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 A modern mixture theory is applied to heat and mass transfer in snow to set the 
groundwork for a theory that can describe the microstructural evolution of snow.  Two 
ideal microstructures are considered that represent the extremes in possible 
microstructures for snow.  An effective thermal conductivity based on a linear 
combination of these two microstructures is then used in the energy equation.  Numerical 
results are presented for the cases of a fluctuating boundary condition and a dense layer 
contained in the snowpack. 
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CHAPTER I 

INTRODUCTION 

 Snow covers a large portion of the earth's surface at any one time, so interaction 

by humans is inevitable.  For example, recreational activities such as skiing and 

snowmobiling have allowed the exploration of the backcountry alpine environment.  

Although very pristine on the surface, the winter alpine environment contains many 

hidden dangers.  For one, snow on the alpine slope can pose the threat of avalanche. 

 The stratigraphy and microstructure of the snowpack are indicators of how 

resistant a sloped snowpack is to avalanche release.  The snowpack typically has layers of 

varying densities.  High density snow layers form when wind carries dendritic snow 

crystals across the snow surface breaking them up into tiny fragments.  The result is close 

packing of ice fragments and thus a dense snow layer.  Melting and refreezing of the 

surface by solar radiation and burial by subsequent snowfall can also cause a dense icy 

layer in the snowpack.  Less dense layers form when dendritic snow crystals are allowed 

to accumulate.  Thus, the stratigraphy of a snowpack can be very complex due to different 

environmental conditions during and after deposition. 

 Besides being stratigraphically complex, snow on the ground is also a 

thermodynamically active substance because of its high specific surface area and its 

likelihood to change phase.  The snow microstructure readily goes through several 

metamorphic processes including disintegration of dendritic crystals, sintering and 
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bonding of grains, complete crystallographic changes, and melting and refreezing due to 

imposed environmental conditions.  All changes in some way affect the strength of the 

snowpack and its resistance to avalanche. 

 One impact that dense layers have on snowpacks was observed by Adams and 

Brown (1982).  They measured a relative decreases in snow strength above and below a 

dense layer in a snowpack subjected to a temperature gradient.  They attributed this 

phenomenon to enhanced microstructure changes due to the dense snow layer. 

 This thesis is concerned with modeling the heat and mass transfer in snow in order 

to better understand the metamorphosis of snow.  The interactions of stratigraphy, 

crystalline changes, and environmental conditions pose a difficult analytical problem.  

The tool best suited for this analysis was chosen to be the modern continuum mixture 

theory of Hansen (1989, 1991). 

 This chapter explains some of the microstructural changes in snow critical to 

avalanches and describes the modern mixture theory and its appropriateness for 

application to analyzing snow.  Finally, previous work in modeling snow is discussed, 

and the scope of the thesis is defined. 

SNOW METAMORPHISM CLASSIFICATIONS 

 Microstructural changes in dry snow can be broken down into two categories.  

The first category involves the changes snow experiences in the absence of a large 

temperature gradient (<10o C/m).  This has been called equi-temperature metamorphism 
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(Sommerfeld & LaChapelle, 1970).  The second category involves the changes snow 

experiences when a large temperature gradient is present.  This has been called 

temperature gradient metamorphism (TGM) (Sommerfeld & LaChapelle, 1970).  This 

section will describe both separately. 

 The equi-temperature metamorphism process begins as soon as the dendritic ice 

crystals reach the ground.  Figure 1.1 shows a dendritic snow crystal going through the 

equi-temperature metamorphism process.  The dendritic ice crystal is in a 

thermodynamically unstable state as its surface energy is very large.  In order to reduce 

the crystal's surface energy, water molecules diffuse through the air from areas of high 

vapor pressure (small radii) to areas of low vapor pressure (large and negative radii).  The 

result is that dendritic crystals lose their delicate shape and form more rounded ice 

crystals.  

 

Figure 1.1.  The Equi-Temperature Metamorphism Process of a Single Snow Crystal. 

When equi-temperature grains are present, the snowpack is highly resistant to avalanche 

because most individual grains are joined by ice necks.  The ice necks form when water 

vapor condenses at the junction of two touching crystals.  The radius of curvature here is 

negative, and, therefore, the vapor pressure is much lower.  This makes junctions between 

  



24 

ice crystals a likely place for water vapor to condense.  When ice necks form, they tend to 

hold the snowpack together thereby increasing the snow's strength. 

 The process of temperature gradient metamorphism of snow is characterized by 

vapor transport through the snowpack due to an applied thermal gradient.  A temperature 

gradient often exists in an alpine snowpack because the earth's thermal capacity keeps the 

snow near the ground close to freezing temperatures.  The ambient air temperature readily 

fluctuates.  Temperature gradient metamorphism proceeds most quickly when the air 

temperature drops significantly below zero thus establishing a temperature gradient in the 

snowpack.  Because the amount of water vapor that the air can hold is a strong function 

of temperature, a water vapor density gradient also exists in the snowpack due to the 

temperature gradient.  Water vapor diffuses from the warmer regions of the snowpack to 

colder regions.  The water vapor diffusion causes growth of the depth hoar crystal.  The 

term hoar refers to ice which forms from the vapor phase.  The depth hoar crystal has the 

shape of a six-sided pyramid, and it has steps on each face which is characteristic of 

crystals undergoing rapid growth. 

 Figure 1.2 shows an idealized arrangement of growing depth hoar crystals with 

the average temperature profile and an actual temperature profile.  Water vapor sublimes 

from the top of crystal I which is warmer than the average temperature of the snow at its 

height, diffuses through the air space, and condenses on the bottom of crystal II which is 

colder than the average snow temperature at its height.  The top of crystal II also sublimes 
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and water vapor condenses on the bottom of crystal III.  The depth hoar crystals often 

have rounded tops where sublimation is occurring and large bottoms where condensation 

is occurring.  The water vapor diffuses on through the snowpack in this "hand-to-hand" 

fashion as first described by Yosida et al. (1955, in Colbeck, 1987). 

I

II

III

TEMPERATURE

AVERAGE TEMPERATURE

ACTUAL TEMPERATURE

DEPTH HOAR
CRYSTALS

 

Figure 1.2.  The Temperature Profile During Temperature Gradient Metamorphism 
 (adapted from Sommerfeld & LaChapelle, 1970). 

 During active growth of depth hoar, the number of grain bonds decreases. Also 

the number of small rounded grains decreases as the size of the depth hoar increases.  In 

other words, temperature gradient metamorphism can be such an active process of growth 

that hardly any original ice crystals survive.  This includes any bonds that existed between 

ice grains.  Temperature gradient metamorphism of snow with temperature gradients in 

excess of 10o C/m dominate any radius of curvature effects that would produce bonding 

between grains.  For example, Colbeck (1982) calculated that in a snowpack with a 

temperature gradient of 10o C/m and ice grains with diameters of 10-2 cm, the temperature 

gradient is about 50 times more effective at moving vapor than the radius of curvature 
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differences.  Therefore, temperature gradient metamorphism of snow results in a layer of 

segregated depth hoar crystals that is lower in strength.  A layer of TGM snow can make 

an entire snowpack susceptible to avalanche. 

OTHER MOTIVATIONS FOR STUDYING TGM 

 Besides the weakening effect that temperature gradient metamorphism has on the 

snowpack, another motivation for studying TGM is the degradation of load and shear 

bearing properties of snow runways and highways in the Arctic and Antarctic in the 

presence of a temperature gradient. The temperature gradient causes snow metamorphism 

which weakens layers in the snow.  The lower strength properties translate into vehicle 

sinkage and traction loss. 

 Snow can also serve as a model of other important engineering processes such as 

powder metallurgy where solid, liquid, and vapor phases can all be present at once.  Snow 

often exists near its melting point, so the possibility of phase change is very high.  

Furthermore, heat and mass flux through a snow layer are additional processes occurring 

simultaneously with phase change.  These thermodynamic processes change the snow's 

grain shape, density, strength, permeability, and thermal properties. 

 Last of all,  mass transfer in the snowpack is useful to study because pollutants 

redistribute themselves in the snow leading to the acid-pulse runoff phenomenon which 

has adverse effects on fragile ecosystems. 

MIXTURE THEORY 
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 The success of single continuum theories in modeling physical problems of solid 

mechanics, fluid flow, and heat transfer is widespread.  All materials, however, when 

viewed on a small enough scale are neither homogeneous nor continuous.  Most materials 

of interest are composed of several constituents each having their own physical and 

mechanical properties.  For example, air is composed of nitrogen, oxygen, carbon 

dioxide, and other trace gases.  Only the bulk properties of the mixture are necessary to 

model the flow of air.  Hence, a single continuum theory is adequate to describe most 

problems of physical interest.  Many other materials of physical interest such as 

composite materials, porous media, bubbly liquids, and snow can contain interactions 

amongst their constituents which are unaccounted for in a single continuum theory.  The 

interactions between the constituents in these materials often require a more 

comprehensive treatment. 

 The idea of a continuum mixture must then be developed here in order that a 

theory can be developed to describe such a material.  A continuum mixture is based on 

the definitions of a continuum and a mixture.  The mixture is defined as a medium in 

which two or more materials or constituents are intermixed.  Each constituent of the 

mixture is characterized by its own material properties.  Furthermore, the continuum 

point is defined as a geometric point in space conceived as occupying no volume, but 

which retains properties associated with a finite volume by taking mathematical limits.  

Combining these two definitions results in the concept of a continuum mixture, which is 
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that a mixture continuum point contains all constituents present in the mixture and that 

each continuum mixture point retains the properties of each constituent present.  The 

amount of each constituent present, denoted by the volume fraction, the interaction 

between constituents, and the other typical properties such as density, velocity, and 

temperature of each constituent are the variables of interest when developing the balance 

laws of a continuum mixture.  The microstructure must be considered when developing 

the interactions between constituents. 

 Truesdell (1984) was the first person credited with formulating the balance 

equations for a continuum mixture of miscible components.  This was termed the 

classical theory of mixtures.  A miscible mixture is one in which its components can only 

be distinguished on the molecular scale.  One miscible mixture is air, a mixture of ideal 

gases. The classical theory of mixtures has been slow to develop in its application to real 

physical problems (Bedford & Drumheller, 1983).  Truesdell's work, however, spawned 

the interest in mixtures.  Many theories since then have been developed to account for 

immiscible constituents.  These theories have been called theories of materials with 

microstructure and volume fraction theories.  These too have had little success in their 

application to real physical problems.  Bedford and Drumheller (1983) review the 

development of many of these theories.   

 Recently the classical theory of mixtures has been shown to be in disagreement 

with the kinetic theory of gases in that it incorrectly predicts the pressure in a mixture of 
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ideal gases (Hansen, 1991).  Hansen expresses his revisions to one "metaphysical" 

principle of Truesdell's (1984).  Truesdell said that the motion of the mixture should be 

governed by the same equations as that of a single body.  Hansen revised this 

"metaphysical" principle to say: 

The motion of the mixture is governed by the sum of the constituent 
balance equations.  Furthermore, the equations of a single continuum must 
be recovered as a special case of the mixture relations. 

Hansen (1989, 1991) has also formulated a volume fraction-based mixture theory based 

on the revised "metaphysical" principle.  His theory correctly predicts the pressure in an 

ideal gas mixture as being the sum of the partial pressures of each constituent gas.  His 

theory has also been successfully applied to the mechanics of composite materials 

(Hansen, 1994). 

PREVIOUS WORK 

 Previous studies on temperature gradient metamorphism of snow can be classified 

into the areas of experimental and theoretical. 

 EXPERIMENTAL WORK.  Bradley et al. (1977) studied temperature gradient 

metamorphism of snow in the natural setting of Yellowstone National Park.  They 

distinguished three levels of depth hoar development:  a fine-grained anhedral depth hoar, 

a subhedral depth hoar, and a fully-developed euhedral depth hoar.  The anhedral depth 

hoar is a solid ice crystal having flat surfaces and sharp corners.  The anhedral crystals are 

typically no longer than 1 mm.  The subhedral depth hoar crystals are slightly larger with 
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lengths between 1 and 2 mm with some hollow construction.  The euhedral depth hoar 

crystals are large, fully-developed hollow crystals.  They found that of the three types of 

depth hoar, the layer which contained the subhedral depth hoar crystal corresponded to 

the weakest layer in the snowpack.  This layer was found to be only 10 percent of its 

original strength.  Temperature profiles also revealed that the largest temperature gradient 

in the snowpack occurred in the weakest layer in the snowpack.  This would suggest that 

the thermal conductivity of the snow was a strong function of microstructure.  However, 

their laboratory studies in which the boundary conditions were held constant could not 

confirm the large temperature gradient in the weak layer.  The large temperature gradient 

could then have been due to the daily changes in temperature and solar radiation.  Their 

laboratory studies did show a nonlinear profile at steady state with the largest temperature 

gradient occurring closest to the bottom where temperature gradient metamorphism had 

advanced the most.  This does suggest that the thermal conductivity is definitely a 

function of microstructure.  Because depth hoar crystals grow at the expense of the grain 

bonds, heat flow is impeded because air has a thermal conductivity about 100 times less 

than that of ice.  Fourier's law of heat conduction says that the heat flux is proportional to 

the thermal conductivity times the temperature gradient.  In order to maintain the heat 

flux, the temperature gradient increases in TGM snow because its thermal conductivity is 

reduced by the loss of grain bonds. 
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 Adams and Brown (1982) verified the large temperature gradient in the weak 

layer in the laboratory in the absence of any fluctuations of surface temperature.  This 

strengthens the idea that the microstructure strongly affects the thermal conductivity of 

the snow.  Adams and Brown also conducted experiments in the lab with dense layers 

present in the experimental snowpack.  They observed depth hoar growth and 

corresponding weakness below the dense layers.  They attribute the depth hoar growth to 

a local increase in temperature gradient below the dense layer due to higher thermal 

conductivity of the dense layer.  They claim that the dense layer conducts heat better.  

Therefore, the temperature gradient must be locally higher just above and below the dense 

layer. 

 In 1980, Marbouty conducted experiments to determine crystal size changes as a 

function of temperature, temperature gradient, density, and original crystal type.  He then 

used this information in a numerical code which predicted the temperature in a snowpack 

in order to model the evolution of a snowpack in the presence of a temperature gradient.  

His results showed good agreement for a case not far from his experimental conditions 

used to determine the functional form of crystal size.  A more elaborate model should 

include coupling between the microstructure evolution and such things as thermal 

conductivity and diffusion coefficient. 

 THEORETICAL WORK.  The theoretical works on temperature gradient 

metamorphism of snow are divided into theories that predict microstructure evolution and 
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those that predict the heat and mass transfer in a snowpack.  Rarely have the macroscopic 

and microscopic theories been included in one complete analysis of snow. 

 Colbeck (1983) used the potential field theory solutions of simple particle 

geometries to develop a model of depth hoar crystal growth as a function of temperature, 

temperature gradient, and condensation rate.  He showed that depth hoar crystals are 

likely to grow below dense crust layers in the snowpack.  He does not compare his 

microstructure model to experimental growth rates.  Because Colbeck's model is based on 

the local temperature and temperature gradient in the snowpack, it is readily incorporated 

as a model for crystal growth rate into macroscopic theories. 

 Gubler (1985) improved Colbeck's microstructure model by applying the 

electrostatic analogy to clusters of particles.  He also accounts for radius of curvature 

effects which are important at low temperature gradients.   

 Christon (1990) did the most in-depth numerical study of temperature gradient 

metamorphism of snow.  He quantified the often disputed diffusion and heat transfer 

enhancement with his three-dimensional ice crystal model.  He showed that the degree of 

enhancement of the diffusion coefficient depends on the ice crystal geometry and 

bracketed the range of experimental results with his numerical results.  Christon was also 

able to show that the branch grains in his idealized microstructure geometry grow with 

flared bottoms much like the shape of depth hoar crystals.  However, he did not include 
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densities of snow above 500 kg/m3 which limits the use of his results in a layered snow 

cover where densities could easily exceed 500 kg/m3. 

 Adams and Brown (1989, 1990) used a mixture theory to model the heat and mass 

transfer in snow.  The mixture theory used is based on the mixture theory of Passman et 

al. (1984).  In addition to the problems exposed by Hansen (1991), the mixture theory of 

Passman et al. (1984) contains several terms which are difficult to motivate physically. 

SCOPE OF RESEARCH 

 The problem at hand here is to develop a model of temperature gradient 

metamorphism of snow that is based on the modern mixture theory of Hansen (1989, 

1991).  This mixture theory has had success in modeling the mechanics of composite 

materials (Hansen, 1994).  Now this mixture theory is to be applied to a heat and mass 

transfer problem in order to broaden its range of applicability.  In addition, the purpose of 

the model is to provide a stepping stone to a comprehensive treatment of temperature 

gradient metamorphism of snow involving microstructural changes, complete interactions 

with environment, and stratigraphic effects in the snow.   

 A numerical solution to the resulting mixture theory model is to be employed.  

The numerical solution will have flexibility for additions of complexities associated with 

the modeling of snow.  The numerical model presented will calculate the effects due to a 

dense layer of snow in the snowpack. The numerical model also will calculate the net 

condensation rate of the vapor which is believed to enhance depth hoar crystal growth 
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(Colbeck, 1983).  Furthermore, it will handle fluctuating temperature boundary conditions 

as an attempt to model the daily variations in ambient temperature.  Finally, a comparison 

between the numerical results and the quantitative and qualitative experimental results of 

previous work will be included. 

OVERVIEW 

 Chapter 2 begins with explaining the kinematics of the modern mixture theory 

used to model the heat and mass transfer in snow.  The global balance equations are 

presented and reduced to local form.  The balance equations are then applied to the heat 

and mass transfer in snow.  Two ideal microstructures of snow are considered and their 

effective thermal conductivities are derived. 

 Chapter 3 includes a comparison of the effective thermal conductivities derived in 

Chapter 2 to experimental thermal conductivities.  Based on a stereological argument, an 

effective thermal conductivity is hypothesized that is a linear combination of the thermal 

conductivities of the ideal microstructures.  This is shown to be in excellent agreement 

with experimental results. 

 Chapter 4 shows the development of the finite element method used to solve the 

partial differential equations governing the heat and mass transfer in snow.  It ends with a 

description of the FORTRAN program used to implement the numerical solution. 

 Chapter 5 then shows the numerical results of two test cases and describes how 

they correlate with experimental observations. 
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 Chapter 6 summarizes the problem of heat and mass transfer in snow.  

Recommendations are then made for further research on the microstructure evolution of 

snow. 
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CHAPTER II 

THEORY 

 In this chapter the volume fraction based mixture theory is developed in three-

dimensional Euclidean space.  The kinematic relationships necessary to describe the 

motion of a mixture are presented.  The balance laws are developed, and the second law 

of thermodynamics is also discussed.  Finally, the balance laws are reduced to the 

equations governing heat and mass transfer in snow. 

KINEMATICS 

 The kinematics of mixture theory is based on considering a body B consisting of 

N intermixed continua.  Each constituent may be thought of as a body Bα, α=1,2,3, . . .,N. 

 The two descriptions of motion most common in continuum mechanics are the 

Lagrangian and Eulerian description.  The Lagrangian description of motion relates the 

current configuration Bα (t) to the reference configuration Bref as illustrated in Figure 

2.1a.  The mapping from reference coordinates Xα  to current coordinates xα  for the 

Lagrangian description of motion is 

 x Xα α α= χ ( , ) .t  (2.1) 

The velocity of constituent α in the Lagrangian description is 

 v
X

α
α α∂
∂

=
χ ( , )

,
t

t
 (2.2) 

and the acceleration is 
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 a X
α

α α∂
∂

=
2

2

χ ( , ) .t
t

 (2.3) 

The deformation gradient Fα  is defined as 

 F xα α=

∇ .  (2.4) 

In the above equation, the operator 

∇  refers to the gradient taken with respect to the 

reference coordinates. 

 If the mapping is one-to-one, then the inverse must exist and be of the form 

 X xα α= −χ 1( , ) .t  (2.5) 

Equation (2.5) is the mapping for the Eulerian description of body motion and is  

 X1,X2

Bref

B2

B1 x1

 x2

 

a) The Lagrangian Description 

Bref
1 Bref

2 X2

x1 ,x2

X1

B

 

b) The Eulerian Description 

Figure 2.1.  Continuum Approaches for a Mixture of Constituents α, α=1,2. 
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illustrated in Figure 2.1b.  In the Eulerian description, the independent variables are the 

current coordinates and time, and so the Eulerian description focuses attention on a given 

region of space.  The Eulerian description is the most useful for fluid flow problems and 

will be used in this thesis to develop the balance laws and the second law of 

thermodynamics. 

 Because the current coordinates xα are a function of time, the chain rule is used to 

find the material time derivative of a function.  The material time derivative in Eulerian 

coordinates of any scalar, vector, or tensor-valued function Ψα  is 

  ( ) .Ψ Ψα
α

α α

∂Ψ
∂

= + ⋅
t x


∇ v  (2.6) 

 The Eulerian description of motion often uses the velocity gradient which is 

defined as 

 L vα α=

∇ x .  (2.7) 

Here, the operator 

∇ x  refers to the gradient taken with respect to the current coordinates.  

The deformation gradient and velocity gradient are related by 

  .F L Fα α α= ⋅  (2.8) 

GENERAL PRINCIPLES 

 In this section, the basic physical laws of mass balance, momentum balance, and 

energy balance are developed for a continuum mixture.  The second law of 
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thermodynamics is also presented.  A more complete description of the balance law 

development can be found in Hansen (1989, 1991). 

 MASS BALANCE.  The balance of mass equation for a constituent of a mixture 

can be developed by considering a fixed region R with boundary surface ∂R in body B.  

The balance of mass for constituent α in region R can be written as 

 ∂
∂

ρ ρα α α∂ αt
dV dS c dV

R R R∫ ∫ ∫= − ⋅ +( ) v n  (2.9) 

where ρα  is the dispersed density, n is the unit normal to surface ∂R, and  cα  is the mass 

supplied to constituent α due to phase change or chemical reaction.  The dispersed 

density is defined as 

 ρ φ γα α α=  (2.10) 

where φα  is the volume fraction of constituent α and γ α  is the true mass density of 

constituent α.  In other words, γ α  is the mass of constituent α per unit volume of 

constituent α, whereas ρα  is the mass of constituent α per unit volume of mixture.  The 

volume fraction is necessary here because constituent α only occupies φα  of volume R or 

covers φα  of the entire surface ∂R.  Quantitative stereology results have shown that the 

volume fraction is the same as the area fraction in a randomly distributed mixture 

(Underwood, 1970).  The sum of the constituent volume fractions can be expressed as 

 φα
α
∑ = 1 .  (2.11) 
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An important constraint on the mass supply cα  due to the fact that mass is neither created 

nor destroyed in the mixture is 

  .cα
α
∑ = 0  (2.12) 

For example, in a two constituent mixture composed of constituents α and β, the rate that 

constituent α changes to constituent β is equal and opposite to the rate at which 

constituent β is turning to constituent α. 

 Physically, equation (2.9) states that the rate of change of mass of constituent α in 

mixture volume R is due to two sources: 

1) the flux of mass α across surface ∂R, and 

2) the rate of mass supply to constituent α from other constituents due to 

 chemical reactions or phase changes. 

 Upon applying the divergence theorem to the surface integral and noting that 

region R is fixed, equation (2.9) becomes 

 ( ( )  ) .
∂ρ
∂

ρα
α α αt

c dVxR
+ ⋅ − =∫ v


∇ 0  (2.13) 

Because region R is arbitrary, the integrand must be zero.  Equation (2.13) can then be 

written as 

 
∂ρ
∂

ρα
α α αt

cx+ ⋅ =( )  .v

∇  (2.14) 

which holds for each point in body B. 
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 LINEAR MOMENTUM BALANCE.  The balance of linear momentum for a 

constituent of the mixture is developed by again considering a region R with boundary ∂R 

in body B.  The statement of balance of linear momentum for constituent α in region R is 

 
∂
∂

ρ ρ ρα α α α α∂ α∂ α α α α αt
dV dS dS c dV

R R R R
v v v n t b v pn∫ ∫ ∫ ∫= − ⋅ + + + +( ) (   )( )  (2.15) 

where t n
α
( )  is the partial stress traction acting on surface ∂R, bα  is the body force density 

acting on constituent α, and pα  is the momentum supplied to constituent α due to 

interactions with other constituents.  The partial stress traction can be written as 

 t tn
α α αφ( ) *=  (2.16) 

where tα
*  is the true stress traction on constituent α.  Newton's third law of motion 

requires that 

  .p 0α
α
∑ =  (2.17) 

 Physically, equation (2.15) states that the time rate of change of linear momentum 

inside region R is due to five sources: 

1) the net flux of momentum across surface ∂R, 

2) the partial stress traction t n
α
( ) acting on constituent α, 

3) the body force acting on constituent α, 

4) the rate of momentum gain due to mass gain of constituent α, and 

5) the momentum supply pα  acting on constituent α due to interactions 
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 with other constituents. 

 The partial stress tensor Tα  is defined as 

 t n Tn
α α
( ) .= ⋅  (2.18) 

After substituting equation (2.18) into equation (2.15), applying the divergence theorem 

to the surface integrals, and noting that the region R is arbitrary, the local form of the 

balance of linear momentum becomes 

 ρ ρα α α α α αa T b p= ⋅ + +

∇ x  .  (2.19) 

 FIRST LAW OF THERMODYNAMICS.  The first law of thermodynamics for 

constituent α is developed by considering a fixed region R and accounting for all energy 

transfer across its boundaries ∂R and all energy generated inside R.  The statement of the 

first law of thermodynamics for constituent α is 

 
∂
∂

ρ ε ρ ε

ρ ρ ε

α α α α α∂ α α α∂

α α α α α α α α α α

t
dV dS dS

r e c dV

R R R

R

∫ ∫ ∫

∫

= − ⋅ + ⋅ − ⋅ +

⋅ + + ⋅ + +

( ) ( )

[    ]

( )v n t v q n

b v p v

n

 (2.20) 

where εα  is the specific instantaneous energy of constituent α, qα is the energy flux 

vector, rα is the heat generation term, and eα is the energy supply due to energy exchange 

between constituents.  The specific instantaneous energy of constituent α is defined as 

 εα α α α= + ⋅u 1
2 v v  (2.21) 

where uα  is the internal energy of constituent α.  Because energy is neither created nor 

destroyed in the mixture, a restriction on the energy supply term is 
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  .eα
α
∑ = 0  (2.22) 

 Equation (2.20) states that the rate of change of energy of constituent α is due to 

nine sources: 

1) the net flux of energy across the surface ∂R, 

2) the power supplied by surface tractions, 

3) the energy flux out of the control volume R, 

4) the power generated by the body force, 

5) the volumetric generation of heat due to chemical reactions or radiation  

 penetration, 

6) the power generated by other constituents acting on constituent α, 

7) the energy gain due to energy transfer between constituents, and 

8) the energy gain due to mass gain of constituent α. 

By the usual arguments, the local form of equation (2.20) becomes 

 ρ ρα α α α α α α α ( )  .u tr r ex= ⋅ + − ⋅ +T L q

∇  (2.23) 

 SECOND LAW OF THERMODYNAMICS.  The second law of thermodynamics 

for a mixture is developed by assigning a temperature and entropy density to each 

constituent in an arbitrary, fixed region R.  Then the total entropy for the fixed region R is 

given by 

 Ν = ∑∫ ρ ηα α
α

dV
R

.  (2.24) 
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The second law governing the positive internal entropy production for the region R is   

  .Ν ≥ ⋅ +∑∫ ∑∫
q

nα

αα
∂

α α

ααθ
ρ
θ

dS
r

dV
R R

 (2.25) 

The time derivative of the total entropy N can be written as 

  ( ) ( ) .Ν = + ⋅∑∫ ∑∫
∂
∂

ρ η ρ ηα α
α

α α α
α

∂t
dV dS

R R
v n  (2.26)   

By the usual arguments, the local form of the entropy equation becomes   

 [   ( ) ] .ρ η η
θ

ρ
θ

θα α α α
α

α α α
α

α α
α

+ + ⋅ − − ⋅ ≥∑ c rx x
1 1 02

 
∇ ∇q q  (2.27) 

When the energy equation (equation (2.23)) and the Helmholtz free energy given by 

 ψ η θα α α α= +u  (2.28) 

are substituted in equation (2.27), a more convenient form of the second law results given 

by 

1 1 0
θ

ρ ψ η θ
θ

θ η θ
α

α α α α α α α
α

α α α α α[ (  ) ( )  ] .− + + ⋅ + − ⋅ + ≥∑ tr e cxT L q

∇  (2.29) 

Equation (2.29) can be used to find constitutive restrictions on the stress, energy supply, 

heat flux, and mass supply terms. 

CONSTITUENT BALANCE EQUATIONS 

 In this section, the governing equations for a mixture are applied to the two 

constituents in the snow, namely, the ice and the humid air.  Unlike Adams and Brown 

(1989, 1990), this analysis will not consider the momentum equation for either phase as 
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convection is unlikely to occur, and the stress in the ice phase calculated by the ice 

momentum equation has little practical use at this point in the analysis.  Further 

justification for this simplification will be presented in the subsections that follow. 

 The terminology for the ice and humid air constituents needs further clarification.  

The terms phase and constituent as they apply to the ice are used interchangeably because 

ice is one constituent of the mixture, and it is also one phase of water.  The humid air 

constituent is assumed to be a mixture of ideal gases, namely, water vapor and air.  Thus, 

the term component will be used to refer to the water vapor or air alone. 

 SNOW MICROSTRUCTURE.  The snow's microstructure plays a fundamental 

role in developing the balance equations.  The interactions between the constituents and 

some proportionality constants must be derived from knowledge of the snow's 

microstructure. 

 Snow is typically thought of as a mixture of moist air with a random distribution 

of ice grains which are interconnected and, therefore, self-supporting.  However, for the 

purposes of this theoretical development, two ideal microstructures are considered.  

Figure 2.2a shows a simple microstructure for the snow with pores parallel to the 

temperature gradient.  In this pore microstructure, energy is transferred in parallel through 

the snowpack.  The energy fluxes for the ice and humid air constituents, qi and qha, are 

simply added together to obtain the total energy flux through the snowpack.  The second 

microstructure considered in the analysis is shown in Figure 2.2b.  In this microstructure, 
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energy flows in series through the humid air and ice constituents, i.e. the temperature 

gradient is perpendicular to the lamellae.  Therefore, the energy flux in the humid air 

constituent must be equal to the energy flux in the ice constituent.  These two 

microstructures which were first considered by de Quervain (1963) produce two very 

different heat and mass transfer results and are believed to represent the extremes in 

possible microstructures for the snow. 

 

a) Pore Microstructure. 

Ice layer

Humid Air layer

 

b)  Lamellae Microstructure. 

Figure 2.2.  Ideal Snow Microstructures. 

 ICE CONSTITUENT MASS BALANCE.  The balance of mass equation for the 

ice is 
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∂ρ
∂

ρi
i i x it

c+ ⋅ =( )  .v

∇  (2.30) 

If the true mass density of the ice is constant and any settling velocity of the ice is 

neglected, the balance of mass equation for the ice becomes 

 γ
∂φ
∂i

i
it

c=  . (2.31) 

The above equation states that an increase in volume fraction of the ice constituent 

(increase in snow density) is only due to the phase change of water vapor to ice.  This 

equation holds for either the pore or lamellae microstructure. 

 WATER VAPOR COMPONENT MASS BALANCE.  Only the mass balance for 

the water vapor is considered here because the air acts only as the medium through which 

the water vapor diffuses.   

 For a porous material like snow and the pore microstructure of Figure 2.2a, 

Darcy’s law states that the velocity of the humid air vha is proportion to the total pressure 

gradient.  Darcy’s law (Nield and Bejan, 1992) is 

 v ha x TP= −
µ
κ


∇  (2.32) 

where µ is the viscosity of the humid air and κ is the permeability of the snow.  For the 

lamellae microstructure, no bulk movement of the humid air can occur.  For the pore 

microstructure, the motion of the vapor can be expressed as (Bird, 1960) 

 γ
γ
γ

γ γv v
v

ha
a a v v vv v v j= + +( ) . (2.33) 
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where the subscripts 'a' and 'v' refer to the air and water vapor components of the humid 

air, respectively.  Equation (2.33) says that the mass flux of the water vapor is due to the 

bulk fluid motion of the air and water vapor mixture scaled by the mass fraction of water 

vapor in the humid air plus a relative velocity of the vapor due to diffusion.  For the pore 

microstructure, equation (2.32) shows that when the total pressure in the humid air phase 

is uniform, the velocity of the humid air is zero.  Therefore, for both microstructures, the 

barycentric velocity of the humid air can be expressed as (Bird, 1960) 

 γ γ γha ha v v a av v v 0= + = . (2.34) 

This leaves for the pore microstructure 

 γ γ
γ
γv v v ha v a x

v

ha
Dv j= = − −


∇ ( ) (2.35) 

from Fick’s law of diffusion (Bird, 1960) where Dv-a is the binary diffusion coefficient 

for water vapor in air.  For the case of the lamellae microstructure, the mass flux is 

written as 

 φ γ γ
γ
γv v v v ha v a x

v

ha
Dv j= = − −


∇ ( )  (2.36) 

because in the lamellae microstructure the diffusion velocity is enhanced since an ice 

layer acts simultaneously as a source and sink of water vapor.  In other words, it takes the 

same amount of time for the water vapor to travel Lc, the characteristic length of the 

microstructure, as it does to travel the distance Lha, the characteristic length of the humid 

air constituent at the microstructure level, through the humid air constituent.  In equation 

form, this is 
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 L Lc

v v

ha

vγ v j
= .  (2.37) 

or rearranging 

 φ γv v v vv j= . (2.38) 

The volume fraction replaces the lineal fraction of the humid air constituent because 

stereological results state that the lineal fraction is equal to the volume fraction in a 

randomly distributed mixture.  Because both water vapor and air occupy the entire pore 

space of the snow, the volume fraction of the water vapor is equal to the volume fraction 

of the humid air constituent or 

 φ φ φv ha a= = . (2.39) 

Therefore, all three volume fractions above may be used interchangeably in the balance 

equations. 

 The diffusive flux can be expanded to give 

 jv v a x v
v

ha
v a x haD D= − +− −

 
∇ ∇γ

γ
γ

γ ,  (2.40) 

but the second term on the right is negligibly small because the mass fraction of saturated 

water vapor in air at 273 K is about 4x10-3. 

 The balance of mass for the vapor phase can be written as 

 
∂ρ
∂

ρv
v v x vt

c+ ⋅ =( )  .v

∇  (2.41) 

Substitution of the diffusive flux into equation (2.41) gives 
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 ∂ρ
∂

φ γv
v v a x v x vt
D c− ⋅ =−[ ]  .

 
∇ ∇  (2.42) 

When equation (2.12) is expanded in terms of the mass supplies for the vapor and ice, it 

gives 

   .c ci v+ = 0  (2.43) 

Rearranging the above equation and defining the mass supply c  to be positive when 

water vapor is condensing to form ice gives 

    .c c ci v= = −  (2.44) 

Expanding the partial time derivative of the dispersed density of the water vapor gives 

 ∂ρ
∂

γ
∂φ
∂

φ
∂γ
∂

v
v

v
v

v

t t t
= + ,  (2.45) 

but from equation (2.11), 

 ∂φ
∂

∂φ
∂

i v

t t
= − .  (2.46) 

Equations (2.45) and (2.46) along with the mass balance equation for the ice (equation 

(2.31)) can be used to simplify equation (2.42) to give 

 φ
∂γ
∂

φ γ
γ
γv

v
x v v a x v

v

it
D c− ⋅ = −−

 
∇ ∇( ) ( ) ,1  (2.47) 

but the quantity 
γ
γ

v

i
 is much less than one.  Neglecting this term, the mass balance 

equation for the water vapor can then be written as 

 φ
∂γ
∂

φ γv
v

x v v a x vt
D c= ⋅ −−

 
∇ ∇( )  .  (2.48) 
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This equation holds for the pore microstructure but must be modified slightly for the 

lamellae microstructure because of the diffusive flux definition given by equation (2.38).  

The balance of mass equation for the lamellae structure is 

 φ
∂γ
∂

γv
v

x v a x vt
D c= ⋅ −−

 
∇ ∇( )  .  (2.49) 

Equations (2.48) and (2.49) state that local changes in water vapor density are due to the 

divergence of vapor flux and sublimation.  The temperature dependence of the diffusion 

coefficient is taken into account by noting that it is proportional to θha

3
2  (Incropera and 

DeWitt, 1985). 

 ICE CONSTITUENT MOMENTUM BALANCE.  The momentum balance for 

the ice phase can be used to find the stress and strain in the ice phase of the snow.  

However, the effect that the ice stress has on the vapor density of the water is neglected in 

this analysis, so the ice phase momentum balance is not considered further. 

 HUMID AIR CONSTITUENT MOMENTUM BALANCE.  The momentum 

balance for the humid air phase becomes important when bulk fluid motion occurs as in 

the case of convection or wind pumping.  The Rayleigh number for a porous medium like 

snow is defined as (Nield and Bejan, 1992) 

 Ra
g Hha=

γ βκ
µλ

∆θ
 (2.50) 

where g is the acceleration due to gravity, β  is the thermal expansion coefficient of air, H 

is the height of the snowpack, and λ  is the thermal diffusivity defined by 
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 λ
γ

=
k
C
s

a a
P  (2.51) 

where ks is the thermal conductivity of the snow, γa is the density of the air, and Ca
P  is 

the specific heat of air at constant pressure.  With the values shown in Table 2.1, the 

Rayleigh number was calculated to be 0.2.  The minimum critical Rayleigh number for 

the onset of convection in a snowpack is 9.87 (Nield and Bejan, 1992), so convection is 

unlikely to occur except in extreme circumstances.  Therefore, the momentum balance for 

the humid air constituent was not considered further. 

 ICE CONSTITUENT ENERGY BALANCE FOR THE PORE 

MICROSTRUCTURE.  The energy balance for the ice phase of a pore microstructure is 

 ρ ρi i i i i i x i iu tr r e ( )  .= ⋅ + − ⋅ +T L q

∇  (2.52) 

Table 2.1.  Values used to calculate Rayleigh number. 

γha 13 3. kg
m

 
β 3 7 10 3 1. x K− −  
κ 10 9 2− m  
H 1m 

∆θ  40 K  

µ 172 10 5. x Pa s− ⋅  
λ 521 10 4 2. x m

s
−  

 

In this analysis, the ice phase is not moving and any work due to strain rates can be 

neglected.  Also heat generation in the ice phase due to solar radiation is neglected.  This 
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could easily be included as Colbeck (1989) and McComb et al. (1992) have done.  These 

assumptions reduce equation (2.52) to 

 ρ i i x i iu e  .= − ⋅ +

∇ q  (2.53) 

The internal energy for the nondeforming ice is assumed to be only a function of 

temperature and can be defined as 

 u C ui i
V

i ref iref
= − +( )θ θ  (2.54) 

where Ci
V  is the specific heat of ice at constant volume, and θ ref  is the temperature at the 

reference value of the internal energy uiref
.  Without loss of generality, uiref

 can be set to 

zero.  The heat flux is expressed by Fourier’s law of heat conduction as 

 qi i i x ik= −φ θ

∇ .  (2.55) 

Substitution of equations (2.54) and (2.55) into equation (2.53) gives 

 φ γ
∂θ
∂

φ θi i i
V i

x i i x i iC
t

k e= ⋅ +
 
∇ ∇( )  .  (2.56) 

Equation (2.56) is used to calculate the temperature in the ice phase and says that changes 

in temperature with time are due to the divergence of the heat flux in the ice phase and 

energy exchange between constituents. 

 HUMID AIR CONSTITUENT ENERGY BALANCE FOR THE PORE 

MICROSTRUCTURE.  The energy balance for the humid air constituent in the pore 

microstructure is 

 ρ ρha ha ha ha ha ha x ha hau tr r e ( )  .= ⋅ + − ⋅ +T L q

∇  (2.57) 
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As with the ice phase, the work term and energy generation term of the humid air 

constituent are neglected.  The energy equation for the humid air constituent then reduces 

to 

 ρ ha ha x ha hau e  .= − ⋅ +

∇ q  (2.58) 

The definition of the internal energy for the humid air mixture of ideal gases is 

 γ γ γha ha a a v vu u u= +  (2.59) 

or 

 γ γ θ θ γ θ θha ha a a
V

ha ref v v
V

ha ref sgu C C u= − + − +[ ( )] [ ( ) ] (2.60) 

where usg is the internal energy change when the water changes from a solid to a vapor. 

In equation (2.60), the reference value for the internal energy of the air has been set to 

zero without any loss of generality.  In order to account for the fact that the internal 

energy of the water vapor is much higher than that of ice, the reference value of the 

internal energy for the water vapor has been set to the internal energy change when water 

changes from a solid to a vapor. 

 The definition of the energy flux vector for water vapor diffusing through air is 

(Bird, 1960) 

 qha ha ha x ha ha sg v a x vk u D= − − −φ θ φ γ
 
∇ ∇ .  (2.61) 

The energy flux vector q ha  is composed of a conduction term and a term due to diffusion 

of water vapor carrying latent heat.  The energy equation for the humid air constituent is 

found by first taking the material time derivative of the humid air constituent internal 
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energy defined in equation (2.60) which for constant specific heat, latent heat, humid air 

density γha, and no humid air velocity gives 

  .u
C C

t
u

tha
a a

V
v v

V

ha

ha sg

ha

v=
+

+
γ γ

γ
∂θ
∂ γ

∂γ
∂

 (2.62) 

Substitution of equations (2.61) and (2.62) into equation (2.58) gives 

 
( ) ( )

( )
φ γ

∂θ
∂

φ
∂γ
∂

φ γ

φ θ

ha
V

ha
ha

sg ha
v

ha v a x v

x ha ha x ha ha

C
t

u
t

D

k e

+ − ⋅





= ⋅ +

−

 

 

∇ ∇

∇ ∇ 

 (2.63) 

where 

 ( )γ γ γC C CV
ha a a

V
v v

V= +  (2.64) 

but 

  ( )c D
tx v v a x v v
v= ⋅ −−

 
∇ ∇φ γ φ

∂γ
∂

 (2.65) 

from the mass balance of the water vapor.  Substituting equation (2.65) into equation 

(2.63) gives 

 φ γ
∂θ
∂

φ θha ha ha
V ha

x ha ha x ha ha sgC
t

k e u c= ⋅ + +
 
∇ ∇( )   .  (2.66) 

The above equation is used to calculate the temperature in the humid air constituent of the 

snow with a pore microstructure.  It says that changes in temperature of the humid air 

constituent with time are due to the divergence of the conductive energy flux in the humid 

air constituent, energy exchange between constituents, and latent heat release when water 

changes phase.  Since the mass fraction of water vapor in saturated air is small at 
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temperatures below freezing, the density, specific heat, and thermal conductivity 

properties of humid air can be taken to be that of dry air.  Also, for the sake of brevity, the 

subscripts for the volume fraction, temperature, and energy exchange of humid air are 

changed to the letter 'a' since the volume fraction, temperature, and energy exchange are 

the same for the air as for the humid air.  The energy equation for the humid air 

constituent can then be written as 

 φ γ
∂θ
∂

φ θa a a
V a

x a a x a a sgC
t

k e u c= ⋅ + +
 
∇ ∇( )   .  (2.67) 

The latent heat term in equation (2.67) occurs in the energy equation for the humid air 

constituent because this constituent contains the diffusing water vapor which turns to ice 

at the air/ice interface.  In reality, some of this latent heat will be conducted into the 

humid air constituent while some of it will be conducted into the ice.  In fact, most of the 

latent heat will be conducted into the ice phase because the thermal conductivity is on the 

order of 100 times larger than that of air.  In the sections that follow, this complication is 

resolved by discovering that the ice and humid air energy equations can be added together 

to obtain one energy equation for the snow. 

 ENERGY BALANCE FOR SNOW WITH LAMELLAE MICROSTRUCTURE. 

In the case of the lamellae microstructure, one energy balance equation is written for the 

mixture of ice and humid air.  The constituents are assumed to be at identical 

temperatures at a continuum point.  The energy equation for the snow mixture is given by 

 ρ ρi i ha ha x su u  .+ = − ⋅

∇ q  (2.68) 
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Following the development of the previous energy equations with the same internal 

energy definitions, the above equation becomes 

 ( ) [ ] φ γ φ γ
∂θ
∂

θa a a
V

i i i
V s

x con x s sgC C
t

k cu+ = ⋅ +
 
∇ ∇  (2.69) 

where θs is the temperature of the snow and kcon is the effective thermal conductivity of 

the snow due to conduction only.   

 The effective thermal conductivity of the snow is found by noting that the energy 

flux through the humid air constituent must be equal to the energy flux through the ice 

constituent.  In equation form, this statement is 

 qs i i i ha ha ha sg v a ha vk k u D= − = − − −

  
∇ ∇ ∇θ θ γ .  (2.70) 

Here, the operator 

∇α  refers to the gradient taken with respect to the differential length 

in the α constituent.  At the microstructure level, the temperature gradients are allowed to 

be different in the two constituents in order to arrive at the correct effective thermal 

conductivity for the lamellae microstructure.  When the vapor in the humid air constituent 

is saturated, equation (2.70) can be rewritten as 

 qs i i i ha ha ha sg v a
v
sat

ha hak k u D
d
d

= − = − − −

  
∇ ∇ ∇θ θ

γ
θ

θ .  (2.71) 

The average temperature gradient in the snow can be expressed as 

 
  
∇ ∇ ∇x s i i i ha ha haθ φ θ φ θ= + .  (2.72) 

The heat flux through the snow can also be written as 

 qs con x sk= −

∇ θ .  (2.73) 
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Substitution of equations (2.71) and (2.72) into equation (2.73) gives 

 k
k k

k u D
d
d

k
con

i ha

i ha sg v a
v
sat

ha i

=

+








 +−φ

γ
θ

φ

. (2.74) 

When the mass supply for the lamellae microstructure defined by equation (2.49) is 

substituted for the mass supply in equation (2.69), an effective thermal conductivity 

which includes an enhancement due to diffusion can be calculated.  This effective thermal 

conductivity is 

 k
k k u D

d
d

k u D
d
d

k
con d
lam

i ha sg v a
v
sat

i ha sg v a
v
sat

ha i

+

−

−

=

+










+








 +

γ
θ

φ
γ
θ

φ

.  (2.75) 

The thermal conductivity kcon d
lam

+  is the thermal conductivity that would be measured 

experimentally in a lamellae microstructure consisting of ice and humid air. 

 EVALUATION OF INTERACTION TERMS.  The mass supply term cand the 

energy supply terms ei  and ea  need to be evaluated to close the system of equations for 

the snow.  However, from equation (2.22) the energy supply terms are related by 

   .e ei a= −  (2.76) 

From equation (2.31), the physical interpretation for the mass supply term is the mass rate 

at which water vapor is condensing to form ice per unit volume of snow.  Hobbs (1974) 

gave an expression for vapor condensation in terms of the vapor density difference 
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between the pore vapor density and the saturated vapor density over the ice.  This 

expression is 

 
( )

( )
c

R M
A

i v v
sat

M
A

=
−σξ θ γ γ

π

1
2

1
22 Ω

 (2.77) 

where σ  is the condensation or evaporation coefficient, ξ is the specific surface area of 

the snow, R is the gas constant for water vapor, M is the molecular weight of water, A is 

Avogadro's number, and Ω is Boltzmann's constant.  In the absence of diffusion, the mass 

balance equation for the water vapor can be written as 

 φ
∂γ
∂

σξ θ γ γ

π
v

v i v v
sat

M
A

t
R M

A
= −

−
1

2

1
22

( )

( )
.

Ω
 (2.78) 

If the saturated vapor density over the ice is held constant, the time for the vapor density 

difference between the pore density and the saturated density to become 0.1% of the 

initial density difference equilibrium can be calculated.  This expression is given by 

 t
R

A
M

g
kg

v
M
A

i

= ⋅6 91 1000
21

2

1
2

1
2

. ( )
( )

.
φ π

σξ θ

Ω
 (2.79) 

A typical value of the specific surface area given by Hansen (1986) is 2430 m2/m3 for a 

snow density of 360 kg/m3.  The specific surface area was assumed to vary linearly with 

the ice volume fraction.  For a snow density of 200 kg/m3, the specific surface of the 

snow is 1400 m2/m3.  Delaney et al. (1964) measured the condensation coefficient σ of 

ice to be 0.0144 for temperatures between -2 and -13 oC.  With these values, the time for 

the vapor density in the pore to reach equilibrium is approximately 1.1x10-3 seconds.  
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Since the vapor density in the pore reaches equilibrium so quickly, the vapor density in 

the pore can be assumed to be the saturated vapor density throughout the process of 

metamorphism of snow. 

 A form for the energy supply terms that satisfies the second law of 

thermodynamics is 

    ( ) .e e eha i o i ha= − = −θ θ  (2.80) 

The coefficient eo is the constant of proportionality describing the rate at which the 

constituent temperatures reach equilibrium by conduction at the microstructure level.  

Two approaches are taken in order to determine how quickly the temperatures of the ice 

and humid air constituents come to equilibrium.  The first approach is a time scale 

analysis comparing the time scale for heat transfer at the snowpack level to that at the 

microstructure level.  The second approach actually approximates the coefficient eo and 

then calculates a time for the constituents to come to thermal equilibrium. 

 The first approach starts by writing the single continuum equation describing one-

dimensional heat conduction in each constituent.  It is given by 

 ∂θ
∂ γ

∂ θ
∂t

k
C x

=
2

2 .  (2.81) 

Equation (2.81) is nondimensionalized by defining the following nondimensional 

variables and substituting them into equation (2.81): 

 t t
t o

* ,=  x x
Lc

* ,=  θ
θ θ
θ θ

* .=
−
−

init

f init
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The resulting nondimensional equation is 

 ∂θ
∂ γ

∂ θ

∂

*

*

*

*
.

t
t
L

k
C x

o

c

= 2

2

2  (2.82) 

The time scale t o
micro  for heat conduction on the microscale must then be  

 t
CL
ko

micro c≈
γ 2

. (2.83) 

The time scale t o
macro for heat conduction in a snowpack is defined similarly as 

 
( )

t
C C H

k ko
macro i i i

V
a a a

V

i i a a
≈

+

+

φ γ φ γ

φ φ

2

 (2.84) 

where H is the height of the snowpack which is much greater than the characteristic 

length of the microstructure.  The ratio of the time scale for heat conduction in a 

snowpack to the time scale for heat conduction on the microscale for a snowpack density 

of 200 kg/m3, a depth of 1 m deep, and a microscale characteristic length of 1 mm 

(Christon, 1990) is a minimum of 9x105 which suggests that thermal equilibrium between 

the ice and humid air constituents is a good assumption. 

 The coefficient eo was estimated by considering a simple conduction model for 

the pore microstructure as shown in Figure 2.3.  The Figure 2.3 shows the electrical 

analogy to heat conduction at the microstructure level.  The coefficient eo  is given by 

 

[ ( )]
e

L
k k

o

c
a

a

i

i

=
+

ξ
φ φ

 (2.85) 
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where ξ is the specific surface area of the snow and is included here to convert units of 

eα  to watts per m3 of snow. 

φ ha cL φ i cL

θ ha θ i

φ ha c

ha

L
k

humid air phase

φ i c

i

L
k

ice phase

 

Figure 2.3.  Simple Heat Conduction Model for Heat Transfer at the Snow Microstructure 

 Level. 

This model assumes that the temperature profile in each constituent is always linear.  The 

heat conduction equations for the ice phase and the vapor phase assuming no heat 

conduction into the microstructure volume and no condensation is occurring can then be 

written as 

 φ γ
∂θ
∂

ξ
φ φ

θ θha ha ha
V ha

c
a

a

i

i

i haC
t L

k k

=
+

−
[ ( )]

( )  (2.86) 

and 

 φ γ
∂θ
∂

ξ
φ φ

θ θi i i
V i

c
a

a

i

i

ha iC
t L

k k

=
+

−
[ ( )]

( ) .  (2.87) 

In equation (2.86), if the temperature of the ice is held constant, the time for the humid air 

to come to equilibrium with the ice can be calculated.  The expression for the amount of 
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time it takes for the temperature difference between the air and ice to be 0.1% of the 

initial temperature difference is 

 t
C L

k k
a a a

V
c a

a

i

i
= +







6 91. .

φ γ
ξ

φ φ
 (2.88) 

For an air volume fraction of 0.78 which corresponds to snow density of 200 kg/m3, an 

air density of 1.3 kg/m3, a characteristic length of 1 mm, and specific surface area of 1400 

m2/m3, the time calculated in equation (2.88) is 0.12 seconds.  A similar expression can 

be written for the time it takes the ice to come into equilibrium with a constant air 

temperature.  This expression is 

 t
C L

k k
i i i

V
c a

a

i

i

= +






6 91.

φ γ
ξ

φ φ
 (2.89) 

For the ice volume fraction of 0.22, ice density of 917 kg/m3, and characteristic length of 

1 mm, and specific surface area of 1400 m2/m3, the time for the temperature difference 

between the ice and air constituents to be 0.1% of the initial temperature difference is 65 

seconds.  In either case, the time for the constituents to reach equilibrium is much less 

than the time on the order of days that it takes for snow metamorphism to occur.  In 

addition, condensation and evaporation of water vapor has not been taken into account in 

the thermal equilibration of the constituents.  For example, if the air was colder than the 

ice and saturated with water vapor, the air would warm and the ice would cool as the two 

phases came into thermal equilibrium.  It follows then that sublimation would occur 

because the air always tends to be saturated.  Most of the latent heat required to make this 
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phase change would come from the ice phase.  This would cool the ice constituent faster 

than without sublimation.  Therefore, it is assumed that the temperatures of the ice and 

humid air constituents are equal. 

FORMULATION SUMMARY 

 The conclusions of the above formulation allow the two energy equations for the 

pore microstructure to be added together.  The energy equation for the snow with a pore 

microstructure can be written as 

 ( ) [( ) ] φ γ φ γ
∂θ
∂

φ φ θa a a
V

i i i
V s

x a a i i x s sgC C
t

k k cu+ = ⋅ + +
 
∇ ∇  (2.90) 

or in one-dimension as 

 ( ) [( ) ] φ γ φ γ
∂θ
∂

∂
∂

φ φ
∂θ
∂a a a

V
i i i

V s
a a i i

s
sgC C

t x
k k

x
cu+ = + +  (2.91) 

where θs is the temperature of the snow.  The mass supply is calculated from equation 

(2.48) by noting that the water vapor is always saturated at the snow temperature.  The 

equation used to calculate the mass supply is 

  ( )c D
tx v v a x v

sat
v

v
sat

= ⋅ −−

 
∇ ∇φ γ φ

∂γ
∂

 (2.92) 

where the saturated vapor density is an exponential function of temperature.  In one 

dimension, this equation can be written as 

  .c
x

D
d
d x

d
d tv v a

v
sat

s
v

v
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 (2.93) 
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The derivative of the saturated vapor density with respect to temperature can be 

calculated from the equation 

 d
d

x xv
sat

v
satγ

θ
γ

θ θ
θ= + − +





− −ln . .
ln

. .10 24455646 7 2312
10

1677006 10 2 41028 102
2 5  (2.94) 

where the saturated vapor density is given by Dorsey (1968) as 

γ
θ

θ
θ θ θ

v
sat

w

x x

R
=

−
+ − + −− −101325

760
10

2445 5646 8 2312 1 677006 10 1 20514 10 6 75716910
2 5 2{ . . log ( . ) ( . ) . }

.  (2.95) 

The above equation for the saturated vapor density was used because it provides an 

accurate representation of the vapor density through a broad range of temperatures. 

 Equation (2.93) states that condensation occurs when water vapor diffuses into 

areas of smaller vapor volume fraction, smaller diffusion coefficient, or into a colder area 

where the air cannot hold as much water.  Also, any local decrease in temperature causes 

condensation to occur. 

 When equation (2.93) is substituted into equation (2.91), the equation 

 ( ) [ ]φ γ φ γ φ
γ
θ

∂θ
∂

∂
∂

∂θ
∂a a a

V
i i i

V
sg a

v
sat

s
con d
pore sC C u

d
d t x

K
x

+ + = +  (2.96) 

results where 

 k k k u D
d
dcon d

pore
a a i i sg a v a

v
sat

+ −= + +φ φ φ
γ
θ

.  (2.97) 

The thermal conductivity above is the effective thermal conductivity that would be 

measured experimentally in a mixture of ice and humid air with a pore microstructure. 

 The energy equation for the lamellae microstructure can be written as 
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where 
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and 
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CHAPTER III 

EFFECTIVE THERMAL CONDUCTIVITIES 

 This chapter is concerned with comparing the two effective thermal conductivities 

derived in the previous chapter to experimental measurements of the thermal conductivity 

of snow.  An effective thermal conductivity based on a linear combination of the two 

theoretical thermal conductivities is then hypothesized and shown to be in agreement with 

experimental measurements.  A stereological argument is used to justify the new effective 

thermal conductivity model. 

THEORETICAL VERSUS EXPERIMENTAL THERMAL CONDUCTIVITY 

 The effective thermal conductivities for the pore and lamellae microstructure are 

 k k k u D
d
dcon d
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a a i i sg a v a

v
sat

+ −= + +φ φ φ
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 (3.1) 

and 
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,  (3.2) 

respectively.  In Figure 3.1, several experimental correlations for effective thermal 

conductivity are plotted with equations (3.1) and (3.2).  The experimental curves are only 

plotted for densities within their applicable range whereas equations (3.1) and (3.2) are 

plotted for densities between 0 and 917 kg/m3 to demonstrate that they approach the 
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appropriate limits for thermal conductivity in pure air and pure ice.  Figure 3.1 shows that 

equations (3.1) and (3.2) envelope the experimental correlations. 

THE HYPOTHESIZED EFFECTIVE THERMAL CONDUCTIVITY MODEL 

 Also plotted in Figure 3.1 is the equation  

 k k ks i con d
pore

a con d
lam= ++ +φ φ  (3.3) 

where ks is hypothesized to be the effective thermal conductivity of the snow based on a 

linear combination of the two extreme microstructures.  Figure 3.1 shows that equation 

(3.3) matches the experimental correlations very well through the range of their 

applicable densities. 

 In equation (3.3), the volume fractions are now used as stereological parameters 

for the actual snow microstructure.  Equation (3.3) implies that when the snow contains 

more ice, it behaves like the pore microstructure model for thermal conductivity, and 

when the snow contains more air, it behaves more like the lamellae microstructure model 

for thermal conductivity.  The justification for equation (3.3) can be made by studying the 

snow surface section shown in Figure 3.2.  When a test line is drawn through the surface 

section, a fraction of the total length will pass through the ice constituent, and the 

remainder will pass through the humid air constituent.  The fraction that intersects the ice 

constituent is approximately the volume fraction of the ice, and the remaining fraction is 

the volume fraction of the humid air constituent.  Anytime the test line passes through the 

ice, heat transfer along that portion of the line occurs like in the pore microstructure, that  
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is, in parallel with the air phase.  Also anytime the test line passes through the humid air 

constituent, heat transfer is occurring like that in the lamellae microstructure or in series 

with the ice phase.  Therefore, it was hypothesized that the thermal conductivity of the 

snow could be modeled as the linear combination of the effective thermal conductivities 
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Figure 3.1.  Effective Thermal Conductivites for Ideal Microstructures, Actual Snow, and  
 the Proposed Model at -10o C. 
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for the two microstructure extremes simply scaled by the volume fraction of each 

constituent. 

Ice Constituent

Test Line

 

Figure 3.2.  Surface Section of Snow. 

MODEL EQUATIONS 

 The energy equation used for the snow model based on equations (2.91) and 

(2.98) is 
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The above effective thermal conductivity is based on equation (3.3) without the diffusion 

effects.  Based on equations (2.48) and (2.49), the mass supply is calculated from the 

equation 
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where Ds is the diffusion coefficient in snow given by 
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In equations (3.5)-(3.7), the conduction and diffusion contributions to the effective 

thermal conductivity of equation (3.3) have been separated by keeping the mass supply 

term in the energy equation.  This will allow the mass supply to be calculated explicity 

from equation (3.6), which is useful when studying depth hoar crystal growth.  The 

diffusion coefficient in snow is a disputed number in that some researchers have claimed 

it is less than the diffusion coefficient in air (Giddings & LaChapelle, 1962) due to the 

fact that the ice grains in the snow interfere with the diffusion.  Experiments by Yosida et 

al. (1955, in Colbeck, 1993) showed that the diffusion coefficient was 3.5 to 5 times as 

large while the experiments of Sommerfeld et al. (1986, in Colbeck, 1993) found that the 

diffusion coefficient in snow was about twice that for air.  The diffusion coefficient given 

by equation (3.7) divided by the diffusion coefficient in air is plotted in Figure 3.3 to 

show its enhancement as a function of snow density at a snow temperature of -10o C.  The 

diffusion enhancement for this model was found to be a maximum of about 1.23 times 

the diffusion of water vapor in air.  This enhancement may be small compared to the 

latest experimental results, however, given the lack of concensus of what the diffusion 

coefficient in snow actually is, this model will serve the purpose of the goals to be 

achieved in this thesis.  Moreover, equation (3.7) demonstrates some plausible 
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characteristics in that it approaches the correct limits for the cases of pure air and pure 

ice.  It also increases for snow densities up to 500 kg/m3 and then decreases for densities 

up to the pure ice density of 917 kg/m3.  This is plausible because the ice grains in the 

snow are bound to inhibit diffusion due to a tortuosity effect at high snow densities. 
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Figure 3.3.  Effective Diffusion Coefficient Enhancement as a Function of Density at a  
 Temperature of -10o C. 
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 Also plotted in Figure 3.3 are Christon's (1990) diffusion enhancement ratios for 

two geometries in their applicable density ranges.  In Christon's 1990 work, he developed 

a three-dimensional heat and mass transfer model for a single lattice cell in snow.  He 

then calculated effective thermal conductivites and diffusion coefficients.  In Figure 3.3, 

two of his correlations for the no-branch geometry and his vertical branch geometry are 

plotted.  The model given by equation (3.7) lies within a reasonable distance of Christon's 

correlations given the uncertainty of this parameter. 
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CHAPTER IV 

NUMERICAL FORMULATION 

 This chapter presents the development of the numerical formulation to solve the 

equations of heat and mass transfer in snow.  The FORTRAN program used to solve 

these equations is also described.  The formulation presented solves a general one-

dimensional parabolic partial differential equation.  The Galerkin finite element method is 

used to discretize the spatial domain, and the Crank-Nicolson time integration method is 

used in the time domain. 

GENERAL PARABOLIC EQUATION 

 The general parabolic equation that this formulation uses is 

 ( )m x t
t x

p x t
x

x t f x t( , ) , ( , ) ( , ) .∂θ
∂

∂
∂

∂θ
∂

ω θ= 




− +  (4.1) 

The energy equation for snow is of this form.  Either the dependent variable can be 

specified at a boundary or the heat flux can be specified as 

 − =
=

p a t
x

A t
x a

( , ) ( )∂θ
∂

 (4.2a) 

at the left boundary and  

 p b t
x

B t
x b

( , ) ( )∂θ
∂ =

=  (4.2b) 

at the right boundary. 

The initial condition is 
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 θ θ( , ) ( ) .x xo0 =  (4.3) 

FINITE ELEMENT FORMULATION 

 The first step in the numerical formulation is the discretization of the domain.  

The domain consists of equally spaced nodes as shown in Figure 4.1.  The dependent 

variable will be approximated by quadratic interpolation and may be expressed as 

 θ θ( , ) ( ) ( )x t t n xj
j

N
=

=

+

∑ j
1

1
 (4.4) 

where θj are the nodal values of the dependent variable which are a function of time and 

ni(x) are the quadratic interpolation functions.  The elemental formulation is based on the 

weak statement which is 

 ( )p q f m dx
a

b
′ ′ − + −





=∫ θ θ θ ν 0  (4.5) 

where ν  is a test function satisfying the essential boundary conditions, the prime denotes  

x

θ

a x2 x3 x4 xN b

Element

Nodes

 

Figure 4.1.  Nodes for the Spatial Domain. 

differentiation with respect to the spatial variable, and the dot denotes differentiation with 

respect to time.  Integrating equation (4.5) by parts and eliminating the derivative terms 

from the boundary conditions yields 
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 ( )p q m dx f dx A t a B t b
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b
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b
′ ′ + + = + +∫ ∫θ ν θν θν ν ν ν ( ) ( ) ( ) ( ) . (4.6) 

Substitution of the quadratic approximation of the dependent variable and setting 

 ν = = +n k Nk , , , ,1 2 1  (4.7) 

gives 
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k kN
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1
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1 1 1 2 1δ δ 

 (4.8) 

which can be written in matrix form as 

 A B fθ θ+ =  (4.9) 

where 

 ( )A p q= +∑ e e
e

,  (4.10) 

 B m= ∑ e
e

,  (4.11) 

 f f bc= +∑ e
e

,  (4.12) 

with 

 p n ne
T

x

x
p dx

i

i
= ′ ′

+

∫
2 ,  (4.13) 

 q n ne
T

x

x
q dx

i

i
=

+

∫
2 ,  (4.14) 

 m n ne
T

x

x
m dx

i

i
=

+

∫
2 ,  (4.15) 
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 f ne x

x
f dx

i

i
=

+

∫
2 ,  (4.16) 

and 

 ( ) ( )[ ]bcT A t B t= 0 0 0 0 .  (4.17) 

When the functions p, q, m, and f can be approximated by quadratic functions on an 

element, the components of the element matrices pe, qe, and me and vector fe are easily 

calculated based on the nodal values of the functions p, q, m, and f.  The evaluated 

integrals are given in Bickford (1990). 

 When natural boundary conditions are specified, no further modification of the 

coefficient matrices is needed.  When essential boundary conditions are specified, the 

coefficient matrix and load vector are modified after the time integration scheme is 

employed. 

 The Crank-Nicolson time integration scheme (Bickford, 1990) was used to 

integrate equation (4.9).  The method gives an accumulated discretization error on the 

order of the time differential h2 and is also unconditionally stable.  This method is 

employed by approximating the time derivative by evaluating it at the endpoints of the 

time interval and taking the average.  For the vector equation (4.9), the corresponding 

expression is 

 
( )

θ θ
θ θ

n n
n nh

+
+= +

+
1

1

2

 
. (4.18) 
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After multiplying equation (4.18) through by B and using equation (4.9), the Crank-

Nicolson algorithm can be written as 

 
( )

B A B A f f
+





= −



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+
+

+
+h h h

n n
n n

2 2 21
1θ θ .  (4.19) 

or 

 K bθ n n+ +=1 1  (4.20) 

where 

 K B A
= +

h
2

 (4.21) 

and 

 
( )

b B A f f
n n

n nh h
+

+= −



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+
+

1
1

2 2
θ .  (4.22)  

 The essential boundary conditions can now be applied to the system (4.20) by the 

penalty method where the left-upper corner and right-lower corner elements are 

multiplied by a large number, say 1015.  The first and last elements in the load vector bn+1 

are set to the specified essential boundary condition and then multiplied by the coefficient 

matrix element-large number product.  The first and last equations of the system then 

consist of 

 10 1015
11 1 12 2 1 1 1

15
11K K K K a tN Nθ θ θ θ+ + + =+ + , ( , )  (4.23) 

and 

 K K K K b tN N N N N N+ + + + + ++ + + =1 1 1 12 2
15

1 1 1
15

1 110 10, , , ( , ) .θ θ θ θ  (4.24) 
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The first term on the left hand side in equation (4.23) and the last term in equation (4.24) 

are large compared to the other terms in these equations except the right-hand side terms, 

so these equations are effectively 

 θ θ1 = ( , )a t  

and 

 θ θN b t+ =1 ( , )  

which are the desired essential boundary conditions.  When the heat flux is specified, no 

modifications are necessary because this is taken care of automatically in the assembly 

process. 

 The mass supply is calculated for the one-dimensional case by the equation 

  ( ) .c
x

D
d
d x

d
d ts

v
sat

s
v

v
sat

s= −
∂
∂

γ
θ

∂θ
∂

φ
γ
θ

∂θ
∂

 (4.25) 

The spatial derivatives in this equation are approximated by second-order accurate finite 

difference formulas.  Forward and backward difference formulas are used at the 

boundaries, and the central difference formula is used in the interior of the spatial 

domain.  The time derivative is approximated by a first-order accurate, backward 

difference formula. 

DESCRIPTION OF FORTRAN CODE 

 A FORTRAN program was written to solve the coupled set of equations (4.1) and 

(4.25).  The program is contained in Appendix A and performs the following steps to 

obtain the temperature distribution as a function of space and time: 
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1. Reads boundary conditions and initial conditions from data file. 

2. Initializes all arrays. 

3. Calculates the mass supply based on previous iteration's temperature  
 distribution.  The first guess for the new time step is the previous time 
 step's solution. 
 
4. Calculates the coefficients m, p, and q to the original differential  
 equation (4.1) at regularly spaced time intervals. 
 
5. Calculates the forcing function f based on the previous time step  
 solution and previous iteration solution as needed for the Crank- 
 Nicolson time integration scheme. 
 
6. Calculates a new solution at the current time with the Crank-Nicolson  
 time integration scheme. 
 
7. Checks for convergence by the L2 norm at the current time step by  
 comparing the new solution to the previous iteration's solution. 
 
8. If not converged, then repeats steps 3-7. 
 
9. If converged, then calculates a new ice volume fraction based on the 
 converged value of the mass supply. 
 
10. Records the solution in a data file at specified times. 
 
11. Stores the current time solution in arrays to be used at the next time  
 step. 
 
12. Repeats steps 2-11 until a specified time limit is reached. 
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CHAPTER V 

NUMERICAL RESULTS 

 This chapter describes the code verification and the numerical results given by the 

program described in Chapter IV.  The problem at hand is to model the heat and mass 

transfer in a snowpack 1 meter deep with the complexities associated with a real 

snowpack such as dense layers and a varying surface boundary condition.  Figure 5.1 

shows the domain in which the energy equation for snow is solved. 

x
0 m

1 mSnow Surface

Ground Level
 

Figure 5.1.  The Domain Orientation for the Solution of Heat and Mass Transfer in Snow. 

CODE VERIFICATION 

 Before proceeding to solve the nonlinear heat equation coupled with the mass 

supply, several test problems with known analytical solutions were solved by the 

program.  The first problem solved by numerical solution was the time dependent 

diffusion equation with Dirichlet boundary conditions and a homogeneous initial 

condition given by 

 ∂θ
∂ γ

∂ θ
∂t

k
C x

=
2

2 ,  (5.1) 
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 θ( , ) ,0 0 0t C to= ≥  (5.2) 

 θ( , ) ,1 1 0t C to= ≥  (5.3) 

and 

 θ( , ) .x C xo0 0 0 1= ≤ ≤  (5.4) 

Figure 5.2 shows that the numerical solution agrees very well with the analytical solution. 

 The next problem solved by the numerical solution was the time dependent 

diffusion equation with an internal generation term dependent on space and time.  The 

boundary conditions were of the Dirichlet type and the initial condition was 

homogeneous.   

The equation and associated boundary conditions were 

 ∂θ
∂ γ

∂ θ
∂t

k
C x

xt= +
2

2 Γ  (5.5) 

where Γ is a constant, 

 θ( , ) ,0 0 0t C to= ≥  (5.6) 

 θ( , ) ,1 20 0t C to= − ≥  (5.7) 

and 

 θ( , ) .x C xo0 0 0 1= ≤ ≤  (5.8) 

Figure 5.3 shows that the numerical solution agrees very well with the analytical solution. 
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 Finally, in order to check the time varying boundary condition complexity to the 

problem, equation (5.1) was solved with the time dependent surface boundary condition 

given by 

 θ
π( , ) sin .1 10 10

43200
t t= − − 





 (5.9) 

This solution was plotted in Figure 5.4.  The exact solution (Colbeck, 1989) given by 

 ( ) ( )( ) ( )( )θ ω ω
λ

ω
λx t e t x

x
, sin= − − − −









− −
10 10 1 2

1 2
1

2 1
2  (5.10) 

where 

 λ
γ

=
k
C

 (5.11) 

and 

 ω
π

=
2

86400
 (5.12) 

laid right over the top of the numerical solution, so it was not plotted in Figure 5.4.  These 

test cases lend confidence to the accuracy of the numerical code. 

SNOWPACK RESULTS 

 The numerical results corresponding to two test cases for a snowpack are 

presented in this section.  Colbeck (1991) stressed the importance of developing a theory 

of snow which incorporates the effect of layers on the heat transfer in snow.  The model 

snowpacks presented contain dense layers.  The volume fraction of the ice is the 
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dependent variable which allows the density to be a function of position in the snowpack.  

The density of the snow is calculated from the equation 

 ( )ρ φ γ φ γs i i i ha= + −1 .  (5.13) 

 

 

 

 



  97 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
POSITION (m)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
TE

M
PE

RA
TU

RE
 (d

eg
 C

)

ANALYTICAL AT 0.35 DAYS

NUMERICAL AT 0.35 DAYS

ANALYTICAL AT 0.70 DAYS

NUMERICAL AT 0.70 DAYS

ANALYTICAL AT 5.79 DAYS

NUMERICAL AT 5.79 DAYS

 

Figure 5.2.  Comparison of Analytical Solution to Numerical Solution for a Simple 
  Diffusion Problem. 
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Figure 5.3. Comparison of Analytical Solution to Numerical Solution for a Diffusion 
  Problem with Space and Time Dependent Heat Generation. 
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Figure 5.4.  Code Verification for Time Dependent Boundary Condition. 
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 CONSTANT BOUNDARY CONDITIONS.  The first test case involved a 1 m 

deep snowpack with a dense layer starting at 64 cm and ending at 86 cm.  Figure 5.5 

shows the ice volume fraction profile.  The snow had a density of 200 kg/m3 with an 

increase over 8 cm to a density of 605 kg/m3.  The ice volume fraction at the ground level 

was set to one.  The solid ice at the ground layer is believed to be a more realistic model 

of actual snowpack conditions.  If the volume fraction of the ice is set to a number less 

than one, then the snowpack can be viewed as having no barriers below it.  In other 

words, the model predicts that saturated air enters the snowpack at the ground level with 

no specified source for this vapor.  The initial conditions on the snowpack were 

isothermal at 0o C, and the boundary conditions at the bottom and top surfaces were 0o C 

and -20o C, respectively. 

 Figure 5.6 is the temperature profile in the snowpack for various times up to 

steady-state at 20 days.  In the dense layer of the snow, the temperature gradient is 

noticeably reduced at any time during the transient state.  This is due to the higher 

thermal conductivity of the dense snow.  The temperature profile near the surface is steep 

at one day, and as can be seen in Figure 5.7, the condensation rate of the water vapor at 

day one is also high near the surface.  This is because water vapor is diffusing toward the 

surface which is colder and, therefore, an area of lower saturation.  The water vapor must 

then condense if the air is not to become supersaturated.  Also the local temperature near 

the surface is decreasing rapidly which means that the water vapor must condense to keep 

the air at saturation.  Just below the dense layer, Figure 5.7 shows a peak in condensation 

 



  101 

rate during the transient stage and at steady-state.  This is due to the decrease in cross-

sectional area in the direction of the water vapor diffusion.  If the amount of air available 

to hold water decreases, then the amount of water vapor must also decrease.  Just above 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
POSITION (m)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

IC
E 

VO
LU

M
E 

FR
A C

TI
ON

 

Figure 5.5.  Ice Volume Fraction Profile in Snowpack. 
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Figure 5.6.  Temperature Profile in a Snowpack with a Dense Layer. 

the dense layer, the opposite is true.  Figure 5.7 shows that evaporation is occurring 

because the vapor volume fraction is increasing in the direction of vapor flow.  

Evaporation must occur to keep the increasing amount of air saturated. 
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 Local weakening above and below dense layers has been observed (Adams and 
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Figure 5.7.  Condensation Rate in a Snowpack with a Dense Layer. 

Brown, 1982).  If condensation is known to enhance depth hoar growth (Colbeck, 1983), 

then the condensation occurring below the dense layer in Figure 5.7 could contribute to 

the weakening observed in this region of an experimental snowpack.  The evaporation 

occurring above the dense layer may contribute to the weakening observed here.  At the 
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steady-state evaporation rate just above the dense layer in Figure 5.7, a decrease in 

density of 1 kg/m3 would take about 14 days.  This is a fairly slow rate of evaporation but 

could be enhanced in a real environment by larger temperature gradients, transient 

conditions, or steeper density gradients.  In fact, at the maximum rate of evaporation 

during the transient stage in Figure 5.7, a 1 kg/m3 density drop could occur in 2-3 days. 

 TIME DEPENDENT BOUNDARY CONDITION.  In this case, a 1 m deep 

snowpack was subjected to a harmonic temperature boundary condition at the snow 

surface given by 

 θ
π

s t t( , ) sin .1 20 10
43200

= − − 





 (5.14) 

The above equation is used as a model of the diurnal fluctuations in air temperature.  The 

boundary condition given by equation (5.14) has a mean value of -20o C with a ± 10o C 

fluctuation about the mean.  Again the dense snow layer was included at the same 

position as in the previous test case.   

 Figure 5.8 shows the temperature profile in the snowpack after the transients have 

disapppeared.  The temperature above the dense layer fluctuates a great deal, but the 

temperature in the dense layer and below fluctuates much less.  The dense layer has the 

effect of reducing the temperature gradient in the dense snow.  Figure 5.9 shows the 

temperature profile in a snowpack without a dense layer but with the same fluctuating 

boundary condition (equation 5.14) at the surface.  By examining Figures 5.8 and 5.9, the 

penetration depths of the temperature fluctuations for the two cases are about equal  
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Figure 5.8. Temperature Profile in a Snowpack with a Dense Layer and Time Dependent 
 Surface Boundary Condition. 

 The temperature gradients can be very large during daily variations in surface 

temperature as shown in Figure 5.8.  Large temperature gradients not only increase depth 

hoar rate of growth (Colbeck, 1983) due to condensation and sublimation amongst 

neighboring ice particles, but also increase the rate of condensation and evaporation as 

shown in Figure 5.9.  Colbeck (1989) noted that depth hoar growth has been observed 
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close to the surface in some snowpacks.  The large temperature gradients imposed by 

daily changes in surface temperature are one likely cause as Figures 5.8 and 5.9 

demonstrate.
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Figure 5.9.  Temperature Profile in a Snowpack with Time Dependent Surface Boundary  
 Condition but without a Dense Layer. 
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Figure 5.10.  Condensation Rate in a Snowpack with a Dense Layer and Time Dependent  
 Surface Boundary Condition. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 Temperature gradient metamorphism of snow has been shown to be a factor in the 

release of many avalanches.  This process is an active growth of a characteristic type of 

crystal called depth hoar which forms in the presence of a temperature gradient.  The 

temperature gradient induces heat and mass transfer through the snowpack.  Previous 

work in this area has produced useful results when the microstructure was considered or 

when a homogeneous snowpack was considered.  A modern mixture theory was chosen 

to model the heat and mass transfer process with the intent to lay the groundwork for a 

unified model of snow in that macroscopic effects would together be considered with 

microstructural evolution.  Furthermore, previous success with the modern mixture theory 

had been attained in modeling composite materials.  In order to broaden its range of 

application, it was applied here to a heat and mass transfer problem. 

 The modern mixture theory presented has been successfully applied to the heat 

and mass transfer problem of temperature gradient metamorphism of snow.  Two ideal 

microstructures for the snow were considered that envelope the range of possible 

microstructures in the snow.  Effective thermal conductivities and diffusion coefficients 

were obtained from these microstructures.  A linear combination of the results from these 

two microstructures was then used as the effective thermal conductivity in the snow.  

Comparison with experimental effective thermal conductivities showed this is a 
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reasonable model for the effective thermal conductivity of the snow.  The effective 

diffusion coefficient for the water vapor was also shown to be enhanced over the normal 

diffusion coefficient for water vapor in air up to a snow density of about 800 kg/m3. 

 The theory developed for the heat and mass transfer in snow is believed to be the 

most coherent in that it was derived from one general theory.  Some terms in previous 

researchers equations were not clearly derived.  The groundwork has been formulated 

here for a more complete understanding of the heat and mass transfer in snow by 

presenting a complete development of the governing equations. 

 A numerical method was developed based on the Galerkin finite element method 

and Crank-Nicolson time integration scheme to solve the governing equations for heat 

and mass transfer in snow.  The numerical method obtains second order accuracy in both 

the spatial and time domains.  Furthermore, the numerical method is general enough to 

handle any such complexities that are associated with a snowpack in a real environment 

such as time varying boundary conditions, time dependent internal heat generation due to 

solar radiation, and nonlinearity of the coefficients in the differential equation. 

 The numerical method was then tested by using it to solve parabolic differential 

equations in one-dimension that had known analytical solutions.  The numerical solutions 

agreed very well with the known analytical solutions.  Once confidence in the numerical 

method was established, it was used to solve the equations governing heat and mass 

transfer in snow.  The model snowpack contained a dense layer as real snowpacks often 

do.  The results showed that the dense layer causes water vapor to condense below it and 

 



  111 

ice to sublimate above it.  This may correlate with experimental observations that have 

shown significant snowpack weakening above and below dense layers in experimental 

snowpacks.  It was also shown that a time varying temperature boundary condition at the 

snow surface induces large fluctuations in temperature gradient and condensation rate of 

the water vapor which both contribute to the growth of depth hoar.  Depth hoar growth 

near the surface has been observed in real snowpacks. 

 Further research needs to be done in the area of stereology of snow to quantify the 

effective thermal conductivities and diffusion coefficients based on easily identifiable 

stereological variables.  A microstructure evolution model must then be developed based 

on the macroscopic variables calculated in the theory presented here such as temperature 

gradient and condensation rate.  When the microstructure evolves, the effective thermal 

conductivities and diffusion coefficients change.  Incorporating all these considerations 

into the groundwork established in this thesis would be the next step in developing a 

unified model of snow. 
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APPENDIX A 

 
  PROGRAM MAIN 
* 
*     AUTHOR:  WAYNE E. FOSLIEN 
*     DATE:  JULY 1994 
* 
*     PROGRAM DESCRIPTION: 
*       THIS FORTRAN PROGRAM IS A FINITE ELEMENT BASED PROGRAM 
*       THAT CAN BE USED TO SOLVE THE GENERAL STURM-LIOUVILLE 
*       PROBLEM WITH A TIME DERIVATIVE TERM.  A CRANK-NICHOLSON 
*       TIME INTEGRATION SCHEME IS USED TO MARCH FORWARD IN TIME. 
*       THE CODE THAT FOLLOWS SPECIFICALLY SOLVES THE NONLINEAR 
*       EQUATIONS GOVERNING HEAT AND MASS TRANSFER IN SNOW BY A 
*       SIMPLE ITERATIVE TECHNIQUE. 
* 
*     VARIABLE DESCRIPTION: 
*       T = TIME 
*       TOUT = TIME TO OUTPUT DATA 
*       TMAX = UPPER TIME LIMIT FOR INTEGRATION 
*       H = TIME STEP 
*       K = COUNTER FOR COEFFICIENT MATRIX UPDATE 
*       CHATO = PREVIOUS TIME STEP VALUE OF MASS SUPPLY 
*       CHAT = CURRENT TIME STEP'S VALUE OF MASS SUPPLY 
*       ERR = CHANGE IN SOLUTION FROM PREVIOUS ITERATION 
*             BASED ON L2 NORM 
*       TOL = TOLERANCE ON THE ERROR IN THE SOLUTION 
*       TEMP = TEMPERATURE OF SNOW AT CURRENT TIME STEP 
*       TEMPP = TEMPERATURE OF SNOW AT PREVIOUS ITERATION 
*       IT = NUMBER OF ITERATIONS 
*       ITMAX = MAXIMUM NUMBER OF ITERATIONS ALLOWED 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 OPEN (UNIT=10, FILE='ELEM.DAT',STATUS='OLD') 
 OPEN (UNIT=15, FILE='ICBC.DAT',STATUS='OLD') 
 OPEN (UNIT=16, FILE='PHIO.DAT',STATUS='OLD') 
 OPEN (UNIT=20, FILE='ECHO.DAT',STATUS='UNKNOWN') 
 OPEN (UNIT=30,FILE='TEMP.dat',STATUS='UNKNOWN') 
 OPEN (UNIT=35,FILE='DTDX.DAT',STATUS='UNKNOWN') 
 
 CALL INPUT 
 
 T=H 
 K=0 
 CALL INITIALIZE 
 DO 10 I=1,NPOIN 
   CHATO(I)=0.0D0 
 10   CONTINUE 
 
 20   CALL TEMPIV 
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* 
*  CHECK FOR CONVERGENCE AT CURRENT TIME STEP 
* 
 ERR=0.0D0 
 DO 40 I=1,NPOIN 
   ERR=ERR+(TEMP(I)-TEMPP(I))**2. 
*        print *, 'temp=',temp(i),tempp(i) 
 40   CONTINUE 
 ERR = SQRT(ERR) 
*      PRINT *, 'ERR=',ERR 
 IF (ERR.LE.TOL) THEN 
   CALL PHI 
*        ERRSS=0.0D0 
*        DO 42 I=1,NPOIN 
*          ERRSS=ERRSS+DABS(TEMP(I)-TEMPO(I)) 
* 42     CONTINUE 
*        PRINT *, 'ERRSS=',ERRSS 
*        IF (ERRSS.LT.TOL*1.D5) THEN 
*          CALL OUTPUT (1) 
*          STOP 
*        ENDIF 
   IF (T.EQ.TOUT) THEN 
     CALL OUTPUT(0) 
     TOUT=TOUT+86400.D0 
   ENDIF 
*        PRINT *, 'TIME=',T 
   T=T+H 
   IT=0 
   K=K+1 
* 
*  STORE CURRENT CONVERGED SOLUTION 
* 
   DO 45 I=1,NPOIN 
*          print *, 'temp=',temp(i) 
     TEMPO(I)=TEMP(I) 
     TEMPP(I)=TEMPO(I) 
     CHATO(I)=CHAT(I) 
     RLOAD(I)=0.0D0 
 45   CONTINUE 
 ELSE 
   IF (K.EQ.0) K=K+1 
   IF (IT.EQ.ITMAX) THEN 
     PRINT *, 'IT=',IT,'T=',T 
     STOP 
   ENDIF 
   IT=IT+1 
*        print *, 'it=',it 
   DO 47 I=1,NPOIN 
     TEMPP(I)=TEMP(I) 
     RLOAD(I)=0.0D0 
 47   CONTINUE 
   GOTO 20 
 ENDIF 
 
 IF (K.EQ.KMAX) THEN 
   K=0 
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   CALL INITIALIZE 
 ENDIF 
 
 IF (T.LE.TMAX) GOTO 20 
 
 END 
 
************************************************** 
 
 SUBROUTINE INITIALIZE 
 
*     SUBROUTINE DESCRIPTION: 
*       INITIALIZE ALL VARIABLES FROM INTEG SUBROUTINE 
* 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DO 25 I=1,NPOIN 
 DO 23 J=1,NPOIN 
   STIFF(I,J)=0.0D0 
   STR(I,J)=0.0D0 
 23 CONTINUE 
 25 CONTINUE 
 DO 28 I=1,3 
   FLOAD(I)=0.0D0 
 DO 27 J=1,3 
   SMR(I,J)=0.0D0 
   SK(I,J)=0.0D0 
   SM(I,J)=0.0D0 
   SRR(I,J)=0.0D0 
 27 CONTINUE 
 28 CONTINUE 
 
 RETURN 
 END 
 
*************************************************************** 
 
 DOUBLE PRECISION FUNCTION GS(TE) 
 
 IMPLICIT DOUBLE PRECISION (A-H), DOUBLE PRECISION (O-Z) 
 IMPLICIT INTEGER (I-N) 
  
* 
*     PURPOSE: 
*       CALCULATE THE VAPOR DENSITY OF WATER 
* 
*     VARIABLES: 
*       TE = TEMPERATURE 
*       C* = CONSTANTS USED TO CALCULATE DENSITY 
*       RV = GAS CONSTANT FOR WATER VAPOR 
* 
 
 DATA C1,C2,C3/-2445.5646D0,8.2312D0,-1.677006D-2/ 
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 DATA C4,C5/1.20514D-5,-6.757169D0/ 
 DATA C6,RV/133.3224D0,461.9D0/ 
 
 GS=(10.D0**(C1/TE+C2*DLOG10(TE)+C3*TE+C4*TE*TE+C5))*C6/RV/TE 
 
 RETURN 
 END 
 
****************************************************************** 
 
 DOUBLE PRECISION FUNCTION DDGDT(TE) 
 
*     PURPOSE: 
*       THIS SUBROUTINE CALCULATES THE SECOND DERIVATIVE OF 
*       THE DENSITY WITH RESPECT TO THE TEMPERATURE. 
* 
*     VARIABLE DESCRIPTION: 
*       TE = TEMPERATURE 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) 
 
 DATA C1,C2,C3,C4/-2445.5646D0,8.2312D0,-1.677006D-2,1.20514D-5/ 
 
 DDGDT=DGDT(TE)*DLOG(10.D0)*(-C1/TE**2+(C2-1.D0)/TE/DLOG(10.D0) 
     & +C3+2.D0*C4*TE)+GS(TE)*DLOG(10.D0)*(2.D0*C1/TE**3+(1.D0-C2)/ 
     & TE**2/DLOG(10.D0)+2.D0*C4) 
 
 RETURN 
 END 
 
*********************************************************  
 
 DOUBLE PRECISION FUNCTION DGDT(TE) 
 
*     PURPOSE: 
*       THIS SUBROUTINE CALCULATES THE FIRST DERIVATIVE 
*       OF THE DENSITY WITH RESPECT TO THE TEMPERATURE. 
* 
*     VARIABLE DESCRIPTION: 
*       TE = TEMPERATURE 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) 
 DATA C1,C2,C3,C4/-2445.5646D0,8.2312D0,-1.677006D-2,1.20514D-5/ 
 
 DGDT=GS(TE)*DLOG(10.D0)*(-C1/TE**2+(C2-1.D0)/TE/DLOG(10.D0)+C3 
     &     +2.D0*C4*TE) 
 
 RETURN 
 END 
 
**********************************************************  
 
 SUBROUTINE PHI 
 
*     PURPOSE: 
*       INTEGRATE THE VOLUME FRACTION OF ICE 
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* 
*     VARIABLE DESCRIPTION: 
*       H = TIME STEP 
*       CHAT = MASS SUPPLY 
*       GI = DENSITY OF ICE 
*       PHIIO = PREVIOUS TIME STEP VALUE FOR THE VOLUME 
*               FRACTION OF ICE 
*       PHII = NEW VALUE FOR THE VOLUME FRACTION OF ICE 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DO 10 I=1,NPOIN 
   PHII(I)=H*CHAT(I)/GI + PHIIO(I) 
*        print *, 'phii=',phii(i) 
 10 CONTINUE 
 
 RETURN 
 END 
 
****************************************************  
 
 SUBROUTINE TEMPIV 
 
*     PURPOSE: 
*       CALCULATE THE COEFFICIENTS TO THE DIFFERENTIAL EQUATION 
*       AND CALL THE SUBROUTINE TO INTEGRATE. 
* 
*     VARIABLE DESCRIPTION: 
*       F = FORCING FUNCTION TERM IN DE 
*       P = SPATIAL DERIVATIVE COEFFICIENT IN DE 
*       Q = DEPENDENT VARIABLE COEFFICIENT IN DE 
*       AMN = TIME DERIVATIVE COEFFICIENT IN DE 
*       TCI = THERMAL CONDUCTIVITY OF ICE 
*       TCA = THERMAL CONDUCTIVITY OF AIR 
*       GI = DENSITY OF ICE 
*       PHIV = VOLUME FRACTION OF VAPOR 
*       PHII = VOLUME FRACTION OF ICE 
*       CVA = SPECIFIC HEAT OF AIR AT CONSTANT VOLUME 
*       CVI = SPECIFIC HEAT OF ICE AT CONSTANT VOLUME 
*       TEMPO = PREVIOUS TIME STEP TEMPERATURE 
*       USG = INTERNAL ENERGY LATENT HEAT 
* 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION F(NPOIN),P(NPOIN),Q(NPOIN),AMN(NPOIN) 
 
 CALL MASSUPLY 
 
 DO 10 I=1,NPOIN 
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   IF (K.EQ.0.OR.K.EQ.KMAX) P(I)=TSNOW(I) 
   IF (K.EQ.0.OR.K.EQ.KMAX) AMN(I)=PHII(I)*GI*CVI+PHIV(PHII(I)) 
     &                                *GA*CVA 
   F(I)=USG(263.15D0)*CHATO(I)+USG(263.15D0)*CHAT(I) 
   Q(I)=0.0D0 
 10   CONTINUE 
 
 CALL INTEG(F,P,Q,AMN,TEMPO,TEMP) 
 
 RETURN 
 END 
 
******************************************************** 
 
 DOUBLE PRECISION FUNCTION TSNOW (I) 
 
*     PURPOSE: 
*       CALCULATE THE EFFECTIVE THERMAL CONDUCTIVITY OF SNOW DUE TO 
*       CONDUCTION ALONE. 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 TSNOW = PHII(I)*TPORE(I) + (1.D0-PHII(I))*TLAM(I) 
 
 RETURN 
 END 
 
********************************************************** 
 
 DOUBLE PRECISION FUNCTION TPORE(I) 
 
*     PURPOSE: 
*       CALCULATE THE THERMAL CONDUCTIVITY OF THE PORE MICROSTRUCTURE 
* 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 TPORE = PHII(I)*TCI(TEMP(I)) + (1.D0-PHII(I))* 
     &        TCA(TEMP(I)+273.15D0) 
 
 RETURN 
 END 
 
******************************************************** 
 
 DOUBLE PRECISION FUNCTION TCI(TE) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
* 
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*     EXPERIMENTAL CORRELATION BELOW FROM FUKUSAKO (1990) 
*     VALID FOR -173 C - 0 C 
 
 TCI = 1.16D0*(1.91D0-8.66D-3*TE+2.97D-5*TE**2.D0) 
 
 RETURN 
 END 
 
******************************************************** 
 
 DOUBLE PRECISION FUNCTION TCA (TE) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
* 
*     LINEAR BEST FIT LINE BELOW FROM DATA IN INCROPERA & DEWITT (1985) 
*     FOR TEMPERATURES 250K - 300K 
 
 TCA = 8.D-5*(TE-250.D0)+0.0223D0 
 
 RETURN 
 END 
 
******************************************************** 
 
 DOUBLE PRECISION FUNCTION TLAM(I) 
 
* 
*     PURPOSE: 
*       CALCULATE THE THERMAL CONDUCTIVITY OF THE LAMELLAE 
*       MICROSTRUCTURE. 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 TCAC=TCA(TEMP(I)+273.15D0) 
 TCIC=TCI(TEMP(I)) 
 TLAM = TCAC*TCIC/(PHII(I)*(TCAC+USG(263.15D0)*DV(TEMP(I) 
     &       +273.15)*DGDT(TEMP(I)+273.15))+(1.D0-PHII(I))*TCIC) 
 
 RETURN 
 END 
 
********************************************************* 
 
 SUBROUTINE MASSUPLY 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
*     PURPOSE: 
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*       CALCULATE THE MASS SUPPLY CHAT 
* 
*     VARIABLE DESCRIPTION: 
*       VJ = MASS FLUX OF VAPOR 
*       DTDT = RATE OF CHANGE OF VAPOR DENSITY WITH TIME TIMES PHIV 
*       DTDX = FIRST SPATIAL DERIVATIVE OF TEMPERATURE 
*       DX = SPATIAL STEP 
*       DEFF = EFFECTIVE DIFFUSION COEFFICIENT OF WATER VAPOR IN SNOW 
* 
 DO 10 I=1,NPOIN 
   IF (I.EQ.1) THEN 
     DTDX(I)=(-3.D0*TEMP(1)+4.D0*TEMP(2)-TEMP(3))/2.D0/DX 
   ELSEIF (I.EQ.NPOIN) THEN 
     DTDX(I)=(3.D0*TEMP(I)-4.D0*TEMP(I-1)+TEMP(I-2))/2.D0/DX 
   ELSE 
     DTDX(I)=(TEMP(I+1)-TEMP(I-1))/2.D0/DX 
   ENDIF 
   VJ(I)=-DEFF(I)*DGDT(TEMP(I)+273.15D0) 
     &         *DTDX(I) 
*        PRINT *, 'VJ=',VJ(I),I 
*        PRINT *, 'CHAT=',CHAT(I) ,I 
 10   CONTINUE 
 DO 20 I=1,NPOIN 
   DTDT=PHIV(PHII(I))*DGDT(TEMP(I)+273.15)*(TEMP(I)-TEMPO(I))/H 
   IF (I.EQ.1) THEN 
     CHAT(I)=-(-3.D0*VJ(I)+4.D0*VJ(I+1)-VJ(I+2))/2.D0/DX-DTDT 
*          CHAT(I)=-VJ(I)/DX 
   ELSEIF (I.EQ.NPOIN) THEN 
     CHAT(I)=-(3.D0*VJ(I)-4.D0*VJ(I-1)+VJ(I-2))/2.D0/DX-DTDT 
   ELSE 
     CHAT(I)=-(VJ(I+1)-VJ(I-1))/2.D0/DX-DTDT 
   ENDIF 
*        PRINT *, 'CHAT=',CHAT(I),I 
 20   CONTINUE 
 
 RETURN 
 END 
 
********************************************************** 
 
 DOUBLE PRECISION FUNCTION DEFF(I) 
 
*     PURPOSE: 
*       CALCULATE THE EFFECTIVE DIFFUSION COEFFICIENT FOR SNOW 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 D = DV(TEMP(I)+273.15D0) 
 TCIC=TCI(TEMP(I)) 
 TCAC=TCA(TEMP(I)+273.15D0) 
 DEFF=(PHII(I)*PHIV(PHII(I))+PHIV(PHII(I))*TCIC/(PHII(I)* 
     &     (TCAC+USG(263.15D0)*D*DGDT(TEMP(I)+273.15D0))+PHIV(PHII(I))* 
     &     TCIC))*D 
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 RETURN 
 END 
  
************************************************************* 
 
 DOUBLE PRECISION FUNCTION DV(TE) 
 IMPLICIT DOUBLE PRECISION (A-H), DOUBLE PRECISION (O-Z) 
 IMPLICIT INTEGER (I-N) 
 
* 
*     PURPOSE: 
*       CALCULATE THE CORRECTION ON THE WATER VAPOR DIFFUSIVITY 
*       IN AIR DUE TO TEMPERATURE CHANGES. 
* 
*     VARIABLES: 
*       DO = WATER VAPOR DIFFUSIVITY AT TO 
*       TO = REFERENCE TEMPERATURE FOR DO 
*       TE = TEMPERATURE 
* 
 DATA DO,TO/0.26D-4,298.0D0/ 
 
 DV = DO*(TE/TO)**1.5D0 
 
 RETURN 
 END 
 
****************************************************** 
 
 DOUBLE PRECISION FUNCTION PHIV(PHII) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
*C 
*C     PURPOSE: 
*C       CALCULATE THE VOLUME FRACTION OF THE VAPOR GIVEN THE VOLUME 
FRACTION OF THE 
*C       ICE 
*C 
*C     VARIABLES: 
*C       PHII = VOLUME FRACTION OF ICE 
*C       PHIV = VOLUME FRACTION OF VAPOR 
*C 
* 
 PHIV=1.D0-PHII 
 RETURN 
 END 
 
********************************************************* 
 
 DOUBLE PRECISION FUNCTION USG(TE) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
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* 
*  THIS FUNCTION CALCULATES THE INTERNAL ENERGY CHANGE DUE TO PHASE 
CHANGE 
*  FROM ICE TO WATER VAPOR 
* 
 USG=(2626.11D0+1.31763D0*TE-3.71584D-3*TE**2)*1.D3 
 
 RETURN 
 END 
 
 
************************************************************************
****** 
*                     SUBROUTINE INPUT                                       
* 
************************************************************************
****** 
      SUBROUTINE INPUT 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 INCLUDE 'COMMON.F' 
*C 
*C     CALLED BY: SANDL 
*C     CALLS    : NONE 
*C 
      CHARACTER *40  TITLE  
*C 
*C---->READ THE TITLE 
*C 
      READ(10,1000) TITLE 
 
*C 
*C---->READ THE GRID CONTROL DATA 
*C 
 READ(10,1015) IWRITE, KMAX 
*      NPOIN = 2*NELEM+1 
 
        READ(10,1060) X(1) 
        READ(10,1060) X(NPOIN) 
 
 
      DX = (X(NPOIN)-X(1))/DBLE(FLOAT(NPOIN-1)) 
      DO 20 I=2,NPOIN-1 
 X(I)=X(I-1)+DX 
 PRINT *, 'X=',X(I) 
 20   CONTINUE        
*C 
*C---->DEVELOP THE ELEMENT CONNECTIVITY ARRAY 
*C 
      DO 40 IELEM = 1, NELEM 
 DO 30 INODE=1, 3 
   LNODE(IELEM,INODE)=2*IELEM-1 + (INODE-1) 
 30 CONTINUE 
 
   40 CONTINUE 
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*C 
*C     READ THE TIME STEP VALUE 
*C 
 READ (10,1060) H 
 PRINT *, 'H=',H 
 READ (10,1060) TMAX 
 
 READ (10,1060) TOL 
 READ (10,1060) TOUT 
 READ (10,900) ITMAX 
 
 
********************************************************************* 
*C 
*C---->READ THE INITIAL CONDITION AND BOUNDARY CONDITION DATA 
*C 
 
 DO 100 I=1,2 
 GOTO (70,90) I 
 
 70   READ (15,1060) TEMPO(1) 
 PRINT *, 'TEMPO=',TEMPO(1) 
 DO 75 J=1,NPOIN 
   TEMPO(J)=TEMPO(1) 
   TEMPP(J)=TEMPO(1) 
   TEMP(J)=TEMPO(1) 
 75 CONTINUE 
 GOTO 95 
 
 90   DO 92 J=1,NPOIN 
   READ (16,1070) PHIIO(J) 
   PHII(J)=PHIIO(J) 
   PRINT *,PHII(J) 
 92 CONTINUE 
 GOTO 100 
  
  
 95   READ (15,1040) NA,NB 
   IF (NA .EQ. 1) THEN 
     READ(15,1050) AA, ALPHA 
 
        ELSE 
     READ(15,1060) UA 
 
        END IF 
   IF (NB .EQ. 1) THEN 
     READ(15,1050) BB, BETA 
 
        ELSE 
     READ(15,1060) UB 
 
   ENDIF 
 100   CONTINUE 
 IF (NA.EQ.2) TEMPP(1)=UA 
 IF (NB.EQ.2) TEMPP(NPOIN)=UB 
*C 
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*C---->FORMAT STATEMENTS FOR INPUT 
*C 
  900 FORMAT(10X,I5) 
 1000 FORMAT(10X, A30) 
 1010 FORMAT(10X, 2I5) 
 1015 FORMAT(10X, I5,I10) 
 1020 FORMAT(10X, I5, 5X, G10.4) 
 1030 FORMAT(10X, 4(I5,5X)) 
 1040 FORMAT(10X, I5, I5) 
 1050 FORMAT(10X, 2G10.4) 
 1060 FORMAT(10X, G10.4) 
 1070 FORMAT(5X,G10.4) 
*C 
*CCCCCCCCCCCCCCCCCCCCCC 
*C 
*C---->ECHO THE INPUT 
*CCCCCCCCCCCCCCCCCCCCCCCC 
      WRITE(20,2000) 
      WRITE(20,2010) TITLE 
      WRITE(20,2020) 
* 
* 
*     ECHO ALL INPUT 
* 
************************************* 
      WRITE (20,2030) NELEM,NPOIN 
      WRITE (20,2035) H 
      WRITE (20,2036) TMAX 
      WRITE (20,2040) 
      DO 120 I=1,NPOIN 
   WRITE (20,2050) I,X(I),TEMPO(I),PHIIO(I) 
 120   CONTINUE 
  WRITE (20,2061) 
   IF (NA.EQ.1) THEN 
     WRITE (20,2070) AA,ALPHA 
        ENDIF 
   IF (NB.EQ.1) THEN 
     WRITE (20,2075) BB,BETA 
        ENDIF 
   IF (NA.EQ.2) THEN 
  WRITE (20,2080) UA 
        ENDIF 
   IF (NB.EQ.2) THEN 
     WRITE (20,2085) UB 
        ENDIF 
 180  CONTINUE 
 2000 FORMAT(21X,'UW-ME533',//,115X,'1-D FINITE ELEMENT ANALYSIS',////) 
 2010 FORMAT(3X,A40,//) 
 2020 FORMAT(1X,26('*'),2X,'ECHOED INPUT',2X,26('*'))  
 2030 FORMAT(2X,'NUMBER OF ELEMENTS= ',I5,' NUMBER OF POINTS IN DOMAIN=' 
     &       1X,I5) 
 2035 FORMAT(2X,'THE TIME STEP= ',F7.3) 
 2036 FORMAT (2X,'THE INTEGRATION DURATION IS TMAX= ',F7.3) 
 2040 FORMAT('POINT NO.',6X,'X',7X,'TVO',7X,'TIO',7X,'GVO',7X,'PHIIO') 
 2050 FORMAT(I5,5X,5(F7.3,3X)) 
 2060 FORMAT('BOUNDARY CONDITIONS FOR VAPOR TEMPERATURE:') 
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 2061 FORMAT('BOUNDARY CONDITIONS FOR ICE TEMPERATURE:') 
 2062 FORMAT('BOUNDARY CONDITIONS FOR VAPOR DENSITY:') 
 2063 FORMAT(1x,'ICE VOLUME FRACTION DOESNT REQUIRE BOUNDARY  
     &        CONDITIONS.') 
 2070 FORMAT('NATURAL:',2X,'A= ',F7.3,2X,'ALPHA= ',F7.3) 
 2075 FORMAT('NATURAL:',2X,'B= ',F7.3,2X,'BETA= ',F7.3) 
 2080 FORMAT('ESSENTIAL:',2X,'UA= ',F7.3) 
 2085 FORMAT('ESSENTIAL:',2X,'UB= ',F7.3) 
      RETURN 
      END 
 
****************************************************************** 
 
 SUBROUTINE OUTPUT (ISS) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 IF (ISS.EQ.0) THEN 
   WRITE (30,*) T 
   DO 45 I=1,NPOIN 
     PRINT *, X(I), TEMP(I), PHII(I) 
     WRITE (30,1000) X(I),TEMP(I),PHII(I),CHAT(I) 
     WRITE (35,1010) X(I),DTDX(I) 
*          WRITE (55,*) X(I),PHII(I) 
 45   CONTINUE 
 ELSE 
   WRITE (31,*) T 
   DO 50 I=1,NPOIN 
     WRITE (31,1020) X(I), TEMP(I), PHII(I),CHAT(I),VJ(I) 
 
 50     CONTINUE 
 ENDIF 
 1000 FORMAT (E12.4,1X,E12.4,1X,E12.4,1X,E12.4) 
 1010 FORMAT (E12.4,1XE12.4) 
 1020 FORMAT (E12.4,1X,E12.4,1X,E12.4,1X,E12.4,1X,E12.4) 
      RETURN 
 END 
 
************************************************************* 
 
 SUBROUTINE INTEG (F,P,Q,AMN,UO,U) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION U(NPOIN),UO(NPOIN),AMN(NPOIN),F(NPOIN),P(NPOIN) 
 DIMENSION Q(NPOIN),RHS(NPOIN) 
 DIMENSION INDX(NPOIN),VV(NPOIN) 
 
 DO 10 I=1,NPOIN 
   RLOAD(I)=0.0D0 
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 10  CONTINUE 
 
 DO 50 IELEM = 1, NELEM 
         IF (K.EQ.0.OR.K.EQ.KMAX) CALL FORMSMR(IELEM,P,Q,AMN) 
  CALL FORMLOAD(IELEM,F) 
         IF( IWRITE .EQ. 2 ) CALL OUT(1,IELEM) 
    CALL INDEX(IELEM) 
    IF (K.EQ.0.OR.K.EQ.KMAX) CALL ASSEMBLES 
  CALL ASSEMBLEL 
         IF( IWRITE .EQ. 2 ) CALL OUT(2,IELEM) 
   50 CONTINUE 
*      print *, 'k=',k 
  DO 55 I=1,NPOIN 
   RHS(I)=0.0D0 
   DO 57 J=1,NPOIN 
     RHS(I)=STR(I,J)*UO(J)+RHS(I) 
 57   CONTINUE 
 RLOAD(I)=RLOAD(I)+RHS(I) 
 55 CONTINUE 
 
 IF (K.EQ.0.OR.K.EQ.KMAX) CALL BOUNDS 
*      print *, 'ks=',k 
 CALL BOUNDL 
*      print *, 'kl=',k 
*      IF( IWRITE .EQ. 2 ) CALL OUT(2, NELEM) 
*      IF( IWRITE .EQ. 2 ) CALL OUT(3, NELEM) 
 
*      DO 59 I=1,NPOIN 
*      DO 58 J=1,NPOIN 
*        A(I,J)=STIFF(I,J) 
* 58   CONTINUE 
*      INDX(I)=IN(I,IBC) 
* 59   CONTINUE 
 
      IF (K.EQ.0.OR.K.EQ.KMAX) THEN 
 PRINT *, 'GOING TO LUDCMP' 
   CALL LUDCMP(STIFF, VV, INDX, NPOIN, D) 
*        DO 70 I=1,NPOIN 
*        DO 60 J=1,NPOIN 
*          STIFF(I,J)=A(I,J) 
* 60     CONTINUE 
*          IN(I,IBC)=INDX(I) 
* 70     CONTINUE 
 ENDIF 
*      IF (K.NE.0.AND.K.NE.KMAX) THEN 
*        DO 85 I=1,NPOIN 
*        INDX(I)=IN(I,IBC) 
*      DO 80 J=1,NPOIN 
*        A(I,J)=STIFF(I,J,IBC) 
* 80     CONTINUE 
* 85   CONTINUE 
*      ENDIF 
*      print *, 'going to lubksb' 
 CALL LUBKSB(STIFF,INDX,NPOIN,RLOAD) 
       
* 
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* COPY THE RESULTS FROM RLOAD(I) INTO U(I) 
* 
      DO 90 I= 1, NPOIN 
        U(I) = RLOAD(I) 
   90 CONTINUE 
 
      RETURN 
      END 
 
************************************************************************
****** 
*                     SUBROUTINE OUTPUT OF STIFFNESS MATRIX COMPONENTS       
* 
************************************************************************
****** 
 
 SUBROUTINE OUT (ICODE,NM) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 GO TO (100,200,300,400) ICODE 
 
  100 WRITE(40,600) NM 
  600 FORMAT(1H1,//,10X,'ELEMENT STIFFNESS MATRIX, MEM. NO.',I3,/) 
      WRITE(40,601)((SMR(I,J),J=1,3),I=1,3) 
  601 FORMAT(10X,4E14.7) 
      RETURN 
 
  200 WRITE(40,602) NM 
  602 FORMAT(//,10X,'GLOBAL STIFFNESS MATRIX: MEMBERS 1 THRU. ',I2) 
      DO 49 I = 1, NPOIN 
*         DO 48 J = 1, NPOIN 
*   48       WRITE(40,809) I,J,STIFF(I,J,IBC) 
  809       FORMAT(I3,I3,E12.5) 
            WRITE(40,603) 
  603       FORMAT(//) 
   49 CONTINUE 
      RETURN 
 
  300 WRITE(40,810) 
  810 FORMAT(1H1,//,10X,'LOAD VECTOR') 
      WRITE(40,811) (RLOAD(I) , I=1, NPOIN) 
  811 FORMAT(10X,E14.7) 
      RETURN 
 
*  400 IJT = 0 
  400    WRITE (40,*) 'RESULTS:   NODE                    U' 
      DO 79 IPOIN = 1, NPOIN 
*         WRITE(40,813) IPOIN, U(IPOIN) 
  813    FORMAT(10X,I3,13X,G12.5) 
  79  CONTINUE 
      RETURN 
      END 
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************************************************************* 
*                     SUBROUTINE FORMSMR                    * 
************************************************************* 
 SUBROUTINE FORMSMR(IELEM,P,Q,AMN) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION AMN(NPOIN),P(NPOIN),Q(NPOIN) 
 
* 
*  THIS ROUTINE FORMS THE LOCAL ELEMENT STIFFNESS MATRIX 
* 
 
 
* 
*  DETERMINE WHAT THE NODE NUMBER I IS AT THE LEFT END OF EACH ELEMENT 
* 
       I=LNODE(IELEM,1) 
* 
*  DETERMINE THE ELEMENT LENGTH, EL, BASED ON NODAL VALUES 
* 
 EL=X(I+2)-X(I) 
* 
*  CALCULATE THE LOCAL STIFFNESS MATRIX BY CALLING SPECIAL INTEGRATION 
*  FUNCTIONS 
* 
      SK(1,1)=PE(37.D0,36.D0,-3.D0,I,EL,P)+QE(39.D0,20.D0,-3.D0,I,EL,Q)         
 SK(1,2)=PE(-44.D0,-32.D0,-4.D0,I,EL,P) 
     &        +QE(20.D0,16.D0,-8.D0,I,EL,Q) 
      SK(1,3)=PE(7.D0,-4.D0,7.D0,I,EL,P)+QE(-3.D0,-8.D0,-3.D0,I,EL,Q) 
      SK(2,2)=PE(48.D0,64.D0,48.D0,I,EL,P)+QE(16.D0,192.D0,16.D0,I,EL,Q) 
      SK(2,3)=PE(-4.D0,-32.D0,-44.D0,I,EL,P) 
     &        +QE(-8.D0,16.D0,20.D0,I,EL,Q) 
      SK(3,3)=PE(-3.D0,36.D0,37.D0,I,EL,P)+QE(-3.D0,20.D0,39.D0,I,EL,Q) 
 
      SM(1,1)=QE(39.D0,20.D0,-3.D0,I,EL,AMN)  
      SM(1,2)=QE(20.D0,16.D0,-8.D0,I,EL,AMN) 
      SM(1,3)=QE(-3.D0,-8.D0,-3.D0,I,EL,AMN) 
      SM(2,2)=QE(16.D0,192.D0,16.D0,I,EL,AMN) 
      SM(2,3)=QE(-8.D0,16.D0,20.D0,I,EL,AMN) 
      SM(3,3)=QE(-3.D0,20.D0,39.D0,I,EL,AMN) 
 
      SMR(1,1)=H/2.D0*SK(1,1)+SM(1,1) 
      SMR(1,2)=H/2.D0*SK(1,2)+SM(1,2) 
      SMR(1,3)=H/2.D0*SK(1,3)+SM(1,3)  
      SMR(2,2)=H/2.D0*SK(2,2)+SM(2,2) 
      SMR(2,3)=H/2.D0*SK(2,3)+SM(2,3) 
      SMR(3,3)=H/2.D0*SK(3,3)+SM(3,3)    
 
      SRR(1,1)=-H/2.D0*SK(1,1)+SM(1,1) 
      SRR(1,2)=-H/2.D0*SK(1,2)+SM(1,2) 
      SRR(1,3)=-H/2.D0*SK(1,3)+SM(1,3)  
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      SRR(2,2)=-H/2.D0*SK(2,2)+SM(2,2) 
      SRR(2,3)=-H/2.D0*SK(2,3)+SM(2,3) 
      SRR(3,3)=-H/2.D0*SK(3,3)+SM(3,3)    
 
* 
*  THE STIFFNESS MATRIX IS SYMMETRIC FOR STURM-LIOUVILLE PROBLEMS 
*  SO SET THE LOWER TRIANGLE OF THE COEFFICIENTS EQUAL TO ITS 
CORRESPONDING 
*  VALUE IN UPPER TRIANGLE 
* 
      SMR(2,1)=SMR(1,2) 
      SMR(3,1)=SMR(1,3) 
      SMR(3,2)=SMR(2,3) 
 
      SRR(2,1)=SRR(1,2) 
      SRR(3,1)=SRR(1,3) 
      SRR(3,2)=SRR(2,3) 
  
      RETURN 
      END 
 
*********************************************************** 
 
      SUBROUTINE FORMLOAD (IELEM,F) 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 INCLUDE 'COMMON.F' 
 DIMENSION F(NPOIN) 
 
* 
*  DETERMINE WHAT THE NODE NUMBER I IS AT THE LEFT END OF EACH ELEMENT 
* 
       I=LNODE(IELEM,1) 
* 
*  DETERMINE THE ELEMENT LENGTH, EL, BASED ON NODAL VALUES 
* 
      EL=X(I+2)-X(I)  
 
      FLOAD(1)=H/2.D0*FE(4.D0,2.D0,-1.D0,I,EL,F) 
      FLOAD(2)=H/2.D0*FE(2.D0,16.D0,2.D0,I,EL,F) 
      FLOAD(3)=H/2.D0*FE(-1.D0,2.D0,4.D0,I,EL,F) 
 
      RETURN 
      END 
 
*********************************************************** 
 
      DOUBLE PRECISION FUNCTION PE(C1,C2,C3,I,EL,P) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION P(NPOIN) 
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 PE=(C1*P(I)+C2*P(I+1)+C3*P(I+2))/(30.D0*EL) 
 
      RETURN 
      END 
 
************************************************************ 
 
 DOUBLE PRECISION FUNCTION QE(C1,C2,C3,I,EL,Q) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION Q(NPOIN) 
 
      QE=(C1*Q(I)+C2*Q(I+1)+C3*Q(I+2))*EL/420.D0 
 
      RETURN 
      END 
 
**************************************************************** 
 
      DOUBLE PRECISION FUNCTION FE(C1,C2,C3,I,EL,F) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DIMENSION F(NPOIN) 
 
 
      FE=EL/30.D0*(C1*F(I)+C2*F(I+1)+C3*F(I+2)) 
 
      RETURN 
      END 
 
************************************************************************
****** 
 
 SUBROUTINE INDEX(IELEM) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
      INDOF(1) = LNODE(IELEM, 1)  
      INDOF(2) = LNODE(IELEM, 2) 
      INDOF(3) = LNODE(IELEM, 3) 
 
      RETURN 
      END 
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************************************************************************
****** 
 
 SUBROUTINE ASSEMBLES 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 DO 20 J = 1,3 
         DO 10 M = 1,3 
            JS = INDOF(J) 
            KS = INDOF(M)    
 
* 
*     ASSEMBLE THE STIFFNESS MATRIX 
* 
  STIFF(JS,KS)=SMR(J,M)+STIFF(JS,KS) 
     STR(JS,KS)=SRR(J,M)+STR(JS,KS) 
        
*            IF (IWRITE .EQ. 2 ) WRITE(40,900) J,K,JS,KS 
  900       FORMAT(10X,'ASSEMBLING SMR(',I2,',',I2,') TO STIFF(',I2, 
     &      ',',I2,')') 
* 
   10    CONTINUE 
   20 CONTINUE 
       
      RETURN 
      END 
 
******************************************************** 
 
      SUBROUTINE ASSEMBLEL 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
* 
*     ASSEMBLE THE GLOBAL LOAD VECTOR 
* 
      DO 70 J=1,3 
        JS=INDOF(J) 
        RLOAD(JS)=RLOAD(JS)+FLOAD(J) 
 70   CONTINUE 
 
      RETURN 
      END 
 
************************************************************************
****** 
 
 SUBROUTINE BOUNDS 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
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 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 BIG  = 1.0D15 
      DIAGMAX = 0.0D0 
 
*  SCAN DIAGONAL FOR THE LARGEST ENTRY 
 
 DO 100 N = 1, NPOIN 
    IF ( STIFF(N,N) .GE. DIAGMAX ) DIAGMAX = STIFF(N,N) 
  100 CONTINUE 
 
 BIG = BIG * DIAGMAX 
 IF (NA.EQ.1) THEN 
*        RLOAD(1)=RLOAD(1)+AA 
   STIFF(1,1)=STIFF(1,1)+ALPHA 
 ELSEIF (NA.EQ.2) THEN 
   STIFF(1,1)=STIFF(1,1)*BIG 
*        RLOAD(1)=UA*STIFF(1,1) 
      ELSE    
        PRINT*,'ERROR IN NA' 
        STOP 
      ENDIF 
 IF (NB.EQ.1) THEN 
*        RLOAD(NPOIN)=RLOAD(NPOIN)+BB 
   STIFF(NPOIN,NPOIN)=STIFF(NPOIN,NPOIN)+BETA 
 ELSEIF (NB.EQ.2) THEN 
   STIFF(NPOIN,NPOIN)=STIFF(NPOIN,NPOIN)*BIG 
*        RLOAD(NPOIN)=UB*STIFF(NPOIN,NPOIN) 
      ELSE 
        PRINT*,'ERROR IN NB' 
        STOP 
      ENDIF 
      RETURN 
      END 
 
******************************************************* 
 
 SUBROUTINE BOUNDL 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 IMPLICIT INTEGER (I-N) 
 
 INCLUDE 'COMMON.F' 
 
 UB=TMEAN-TFLUC*DSIN(PI/43200.D0*T) 
 IF (NA.EQ.1) THEN 
   RLOAD(1)=RLOAD(1)+AA 
*        STIFF(1,1)=STIFF(1,1)+ALPHA 
 ELSEIF (NA.EQ.2) THEN 
*        STIFF(1,1)=STIFF(1,1)*BIG 
   RLOAD(1)=UA*STIFF(1,1) 
      ELSE    
        PRINT*,'ERROR IN NA' 
        STOP 
      ENDIF 
 



  135 

 IF (NB.EQ.1) THEN 
   RLOAD(NPOIN)=RLOAD(NPOIN)+BB 
*        STIFF(NPOIN,NPOIN)=STIFF(NPOIN,NPOIN)+BETA 
 ELSEIF (NB.EQ.2) THEN 
*       STIFF(NPOIN,NPOIN)=STIFF(NPOIN,NPOIN)*BIG 
   RLOAD(NPOIN)=UB*STIFF(NPOIN,NPOIN) 
      ELSE 
        PRINT*,'ERROR IN NB' 
        STOP 
      ENDIF 
 
      RETURN 
      END 
 
 
********************  SUBROUTINE LUDCMP  ****************************** 
*C 
*C     SUBROUTINE LUDCMP 
*C 
*C---- GIVEN AN NXN MATRIX A, WITH DIMENSION A(NP,NP) THIS 
*C     SUBROUTINE FACTORS A INTO AN L*U DECOMPOSITION 
*C 
*C     REFERENCE: NUMERICAL RECIPES, 1990. 
*C 
*C     USAGE: 
*C     A      GLOBAL STIFFNESS MATRIX ON INPUT 
*C 
*C            ON OUTPUT, L AND U OVERWRITE THE COEFFICIENTS OF A. 
*C 
************************************************************************
******** 
      SUBROUTINE LUDCMP (A, VV, INDX, N, D) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z),INTEGER(I-N) 
      PARAMETER (TINY = 1.0E-20) 
      DIMENSION A(N, N), INDX(N), VV(N) 
*************************************** 
*c     debug material 
*c     ESCHK = 1 
*c     IF(ESCHK.NE.1) GO TO 200 
*c     WRITE(7,1000) ((a(I,J),J=1,n),I=1,n) 
*c1000 FORMAT(/,5X,'[GSTIF] MATRIX :',//, 
*c    1      52(1X,52(E8.2,1X),/)) 
*c 200 CONTINUE 
********************************************* 
      D = 1. 
      DO 20 I = 1, N 
        AAMAX = 0. 
        DO 10 J = 1, N 
          IF (ABS(A(I,J)) .GT. AAMAX) AAMAX = ABS(A(I,J)) 
   10   CONTINUE 
        IF (AAMAX .EQ. 0.) PAUSE 'SINGULAR MATRIX.' 
        VV(I) = 1. / AAMAX 
   20 CONTINUE      
      DO 100 J = 1, N 
        DO 40 I = 1, J-1 
          SUM = A(I,J) 
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          DO 30 K = 1, I-1 
            SUM = SUM - A(I,K) * A(K,J) 
   30     CONTINUE 
          A(I,J) = SUM 
   40   CONTINUE 
        AAMAX = 0. 
        DO 60 I = J, N 
          SUM = A(I,J) 
          DO 50 K = 1, J-1 
            SUM = SUM - A(I,K) * A(K,J) 
   50     CONTINUE 
          A(I,J) = SUM 
          DUM = VV(I) * ABS(SUM) 
          IF (DUM .GE. AAMAX) THEN 
            IMAX = I 
            AAMAX = DUM 
          ENDIF 
   60   CONTINUE 
        IF (J .NE. IMAX) THEN 
          DO 70 K = 1, N 
            DUM = A(IMAX,K) 
            A(IMAX,K) = A(J,K) 
            A(J,K) = DUM 
   70     CONTINUE 
          D = -D 
          VV(IMAX) = VV(J) 
        ENDIF 
        INDX(J) = IMAX 
        IF (A(J,J) .EQ. 0.) A(J,J) = TINY 
        IF (J. NE. N) THEN 
          DUM = 1./A(J,J) 
          DO 80 I = J+1, N 
            A(I,J) = A(I,J) * DUM 
   80     CONTINUE 
        ENDIF 
  100 CONTINUE 
      RETURN 
      END 
******************** SUBROUTINE LUBKSB  
*************************************** 
*C 
*C     SUBROUTINE LUBKSB 
*C 
*C     THIS SUBROUTINE SOLVES THE SET OF EQUATIONS A*X=B.  HERE A IS 
INPUT AS 
*C     ITS LU DECOMPOSITION DETERMINED BY THE ROUTINE LUDCMP.  INDX IS 
INPUT 
*C     AS THE PERMUTATION VECTOR RETURNED BY LUDCMP.  B IS INPUT AS THE 
LOAD 
*C     VECTOR AND RETURNS THE SOLUTION VECTOR, X. 
*C 
*C     REFERENCE: NUMERICAL RECIPES, 1990. 
*C 
************************************************************************
****** 
      SUBROUTINE LUBKSB (A, INDX, N, B) 
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      IMPLICIT DOUBLE PRECISION (A-H,O-Z),INTEGER(I-N) 
      DIMENSION A(N, N), INDX(N), B(N) 
      II = 0 
      DO 20 I = 1, N 
        LL = INDX(I) 
        SUM = B(LL) 
        B(LL) = B(I) 
        IF(II .NE. 0) THEN 
   DO 10 J = II, I-1 
            SUM = SUM - A(I,J) * B(J) 
   10     CONTINUE 
        ELSE IF (SUM .NE. 0.) THEN 
          II = I 
        ENDIF 
        B(I) = SUM 
   20 CONTINUE 
      DO 50 I = N, 1, -1 
        SUM = B(I) 
        DO 40 J = I+1, N    
          SUM = SUM - A(I,J) * B(J) 
   40   CONTINUE 
        B(I) = SUM / A(I,I) 
   50 CONTINUE 
      RETURN 
      END 
 
 
* 
*  FILENAME:  COMMON.F 
* 
       PARAMETER (CVA=719.6D0,CVI=2031.D0) 
       PARAMETER (GI=917.D0,GA=1.3D0,TMEAN=-20.D0,TFLUC=0.D0) 
       PARAMETER (PI=3.141592654D0,NELEM=25,NPOIN=51) 
 
      COMMON/BND/ AA,ALPHA,BB,BETA,NA,NB,UA,UB 
      COMMON/C4/ LNODE(NELEM,3),RLOAD(NPOIN),STIFF(NPOIN,NPOIN), 
     &           STR(NPOIN,NPOIN) 
      COMMON/C5/ X(NPOIN),DX 
      COMMON/C6/INDOF(3) 
      COMMON/C7/FLOAD(3),SMR(3,3),SK(3,3),SM(3,3),SRR(3,3) 
      COMMON/VARO/TEMPO(NPOIN),CHATO(NPOIN),PHIIO(NPOIN) 
      COMMON/VAR/TEMP(NPOIN),PHII(NPOIN),CHAT(NPOIN),VJ(NPOIN) 
      COMMON/VARP/TEMPP(NPOIN) 
      COMMON/MESH/IWRITE 
      COMMON/TIME/H,TMAX,TOUT,T 
      COMMON/BLAST/BIG 
      COMMON/ERROR/TOL 
      COMMON/COUNT/K,KMAX,ITMAX 
      COMMON/SLOPE/DTDX(NPOIN) 
 
 

 


