysis, Crocus, ERA-I-Land and MERRA have233

more strongly negative NH SWM trends than GlobSnow stemmingfrom more strongly negative234

trends over Eurasia with comparable or more weakly negativetrends over North America (con-235

tinental breakdown not shown). GLDAS-2 shows much weaker trends through the entire snow236

season than the other four datasets. There is some consensusfor decreasing NH winter SWE over237

the 1981–2010 period that is consistent within situ trends to less snow cover in many regions of238

the NH (Vaughan et al. 2013).239
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3. Results240

a. Climatological snow water equivalent241

Total NH SWM climatologies are shown in Figure 3a for the five SWE datasets and the multi-242

dataset mean. A key finding is the large amount of spread in climatological SWM among the243

products — during the seasonal peak they vary by as much as 50%. In order to display total244

NH SWM for GlobSnow alongside the other datasets we use the average of the non-Globsnow245

datasets in alpine regions so that the additional SWM seen inthe GlobSnow climatology stems246

from differences over non-alpine regions.247

To better determine which datasets and regions account for the spread among the individual cli-248

matologies, we decompose the differences between the individual datasets and the multi-dataset249

mean by continental domain and land type (Fig. 3b). Three seasonal periods are presented (cal-250

culated as two-month averages) corresponding to before-peak (December, January), near-peak251

(February, March), and after-peak (April, May) SWM. GLDAS-2 shows the largest difference252

from the multi-dataset mean with less SWM over both continents during all month-pairs and for253

all land types. The ERA-I-Land product has the largest positive bias relative to the multi-dataset254

mean, stemming primarily from differences with the other datasets over Eurasia (especially in the255

Arctic). SWE in GlobSnow peaks earlier in the season than theother datasets. The MERRA and256

Crocus datasets show the smallest differences from the meanalthough for Crocus the similarity257

is in part because of opposite-signed differences in Arcticand alpine regions: Crocus has the258

most SWM of all the datasets in the alpine regions of both continents, but it has less SWM in the259

Eurasian Arctic than any of the other datasets except for GLDAS-2.260

A close examination of Figure 3b also shows that alpine and Arctic regions generally contribute261

the most to the differences in climatological SWM, which is consistent with our a priori assump-262
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tions that SWE is most poorly constrained in these regions. These regions have poor agreement263

among precipitation data, sparse observing networks, and complex snow processes that occur, in-264

cluding snow redistribution in the Arctic and complex elevational gradients in alpine regions, all265

of which will increase the uncertainty for the datasets. We show this result more explicitly in266

Figure 4 which shows the total spread (range of dataset climatologies) in NH SWM according to267

land type. The spread over Arctic and alpine regions is comparable to one another but roughly 2–3268

times larger than that over mid-latitude regions.269

We also examine the spatial distribution of the multi-dataset mean and its spread in Figure 5.270

The climatology compares well with known features of the observed SWE distribution (Brown271

and Mote 2009). Examining the ratio of climatological SWE tothe spread among the component272

datasets provides a measure of the signal to noise ratio. Regions with a ratio greater than one co-273

incide approximately with the boreal forest regions of North America and Eurasia. That we have274

the best agreement in the datasets over these regions is reasonable for several reasons. These are275

regions where snow cover has well-defined start and end points to the season and where midlati-276

tude winter cyclones are well-represented in numerical weather prediction models. Further south277

of this zone, differences in air temperature will have increasingly important impacts on accumu-278

lation through differences in snow-on dates and rain/snow separation. Further north of this zone279

uncertainty in the precipitation forcing increases. Furthermore, because the taiga snowpack is gen-280

erally spatially homogeneous (Sturm et al. 1995), wind redistribution and topographic effects are281

minimal. The relative consistency of the datasets across the NH boreal forest is further supported282

by other measures of agreement among the datasets (discussed later, see Figs. 8 and 11).283

b. Snow water equivalent variability284
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We present time series of anomalous total NH non-alpine SWM in Figure 6 (anomalies calcu-285

lated separately for each dataset using its own climatologyand individually detrended).Some286

years show good agreement in the sign and evolution of SWM anomalies over the winter (e.g.287

1986/87, 1990-1992, 2001/02) while other years show largerspreads in the anomalies (1988/89,288

1996/97, 2009/10). Note the datasets evident as an outlier for a given time period varies among289

all 5 component datasets (i.e. GLDAS-2 in 1989; Crocus in 1993; GlobSnow in 1994; MERRA in290

1999; ERA-I-Land in 2003).291

In order to determine the strength of agreement between datasets, we present pair-wise corre-292

lations between individually detrended SWM time series in Figure 7. Each value is determined293

by correlating the detrended SWM anomaly time series for a given pair of datasets for all winter294

days (NDJFMA) over the entire 1981–2010 period (such that each time series for a given pair con-295

tains 181×30 days). Calculated as such, correlations reflect both intraseasonal and interannual296

covariance. Slightly different approaches were also evaluated: (1) determine the intraseasonal cor-297

relation of winter season days (NDJFMA) for each year separately and average the thirty resulting298

correlations; and (2) calculate the interannual correlation for each calendar day and average the299

correlations over the winter season (NDJFMA), but the results are largely insensitive to the method300

(within 5%) and the ranking of which datasets correlate bestwith one another shifts only slightly301

among pairs involving GLDAS-2.302

Because correlations involving GlobSnow only consider non-alpine snow, the datasets have been303

ranked by their correlations over non-alpine regions only,which differ slightly from those that304

consider all land types. Except for two pairs, using non-detrended SWM time series affects the305

correlations by less than 5%. The correlations that are moststrongly affected by detrending in-306

volve pairs of datasets with the smallest and largest trends— GLDAS-2 with either MERRA307

or Crocus — and these differences in correlation stem from differences over Eurasia rather than308
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North America (not shown). Examining separately the time series for each continent, we note that309

all datasets correlate better over NA than over EU. GLDAS-2 shows the weakest correlation with310

other datasets. GlobSnow has slightly higher correlations, and the remaining three reanalysis-311

based datasets are correlated with one another at∼ 80%. An increased correlation among these312

three datasets is expected since MERRA and Crocus both use the same forcing meteorology and313

the ERA-Interim meteorology is itself well correlated withthat of MERRA. This point is made in314

Rienecker et al. (2011) and further investigated in Section3c. Finally we also show the mean SWE315

pattern correlation for each dataset pair in Figure 7 (calculated daily and averaged over all winter-316

time days of the thirty year period). The mean pattern correlation is lower than the corresponding317

temporal correlation of total snow mass. This result may be due to the presence of opposite-signed318

spatial biases that cancel when spatially aggregated into aSWM time series.319

Figure 8 presents a spatial map of the temporal correlation.For this figure, rather than spatially320

aggregating snow water before correlating, we calculate the temporal correlation between pairs of321

SWE datasets for each grid cell individually. Values plotted are the average among all possible322

pairs of datasets (for alpine regions, the correlations shown are the average of the six dataset pairs323

that exclude GlobSnow, and for non-alpine regions they are average of all ten pairs). Interestingly,324

alpine regions don’t have noticeably weaker correlations than neighboring regions despite the325

comparatively large climatological spread indicated in Figure 4. Correlations are lower in Arctic326

regions and the marginal snow zones and peak over the taiga, consistent with the high signal-to-327

noise present in the climatology (Fig. 5b).328

Despite the reasonable spatial and temporal correlations shown in Figures 7 and 8, the inter-329

dataset spread of SWM anomalies is comparable to the interannual variability. This result can330

be approximately assessed from an examination of Figure 6 but is shown explicitly in Figure 9a,331

where for each day over the 1981–2010 period, anomaly spreadwas calculated as the difference332
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between the datasets with the maximum and minimum SWM anomaly. This comparability in333

magnitude means that on average at least one of the datasets fails to agree on the sign of the334

anomaly. When the same analysis is applied to non-detrendeddata, it is apparent that differences335

in trends among the datasets are not responsible for the majority of the spread.336

We also quantify the relative contribution of each dataset to the total spread, defined as the337

attributable spread. To calculate this quantity for each grid cell on a given day and year, we parti-338

tion the total spread between just two of the five datasets: those with the maximum and minimum339

anomaly on that day. The magnitude of spread attributed to each is the difference between each340

dataset’s anomaly and the multi-dataset mean. This definition allows a particular dataset to accrue341

more of the total spread for the given day if it is further fromthe mean value. The remaining342

datasets are attributed no spread for the given day, but may be attributed spread on other days.343

This definition may be extended to a time series comprising any number of datasets as long as344

only two component datasets are attributed the full spread on a given day (as expected in the case345

with only two datasets, each would always receive half of thetotal spread). By definition, the sum346

of attributed spread across the total number of component datasets is equal to the total spread.347

Figure 9b shows the amount of spread attributed to each of thefive component datasets averaged348

over the 1981–2010 period. In order to account for alpine regions in GlobSnow, the mean of the349

remaining four datasets was used to fill in alpine SWM in GlobSnow. This accounting means that350

spread is attributed to GlobSnow only when it stems from SWE differences in non-alpine regions.351

Ranked in sequence, MERRA is attributed the least spread, followed by Crocus, ERA-I-Land352

and GLDAS-2 while GlobSnow is attributed the most. While thefirst three datasets constitute353

roughly half of the total spread, GLDAS-2 and GlobSnow together are responsible for the remain-354

ing half, each contributing approximately one quarter of the total. Note that ERA-I-Land’s at-355

tributable spread peaks during the spring and that GlobSnowhas relatively low attributable spread356
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during the spring, but a large amount during the fall and early winter. We may understand these357

two results by considering that attributable spread convolves the frequency that a given dataset is358

an outlier with its distance from the mean anomaly. Figure 10a demonstrates that ERA-I-Land’s359

standard deviation (which will be related to its distance from the mean dataset anomaly) peaks360

during the spring while that of GlobSnow peaks during the fall and early winter. Each of these361

two datasets are also more frequently outliers during theseseasons (as opposed to Crocus which362

shows a similar spring peak in interannual variability but is not a frequent outlier). The combi-363

nation of these two traits means each dataset accrues more spread during the time of year that it364

shows increased variability. It is possible to account for these separate effects by standardizing the365

time series and examining the spread in the standardized time series (Fig. 10b). The spread now366

attributed to each dataset is more constant throughout the snow season (total spread of all datasets367

is around 2 standard deviations) and more closely reflects the proportion of days and years that368

the particular dataset is an outlier. Calculated as such, GlobSnow, Crocus, MERRA and ERA-I-369

Land all contribute approximately equally to the total spread; by contrast, GLDAS-2 contributes370

approximately twice as much to the total spread.371

The spatial distribution of signal to noise for SWE anomalies is shown in Figure 11a. Consistent372

with the relative magnitudes of SWM anoamlies and spread shown in Figure 9a, the signal-to-373

noise ratio of the local SWE distribution is less than one nearly everywhere. It is larger in the374

boreal forest region than elsewhere consistent with results for climatological SWE and for tem-375

poral correlations of daily SWE. The signal-to-noise ratioamong only the MERRA, ERA-I-Land376

and Crocus datasets is substantially larger indicating better agreement among these three datasets377

(Fig. 11b).378
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c. Relative influence of land model and meteorological forcing on reanalysis-based datasets379

Finally, we examine the relative influence of differences inthe precipitation forcing versus dif-380

ferences in the treatment of snow processes in the land modelon the resulting correlation and381

spread of SWM time series. For this analysis we use two separate groups of reanalysis-based382

datasets. The first of these two groups (Group 1) contains theMERRA, ERA-I-Land and Cro-383

cus datasets. We consider these datasets to form a single group because they use meteorological384

forcing from either the MERRA or ERA-Interim reanalyses, which have been shown to be well-385

correlated with one another (Rienecker et al. 2011). The second group (Group 2) contains four386

GLDAS-1 products. Each of these datasets has been forced using the same GDAS forcing data,387

however each one uses a different land model as described in Section 2 and Table 1. Because the388

forcing data for GLDAS-1 contains changes over the 1981–2010 period, we restrict our analysis389

to the 2001–2010 period over which the forcing data is consistent.390

Figure 12a shows that the spread in climatologies within each of the two groups is affected by391

the particular land models that are included. The spread shown in the grey shading (Group 1 plus392

GLDAS-2) is comparable to that found among the Group 2 products and remains comparable with393

the exclusion of the Noah-associated products from both groupings (but is decreased by about394

half). Note that both versions of GLDAS that use the Noah landsurface model are outliers with395

similar (but especially low) SWM climatologies, despite using different meteorological forcing.396

This shows it is possible to obtain similar climatologies from the same land surface model while397

using different meteorological forcing. We also see that using the same meteorological forcing but398

different land models (Group 2) results in a large climatological spread. These results imply that399

differences among the land models generate the majority of the climatological spread. We examine400

the effect on the correlation of the SWM time series in Figure12b. Datasets within each of the two401
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groups correlate very well with one another over all continental domains and over all land types.402

However the correlations of SWM time series between the two groups are substantially lower, es-403

pecially over alpine and Arctic regions. This result suggests that differences in the meteorological404

forcing exert a larger influence on the resulting SWM correlation than differences in the details of405

the land-model used to produce the data. We also note that agreement with the GlobSnow product406

(an independent estimate of SWM) is higher for Group 1 datasets (circles, right column) than for407

Group 2 datasets (diamonds, right column). Since the meteorological forcing data for Group 1 is408

more recent, this may represent an improvement in the accuracy of the more recent reanalyses.409

4. Conclusion410

We have presented a comparison of five daily, gridded Northern Hemisphere SWE datasets over411

the 1981–2010 period. Our intent is to make available the multi-dataset mean and corresponding412

spread of both the climatology and anomalies as part of the National Center for Atmospheric Re-413

search (NCAR) Climate Data Guide (https://climatedataguide.ucar.edu/climate-data). Our analy-414

sis has shown that the individual datasets exhibit a large amount of spread in their total snow water415

mass (SWM) climatologies (Figs. 3 and 4) as well as their anomalies (Fig 9a). Despite the large416

spread, the SWM time series show moderate to good correlations with one another, approximately417

85% for the three datasets using modern reanalysis meteorological forcings; these correlations are418

higher over North America than over Eurasia (Fig. 7). Borealregions not only have the lowest419

relative amount of spread (highest signal-to-noise) for both climatological SWE (Fig. 5) and SWE420

anomalies (Fig. 11), but these regions also have the highesttemporal correlation among the SWE421

datasets (Fig. 8). We have also examined the relative influence of the particular land surface model422

compared to the choice of meteorological forcing using a suite of reanalysis-derived datasets. The423

former accounts for the majority of the spread in the climatologies while the latter exert a larger424
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influence on the resulting SWM correlation (Fig. 12). More modern reanalysis-derived datasets425

also show improved correlation with the satellite product,GlobSnow, compared to the previous426

generation (Fig. 12).427

This analysis of gridded SWE data has yielded important insights on the amount of spread, and428

the strength of spatial and temporal correlation between independent SWE datasets. At this point,429

the relatively high agreement between some groups of datasets (i.e. modern reanalysis-derived430

datasets such as MERRA, ERA-I-Land, and Crocus) does not imply lower bias compared to the431

ground truth, only that these datasets are generally consistent with each other. The agreement432

between these three datasets is not surprising given the commonalities in how SWE is derived:433

modern reanalysis meteorology and high quality precipitation forcing coupled with state of the art434

land surface models. A product like GlobSnow adopts an entirely different approach by blending435

in situ snow depth observations and satellite passive microwave measurements through the use436

of a microwave snow emission model. Going forward the challenge to the community is how to437

combine these unique perspectives with their respective strengths and sources of error.438

Given the spread in climatology, these results highlight the sensitivity of climate analysis to the439

selection of an individual SWE dataset for model evaluationfrom the available pool of data. For440

example, evaluation of simulated SWE with ERA-I-Land (highest pre-melt SWE) versus GLDAS441

(lowest pre-melt SWE) could lead to entirely different interpretations of model performance and442

bias. There are also seasonal and regional differences which are also important for users to con-443

sider. For example, ERA-I-Land has very different biases over NA compared to EU, Crocus has444

different biases for Arctic versus alpine snow, while GlobSnow exhibits different seasonality than445

the multi-dataset mean.446

For applications like climate model evaluation, it is straightforward to see the value in using447

an ensemble of SWE datasets for evaluation of a multi-model ensemble of simulations. This ap-448
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proach would illustrate the overlap (or lack thereof) in simulated climate realizations against the449

uncertainties in characterizing our current climate, which is evident when a single dataset is used450

to characterize reality (for instance Derksen and Brown 2012). For land surface data assimilation451

applications, an ensemble approach could be used to statistically characterize observational uncer-452

tainty, an important requirement for the assimilation of the model first guess with observations.453

What remains to be determined is how to select the SWE datasets for inclusion in an observa-454

tional ensemble. Thresholds based on attributable spread or detrended anomaly correlations could455

be the basis for selecting a sub-group of datasets, but this must be done with caution. In the456

absence of an evaluation with representative ground measurements, agreement between a subset457

of datasets does not necessarily represent better overall accuracy in representing reality. Compar-458

isons with independent reference measurements in order to determine the dataset bias relative to459

ground truth are ultimately necessary and currently underway within the European Space Agency’s460

Satellite Snow Product Intercomparison and Evaluation Experiment (SnowPEX). In advance of a461

comparison with high qualityin situ reference datasets quantifying the spread between different462

available products, as was accomplished in this study, is animportant step in informing users of463

the level of spatial and temporal agreement between products and the relationship of individual464

datasets to the multi-dataset mean.465
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LIST OF TABLES567

Table 1. Summary of products referred to in this study. The first five datasets are used in568

developing the multi-dataset mean over the 1981–2010 period. The remaining569

datasets (marked with∗) are established SWE datasets that meet the NH do-570

main criteria but which contain temporal discontinuities as analyzed in Section571

2c that compromise their use in the multi-dataset mean. The four GLDAS-572

1 datasets are suitable for analysis over the restricted, 2001–2010 period (see573

Sec. 3c).574

1 GlobSnow is based on combined information from satellite passive mi-575

crowave retrievals andin situ observations from weather stations. See text for576

details.577

2 CMC computes snow depths based on combined information fromin situob-578

servations and a simple snow scheme, driven by temperature and precipitation579

from the Global Environmental Multiscale Model (GEM). Depths are converted580

to SWE using climatological snow density information. . . . .. . . . 28581
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Dataset Abbreviation Snow Scheme Land Model Forcing Data Resolution Reference

GlobSnow GS satellite passive microwave +in situ1 25 km Takala et al. (2011)

ERA-I-Land E simple HTESSEL ERA-Interim 3/4◦× 3/4◦ Balsamo et al. (2013)

MERRA M intermediate Catchment MERRA 1/2◦× 2/3◦ Rienecker et al. (2011)

Crocus C complex ISBA ERA-Interim 1◦×1◦ Brun et al. (2013)

GLDAS-2 G2 simple Noah 3.3 Princeton Met. 1◦×1◦ Rodell et al. (2004)

GLDAS-1∗ G1n simple Noah 2.7 GDAS+CMAP 1◦×1◦ Rodell et al. (2004)

G1m simple Mosaic

G1v intermediate VIC

G1c intermediate CLM

Can. Met. Centre∗ CMC simple +in situ2 GEM 35km Bransnett (1999)

MERRA-Land∗ ML intermediate Catchment MERRA 1◦×1◦ Reichle et al. (2011)

TABLE 1. Summary of products referred to in this study. The first fivedatasets are used in developing the

multi-dataset mean over the 1981–2010 period. The remaining datasets (marked with∗) are established SWE

datasets that meet the NH domain criteria but which contain temporal discontinuities as analyzed in Section 2c

that compromise their use in the multi-dataset mean. The four GLDAS-1 datasets are suitable for analysis over

the restricted, 2001–2010 period (see Sec. 3c).

1 GlobSnow is based on combined information from satellite passive microwave retrievals andin situ observa-

tions from weather stations. See text for details.

2 CMC computes snow depths based on combined information fromin situ observations and a simple snow

scheme, driven by temperature and precipitation from the Global Environmental Multiscale Model (GEM).

Depths are converted to SWE using climatological snow density information.
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FIG. 1. Trends in NH SWM for the five principal datasets over 1981–2010 (colors as marked). The aver-

age trend of the four reanalysis-derived datasets over alpine regions has been added to the trend of the Glob-

Snow product in order to compare trend magnitudes. Also shown are trends for CMC (1999–2010, dotted),

GLDAS(Noah) version 1 (1981–2010, dot-dash), MERRA-Land (1983–1998, long-dash) and MERRA-Land

(1999–2010, short dash).
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FIG. 2. a) Time series of anomalous NH SWM from MERRA-Land. b) Difference in climatological SWE

between 1999-2010 and 1983-1998 periods for MERRA-Land.

654

655

32



FIG. 3. a) Climatological total NH SWM for individual datasets and the multi-dataset mean for the 1981–

2010 period. The average of the NH alpine SWM time series fromthe four reanalysis datasets is added to the

GlobSnow time series in order to appropriately compare total NH SWM. b) Stacked bar chart of SWM differ-

ences between individual datasets and the multi-dataset mean over pairs of months for various regions. Each

individual dataset is colored as in panel a) and for a given season shows a sequence of three bars corresponding

to NA, EU and NH regions. Separate contributions from the three land-types are stacked vertically using differ-

ent shades for mid-latitudes, Arctic and alpine regions; total difference summed over all land types on a given

continent is shown by the bar with the black outline. Crocus and MERRA differences have been multiplied by

three; GLDAS-2, ERA-I-Land and GlobSnow differences are unaltered.

656

657

658

659

660

661

662

663

664

33



FIG. 4. Spread among climatologies for NH SWM by region over the 1981–2010 period.
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FIG. 5. a) Climatology of multi-dataset mean SWE for February-March over 1981–2010 period. b) Ratio of

climatological SWE to spread among the five component datasets calculated for February-March over 1981–

2010 period. The black contour delineates the 1:1 ratio.
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FIG. 6. a) Anomalous total NH non-alpine SWM for the five individual datasets (individually detrended).

Grey shading marks the range of anomalies (spread) among thedatasets on a given day.
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FIG. 7. a) Correlations of daily (NDJFMA) SWM time series (1981–2010) between pairs of datasets. Correla-

tions are shown for detrended time series of NH (black), NA (red) and EU (blue) SWM as well as non-detrended

NH (grey) SWM. Also shown are mean values of the SWE pattern correlation between dataset pairs (green

circles), calculated daily and averaged over the NDJFMA season and 1981–2010 period.
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FIG. 8. a) Spatial map of the mean correlation between pairs of daily (NDJFMA) SWE time series (1981–

2010). Correlations of detrended time series are performedfor a given grid cell location between all available

pairs of datasets and averaged together.
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FIG. 9. a) Spread in anomalous SWM among detrended datasets (black, solid), non-detrended datasets (black,

dotted) and interannual variability of multi-dataset mean(grey, solid) over the 1981–2010 period. b) Spread in

anomalous SWM attributable to each of the five component dataset time series (1981–2010). Total spread

(black) is measured on left axis. Spread attributable to individual datasets measured on right axis (2× smaller).

A smoothing window of 30 days has been applied to all curves for clarity. See text for definitions of spread and

attributable spread.
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FIG. 10. a) NH interannual variability of SWM for each dataset. b) Attributable spread calculated from

standardized SWM for each dataset. A smoothing window of 30 days has been applied to all curves for clarity.
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FIG. 11. a) Ratio of absolute anomaly size for multi-dataset mean to dataset spread, calculated daily and

averaged over February-March and 1981–2010 period. b) Sameas a) but only for the MERRA, ERA-I-Land

and Crocus datasets (Group 1, see Sec. 3c). The black contourdelineates the 1:1 ratio.
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FIG. 12. a) Spread in total NH SWM for Group 1 plus GLDAS-2 (grey shading). Climatologies for the four

GLDAS-1 products (Group 2) are shown in the labeled curves. The single GLDAS-2 product is also shown for

comparison. b) Mean pairwise correlation among different groups of SWM time series (2001–2010). For each

of the three groupings the average correlation is calculated for NA (red), EU (blue) and NH (black) SWM time

series. For each land mass and group, four averages are shownin sequence for SWM summed over all land

types, only mid-latitude, only the Arctic and only alpine regions. Mean correlations of group 1 (circles) and

group 2 (diamonds) total NH SWM time series (all land types) with GlobSnow are also shown. Correlations

with GlobSnow over individual land types are omitted for clarity.

688

689

690

691

692

693

694

695

42


