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Abstract 8 

The authors present an analytical model for wind-driven free drift of sea ice that allows for an 9 

arbitrary mixture of ice and open water. The model includes an ice-ocean boundary layer with 10 

an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and 11 

directly into the open water between the ice floes. The analytical tractability of this model 12 

allows efficient calculation of the ice velocity provided that the surface wind field is known 13 

and that the ocean geostrophic velocity is relatively weak. The model predicts that variations 14 

in the ice thickness or concentration should substantially modify the rotation of the velocity 15 

between the 10m winds, the sea ice, and the ocean.  16 

Compared to recent observational data from the first ice-tethered profiler with a velocity 17 

sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the 18 

wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to 19 

intensified southerlies on Arctic summer sea ice concentration, and the results are shown to 20 

compare closely with satellite observations. 21 

 22 

1 Introduction 23 

The drift of Arctic sea ice is largely explained by surface winds and upper-ocean currents. 24 

The effect of the mean geostrophic upper-ocean currents on the average circulation of sea ice 25 

pack is known to be as important as the mean wind field (Thorndike and Colony, 1982). 26 

However, the role of the winds becomes increasingly important over shorter time scales: On 27 

time scales from days to months, surface wind variability explains more than 70% of the sea 28 
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ice motion (Thorndike and Colony, 1982), and is well correlated with the surface ocean 1 

velocity (Cole et al., 2014). The synoptic eddy surface winds result in a primary mode of 2 

upper-ocean velocity variability with a period of 2–5 days over the ice-covered Arctic Ocean 3 

(Plueddemann et al., 1998). The tight connection between surface winds and upper ocean 4 

velocity over ice-covered Arctic Ocean suggests that resolving the wind-induced surface 5 

Ekman flow is essential for simulating sea ice motions.  6 

Many simple sea ice models assume steady ocean currents and prescribe a quadratic 7 

relationship with an empirically-chosen turning angle between the ice stress and surface 8 

ocean velocity (Hibler 1979; Thorndike and Colony, 1982; Bitz et al., 2002; Liu et al., 2011; 9 

Uotila et al., 2012). This model configuration has limitations in simulating wind-induced sea 10 

ice drift on intraseasonal time scales, during which time-varying Ekman layer flows in the 11 

ice-ocean boundary layer (IOBL) may be important. The effect of the surface Ekman flow on 12 

sea ice motion can be resolved by coupling the sea ice model to a comprehensive ocean 13 

model (Zhang and Rothrock, 2003; Uotila et al., 2012). However, such an approach is 14 

computationally expensive, and makes it difficult to disentangle the physical processes 15 

controlling sea ice drift.  16 

In the past few decades, considerable advances have been made in understanding the physics 17 

of the IOBL, notably via the development of Rossby similarity theory (McPhee, 1979; 1981; 18 

1994; 2008). In the case of an unstratified surface layer, this theory connects the ocean’s 19 

Ekman layer to the ice base via a thin surface layer in which the velocity shear follows the 20 

law of the wall and the vertical eddy viscosity varies linearly to zero. In contrast to 21 

frequently-used quadratic drag parameterizations (e.g. Hibler 1979; Thorndike and Colony, 22 

1982), this results in a quadratic drag coefficient and turning angle that depend on the stress 23 

velocity and the hydraulic roughness length of the ice base. However, the assumptions 24 

underlying Rossby similarity theory make it inapplicable to the case of a mixture of sea ice 25 

and open water, which is typical of the Arctic in summer. 26 

In Sec. 2 we derive an approximate analytical model for wind-induced sea ice drift that 27 

accounts for the Ekman spiral in the IOBL and allows for an arbitrary mixture of ice and 28 

water, but neglects internal stress within the ice. The model is therefore most appropriate to 29 

the marginal ice zone, which covers much of the Arctic during summer. This approach has 30 
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both theoretical and practical merits: because the Ekman layer is resolved in the momentum 1 

balance, the turning angle is a prognostic variable in our model, allowing us to explore the 2 

dependence of both the ice drift speed and the wind/ice/ocean turning angles on the 3 

concentration and thickness of the sea ice. The analytical tractability of the model allows 4 

efficient calculation of the sea ice drift, certainly much more so than running a fully coupled 5 

model of the Arctic. We compare our model’s predictions against observations of Arctic sea 6 

ice concentration and velocity: the data sources and reanalysis products used for this purpose 7 

are described in Sec. 3. 8 

In Sec. 4, we evaluate our model against recent observations from an ice-tethered profiler 9 

(Cole et al., 2014), focusing on the angles between the wind and ice velocities and between 10 

the ice and ocean velocities. At face value our model may not appear to be applicable to this 11 

data because the measurements were made in the Beaufort Sea in winter, when the sea ice 12 

concentration is close to 100% and internal stress is likely to be dynamically significant 13 

(Leppäranta, 2005). However, the analysis of Cole et al. (2014) suggests that the ice floe 14 

velocity was in fact close to a free drift regime, and that the vertical buoyancy flux in the 15 

IOBL was small compared to previous winter observations (see e.g. McPhee, 2008). 16 

Consequently, our model largely captures the dependence of the ice speed and turning angle 17 

on the surface wind speed. 18 

In Sec. 5 we apply our model to predict the anomalous change in Arctic sea ice concentration 19 

associated with intraseasonal intensification of the southerly winds in the Pacific sector. This 20 

serves a dual purpose: First, it is a test of our model’s assumptions that the summer sea ice 21 

drift can be described accurately by neglecting internal stresses and assuming constant drag 22 

coefficients at the ice-ocean, atmosphere-ice, and atmosphere-ocean interfaces. Second, by 23 

extension, it tests the hypothesis that the anomalous reduction in sea ice concentration in the 24 

Pacific sector during southerly wind events can be attributed to the mechanical effect of 25 

wind-driven ice drift, rather than thermodynamic effects. Many previous observational 26 

analyses provided only statistical connections between the southerly winds and sea ice cover. 27 

For example, the strength of south-westerlies over the Barents Sea is well correlated with sea 28 

ice cover in winter (Sorteberg and Kvingedal, 2006; Liptak and Strong, 2014) and the 29 

development of anomalous southerlies over the Pacific sector of the Arctic is often followed 30 
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by a reduction of sea ice cover in the spring and summer (Wu et al., 2006; Serreze et al., 1 

2003). We demonstrate that the southerly wind-induced sea ice advection, accelerated by 2 

wind-induced surface Ekman flow, can substantially decrease sea ice concentration over a 3 

time scale of one week. 4 

 5 

2 An analytical model for wind-driven sea ice motion  6 

In this section we employ a simplified sea ice model to obtain analytical expressions for the 7 

sea ice velocity as a function of surface wind speed. In Sec. 2.1 we formulate an approximate 8 

sea ice momentum balance appropriate for basin-scale motions, and then in Sec. 2.2 we 9 

derive an analytical solution for the sea ice velocity, assuming that the surface wind speed is 10 

known.  11 

2.1 Model formulation 12 

We employ a “mixture layer” model of Arctic sea ice (Gray and Morland, 1994), which 13 

describes the evolution of ice floes interspersed with patches of open water. The thickness-14 

integrated momentum balance for such a mixture layer may be written as (Heorton et al., 15 

2014),  16 

 𝜌𝑖ℎ𝑖
𝐷�⃗⃗� 𝑖

𝐷𝑡
= φ(𝜏 𝑎𝑖 − 𝜏 𝑖𝑜) − 𝜌𝑖ℎ𝑖𝑓(�̂� × �⃗� 𝑖) − 𝜌𝑖ℎ𝑖𝑔∇𝜂 + ∇ ⋅ 𝛔, (1) 

where ℎ𝑖 is the ice thickness, 𝜌𝑖 is the ice density, �⃗� 𝑖 is the ice velocity vector, 𝜂 is the 17 

sea surface height, φ  is the sea ice fraction, 𝑓  is the Coriolis parameter, 𝑔  is the 18 

acceleration due to gravity, and �̂� is a vertical unit vector. Equation (1) states that the 19 

ice/water mixture layer is accelerated by momentum exchanges between the ice and the 20 

atmosphere (𝜏 𝑎𝑖) and between the ice and the ocean (𝜏 𝑖𝑜), by the Coriolis force, by 21 

horizontal pressure variations due to sea surface tilt, and by the divergence of a stress tensor 22 

(𝛔) representing internal stress in the ice.  23 

We first write the lateral pressure gradient term in terms of the ocean near-surface geostrophic 24 

velocity �⃗� 𝑔,  25 

 𝑓�̂� × �⃗� 𝑔 = 𝜌𝑖ℎ𝑖𝑔∇𝜂. (2) 
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We are concerned with sea ice evolution over a typical time scale of one week with a velocity 1 

scale of around 0.2 m/s, implying a length scale of around 100 km. The ice acceleration term 2 

in (1) may therefore be safely neglected (McPhee 1980; Thorndike and Colony, 1982). This 3 

precludes the sea ice undergoing inertial oscillations, though the diameter of such oscillations 4 

would only be a few km at most, much smaller than the drift length scale of 100 km. In 5 

summer, the Arctic sea ice concentration is mostly below 80% (see Fig. 1), so away from 6 

coastal shear margins the internal friction term in (1) is also negligible (Leppäranta, 2005; 7 

Kawaguchi and Mitsudera, 2008). This simplifies the momentum balance to 8 

 𝜌𝑖ℎ𝑖𝑓�̂� × (�⃗� 𝑖 − �⃗� 𝑔) = φ(𝜏 𝑎𝑖 − 𝜏 𝑖𝑜), 
(3) 

Similar scaling arguments suggest that the pressure gradient due to the sea surface tilt may 9 

also be negligible. For now we retain this term because it is analytically tractable, but in Secs. 10 

4 and 5 below, we will neglect the geostrophic ocean velocity term in (3). 11 

Equation (3) states that the shear between the mixture layer and the ocean’s surface 12 

geostrophic velocity, or equivalently the total shear across the ice-ocean boundary layer 13 

(IOBL; McPhee, 2012) lies perpendicular to the vertical stress divergence in the sea ice. This 14 

equation does not account for momentum imparted from the winds to the water between the 15 

ice floes in the mixture layer, which is assumed to be transferred directly to the ocean below 16 

(Gray and Morland, 1994). The total stress felt by the ocean at the base of the mixture layer is 17 

therefore 18 

 𝜏 𝑜 = (1 − φ)𝜏 𝑎𝑜 + φ𝜏 𝑖𝑜 , (4) 

where 𝜏 𝑎𝑜 is the momentum imparted to the ocean from the atmosphere between the sea ice 19 

floes. We adopt an approach similar to Rossby similarity theory for the IOBL, assuming that 20 

the ocean velocity follows an Ekman spiral beneath the mixture layer (McPhee, 2012). The 21 

ocean velocity at the top of the Ekman layer is therefore given as 22 

 �⃗� 𝑜 − �⃗� 𝑔 =
1

√2𝐾𝑜
∗
(�⃗� 𝑜

∗ − �̂� × �⃗� 𝑜
∗), 

(5) 

where 𝐾𝑜
∗ = 𝐾𝑓/|�⃗� 𝑜

∗ |2 is the dimensionless vertical eddy diffusivity, 𝐾 is the dimensional 23 

vertical eddy diffusivity, �⃗� 𝑜
∗  is the stress velocity defined by 𝜏 𝑜 = 𝜌𝑜|�⃗� 𝑜

∗ |�⃗� 𝑜
∗ , and 𝜌𝑜 is the 24 
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ocean surface density. The dimensionless diffusivity 𝐾𝑜
∗ is taken to be constant, reflecting a 1 

linear dependence of the Ekman layer depth on the stress velocity. This is appropriate for 2 

IOBLs with no surface buoyancy forcing; non-zero surface buoyancy modifies the vertical 3 

profile of 𝐾 in the IOBL (McPhee, 2008). Our model could be extended to accommodate an 4 

arbitrary 𝐾-profile if the surface buoyancy fluxes were known, but for simplicity in this 5 

study we assume zero surface buoyancy forcing. 6 

We prescribe the air–ice, air–ocean, and ice–ocean stresses using quadratic drag relations,  7 

 𝜏 𝑎𝑖 = 𝜌𝑎𝐶𝑎𝑖|�⃗� 𝑎|�⃗� 𝑎 = 𝜌𝑎|�⃗� 𝑎𝑖
∗ |�⃗� 𝑎𝑖

∗ , (6a) 

 𝜏 𝑎𝑜 = 𝜌𝑎𝐶𝑎𝑜|�⃗� 𝑎|�⃗� 𝑎 = 𝜌𝑎|�⃗� 𝑎𝑜
∗ |�⃗� 𝑎𝑜

∗ , (6b) 

 𝜏 𝑖𝑜 = 𝜌𝑜𝐶𝑖𝑜|�⃗� 𝑖 − �⃗� 𝑜|(�⃗� 𝑖 − �⃗� 𝑜) = 𝜌𝑜|�⃗� 𝑖𝑜
∗ |�⃗� 𝑖𝑜

∗ . (6c) 

where 𝜌𝑎 and 𝜌𝑜 are the atmospheric and surface ocean density respectively. Here we have 8 

implicitly assumed that there exist thin turbulent boundary layers between the atmosphere 9 

and the ice floes, between the atmosphere and ocean leads, and between the bases of the ice 10 

floes and the top of the Ekman layer, each of which transfers momentum at a rate that varies 11 

quadratically with the vertical shear. We have further assumed that any momentum imparted 12 

to the ocean leads is transferred directly down to the Ekman layer below. More 13 

comprehensive treatments of the ice–ocean stress may be derived using Rossby similarity 14 

theory (McPhee 2008; 2012). However, this theory cannot be applied in the presence of leads 15 

between the sea ice floes, which continually change the surface boundary condition at any 16 

given point between a free surface and a rigid ice floe. In many previous studies, these 17 

stresses carry a turning angle to account for the effect of the Coriolis force in the boundary 18 

layer (Hibler 1979; Thorndike and Colony 1982; Bitz et al. 2002; Uotila et al. 2012). This is 19 

not necessary here because we use the ageostrophic 10-m winds, and we explicitly account 20 

for the ocean surface Ekman layer. 21 

By combining the ice–ocean stress relation (6c), which can be rewritten as �⃗� 𝑖𝑜
∗ = √𝐶𝑖𝑜(�⃗� 𝑖 −22 

�⃗� 𝑜), with equation (5) for the shear across the Ekman layer, we obtain an expression for the 23 

total shear across the IOBL,  24 
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 �⃗� 𝑖 − �⃗� 𝑔 =
1

√𝐶𝑖𝑜

�⃗� 𝑖𝑜
∗ +

1

√2𝐾0
∗
(�⃗� 𝑜

∗ − �̂� × �⃗� 𝑜
∗). 

(7) 

Then, substituting (6a), (6c) and (7) into the momentum balance (3), we obtain a relationship 1 

between the unknown stress velocities �⃗� 𝑖𝑜
∗  and �⃗� 𝑜

∗ , 2 

 
𝜌𝑖ℎ𝑖𝑓

√𝐶𝑖𝑜
�̂� × �⃗� 𝑖𝑜

∗ +
𝜌𝑖ℎ𝑖𝑓

√2𝐾0
∗ (�̂� × �⃗� 𝑜

∗ + �⃗� 𝑜
∗) =

φ(𝜌𝑎|�⃗� 𝑎𝑖
∗ |�⃗� 𝑎𝑖

∗ − 𝜌𝑜|�⃗� 𝑖𝑜
∗ |�⃗� 𝑖𝑜

∗ ).  

(8) 

We require an additional equation to obtain an explicit solution for �⃗� 𝑖𝑜
∗  and �⃗� 𝑜

∗ , so we 3 

rewrite the total stress at the base of the mixing layer (4) in the form 4 

 𝜌𝑜|�⃗� 𝑜
∗ |�⃗� 𝑜

∗  = (1 − φ)𝜌𝑎|�⃗� 𝑎𝑜
∗ |�⃗� 𝑎𝑜

∗ + 𝜑𝜌𝑜|�⃗� 𝑖𝑜
∗ |�⃗� 𝑖𝑜

∗ . (9) 

   

2.2 Model solution 5 

In order to derive a solution for the ice velocity �⃗� 𝑖, we now solve the previously derived 6 

equations (8) and (9) for the stress velocities �⃗� 𝑖𝑜
∗  and �⃗� 𝑜

∗ . 7 

2.2.1 Near-100% sea ice cover (𝛗 ≈ 𝟏) 8 

We first consider the case of close-to-100% sea ice cover (φ ≈ 1) because this permits a 9 

closed-form analytical solution that offers physical intuition for the behavior of the model. 10 

Though an actual sea ice concentration of 100% would likely be associated with large 11 

internal stresses, we use it for the purpose of illustration because our results in Sec. 4 indicate 12 

that this closely approximates the general solution for ice concentrations greater than 50%. 13 

The method of solution is similar to that described by Leppäranta (2005), Ch. 6.1, but our 14 

explicit treatment of the oceanic boundary layer and prognostic determination of the turning 15 

angle warrant that the solution be described explicitly. 16 

For sea ice concentrations close to 100% (φ ≈ 1) equation (9) implies that the ice-ocean and 17 

ocean surface stress velocities are approximately equal, �⃗� 𝑖𝑜
∗ ≈ �⃗� 𝑜

∗ . Thus equations (7) and (8) 18 

may be rewritten as 19 
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 �⃗� 𝑖 − �⃗� 𝑔 = (
1

√𝐶𝑖𝑜

+
1

√2𝐾0
∗
) �⃗� 𝑖𝑜

∗ −
1

√2𝐾0
∗
�̂� × �⃗� 𝑖𝑜

∗ , 
(10a) 

 (
𝜌𝑖ℎ𝑖𝑓

√2𝐾0
∗ +

𝜌𝑖ℎ𝑖𝑓

√𝐶𝑖𝑜
) �̂� × �⃗� 𝑖𝑜

∗ +
𝜌𝑖ℎ𝑖𝑓

√2𝐾0
∗ �⃗� 𝑖𝑜

∗ = 𝜌𝑎|�⃗� 𝑎𝑖
∗ |�⃗� 𝑎𝑖

∗ − 𝜌𝑜|�⃗� 𝑖𝑜
∗ |�⃗� 𝑖𝑜

∗ . 
(10b) 

We simplify the coefficients by multiplying both sides of (10b) by √2𝐾0
∗/𝜌𝑖ℎ𝑖𝑓  and 1 

rearranging to obtain 2 

 (𝛼 + 1)�̂� × �⃗� 𝑖𝑜
∗ + (1 + 𝑘𝑜|�⃗� 𝑖𝑜

∗ |)�⃗� 𝑖𝑜
∗ = 𝑘𝑎|�⃗� 𝑎𝑖

∗ |�⃗� 𝑎𝑖
∗ , (11) 

where  3 

 𝛼 = √2𝐾0
∗/𝐶𝑖𝑜, 𝑘𝑎 = 𝜌𝑎√2𝐾0

∗/𝜌𝑖ℎ𝑖𝑓 and 𝑘𝑜 = 𝜌𝑜√2𝐾0
∗/𝜌𝑖ℎ𝑖𝑓.  (12) 

To solve, we first define the components of �⃗� 𝑖𝑜
∗  parallel and perpendicular to the wind stress 4 

velocity, or, equivalently, perpendicular the 10 m winds:  5 

 𝑢𝑖𝑜
∗∥ =

�⃗⃗� 𝑎𝑖
∗

|�⃗⃗� 𝑎𝑖
∗ |

⋅ �⃗� 𝑖𝑜
∗ , (13a) 

 𝑢𝑖𝑜
∗⊥ = (�̂� ×

�⃗⃗� 𝑎𝑖
∗

|�⃗⃗� 𝑎𝑖
∗ |

) ⋅ �⃗� 𝑖𝑜
∗ . 

(13b) 

Then taking the dot product of �⃗� 𝑖𝑜
∗  with both sides of equation (11) and rearranging yields an 6 

expression for 𝑢𝑖𝑜
∗∥,  7 

 𝑢𝑖𝑜
∗∥ =

1

𝑘𝑎

|�⃗⃗� 𝑖𝑜
∗ |

2

|�⃗⃗� 𝑎𝑖
∗ |

2 (1 + 𝑘𝑜|�⃗� 𝑖𝑜
∗ |), 

(14) 

while taking the dot product of �̂� × �⃗� 𝑖𝑜
∗  with both sides of (11) yields an expression for 𝑢𝑖𝑜

∗⊥,  8 

 𝑢𝑖𝑜
∗⊥ = −

1

𝑘𝑎

|�⃗⃗� 𝑖𝑜
∗ |

2

|�⃗⃗� 𝑎𝑖
∗ |

2 (1 + 𝛼). 
(15) 

Equations (14) and (15) do not constitute an explicit solution for �⃗� 𝑖𝑜
∗  because they depend on 9 

its magnitude |�⃗� 𝑖𝑜
∗ |. We determine this magnitude using the definition, |�⃗� 𝑖𝑜

∗ |2 = (𝑢𝑖𝑜
∗∥) 2 +10 

(𝑢𝑖𝑜
∗⊥)2, which yields a quartic equation for |�⃗� 𝑖𝑜

∗ |, 11 

 𝑘𝑜
2|�⃗� 𝑖𝑜

∗ |4 + 2𝑘𝑜|�⃗� 𝑖𝑜
∗ |3 + (1 + (𝛼 + 1)2)|�⃗� 𝑖𝑜

∗ |2 = 𝑘𝑎
2|�⃗� 𝑎𝑖

∗ |4. (16) 

In principle, this may be solved analytically for |�⃗� 𝑖𝑜
∗ |, but for the purposes of this study we 12 
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solve (16) numerically. Note that the left-hand side of (16) is a monotonically increasing 1 

function of |�⃗� 𝑖𝑜
∗ |, so a unique solution exists for any wind stress velocity magnitude |�⃗� 𝑎𝑖

∗ |. 2 

Having obtained the components of the stress velocity, it is straightforward to solve for the 3 

shear between the sea ice and the geostrophic ocean velocity using (10a). 4 

2.2.2 Sparse sea ice cover (𝛗 ≪ 𝟏) 5 

We now consider sea ice concentrations much below 100%. We begin by simplifying the 6 

coefficients in equations (8) and (9) by defining  𝛼 , 𝑘𝑎 , and 𝑘𝑜  as in Sec. 2.1, and 7 

additionally defining 𝛽 = 𝜌𝑎𝐶𝑎𝑜 𝜌𝑜𝐶𝑎𝑖⁄ , 8 

 𝛼�̂� × �⃗� 𝑖𝑜
∗ + �̂� × �⃗� 𝑜

∗ + �⃗� 𝑜
∗ = φ𝑘𝑎|�⃗� 𝑎𝑖

∗ |�⃗� 𝑎𝑖
∗ − φ𝑘𝑜|�⃗� 𝑖𝑜

∗ |�⃗� 𝑖𝑜
∗ ,  (17) 

 |�⃗� 𝑜
∗ |�⃗� 𝑜

∗  = (1 − φ)𝛽|�⃗� 𝑎𝑖
∗ |�⃗� 𝑎𝑖

∗ + 𝜑|�⃗� 𝑖𝑜
∗ |�⃗� 𝑖𝑜

∗ . (18) 

Here we have combined equations (6a) and (6b) to relate the atmosphere-ice and atmosphere-9 

ocean stress velocities via �⃗� 𝑎𝑖
∗ /√𝐶𝑎𝑖 = �⃗� 𝑎𝑜

∗ /√𝐶𝑎𝑜. Equations (17–18) may in principle be 10 

solved analytically following a procedure similar to that described in Sec. 2.2.1: by defining 11 

stress velocity components parallel and perpendicular to the atmospheric velocity, 𝑢𝑖𝑜
∗∥, 𝑢𝑖𝑜

∗⊥, 12 

𝑢𝑜
∗∥, and 𝑢𝑜

∗⊥, analogously to definitions (13a) and (13b). Then taking the dot product of �⃗� 𝑎𝑖
∗  13 

and �̂� × �⃗� 𝑎𝑖
∗  with each of (17) and (18) yields four scalar equations that can be solved 14 

simultaneously for the components of �⃗� 𝑖𝑜
∗  and �⃗� 𝑜

∗ . Finally, using the definitions |�⃗� 𝑖𝑜
∗ |2 =15 

(𝑢𝑖𝑜
∗∥) 2 + (𝑢𝑖𝑜

∗⊥)2  and  |�⃗� 𝑜
∗ |2 = (𝑢𝑜

∗∥) 2 + (𝑢𝑜
∗⊥)2  yields a pair of equations that must be 16 

solved simultaneously for |�⃗� 𝑖𝑜
∗ |  and |�⃗� 𝑜

∗ | . However, this analytical solution is too 17 

complicated to yield physical insight, so in practice we simply solve (17–18) numerically 18 

using least-squares optimization. 19 

2.3 Physical interpretation  20 

Though equations (14–16) constitute an analytical solution to the mixture layer momentum 21 

balance (11), in this form they yield little insight into the wind-driven drift of sea ice. We 22 

therefore provide additional formulae for some key quantities describing the ice drift. 23 

Moreover, we briefly discuss the similarities and differences between our equations and the 24 

equations based on Rossby similarity theory (e.g. McPhee 2008; 2012). We base our 25 

discussion around the solution for near-100% sea ice concentration, given in Sec. 2.2.1, 26 
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because this solution is completely analytical and thus offers more insight. 1 

2.3.1 Ice velocity 2 

For convenience we re-state equation (10a), which relates the shear between the ice and the 3 

geostrophic ocean velocity to the ice-ocean stress velocity in the case of close to 100% sea 4 

ice cover, 5 

�⃗� 𝑖 − �⃗� 𝑔 = (
1

√𝐶𝑖𝑜

+
1

√2𝐾0
∗
) �⃗� 𝑖𝑜

∗ −
1

√2𝐾0
∗
�̂� × �⃗� 𝑖𝑜

∗ . 

This equation is similar to the one derived by McPhee (2008; 2012) for the case of an 6 

unstratified IOBL, because both approaches assume a traditional Ekman layer solution over 7 

most of the IOBL. However, there are some notable differences: Instead of assuming that the 8 

turbulent transfer of momentum follows a quadratic drag law, McPhee (2008; 2012) utilized 9 

the law of the wall equation across the ocean-ice boundary layer, leading to a slightly more 10 

complicated version of this equation, 11 

�⃗� 𝑖 − �⃗� 𝑔 = (
1

𝜅
log (

|�⃗� 𝑖𝑜
∗ |

𝑓𝑧0
) +

1

𝜅
log (

𝐾0
∗

𝜅
) +

1

√2𝐾0
∗
) �⃗� 𝑖𝑜

∗ −
1

√2𝐾0
∗
�̂� × �⃗� 𝑖𝑜

∗ , 

where 𝜅 is Karman’s constant (𝜅 = 0.4) and 𝑧0 is hydraulic roughness at the bottom of sea 12 

ice. Because the velocity profile over the ocean-ice boundary layer is assumed to be 13 

logarithmic (i.e. following the law of the wall), logarithmic terms appear as coefficients of 14 

ice-ocean stress velocity �⃗� 𝑖𝑜
∗ . In our equation (10a) these terms are replaced by 1 √𝐶𝑖𝑜⁄ , due 15 

to our assumption of a linear relationship between the ice-ocean shear and the ice-ocean 16 

stress velocity.  17 

Our formulation is arguably a less accurate description of the IOBL when the sea ice 18 

concentration is close to 100% because it does not allow the ice speed to vary nonlinearly 19 

with the ice-ocean stress velocity. However, in general the sea ice concentration may be 20 

much smaller than 100%, and at any given horizontal location the surface boundary condition 21 

is transient, varying between a solid upper boundary (the ice) and a free surface (open water). 22 

Thus the assumption of a flow following the law of the wall and the notion of a hydraulic 23 

roughness length no longer applies to this case. We have therefore assumed quadratic drag 24 
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laws at these interfaces for simplicity, but in principle a more accurate IOBL model could be 1 

derived following the ideas of Rossby similarity theory but using a transient surface boundary 2 

condition that varies between a solid boundary and a free surface. 3 

2.3.2 Turning angles 4 

The IOBL turning angle is the angle between the ice-ocean stress velocity �⃗� 𝑖𝑜
∗  and the ice-5 

geostrophic shear (�⃗� 𝑖 − �⃗� 𝑔), and may be defined as 6 

 cos(𝜃𝐼𝑂𝐵𝐿) =
�⃗� 𝑖𝑜

∗ ∙ (�⃗� 𝑖 − �⃗� 𝑔)

|�⃗� 𝑖𝑜
∗ ||�⃗� 𝑖 − �⃗� 𝑔|

.  
(19) 

For near-100% sea ice concentration, a closed expression for the IOBL turning angle can be 7 

derived by substituting the right-hand side of equation (10a) for �⃗� 𝑖 − �⃗� 𝑔 in equation (19), 8 

 cos(𝜃𝐼𝑂𝐵𝐿) =
1 + 𝛼

√1 + (1 + 𝛼)2
, 

(20) 

which is independent of the surface wind speed and depends only on the parameter 9 

𝛼 = √2𝐾0
∗/𝐶𝑖𝑜. Thus for near-100% sea ice concentration, prescribing an Ekman spiral and a 10 

linear relationship between the ice–ocean stress velocity �⃗� 𝑖𝑜
∗  and the ice–ocean shear 11 

(�⃗� 𝑖 − �⃗� 𝑜) is equivalent to assuming a constant geostrophic ice-ocean turning angle (e.g. 12 

Hibler, 1979; Thorndike and Colony, 1982). By contrast the IOBL turning angle predicted by 13 

Rossby similarity theory varies as a function of the ice-ocean stress velocity, and the turning 14 

angle varies by a few degrees over a realistic range of ice–ocean stress magnitudes (McPhee, 15 

1979; 2008). Note that in our model 𝜃𝐼𝑂𝐵𝐿 is generally not independent of the surface wind 16 

speed when the sea ice concentration is below 100%.  17 

Fig. 2 shows the IOBL turning angle 𝜃𝐼𝑂𝐵𝐿 as a function of 𝛼. The IOBL turning angle 18 

𝜃𝐼𝑂𝐵𝐿 decreases from 45 degrees to zero as 𝛼 increases from zero to infinity. A larger value 19 

of 𝛼 corresponds to a relatively large vertical diffusivity 𝐾0
∗, which tends to reduce the 20 

magnitude of the shear in the Ekman layer. Thus the shear becomes dominated by the surface 21 

boundary layer, over which the shear does not turn with depth. A smaller value of 𝛼 22 

corresponds to a relatively large drag coefficient 𝐶𝑖𝑜, which tends to reduce magnitude of the 23 

shear in the surface boundary layer. Thus the shear becomes dominated by the Ekman spiral, 24 

over which the shear turns by 45 degrees. This is consistent with Rossby similarity theory 25 
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(McPhee 2008; 2012) in that multi-year ice pack with a relatively high basal hydraulic 1 

roughness corresponds to a larger turning angle 𝜃𝐼𝑂𝐵𝐿. In this study, we employ the 2 

canonical value of 𝐾𝑜
∗ = 0.028 (McPhee, 1994; 2008), and we use 𝐶𝑖𝑜=0.0071 based on the 3 

estimate of Cole et al. (2014) from the ITP-V data. This combination of 𝐾𝑜
∗ and 𝐶𝑖𝑜 4 

produces a 𝜃𝐼𝑂𝐵𝐿 of around 15 degrees (red dot in Fig. 2). This value is within the range of 5 

turning angles predicted by Rossby similarity theory, which is about 20 degrees for multi-6 

year ice pack and 13 degrees for the first-year ice (McPhee 2012). 7 

We now turn to the ice drift itself. We derive the angle between the 10m wind speed �⃗� 𝑎 and 8 

the ice-geostrophic shear �⃗� 𝑖 − �⃗� 𝑔 by taking the dot product of �⃗� 𝑎𝑖
∗  with (10a), noting that 9 

�⃗� 𝑎𝑖
∗  lies parallel to �⃗� 𝑎 from (6a), and using (14) and (15) for the components of �⃗� 𝑖𝑜

∗ ,  10 

cos(𝜃𝑎𝑖) =
�⃗� 𝑎 ∙ (�⃗� 𝑖 − �⃗� 𝑔)

|�⃗� 𝑎||�⃗� 𝑖 − �⃗� 𝑔|
=

𝑘𝑜|�⃗� 𝑖𝑜
∗ |2

𝑘𝑎|�⃗� 𝑎𝑖
∗ |

2

1 + 𝛼

√1 + (1 + 𝛼)2
=

|𝜏 𝑖𝑜|

|𝜏 𝑎𝑖|
cos(𝜃𝐼𝑂𝐵𝐿)             (21) 

Using equation (16) above, it is straightforward to show that the ratio of the ice–ocean to air–11 

ice stresses is smaller than one, 𝑘𝑜|�⃗� 𝑖𝑜
∗ |2 𝑘𝑎|�⃗� 𝑎𝑖

∗ |2⁄ = |𝜏 𝑖𝑜| |𝜏 𝑎𝑖|⁄ < 1, so it follows that the 12 

air–ice angle is always at least as large as the IOBL turning angle, 𝜃𝑎𝑖 ≥ 𝜃𝐼𝑂𝐵𝐿 . This reflects 13 

the fact that the 10-m wind velocity �⃗� 𝑎 always points to the left of the ice–ocean stress 𝜏 𝑖𝑜 14 

(c.f. equations (14) and (15)), while the ice–geostrophic shear �⃗� 𝑖 − �⃗� 𝑔 always points to the 15 

right of 𝜏 𝑖𝑜 (c.f. equation (10a)). For strong winds (|𝜏 𝑎𝑖| → ∞) equation (16) implies that the 16 

air–ice and ice–ocean stresses balance one another in (3) (i.e. 𝜏 𝑖𝑜 → 𝜏 𝑎𝑖), so the air-ice 17 

turning angle becomes independent of the wind speed and equal to the IOBL turning angle. 18 

For weak winds (|𝜏 𝑎𝑖| → 0), equation (16) implies that the ice–ocean to air–ice stress ratio 19 

vanishes
1
, |𝜏 𝑖𝑜| |𝜏 𝑎𝑖|⁄ → 0, so from (18) the ice velocity becomes directed 90 to the right of 20 

the winds.  21 

                                           
1
 To obtain this result from equation (16), first note that if |�⃗� 𝑎𝑖

∗ | = 0 then the only non-negative real 

solution to (16) is |�⃗� 𝑖𝑜
∗ | = 0, so we can conclude that |�⃗� 𝑖𝑜

∗ | → 0 as |�⃗� 𝑎𝑖
∗ | → 0. Then note that in the 

limit of vanishing air-ice stress, |�⃗� 𝑎𝑖
∗ | → 0, equation (16) can only remain balanced if |�⃗� 𝑖𝑜

∗ |~|�⃗� 𝑎𝑖
∗ |2. It 

follows that |𝜏 𝑖𝑜| |𝜏 𝑎𝑖|⁄ → 0 as |�⃗� 𝑎𝑖
∗ | → 0. 
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 1 

3 Observation and Reanalysis Datasets 2 

In this section we detail the various observational and reanalysis datasets used to evaluate our 3 

analytical model and to quantify how southerly winds affects Arctic summer sea ice 4 

concentration.  5 

3.1 Observations   6 

To evaluate our analytical model with observations, we used observations from an ice-7 

tethered profiler (ITP; Toole et al., 2010) equipped with a velocity sensor (ITP-V; Williams et 8 

al., 2010). Specifically, we use data from ITP-V 35, which was deployed on October 8, 2009 9 

on an ice floe in the Beaufort Sea at 77° N, 135° W, as part of the Beaufort Gyre Observing 10 

System (BGOS). The ice floe was 2.6 m thick, so hydrostatic adjustment resulted in an ice–11 

ocean interface at around 2.3 m depth (Cole et al. 2014). Ocean velocity profiles were 12 

obtained every 4 h to 150 m depth, with an effective vertical resolution of 1 m. To examine 13 

the ice–ocean shear (�⃗� 𝑖 − �⃗� 𝑜) and the ice-ocean velocity angle, we use the shallowest 14 

measurements from the velocity profiles, at a depth of 7 m. The ice velocity (�⃗� 𝑖) is derived 15 

from hourly GPS fixes and linearly interpolated in time to align with the time of the ITP-V 35 16 

observations. Further details, including calibrations and a discussion of errors in ITP-V 35, 17 

are described by Cole et al. (2014).  18 

Arctic sea ice concentration data is from the U.S. National Snow and Ice Data Center 19 

(NSIDC), and is based on satellite-derived passive microwave brightness temperature. 20 

Specifically, the NASA Team Algorithm (Swift and Cavalieri, 1985) was used to estimate the 21 

sea ice concentration. These data are provided as a daily mean on a polar stereographic grid 22 

with 25 x 25 km resolution. We re-gridded this data onto a regular 1.0 x 1.0 grid. 23 

3.2 Reanalysis  24 

Observations of Arctic sea ice thickness are sparse, so instead we use the coupled Pan-arctic 25 

Ice-Ocean Modeling and Assimilation System (PIOMAS; Zhang and Rothrock, 2003) to 26 

estimate the basin scale Arctic sea ice thickness. PIOMAS consists of a 12-category thickness 27 

and enthalpy distribution sea ice model coupled with the POP (Parallel Ocean Program) 28 
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ocean model (Smith et al., 1992). The data is monthly and covers from the year 1978 to 2013. 1 

For the surface wind stress we used 10 m winds provided by the European Center for 2 

Medium-Range Weather Forecasts ERA-Interim reanalysis dataset (Dee et al., 2011). The 3 

data is 6 hourly with a horizontal resolution of 1.0 x 1.0. 4 

 5 

4 Model evaluation 6 

In this section, we evaluate our analytical model against the ITP-V 35 observations of sub-sea 7 

ice ocean velocity (Cole et al., 2014). Specifically, we compare the modeled wind-ice and 8 

ice-ocean velocity angles against the observed values. As outlined in the introduction, one 9 

might not expect the winter Beaufort Sea to serve as a useful test case because the sea ice 10 

concentration is typically close to 100%, so the internal stresses neglected in our model may 11 

be dynamically significant (Leppäranta, 2005). Additionally, sea ice formation in winter may 12 

produce negative buoyancy forcing that induces strong convection and vertically-varying 13 

eddy viscosity in the surface mixed layer, inconsistent with our assumption of as uniform 14 

vertical viscosity throughout the Ekman layer (McPhee, 2012). However, the ITP-V 35 15 

measurements indicate that the ice was very close to a free drift regime and experienced weak 16 

vertical buoyancy fluxes in the surface mixed layer (Cole et al., 2014), so these features of 17 

the winter sea ice pack may be less prominent than in previous observations. For a complete 18 

picture of the stratification regime in the observed near-surface ocean, see figures 3, 4, 8 and 19 

9 of Cole et al. (2014). For example, the mixed layer depth over the Beaufort Sea is very 20 

shallow in October (~15 m) and deepens to 30–40 m in February and March (Fig. 9 of Cole 21 

et al. 2014).  22 

4.1 Model parameters  23 

The ITP-V 35 was deployed upon a 2.6 m-thick ice floe, which is much thicker than the mean 24 

ice thickness over the western Beaufort Sea. Fig. 1a shows the PIOMAS sea ice thickness 25 

averaged from October 2009 to March 2010. During this time period, sea ice thickness over 26 

the western Beaufort Sea (around 74-78° N, 135-150° W) is around 1.4–1.6 m. It is therefore 27 

likely that ITP-V 35 was mounted on a relatively sturdy floe, whereas the surrounding floes 28 

were thinner. Sea ice concentration over this region is mostly over 85-90% from October to 29 
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March (Fig. 1b). We use φ = 1 as a reference case because, as we will show below, the ice 1 

drift speed and angle predicted by our model are insensitive to φ for sea ice concentrations 2 

greater than ~50%. The velocity of the mixture layer (see Sec. 2) represents a bulk average 3 

over many floes, and similarly the ocean Ekman layer in any given location responds to 4 

stresses transmitted by a series of ice floes passing overhead. For the purpose of model 5 

evaluation we therefore take the sea ice thickness ℎ𝑖 to be 1.5 m, which is appropriate for 6 

basin-scale sea ice momentum balance, rather than a momentum balance at the scale of the 7 

individual ice floe. 8 

Extensive measurements of the ice-ocean boundary layer suggest that the annual mean value 9 

of the dimensionless vertical eddy diffusivity 𝐾𝑜
∗ is about 0.028 (McPhee, 1994; 2008). 10 

Below we also present model predictions using a nominal enhanced value of 𝐾𝑜
∗ = 0.1, 11 

which yields improved agreement between the model and the observations. A possible 12 

explanation for this is that the ITP-V observations mostly cover winter season (from October 13 

to March), when surface buoyancy loss due to sea ice formation can enhance the vertical 14 

eddy diffusivity by a factor of up to 10 (McPhee and Morison, 2001). However, it is more 15 

likely that internal stresses in the ice impede its motion, so the canonical value of 𝐾𝑜
∗ =16 

0.028 overestimates the ice drift. Thus the reader should not infer from our results that using 17 

a larger value of 𝐾𝑜
∗ is more physically realistic. Finally, the geostrophic current in the 18 

interior of polar oceans, �⃗� 𝑔, is poorly constrained, and we assume that this term is small 19 

relative to the surface current. This assumption should be more robust on intraseasonal time 20 

scales, as surface winds can strengthen rapidly in a few days, so the resultant surface Ekman 21 

velocity is likely to be much larger than the interior geostrophic flow.  22 

For other parameters, we used standard values used in many previous studies: 𝜌𝑎 =23 

1.35 Kg/𝑚3, 𝜌𝑖 = 910 Kg/𝑚3, and 𝜌𝑜 = 1026 Kg/𝑚3. The atmospheric drag coefficients 24 

𝐶𝑎𝑖 and 𝐶𝑎𝑜 depend on the season, the ice fraction, and the surface roughness (Lüpkes et al., 25 

2012), but for simplicity we use constant values of 𝐶𝑎𝑖 = 1.89 × 10−3 and 𝐶𝑎𝑜 = 1.25 ×26 

10−3 (Lüpkes and Birnbaum, 2005). We prescribe the ice-ocean drag coefficient 𝐶𝑖𝑜 based 27 

on the findings of Cole et al. (2014), who found that 𝐶𝑖𝑜 = 7.1 × 10−3 best fit the ITP-V 35 28 

measurements. However, we note that it is difficult to calculate 𝐶𝑖𝑜 accurately from the ITP-29 

V data because measurements of the vertical eddy momentum fluxes were made at a depth of 30 
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6 m. This depth lies partway into the Ekman layer, so we expect the stress to be rotated and 1 

reduced in magnitude relative to the stress at the ice base.  2 

4.2 Results 3 

Fig. 3 shows the observed ice speed (black line) as a function of the 10 m wind speed. 4 

Consistent with Thorndike and Colony (1982), the relationship is approximately linear, 5 

except for weak winds (speed less than 2 m/s). For moderately strong winds, sea ice moves 6 

with a speed around 1.5–2% of the surface wind speed. This is consistent with or slightly 7 

weaker than the well-known 2% relationship (Thorndike and Colony, 1982). Fig. 3a shows 8 

that the analytical model with the canonical value of 𝐾𝑜
∗ (𝐾𝑜

∗ = 0.028) overestimates the 9 

observed ice speed by 20–40%, whereas a larger vertical diffusivity (blue-dotted line; 10 

𝐾𝑜
∗ = 0.1) fits better with the observations. As stated above, this is probably because the 11 

internal stresses in the relatively concentrated sea ice (85–100% in winter) impede the ice 12 

drift. We also compare the observed ice drift speeds with those predicted by ‘classical’ free 13 

drift (Leppäranta, 2005), in which we neglect both the Ekman layer velocity and the 14 

geostrophic velocity. Mathematically this corresponds to assuming an infinitely large vertical 15 

diffusivity (𝐾𝑜
∗ → ∞) in our model. This classical free drift (blue solid line in Fig. 3a) is about 16 

30% slower than the ice drift with an interactive Ekman layer (red line in Fig. 3a), verifying 17 

that the IOBL substantially increases the wind-induced ice speed.  18 

Fig. 3b shows that there is little difference in ice speed between 100% sea ice cover (red line; 19 

φ = 1) and 50% sea ice cover (red line; φ = 1) in this model (Fig. 3b). As shown in 20 

equation (10a), the ice-ocean drag coefficient, 𝐶𝑖𝑜, also directly influences the wind-induced 21 

ice velocity. The bottom panels of Fig. 3 show the sensitivity of the ice speed to 𝐶𝑖𝑜 for 22 

𝐾𝑜
∗ = 0.028 (Fig. 3c) and 𝐾𝑜

∗ = 0.1 (Fig. 3d) respectively. Decreasing 𝐶𝑖𝑜 from 0.0071 to 23 

0.004 increases ice speed by up to 20–25%. In the Appendix we calculate 𝐶𝑖𝑜 using the ITP-24 

V data and plot 𝐶𝑖𝑜 both as a function of 10 m wind speed and surface stress (Fig. A1). 25 

Consistent with Cole et al. (2014), the individual observed values of 𝐶𝑖𝑜 vary widely, by a 26 

factor of 10. In general, there is no obvious dependence of 𝐶𝑖𝑜 on the surface stress, so we 27 

use the constant value 𝐶𝑖𝑜 = 0.0071 of Cole et al. (2014).  28 
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Fig. 4 shows that the wind–ice velocity angle 𝜃𝑎𝑖 decreases as the surface wind strengthens, 1 

consistent with previous observations (Thorndike and Colony, 1982). The velocity angle is 2 

overestimated by 5–10 degrees in the case when the canonical vertical diffusivity 𝐾𝑜
∗ =3 

0.028 is used (Fig. 4a). The analytical model with 𝐾𝑜
∗ = 0.1 reproduces this curve 4 

remarkably well. Recall from equation (21) that wind-ice velocity angle 𝜃𝑎𝑖 decreases as the 5 

ice-ocean to wind-ice stress ratio (| 𝜏 𝑖𝑜| |𝜏 𝑎𝑖|⁄ ) increases, and that this stress ratio is always 6 

smaller than 1. Thus, the decrease of 𝜃𝑎𝑖 with increasing surface wind speed indicates that 7 

the stress ratio increases as the surface winds strengthen. In other words, the momentum 8 

becomes more efficiently transferred down to the ocean as the surface wind speed increases. 9 

For relatively weak winds, the observational errors in 𝜃𝑎𝑖 (gray shadings in Fig. 4) are large, 10 

whereas for stronger winds the air–ice velocity angle is much better constrained (Cole et al., 11 

2014). The wind–ice velocity angle 𝜃𝑎𝑖 estimated using the ‘classical’ free drift case is about 12 

20 degrees smaller than that predicted by the canonical vertical diffusivity 𝐾𝑜
∗ = 0.028. 13 

Moreover, the classical free drift approximation substantially underestimates the observed 14 

𝜃𝑎𝑖 even though the internal friction is neglected. This result indicates that the IOBL is 15 

essential for properly simulating the direction of the ice drift. Fig. 4b shows that sea ice cover 16 

plays a nontrivial role in changing the wind–ice velocity angle 𝜃𝑎𝑖, although the internal 17 

stresses are neglected in the model. Decreasing sea ice cover from 100% (φ = 1) to 50% 18 

(φ = 0.5) increases 𝜃𝑎𝑖 by 20 degrees for large wind speeds. 19 

The shallowest measurement depth of ITP-V 35 is 7 m, which is far below the ice base (~2.6 20 

m). The Ekman spiral rotates the velocity and stress vectors substantially between the ice 21 

base and 7 m. Consequently the ITP-V data cannot accurately quantify the IOBL turning 22 

angle, which also requires an estimate of the near-surface geostrophic velocity to be made. 23 

Instead we test our analytical treatment of the IOBL using the velocity angle between the ice 24 

floe and the ocean at 7 m, 𝜃𝑖𝑜|𝑧=−7m. To calculate 𝜃𝑖𝑜|𝑧=−7m from the analytical model, the 25 

velocity angle needs to be adjusted using the Ekman layer solution, which can be written as a 26 

function depth, z, as  27 

 �⃗� (𝑧) =  �⃗� 𝑜 exp (
𝑧 + ℎ𝑜

𝛿𝐸
) exp (𝑖

𝑧 + ℎ𝑜

𝛿𝐸
). 

(22) 

Here  �⃗� 𝑜 is the ocean surface velocity at the bottom of sea ice, ℎ𝑜 = (𝜌𝑖 𝜌𝑜⁄ )ℎ𝑖 is the depth 28 
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of the ice base, and 𝛿𝐸 = √2𝐾 𝑓⁄  is the Ekman depth. We have used complex variables to 1 

describe two-dimensional vectors, e.g.  �⃗� 𝑜 = (𝑢𝑜 , 𝑣𝑜) ≡ 𝑢𝑜 + 𝑖𝑣𝑜, because this presents 2 

changes in vector orientation more intuitively. The complex term, exp(𝑖(𝑧 + ℎ𝑜)/𝛿𝐸), 3 

produces a velocity �⃗� |𝑧=−𝑑 at any depth 𝑑 that is rotated relative to  �⃗� 𝑜 by a 4 

clockwise angle of (𝑑 − ℎ𝑜)/𝛿𝐸 radians. Thus the adjusted velocity angle between the ice 5 

and the ocean at any depth in the Ekman layer is:  6 

 𝜃𝑖𝑜|𝑧=−𝑑 = 𝜃𝑖𝑜|𝑧=−ℎ𝑜
+ (𝑑 − ℎ𝑜)/𝛿𝐸 . (23) 

In Fig. 5 we plot 𝜃𝑖𝑜|𝑧=−7m as a function of the ice speed, comparing the predictions of our 7 

model with the data from Cole et al. (2014). In general, the ice–ocean velocity angle 8 

𝜃𝑖𝑜|𝑧=−7m decreases as ice speed increases. Consistent with Cole et al. (2014), the variance 9 

in the observationally derived values of 𝜃𝑖𝑜|𝑧=−7m is quite large, especially for low ice 10 

speeds. Our analytical solution for the ice-ocean velocity angle, adjusted using equation (23), 11 

agrees reasonably well with the ITP-V 35 measurements. Again, the analytical model predicts 12 

the observational curve better when the higher vertical diffusivity of 𝐾𝑜
∗ = 0.1 is used. Fig. 13 

5b shows that ice concentration is certainly a factor affecting the ice-ocean velocity angle, 14 

𝜃𝑖𝑜. Decreasing sea ice cover from 100% to 50% causes a decrease in 𝜃𝑖𝑜 because the 15 

direction of ice drift is constrained by the wind stress over open water between the ice floes 16 

(𝜏 𝑎𝑜) and the associated surface Ekman transport.  17 

4.3 Parameter sensitivity 18 

Having evaluated our model against the ITP-V 35 measurements using the best available 19 

estimates for the model parameters, we now explore the sensitivity of the model’s predictions 20 

to key physical properties of the sea ice itself, namely its thickness and concentration. In Fig. 21 

6 we plot the sensitivity of the wind-ice velocity angle (𝜃𝑎𝑖) and the IOBL turning angle 22 

(𝜃𝐼𝑂𝐵𝐿) to a range of sea ice concentrations (φ) and ice thicknesses (ℎ𝑖). In general, the wind-23 

ice velocity angle increases substantially with sea ice thickness (Fig. 6a): for a moderate wind 24 

speed of 6 m/s, increasing the sea ice thickness from 0.25 m to 3 m increases this angle from 25 

20 to 50. It can therefore be inferred from equation (21) and Fig. 6a that thicker ice has 26 

smaller stress ratio |𝜏 𝑖𝑜| |𝜏 𝑎𝑖|⁄ , implying that thicker ice is less efficient in transferring the 27 
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momentum into the ocean, leading to larger wind-ice velocity angle. In other words, thicker 1 

ice absorbs more of the wind-input momentum into the Coriolis torque, transmitting less to 2 

the ocean below. 3 

Sea ice concentration also strongly influences these angles. Consistent with Fig. 4b, Fig. 6b 4 

shows that wind-ice velocity angle increases as sea ice concentration decreases. There is little 5 

difference in this angle between 100% and 75% ice concentrations – the angle is less 6 

sensitive to relatively high sea ice concentration. However, the angle rapidly increases as sea 7 

ice concentration gets below 50%: at 25% sea ice concentration the wind-ice angle is 20 8 

larger than at 100% concentration, even for the strongest winds in the dataset. The response 9 

of the IOBL turning angle to the mixture of sea ice and water (φ ≪ 1) is presented in Fig. 6d. 10 

The turning angle is negative for weaker surface winds in the case when sea ice concentration 11 

is less than 100%. This is because wind stress over the ice-free component of the mixture 12 

layer is transmitted directly to the water below. As the sea ice concentration approaches zero, 13 

the stress transmitted through the ice becomes negligible in determining the direction of the 14 

surface Ekman velocity ( �⃗� 𝑜). Because the ITP-V 35 track covers mostly ice-covered regions 15 

(φ ≈ 1) and the shallowest measurement depth is 7 m, it is difficult to verify whether 16 

negative IOBL turning angles appear in the observations.  17 

5 Application to wind-driven summer sea ice changes 18 

In this section, we quantify the effect of intra-seasonal southerly wind strengthening events 19 

on Arctic sea ice cover using near-surface wind data, and compare the results with satellite 20 

observations. There are several notable Arctic weather perturbations in the spring and 21 

summer over the Pacific sector of the Arctic Ocean, such as the development of the Arctic 22 

dipole mode (Wu et al., 2006), quasi-stationary cyclonic winds (Serreze et al., 2003) and 23 

synoptic cyclones (Zhang et al., 2013). These perturbations are often accompanied by rapid 24 

strengthening of southerlies and a reduction of the sea ice concentration (SIC) on 25 

intraseasonal time scales. In the Arctic summer, sea ice thickness is mostly below 2 m (Fig. 26 

7a) and the area of the marginal ice zone with a moderate SIC (25–75%) is quite large (Fig. 27 

7b). We therefore hypothesize that the strengthening of southerlies should efficiently 28 

redistribute the sea ice cover in the summer.  29 



20 

 

This analysis simultaneously serves as an additional evaluation of our analytical model 1 

described in Sec. 2. Our model is particularly appropriate to motions in the marginal ice zone, 2 

where internal stresses are negligible, and to short-duration intensification of the southerly 3 

winds, during which the surface ocean velocity is typically large compared to the geostrophic 4 

velocity. This evaluation could in principle be extended to compare the modeled sea ice 5 

velocities directly against sea ice drift products. However, we have chosen to retain our focus 6 

on the sea ice concentration rather than the ice drift velocity. Ice drift products exhibit 7 

considerable uncertainty, particularly during summer when the ice is typically thinner 8 

(Sumata et al., 2014). Furthermore, there is considerable variance in the ice speed and the 9 

wind-ice velocity angle even in the ITP-V data (see Figs. 3 and 4), in which the ice velocities 10 

are measured accurately using GPS fixes. 11 

5.1 Methods 12 

For surface wind forcing, we used the ERA-Interim reanalysis. Arctic sea ice concentration 13 

data is from the U.S. National Snow and Ice Data Center (NSIDC). The Arctic sea ice 14 

concentration shows multi-decadal declining trend and this trend was removed for each 15 

calendar day and for each grid. For sea ice thickness, we used the climatological mean 16 

PIOMAS sea ice thickness data averaged from 1990 to 2012.  17 

Using the analytical solutions derived in Sec. 2, sea ice velocity is calculated from the ERA-18 

Interim daily 10 m winds. Then, lagged composite analyses are performed in order to 19 

investigate how a rapid development of southerlies affects sea ice concentration during the 20 

Arctic summer. We used data from 1990 to 2012 and focused on the summer, from August 1 21 

to September 30 (AS). To define the events of the rapid strengthening of southerlies, the 22 

surface winds over the Pacific sector of the Arctic are zonally and meridionally averaged, 23 

from 150E to 230E and from 70N to 90N (cosine weighting is applied to each latitude). 24 

Then, the southerly wind event is defined as a time period when the averaged southerly wind 25 

value exceeds 1 standard deviation for three or more consecutive days. If the beginning of an 26 

event occurs within 7 days of the end of the preceding event, then the latter event is discarded. 27 

This procedure identifies 27 events during the analysis period. Lag zero is defined as the day 28 

when the averaged southerly winds peak. Prior to generating the composites, a 3-day moving 29 
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average is applied to filter out noise associated with day-to-day fluctuations.  1 

The southerly wind-induced sea ice drifts redistribute sea ice concentration. This effect is 2 

computed using the following evolution equation: 𝑑φ = − [
𝜕(𝑈𝑖φ)

𝜕𝑥
+

𝜕(𝑉𝑖φ)

𝜕𝑦
] dt. Here φ is 3 

sea ice concentration, which ranges from 0 to 1, at each grid point, and dt is a time step, 4 

which has a length of one day in this study. To calculate sea ice concentration anomalies we 5 

subtract the long-term climatological mean 𝑑φ from the daily 𝑑φ during the southerly 6 

wind events. Then, the anomalous daily 𝑑φ is integrated from the lag day -8 to estimate the 7 

cumulative changes in sea ice concentration associated with the southerly wind events: 8 

∆φ = − ∑ (𝑑φ)′𝑑t

𝑡=𝑙𝑎𝑔

𝑡=−8

− ∑ [
𝜕(𝑈𝑖φ)

𝜕𝑥
+

𝜕(𝑉𝑖φ)

𝜕𝑦
]

′

𝑑t

𝑡=𝑙𝑎𝑔

𝑡=−8

         (24) 

Here, prime ( )′ denotes a deviation from the long-term climatological mean. The time 9 

integration starts from the lag –8 because the southerly wind events, on average, start about a 10 

week before they peak. The results we present are not very sensitive to the starting date. The 11 

maximum and the minimum values of the cumulative changes in sea ice concentration (∆φ) 12 

are limited by the mean sea ice concentration, which ranges between 0% and 100%. For 13 

example, if the cumulative changes in the mean sea ice concentration (∆φ + φ̅), where φ̅ is 14 

the climatological-mean sea ice concentration, exceeds 100%, then ∆φ  is given as 15 

(100 − φ̅) %. All of the analytical model results presented here use the canonical value of 16 

vertical diffusivity (𝐾𝑜
∗ = 0.028) and the ice-ocean drag coefficient of 𝐶𝑖𝑜 = 0.0071 (Cole 17 

et al. 2014). As shown in Fig. 3, the wind-induced ice speed is sensitive to both 𝐾𝑜
∗ and 𝐶𝑖𝑜. 18 

5.2 Results 19 

Fig. 8 illustrates the response of the SIC (shadings in the left column) to the development of 20 

southerlies (vectors in the left column) from the East Siberian and Chukchi Sea. Over a 10 21 

day period since the development of southerlies, the SIC in these regions decreases by 7–8%. 22 

We suggest that the reduction of SIC is caused by the southerly wind-induced sea ice drift. In 23 

the meantime, because of cross-polar flow, SIC on the Atlantic sector slightly increases (blue 24 

color). To further test this possibility, the wind-induced redistribution of SIC is calculated 25 

using our model, specifically equations (17–18). The result, shown in the right column of Fig. 26 
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8, captures the spatial pattern in the observed SIC anomalies. The anomalous sea ice velocity 1 

(vectors in the right column) is generally directed towards the Beaufort Sea, a little east of the 2 

surface wind velocity with the drift angle ranging between 20 and 45. The calculated SIC 3 

anomalies at day +6 (bottom row of Fig. 8) are largely consistent with the satellite observed 4 

SIC anomalies. However, the calculated SIC anomalies somewhat underestimate the 5 

observation. At day +6, the calculated reduction of SIC over the Pacific sector is about 5–6%, 6 

whereas the observed reduction of SIC is up to 6–8%. The increase in SIC over the Atlantic 7 

sector associated with cross-polar flow is also slightly underestimated. 8 

 9 

There are several possible explanations for the discrepancy between the modeled and 10 

observed sea ice concentration anomalies. Over the Atlantic sector, the cross-polar flow 11 

increases SIC and the internal stresses are likely to increase as well. As mentioned earlier, our 12 

analytical model neglects internal stresses that can decelerate ice drift and pile up sea ice over 13 

the Atlantic sector. It is possible that the real sea ice thickness in the Arctic summer is thinner 14 

than the PIOMAS sea ice thickness. While PIOMAS simulates the Arctic sea ice thickness 15 

within a reasonable range, the model is known to generally overestimate the thickness of 16 

measured sea ice thinner than 2 m (Johnson et al. 2012; Schweiger et al. 2011). Or, the 17 

vertical diffusivity 𝐾𝑜
∗ in August and September might be smaller than 0.028 due to surface 18 

buoyancy input resulting from sea ice melt (McPhee and Morison, 2001). The formation of a 19 

summer freshwater layer at the ice base can also reduce the ice-ocean drag coefficient 𝐶𝑖𝑜 20 

(Randelhoff et al., 2014), as can changes in the shape of the ice base. Additionally, the 21 

atmosphere-ice drag coefficient may be larger during the summer season due to additional 22 

form stress associated with the formation of leads and melt ponds (Lüpkes et al., 2012). 23 

 24 

Finally, we ask: to what extent does the IOBL accelerate the wind-induced ice drift? We have 25 

neglected the ocean surface geostrophic velocity in our analytical model calculations, 26 

retaining only the surface Ekman layer. However, if the Ekman layer velocity were 27 

sufficiently weak compared to the ice velocity then we could simply neglect the ocean 28 

velocity altogether. As introduced in Sec. 4, the ‘classical’ free drift (zero Ekman layer 29 

velocity) corresponds mathematically to the limit of infinitely large vertical diffusivity 30 

(𝐾𝑜
∗ → ∞) in our model. In Fig. 9 we compare the anomalous sea ice speed associated with 31 
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the wind-induced ice drift with and without an IOBL included in the model. Both curves have 1 

been generated by averaging the sea ice speed anomalies over the Pacific sector of the Arctic 2 

(from 150E to 230E and from 70N to 90N), and then calculating lagged composites 3 

across all southerly wind events. Consistent with Fig. 3a, this plot illustrates that the IOBL 4 

increases the wind-induced sea ice speed up to 40-50%. We therefore conclude that the IOBL 5 

plays a substantial role in the rapid reduction of SIC associated with strong southerly wind 6 

events. 7 

 8 

6 Summary and discussion  9 

In this study we have derived an analytical model for wind-induced sea ice drift and 10 

evaluated our model against measurements from a velocity sensor-equipped ice-tethered 11 

profiler (ITP-V). We then used the model to demonstrate that Arctic southerly wind events 12 

can drive substantial reductions in sea ice concentration over short timescales.  13 

 14 

Our model has elements in common with Rossby similarity theory (McPhee, 2008) for the 15 

ice–ocean boundary layer (IOBL), but differs crucially in the respect that it allows for an 16 

arbitrary mixture of ice and open water. The key features of this model are: 17 

1. The ice floes and leads containing open water are described via a bulk “mixture layer”, 18 

momentum balance, following Gray and Morland (1994). 19 

2. The IOBL consists of an Ekman layer whose depth is assumed to depend linearly on 20 

the surface stress velocity (McPhee, 2011), most appropriate for a neutrally stratified 21 

IOBL with no surface buoyancy flux (McPhee and Morison, 2001).  22 

3. The transfer of momentum between the 10 m winds, the ice and ocean components of 23 

the mixture layer, and the ocean surface layer are assumed to follow a quadratic drag 24 

law. By contrast Rossby similarity theory assumes the ‘law of wall’ to hold in a 25 

narrow boundary layer at the top of the IOBL (McPhee, 2008). 26 

Though the simplicity of our model carries several caveats, discussed below, it also confers 27 

several advantages. As mentioned in the introduction, the analytical tractability of the model 28 

makes it very efficient, certainly much more so than running a fully coupled model of the 29 

Arctic. This makes it straightforward to interpret the model; the analytical expressions in Sec. 30 
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2 yield physical insight into the velocity observations from ITP-V 35 and the sea ice 1 

concentration data from NSIDC. The model’s “mixture layer” formulation (Gray and 2 

Morland, 1994) also makes it suitable for the marginal ice zone. Our analytical approach was 3 

possible because we assumed a constant vertical diffusivity in the surface Ekman layer. This 4 

simplification results in an IOBL turning angle (𝜃𝐼𝑂𝐵𝐿) that is independent of ice–ocean stress 5 

�⃗� 𝑖𝑜
∗  in our model, whereas the turning angle slightly decreases as the ice–ocean stress 6 

strengthens in observations (McPhee 2008). It may be possible to extend our model to 7 

incorporate Rossby similarity theory and a stratified IOBL, but for sea ice concentrations 8 

below 100% the surface boundary condition must be modified to account for the presence of 9 

patches of open water between the ice floes. 10 

 11 

A shortcoming of our model is that it neglects internal stresses in the ice, which can feature 12 

prominently in the momentum balance when the sea ice concentration is close to 100% 13 

(Leppäranta, 2005). The model is therefore only formally applicable for sea ice 14 

concentrations below ~85%. In this article we have frequently used the case of 100% sea ice 15 

concentration (φ =  1) for the purpose of illustration, as the model solution is qualitatively 16 

unchanged for sea ice concentrations greater than ~50%. 17 

 18 

Our analytical model qualitatively reproduces the wind-induced ice speed and wind-ice 19 

velocity angles in the ITP-V 35 observations. The agreement is improved by replacing the 20 

canonical value 𝐾𝑜
∗ = 0.028 of the vertical eddy diffusivity with an enhanced value of 21 

𝐾𝑜
∗ = 0.1. However, this finding should not be interpreted to mean that the enhanced 22 

diffusivity is more physically relevant. While the discrepancy between the model and 23 

observations may be due to stronger turbulent mixing due to surface buoyancy loss, it is more 24 

likely due to impedance of the sea ice motion by internal stresses, as the sea ice concentration 25 

in the vicinity of the ITP-V 35 observations was likely around 85-90%.  26 

 27 

We applied our analytical model to investigate the strong southerly events in the Arctic 28 

summer to estimate the wind-induced reduction of SIC. The calculated reduction of SIC is 29 

largely consistent with satellite observations. Our results verify that the southerly wind-30 

induced sea ice drift can substantially decrease SIC over the course of a week. Because the 31 
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wind-induced sea ice drift can be directly calculated from our analytical solution, the 1 

underlying processes for the sea ice variability might be better identified by utilizing 2 

reanalysis data. We suggest that our analytical model can be a flexible tool for identifying 3 

and quantifying the mechanisms for the Arctic and Antarctic sea ice cover variability, which 4 

is often associated with the changes in the global-scale circulation pattern (Lee et al. 2011; 5 

Holland and Kwok 2012; Bitz and Polvani 2012; Li et al. 2014; Wettstein and Deser 2014; 6 

Raphael and Hobbs 2014; Park et al. 2015). 7 

 8 

Acknowledgements 9 

H.S.P. would like to thank Drs. S. Lee, S.-W. Son, Y. Kosaka and S. Feldstein for helpful 10 

comments and discussions. The authors thank three anonymous reviewers for detailed 11 

comments that were particularly helpful for improving the manuscript. H.S.P. was supported 12 

by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources 13 

(KIGAM) funded by the Ministry of Knowledge Economy of Korea. A.L.S. was supported 14 

by the University of California, Los Angeles, USA. The authors thank John Toole and Sylvia 15 

Cole for assistance with the ITP-V 35 observational dataset. 16 

 17 

Appendix 18 

In this appendix we estimate the ice-ocean drag coefficient, 𝐶𝑖𝑜, using the ITP-V data. The 19 

ITP-V was programed to record turbulent fluctuations at 6 m depth for 40 minutes on a daily 20 

basis. As noted by Cole et al. (2014), 𝐶𝑖𝑜 can be estimated by the relationship between ice-21 

ocean velocity shear and turbulent momentum flux:  22 

 √𝑢′𝑤′̅̅ ̅̅ ̅̅ 2 + 𝑣′𝑤′̅̅ ̅̅ ̅̅ 2 = 𝐶𝑖𝑜[(𝑢𝑖 − 𝑢6)
2 + (𝑣𝑖 − 𝑣6)

2]. (A1) 

Here the overbar ( )̅̅ ̅  denotes a 40-minute time average and the primes ( )′  denote 23 

deviations from the time mean. The ice and 6 m ocean velocities are denoted as (𝑢𝑖, 𝑣𝑖) and 24 

(𝑢6, 𝑣6) respectively. Using equation (A1), we calculated daily 𝐶𝑖𝑜 from the ITP-V data, 25 

following Cole et al. (2014). In Fig. A1 we plot 𝐶𝑖𝑜 as a function of the surface wind speed 26 

and the surface stress. These plots support our approximation of the ice-ocean quadratic drag 27 
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coefficient as a constant, 𝐶𝑖𝑜 = 0.0071. Estimates of the IOBL quadratic drag coefficient 𝐶𝑑, 1 

obtained by setting 𝑢6 = 𝑣6 = 0 in (A1) under the assumption that the interior geostrophic 2 

velocity is negligible, are qualitatively similar to those shown in Fig. A1 (not shown).  3 

 4 
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Figure Captions 1 

Figure 1: (a) sea ice thickness (m) and (b) sea ice concentration (%), averaged from October 2 

2009 to March 2010. Sea ice thickness is from PIOMAS and sea ice concentration data is 3 

from NSDIC.  4 

 5 

Figure 2: Sensitivity of the IOBL turning angle (𝜃𝐼𝑂𝐵𝐿) to 𝛼 (= √2𝐾0
∗/𝐶𝑖𝑜), calculated from 6 

equation (20), which is for φ ~ 1.  The red dot corresponds to the canonical value for the 7 

vertical eddy diffusivity (𝐾𝑜
∗ =0.028) and blue dot corresponds to a nominally enhanced 8 

value (𝐾𝑜
∗ = 0.1). 9 

 10 

Figure 3: Sensitivity of ice speed (cm/s) to 10 m wind speed (m/s). The black line shows the 11 

mean value calculated from ITP-V 35 observations binned by 10 m wind speed, and the gray 12 

shadings indicate the range of one standard deviation from the mean. The red, dotted blue and 13 

solid blue lines correspond to our analytical model, described in Sec. 2, with (a) vertical 14 

diffusivities 𝐾𝑜
∗ = 0.028, 0.1 and ∞ (no IOBL) respectively. The sensitivity of the ice speed 15 

to the ice concentration (φ) is shown in (b); the red and blue lines indicate 100 % ice cover 16 

(φ = 1) and 50% ice cover (φ = 0.5) respectively. The bottom panel shows the sensitivity of 17 

ice speed to ice-ocean drag coefficient (𝐶𝑖𝑜), with vertical diffusivities (c) 𝐾𝑜
∗ = 0.028 and (d) 18 

𝐾𝑜
∗ = 0.1 respectively. The bulk sea ice thickness is taken to be 1.5 m. 19 

 20 

Figure 4: The velocity angle (clock-wise rotation angle) between the 10 m winds and the 21 

ITPV-35 ice floe as functions of the 10 m wind speed (m/s). Note that typically the ice 22 

velocity lies to the right of the wind velocity. In each plot the black line is mean observed 23 

value from the ITP-V 35 dataset, binned by wind speed, and the gray shadings indicate the 24 

range of one standard deviation from the mean. In (a), the red, dotted blue and solid blue 25 

lines correspond to our analytical model, described in Sec. 2, with vertical diffusivities 𝐾𝑜
∗ = 26 

0.028, 0.1 and ∞ (no IOBL) respectively. In (b), the red and blue lines correspond to 100% 27 

(φ = 1) and 50% (φ = 0.5) sea ice concentrations, in each case using the canonical vertical 28 

diffusivity 𝐾𝑜
∗ = 0.028. 29 

 30 
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Figure 5: The velocity angle (clock-wise rotation angle) between the ice floe and the ocean 1 

velocity at 7 m depth, as functions of the ice speed (cm/s). In each plot the black line is mean 2 

observed value from the ITP-V 35 dataset, binned by ice speed, and the gray shadings 3 

indicate the range of one standard deviation from the mean. In (a), the red and blue lines 4 

correspond to our analytical model, described in Sec. 2, with vertical diffusivities 𝐾𝑜
∗ = 5 

0.028 and 0.1 respectively, and using 100 % ice concentration, φ = 1. In (b), the red and 6 

blue lines correspond to 100% (φ = 1) and 50% (φ = 0.5) sea ice concentrations, in each 7 

case using the canonical vertical diffusivity 𝐾𝑜
∗ = 0.028. 8 

 9 

Figure 6: Sensitivity of (a, b) wind-ice velocity angle and (c, d) IOBL turning angle to 10 

various values of (a, c) sea ice thickness ℎ𝑖 (m) and (b, d) sea ice concentration (φ) as a 11 

function of 10 m wind speed (abscissa; m/s). In all panels the dimensionless vertical 12 

diffusivity is fixed at 𝐾𝑜
∗ = 0.028. In (a, c) we use 100% sea ice concentration (φ = 1), and 13 

in (b, d) we use a sea ice thickness of ℎ𝑖 = 1.5 m. 14 

 15 

Figure 7: Aug-Sep climatological mean (a) sea ice thickness (m) and (b) sea ice 16 

concentration (%) between 1990 and 2012. Sea ice thickness is from PIOMAS and sea ice 17 

concentration data is from NSDIC. 18 

 19 

Figure 8: Composites of the anomalous sea ice concentration (%) calculated from NSIDC 20 

satellite observations (left column) and from our analytical model using ERA-Interim 10 m 21 

wind velocity data (right column) for lag -2 days (first row), 0 days (second row), 2 day (third 22 

row), and lag +6 days (fourth row). See Sec. 5 for a full description of this calculation. 23 

Vectors indicate the anomalous 10m winds from reanalysis (m/s; left column) and calculated 24 

sea ice velocity (cm/s; right column). For the anomalous 10m winds (left column) and sea ice 25 

velocity (right column), only vectors stronger than 1.5 m/s and 3.0 cm/s are plotted 26 

respectively.  27 

 28 

Figure 9: Lagged composite of the calculated sea ice speed (cm/s) associated with the strong 29 

southerly events in the presence (red line) and in the absence (black line) of an IOBL in our 30 

analytical model (in the absence of an Ekman layer the ocean surface velocity is simply set to 31 
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zero – the classical free drift case). The sea ice speed is area-averaged over the Pacific sector 1 

of the Arctic (from 150E to 230E and from 70N to 90N). The sea ice speeds that include 2 

the surface Ekman layer (red line) identical to those used to construct Fig. 8. The 3 

dimensionless vertical diffusivity is set to 𝐾𝑜
∗ = 0.028 and 𝐾𝑜

∗ = ∞ for the IOBL (red line) 4 

and no-IOBL (black line) cases respectively. 5 

 6 

Figure A1: Sensitivity of the ice-ocean drag coefficient 𝐶𝑖𝑜 to (a) the surface wind speed 7 

(m/s) and (b) the surface stress (kg/m/s
2
), calculated using equation (A1). The black line 8 

shows the mean value calculated from ITP-V 35 observations and the gray shadings indicate 9 

the range of one standard deviation from the mean. The red line corresponds to the value 10 

estimated by Cole et al. (2014) based on least-squares approximation.  11 

 12 
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 14 
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Figure 1: (a) sea ice thickness (m) and (b) sea ice concentration (%), averaged from October 3 

2009 to March 2010. Sea ice thickness is from PIOMAS and sea ice concentration data is 4 

from NSDIC.  5 
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Figure 2: Sensitivity of the IOBL turning angle (𝜃𝐼𝑂𝐵𝐿) to 𝛼 (= √2𝐾0
∗/𝐶𝑖𝑜), calculated from 4 

equation (20), which is for φ ~ 1. The red dot corresponds to the canonical value for the 5 

vertical eddy diffusivity (𝐾𝑜
∗ =0.028) and blue dot corresponds to a nominally increased 6 

value (𝐾𝑜
∗ = 0.1). 7 
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Figure 3: Sensitivity of ice speed (cm/s) to 10 m wind speed (m/s). The black line shows the 4 

mean value calculated from ITP-V 35 observations binned by 10 m wind speed, and the gray 5 

shadings indicate the range of one standard deviation from the mean. The red, dotted blue and 6 

solid blue lines correspond to our analytical model, described in Sec. 2, with (a) vertical 7 

diffusivities 𝐾𝑜
∗ = 0.028, 0.1 and ∞ (no IOBL) respectively. The sensitivity of the ice speed 8 

to the ice concentration (φ) is shown in (b); the red and blue lines indicate 100 % ice cover 9 

(φ = 1) and 50% ice cover (φ = 0.5) respectively. The bottom panel shows the sensitivity of 10 

ice speed to ice-ocean drag coefficient (𝐶𝑖𝑜), with vertical diffusivities (c) 𝐾𝑜
∗ = 0.028 and (d) 11 

𝐾𝑜
∗ = 0.1 respectively. The bulk sea ice thickness is taken to be 1.5 m. 12 
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Figure 4: The velocity angle (clock-wise rotation angle) between the 10 m winds and the 4 

ITPV-35 ice floe as functions of the 10 m wind speed (m/s). Note that typically the ice 5 

velocity lies to the right of the wind velocity. In each plot the black line is mean observed 6 

value from the ITP-V 35 dataset, binned by wind speed, and the gray shadings indicate the 7 

range of one standard deviation from the mean. In (a), the red, dotted blue and solid blue 8 

lines correspond to our analytical model, described in Sec. 2, with vertical diffusivities 𝐾𝑜
∗ = 9 

0.028, 0.1 and ∞ (no IOBL) respectively. In (b), the red and blue lines correspond to 100% 10 

(φ = 1) and 50% (φ = 0.5) sea ice concentrations, in each case using the canonical vertical 11 

diffusivity 𝐾𝑜
∗ = 0.028. 12 
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Figure 5: The velocity angle (clock-wise rotation angle) between the ice floe and the ocean 3 

velocity at 7 m depth, as functions of the ice speed (cm/s). In each plot the black line is mean 4 

observed value from the ITP-V 35 dataset, binned by ice speed, and the gray shadings 5 

indicate the range of one standard deviation from the mean. In (a), the red and blue lines 6 

correspond to our analytical model, described in Sec. 2, with vertical diffusivities 𝐾𝑜
∗ = 7 

0.028 and 0.1 respectively, and using 100 % ice concentration, φ = 1. In (b), the red and 8 

blue lines correspond to 100% (φ = 1) and 50% (φ = 0.5) sea ice concentrations, in each 9 

case using the canonical vertical diffusivity 𝐾𝑜
∗ = 0.028. 10 
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Figure 6: Sensitivity of (a, b) the wind-ice velocity angle and (c, d) the IOBL turning angle 3 

to various values of (a, c) sea ice thickness ℎ𝑖 (m) and (b, d) sea ice concentration (φ) as a 4 

function of 10 m wind speed (abscissa; m/s). In all panels the dimensionless vertical 5 

diffusivity is fixed at 𝐾𝑜
∗ = 0.028. In (a, c) we use 100% sea ice concentration (φ = 1), and 6 

in (b, d) we use a sea ice thickness of ℎ𝑖 = 1.5 m. 7 
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Figure 7: Aug-Sep climatological mean (a) sea ice thickness (m) and (b) sea ice 3 

concentration (%) between 1990 and 2012. Sea ice thickness is from PIOMAS and sea ice 4 

concentration data is from NSDIC. 5 
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Figure 8: Composites of the anomalous sea ice concentration (%) calculated from NSIDC 3 

satellite observations (left column) and from our analytical model using ERA-Interim 10 m 4 

wind velocity data (right column) for lag -2 days (first row), 0 days (second row), 2 day (third 5 

row), and lag +6 days (fourth row). See Sec. 5 for a full description of this calculation. 6 
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Vectors indicate the anomalous 10m winds from reanalysis (m/s; left column) and calculated 1 

sea ice velocity (cm/s; right column). For the anomalous 10m winds (left column) and sea ice 2 

velocity (right column), only vectors stronger than 1.5 m/s and 3.0 cm/s are plotted 3 

respectively.  4 

 5 

 6 

 7 

 8 

 9 

Figure 9: Lagged composite of the calculated sea ice speed (cm/s) associated with the strong 10 

southerly events in the presence (red line) and in the absence (black line) of an IOBL in our 11 

analytical model (in the absence of an Ekman layer the ocean surface velocity is simply set to 12 

zero – the classical free drift case). The sea ice speed is area-averaged over the Pacific sector 13 

of the Arctic (from 150E to 230E and from 70N to 90N). The sea ice speeds that include 14 

the surface Ekman layer (red line) identical to those used to construct Fig. 8. The 15 

dimensionless vertical diffusivity is set to 𝐾𝑜
∗ = 0.028 and 𝐾𝑜

∗ = ∞ for the IOBL (red line) 16 

and no-IOBL (black line) cases respectively. 17 
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Figure A1: Sensitivity of the ice-ocean drag coefficient 𝐶𝑖𝑜 to (a) the surface wind speed 3 

(m/s) and (b) the surface stress (kg/m/s
2
), calculated using equation (A1). The black line 4 

shows the mean value calculated from ITP-V 35 observations and the gray shadings indicate 5 

the range of one standard deviation from the mean. The red line corresponds to the value 6 

estimated by Cole et al. (2014) based on least-squares approximation.  7 
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