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Abstract

The microstructure of a dry alpine snowpack is a dynamic environment where microstruc-
tural evolution is driven by seasonal density profiles and weather conditions. Notably, tem-
perature gradients on the order of 10–20 K m−1, or larger, are known to produce a faceted
snow microstructure exhibiting little strength. However, while strong temperature gradients5

are widely accepted as the primary driver for kinetic growth, they do not fully account for the
range of experimental observations. An additional factor influencing snow metamorphism is
believed to be the rate of mass transfer at the macroscale.

We develop a mixture theory capable of predicting macroscale deposition and/or subli-
mation in a snow cover under temperature gradient conditions. Temperature gradients and10

mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and
mass transfer behavior is observed near the ground, near the surface, as well as immedi-
ately above and below dense ice crusts. Information about deposition (condensation) and
sublimation rates may help explain snow metamorphism phenomena that cannot be ac-
counted for by temperature gradients alone.15

The macroscale heat and mass transfer analysis requires accurate representations of
the effective thermal conductivity and the effective mass diffusion coefficient for snow. We
develop analytical models for these parameters based on first principles at the microscale.
The expressions derived contain no empirical adjustments, and further, provide self con-
sistent values for effective thermal conductivity and the effective diffusion coefficient for the20

limiting cases of air and solid ice. The predicted values for these macroscale material pa-
rameters are also in excellent agreement with numerical results based on microscale finite
element analyses of representative volume elements generated from X-ray tomography.

1 Introduction

The thermodynamically active nature of snow, coupled with unusual high porosities, poses25

significant challenges to modeling heat and mass transfer in a snow cover. A primary driver
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in much of the research on this subject has been efforts to explain the evolving microstruc-
ture of snow that often occurs in a matter of hours or days. Notably, snow metamorphism,
induced by strong temperature gradients in a snow cover, is known to produce a highly
faceted microstructure, the presence of which results in extremely weak layers in a snow
cover. Weak layers have been observed near the ground, near the surface, as well as above5

and below dense layers (e.g., ice crusts) within a snow cover.
While strong temperature gradients are widely accepted as the primary driver in tempera-

ture gradient metamorphism (TGM), they do not fully account for the range of experimental
observations. For instance, slightly faceted crystal growth has been observed at low temper-
ature gradient (3K m−1) where rounded grains from sintering have normally been observed10

(Flin and Brzoska, 2008). In contrast, Pinzer and Schneebeli (2009) note that rounded grain
forms have been observed in surface layers subjected to alternating temperature gradients
of opposite direction.

An additional factor influencing snow metamorphism is believed to be the rate of mass
transfer at the macroscale. The influence of mass transfer at the macroscale is often ne-15

glected for the simple fact that deposition (condensation) and sublimation rates caused by
vapor diffusion and phase changes are not known in a typical macroscale analysis. Vapor
diffusion and the associated phase changes at the macroscale pose modeling challenges
in that it forces the macroscopic analysis toward a mixture theory where the ice and humid
air constituents retain their identity. Mixture theory itself is a subject that has yet to fully20

mature and many open questions remain.
Implementing a macroscopic continuum mixture theory to elucidate the coupled heat and

mass transfer phenomena occurring in snow is the central focus of this paper. We study the
effects of mass transfer near the ground, near the surface including diurnal temperature
effects, as well as adjacent to an ice crust within the snow cover. Heat and mass transfer25

rates are tracked over several different time periods ranging up to 10 days.
The mixture theory analysis developed here-in requires an accurate assessment of

macroscopic properties for effective thermal conductivity and the effective mass diffusion
coefficient for snow. Determining these parameters requires an analysis of heat and mass

3



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

transfer at the microscale. A major challenge in microstructural studies of snow metamor-
phism is the extremely complex three-dimensional structure of the ice phase.

Historically, generating an accurate geometric representation of the microstructure of
snow and further connecting it to a subsequent heat and mass transfer analysis was simply
not possible. However, in the last two decades, the use of X-ray computed tomography has5

profoundly altered experimental and theoretical research for snow at the microstructural
level. Not only can one accurately capture the true 3-D snow microstructure, the evolution
of the microstructure may be monitored in real time as metamorphism occurs. Furthermore,
finite element analysis may be coupled to experimentally produced 3-D microstructures to
model heat and mass transfer at the local scale.10

High fidelity microscale numerical models, coupled with X-ray computer tomography,
have been utilized by Riche and Schneebeli (2013) and Calonne et al. (2011) for predic-
tions of macroscale effective thermal conductivity. Pinzer et al. (2012) and Flin and Brzoska
(2008) used finite element analysis with X-ray tomography to address vapor diffusion. Evo-
lution of the snow microstructure and determining an effective diffusion coefficient for snow15

are among their notable contributions.
Finite element predictions based on computer generated X-ray tomography snow struc-

tures provide an excellent foundation for determining material properties for effective ther-
mal conductivity and the effective diffusion coefficient for snow. However, instead of utilizing
finite element micromechanics to generate macroscale material properties, we rely on an in-20

teresting mathematical model developed by Foslien (1994). The analytical model produces
results for effective thermal conductivity and the effective diffusion coefficient for snow that
are in remarkable agreement with the finite element predictions cited above. The model
also accounts for effective thermal conductivity and effective diffusion coefficient properties
over the entire range of densities and temperatures possible for snow. The strong corre-25

lation of the analytical model material properties compared with results from microscale
finite element analyses of snow lends confidence to using material parameters based on
the analytical model in the macroscopic mixture theory analysis developed here-in.
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2 Reflections on geometric scales: microscale vs. macroscale variables

The critical heat and mass transfer mechanisms for snow metamorphism play out at two
distinctly different geometric and time scales. At the microscale (on the order of millimeters)
snow exhibits an extremely complex and evolving microstructure consisting of ice grains and
humid air. At the macroscale, the geometric scale of interest is associated with the depth of5

the snow cover—typically on the order of meters. Macroscopic variables of interest include
density, temperature, temperature gradient, as well as the mass flux of water vapor and the
resulting deposition and sublimation that will occur within a snow cover. These macroscopic
variables are fundamental drivers for snow structure evolution occurring at the microscale,
thereby coupling local phenomena driving snow metamorphism with macroscale heat and10

mass transfer.
When developing a theory that transcends multiple geometric scales, attention must be

paid to the transition from the microscale to the macroscale, commonly referred to as ho-
mogenization. An implicit requirement necessary for homogenization in an upscale process
is appropriate separation of scales, both from a geometric and physical viewpoint. Auriault15

et al. (2009) provide extensive discussion of necessary conditions required for separation
of scales, all of which are satisfied for the present work.

A notable aspect of the present homogenization process is that a mixture theory is intro-
duced by defining snow at the macroscale to be a mixture composed of an ice constituent
and a humid air constituent. The constituent variables may, in turn, be appropriately aver-20

aged to obtain the macroscale snow field variables. Allowing the constituents to retain their
identity provides a vehicle to study mass transfer due to condensation and sublimation at
the macroscale.

As a means of formalizing an upscaling process for snow, the concept of a representative
volume element (RVE) is introduced. The RVE must be of sufficient size such that volume25

averages of the constituent variables do not change as the volume is increased.
Given an RVE, let φα denote the volume fraction of constituent α. The mixture con-

stituents are immiscible and the constituent volume fractions are space filling, leading to
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the relation

φi +φha = 1, (1)

where subscripts (i) and (ha) denote the ice and humid air constituents, respectively.
The density of snow, ρ, is defined by the volume average of the local (microscale) density

field, γm(x), that varies throughout the RVE, i.e.,5

ρ=
1

V

∫
V

γm (x)dV, (2)

where, for clarity, the local density may be expressed as

γm(x) = γiχi(x) + γha (1−χi(x)) (3)

in terms of the indicator function χi(x) of the ice phase. The subscript (m) on the local
density field is used to emphasize that the variable is defined at the microscale.10

In the case of a mixture, the integral of Eq. (2) may be broken into an ice domain and
a humid air domain as

ρ=
1

V

∫
Vi

γm (x)dV +
1

V

∫
Vha

γm (x)dV. (4)

Moreover, the following macroscale constituent densities are introduced as

γi =
1

Vi

∫
Vi

γm (x)dV, (5)15
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and

γha =
1

Vha

∫
Vha

γm (x)dV. (6)

Noting Eqs. (4)–(6) leads to a volume average expression for the density of snow given by

ρ= φiγi +φhaγha. (7)

We emphasize that the mixture formulation is defined entirely at the macroscale. Hence, all5

variables in Eq. (7) represent macroscale quantities.
Following Özdemir et al. (2008), heat transfer properties are introduced into the micro-

macro upscaling process by defining the macroscopic heat capacity as(
ρCV

)
=

1

V

∫
V

γm

(
CV
)

m
dV, (8)

where CV is the specific heat at constant volume. This equation provides a definition for the10

specific heat of snow yielding consistent values of heat capacity at both scales. Following
the same development as for the density of snow leads to the relation

(
ρCV

)
= φi

(
γiC

V
i

)
+φha

(
γhaC

V
ha
)
, (9)

where the heat capacity for constituent α is given by(
γαC

V
α

)
=

1

Vα

∫
Vα

γm

(
CV
)

m
dV. (10)15

Özdemir et al. (2008) further enforces consistency of the stored heat at the microscale and
macroscale through the relation(
ρCV

)
θ =

1

V

∫
V

γm

(
CV
)

m
θmdV, (11)

7
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where θm and θ represent the local temperature and macroscale temperature, respectively.
Again, the integral of Eq. (11) may be separated into an ice constituent and a humid air
constituent as

(
ρCV

)
= φi

 1

Vi

∫
Vi

γm

(
CV
)

m
θmdV

+φha

 1

Vha

∫
Vha

γm

(
CV
)

m
θmdV

 . (12)

Constituent temperatures, θi and θha, are introduced through the relations5

γiC
V
i θi =

1

Vi

∫
Vi

γm

(
CV
)

m
θmdV, (13)

and

γhaC
V
haθha =

1

Vha

∫
Vha

γm

(
CV
)

m
θmdV. (14)

The heat capacity is heterogeneous at the microscale but homogeneous in the ice phase,
leading to a volume average temperature for ice given by10

θi =
1

Vi

∫
Vi

θmdV. (15)

For the range of temperatures of interest, the mass fraction of water vapor in dry air is on
the order of 10−3. Hence, the thermal properties of the humid air may be taken to be those
of dry air and the heat capacity of dry air is constant for the temperature variations seen at
the microscale. This condition leads to a volume average definition for the temperature of15

the humid air constituent given by

θha =
1

Vha

∫
Vha

θmdV. (16)

8
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The temperature of snow may be determined from(
ρCV

)
θ = φi

(
γiC

V
i

)
θi +φha

(
γhaC

V
ha
)
θha. (17)

Hence, the temperature of snow does not follow the constituent volume averaging found for
the heat capacity (Eq. 9) and the density (Eq. 4) but rather is based on a volume average
weighted by the constituent heat capacities.5

The temperature gradient at the microscale is a critical parameter driving temperature
gradient metamorphism. To this end, volume averaged temperature gradients for the ice
and humid air constituents are introduced as

∇θi ice temperature gradient, and

∇θha humid air temperature gradient,10

where, for example,

∇θi =
1

Vi

∫
Vi

∇xθm (x)dV. (18)

The subscript x on the gradient operator in Eq. (18) is used to emphasize the gradient
applies at the microscale.

Given appropriate boundary conditions for the RVE, the macroscale temperature gradient15

for snow satisfies the volume weighted averaging:

∇θ = φi∇θi +φha∇θha. (19)

Özdemir et al. (2008) develop the specific boundary conditions for the RVE that are neces-
sary to satisfy Eq. (19). These boundary conditions are precisely the ones used by Pinzer
et al. (2012) and Riche and Schneebeli (2013) in their finite element analyses of heat and20

mass transfer at the microscale.

9
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Finally, it is extremely important to recognize differences in behavior between local (mi-
croscale) temperature gradients and the volume averaged macroscale temperature gradi-
ent. For instance, Pinzer et al. (2012) provide a figure of the local temperature gradients
in an RVE for an applied macroscale temperature gradient of 50K m−1. The color bar for
the microscale temperature gradient indicates local values of the temperature gradient are5

as high as 300K m−1. The high local values of the temperature gradient compared to the
macroscopic temperature gradient must be kept in mind when interpreting macroscopic
results, as it is the local temperature gradients that drive metamorphism. Hence, when
macroscale temperature gradients are presented as computed by the mixture theory analy-
sis, it is not unreasonable to assume the microscale temperature gradients may be an order10

of magnitude higher in some areas of the RVE.

3 A mixture theory model for macroscale heat and mass transfer

The common phase changes occurring in snow have motivated several studies using vari-
ants of mixture theories. Morland et al. (1990) and Bader and Weilenmann (1992) devel-
oped a 4 constituent mixture theory for snow where one of the constituents was water.15

Phenomena such as percolation, melting, and freezing are addressed, and momentum bal-
ance plays a significant role in the work. The present work does not involve momentum
balance, nor does it allow for a water constituent.

Gray and Morland (1994) developed a mixture theory for dry snow based on constituents
of ice and dry air. Their work is in sharp contrast to the present study where water vapor is20

a critical component of the development. Indeed, the emphasis of the present work is the
prediction of deposition and/or sublimation of water vapor at the macroscale.

Adams and Brown (1990) studied heat and mass transfer in snow using a classical form
of mixture theory where water vapor was included. Their work focused on non-equilibrium
conditions of the constituents whereas the present work is based on equilibrium of con-25

stituent temperatures and a saturated vapor density. Equilibrium versus non-equilibrium
conditions amounts to a focus on different time scales.

10
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Aside from the different areas of emphasis in the study of phase change phenomena in
snow, the mixture theories cited are based on a classical theory of mixtures whereas the
present work is largely based on a volume fraction mixture theory (Hansen et al. (1991)).
The volume fraction theory produces the same balance equations found in the classical de-
velopments of mixture theory. However, the summed constituent balance equations are not5

forced to reduce to those of a single continuum except for the special case of a nondiffusing
mixture. As a result of relaxing this constraint, the physical definitions of mixture variables
as well as the constraints on mass, momentum, and energy interaction terms assume more
appealing forms. We rely on the physical arguments of Sect. 2 to define mixture quantities
of interest.10

Albert and McGilvary (1992) incorporated the effects of mass diffusion in a heat and
mass transfer analysis of snow centered on forced convection caused by windy conditions
close to the snow surface, a phenomenon known as wind-pumping. The equations devel-
oped involve a velocity of the humid air and conditions where the snow is not assumed to
be saturated with water vapor. These conditions only occur in snow under extreme circum-15

stances.
Foslien (1994) performed a dimensional analysis of the conditions needed for convection

and showed the Rayleigh number for typical snow conditions was 1–2 orders of magnitude
below what is needed for the onset of convection. As a consequence, convection is not
considered and the present paper develops a theory with no air velocity, and further, a20

saturated vapor density.
The work of Calonne et al. (2014a) is perhaps the most closely related to the present

work in that they developed the governing equations for macroscopic heat and water vapor
transfer in dry snow by homogenization involving a multiscale expansion. We draw compar-
isons of their work for the governing macroscale equations as well as the expressions for25

effective thermal conductivity and the effective diffusion coefficient in snow.
A unique aspect of the present approach is that analytical models, grounded in first princi-

ples at the microscale, are developed for the effective thermal conductivity and the effective
diffusion coefficient in snow. By starting at the microscale, albeit with idealized microstruc-

11
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tures, we are afforded the advantage of using the true thermal conductivities of ice (ki) and
humid air (kha) as well as the known diffusion coefficient of water vapor in air (Dv−a). The
resulting models for the effective thermal conductivity of snow and the effective diffusion
coefficient for snow contain no empirical adjustments and are in remarkable agreement
with high fidelity numerical predictions of these parameters based on snow microstructures5

obtained from X-ray tomography. The models also generate an analytical description of the
separation of heat transfer due to mass diffusion and heat transfer due to conduction.

Consistent with the discussion on homogenization, we consider snow at the macroscale
to be a two-constituent mixture consisting of ice and humid air. The humid air itself is treated
as a mixture of water vapor and air. A schematic of the mixture theory analysis is shown in10

Fig. ??.
For the temperatures and pressures encountered in snow, the humid air may be treated

as a mixture of two ideal gases where each gas occupies the same volume, i.e.,

φha = φv = φa, (20)

where subscripts (v) and (a) represent water vapor and dry air, respectively. An important15

consequence of representing the humid air as a mixture of ideal gases is that both the water
vapor and the air behave as though the other gas is not present, thereby greatly simplifying
the analysis and allowing one to draw on classical results for ideal gases.

The balance equations for mass, momentum, and energy for a constituent, α, are given
by (Hansen (1989),Hansen et al. (1991))20

Mass balance
∂ρα
∂t

+∇ · (ραvα) = ĉα, (21)

Momentum balance

ραaα = ∇ ·T α + ραg + p̂α, (22)

Energy balance25

ραu̇α = tr (T α ·Lα) + ραrα−∇ · qα + êα. (23)

12
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In the above, vα and aα represent the velocity and acceleration of constituent α, respec-
tively, while Lα represents the velocity gradient; uα is the internal energy, rα is the heat
supply (notably radiation), and g is the gravity vector. The dispersed density of constituent
α is denoted by ρα and is related to the true density, γα, as

ρα = φαγα. (24)5

Whereas the volume fraction, φα, appears explicitly in the definition of the dispersed
density, ρα, the partial stress, T α, and the energy flux, qα, are implicitly scaled by the
volume fraction. Finally, ĉα, p̂α, and êα represent mass, momentum, and energy supply
terms that arise from interactions between constituents. Following Hansen et al. (1991), the
mixture theory supply terms satisfy the appealing restrictions10 ∑
α

ĉα = 0, (25)∑
α

p̂α = 0, (26)

and∑
α

êα = 0. (27)

In what follows, the mixture theory balance equations are further specialized to study the15

macroscale coupled heat and mass transfer problem for snow.

3.1 Ice constituent mass balance

The balance of mass for the ice phase is given by

∂ρi

∂t
+∇ · (ρivi) = ĉi (28)

13
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Assuming the mass supply is positive during condensation, we can write

ĉ= ĉi =−ĉha. (29)

Neglecting any settling velocity leads to a mass balance for the ice constituent given by

γi
∂φi

∂t
= ĉ, (30)

where the mass density of ice is taken as constant at 917 kg m−3.5

3.2 Water vapor mass balance

The development of the humid air mass balance differs from that of the ice constituent in
that we begin at the microscale. Furthermore, only the mass balance of the water vapor is
considered because the air acts only as a medium through which the water vapor diffuses.

Mass transfer of the water vapor may be expressed as (Bird and Lightfoot, 1960)10

γvvv =
γv

γha
(γava + γvvv) + jv. (31)

Equation (31) says that the mass flux of the water vapor is due to the bulk fluid motion (the
barycentric velocity) plus a relative velocity due to diffusion. In the absence of a pressure
gradient, the barycentric velocity is zero, i.e.,

γhavha = (γava + γvvv) = 0. (32)15

Mass balance due to diffusion may be expressed in the form of Fick’s law (Bird and Lightfoot,
1960) as

jv =−γhaDv–a∇x

(
γv

γha

)
, (33)

14
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where Dv–a is the binary diffusion coefficient for water vapor in air and ∇x denotes the
gradient operator at the microscale.

The diffusive flux can be expanded to give

jv =−Dv–a∇xγv +
γv

γha
Dv–a∇xγha, (34)

but the second term on the right is negligibly small because the mass fraction of saturated5

water vapor in air at 273 K is about 4(10)−3. Hence, mass transfer of water vapor at the
microscale may be described by

γvvv =−Dv–a∇xγv. (35)

In the transition to the macroscale, the same physical principles apply but one must now use
an effective diffusion coefficient for water vapor. The need to introduce an effective diffusion10

coefficient for water vapor is attributed to the presence of the ice microstructure in snow.
Specifically, the presence of the ice constituent introduces vapor transfer mechanisms that
both enhance and retard mass transfer of water vapor when compared to a medium of
humid air only. These mass transfer mechanisms are briefly discussed in Sect. 5.3.

Defining Deff
s as the effective diffusion coefficient for the humid air constituent at the15

macroscale, there follows

φvγvvv = ρvvv =−Deff
s ∇γv, (36)

where vv and γv now represent appropriately volume averaged macroscale variables. Note
that the mass flux of water vapor is based on the dispersed density, ρv, in order to account
for the reduced volume occupied by the humid air in the mixture. Finally, since only the20

humid air constituent is associated with diffusion in a mixture of ice and humid air, Deff
s also

represents the effective diffusion coefficient for snow.
Again, noting air is simply the medium for mass transfer of water vapor, the balance of

mass for the vapor phase may be written as

∂ρv

∂t
+∇ · (ρvvv) = ĉv. (37)25

15
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Substitution of the diffusive flux into Eq. (37) and noting ĉv = ĉha =−ĉ leads to

∂ρv

∂t
−∇ ·

(
Deff

s ∇γv

)
=−ĉ. (38)

Expanding the time derivative of the dispersed density of the water vapor gives

∂ρv

∂t
= γv

∂φv

∂t
+φv

∂γv

∂t
, (39)

but5

∂φv

∂t
=
∂φha

∂t
=−∂φi

∂t
. (40)

The above results, along with the mass balance for the ice constituent (Eq. 30), can be used
to write Eq. (38) as

φv
∂γv

∂t
−∇ ·

(
Deff

s ∇γv

)
= ĉ

(
γv

γi
− 1

)
, (41)

but the quantity γv

γi
� 1. Neglecting this term and noting φv = φha, the mass balance equa-10

tion for the water vapor becomes

φha
∂γv

∂t
−∇ ·

(
Deff

s ∇γv

)
=−ĉ. (42)

Equation (42) states that changes in the water vapor density at the macroscale are due to
the divergence of the water vapor flux and sublimation or condensation as defined through
the mass supply.15

3.3 Momentum balance

The momentum balance for the ice phase can be used to find the stress and strain in the
ice phase. However, the effect that the ice stress has on the vapor density of the water is
neglected, so the ice phase momentum balance is not considered further.

16



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

The momentum balance for the humid air phase becomes important when bulk fluid
motion occurs as in the case of convection. Foslien (1994) has shown the Rayleigh number
for a typical snow cover is more than an order of magnitude below the critical value for the
onset of convection, so convection is unlikely to occur except in extreme circumstances.
Therefore, the momentum balance of the humid air phase is not considered further.5

3.4 Ice constituent energy balance

The energy balance for the ice constituent may be expressed at the macroscale as

ρiu̇i = tr (T i ·Li) + ρiri−∇ · qi + êi. (43)

In the above, any velocity gradient in the ice, Li, is attributed to settling and may be ne-
glected. Moreover, heat generation from solar radiation is also neglected but could easily10

be included as Colbeck (1989) and McComb et al. (1992) have done. These assumptions
reduce the energy balance for ice to

ρiu̇i =−∇ · qi + êi. (44)

The internal energy of the non-deforming ice is assumed to be a function of temperature
only and is given by15

ui = CVi (θi− θref), (45)

where CVi is the specific heat of ice at constant volume and θref is the reference temper-
ature. The heat flux at the macroscale is expressed as Fourier’s law of heat conduction
as

qi =−φi k
eff
i ∇θi, (46)20

where keff
i is the effective thermal conductivity for the ice phase in snow. This parameter

should not be confused with the thermal conductivity of pure ice (ki) as differences arise
17
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due to the complex microstructural network of the ice phase in snow. The tortuosity of the ice
phase, for example, plays a role in keff

i . The only microstructure where ki and keff
i would be

equal for one-dimensional heat transfer would be the pore microstructure discussed in the
present paper. In a 3-D analysis of snow, the two parameters are fundamentally different.

Combining Eqs. (44)–(46), the energy balance for the ice phase is given by5

φiγiC
V
i

∂θi

∂t
= ∇ ·

(
φik

eff
i ∇θi

)
+ êi. (47)

3.5 Humid air constituent energy balance

As with the ice phase, the work term and the energy source term of the humid air constituent
are neglected, thereby reducing the energy equation to

ρhau̇ha =−∇ · qha + êha. (48)10

The internal energy for the humid air mixture of ideal gases is given by

γhauha = γa C
V
a (θha− θref) + γv

(
CVv (θha− θref) +usg

)
, (49)

where usg is the latent heat of sublimation of ice. The above assumes the reference value
of the internal energy of ice was set to zero as was the case.

The definition for the energy flux vector for a mixture may be written as (Bird and Lightfoot,15

1960)

q = qc + qd, (50)

where qc is the conductive flux and qd represents a ‘’contribution from the interdiffusion of
various species present.” In the case of a mixture of water vapor and air, the energy flux is
given by20

qha =−kha∇xθha +usgγvvv, (51)
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where γvvv, is the mass flux of water vapor diffusing through air.
Now consider snow at the macroscale composed of a mixture of humid air and ice. At

this scale, Eq. (51) must be modified as

qha =−φhak
eff
ha∇θha +φhausgγvvv. (52)

The interpretation of the volume fraction in each term on the right-hand-side of the above5

equation is clear when one views the energy flux across a surface of a macroscale control
volume of snow. Specifically, the true energy flux of humid air must be scaled by the area
fraction of the humid air at the control surface. From quantitative stereology, the area fraction
is equal to the volume fraction, resulting in Eq. (52).

Noting Eq. (36), mass transfer of the humid air may be expressed as a diffusive flux,10

leading to

qha =−φhak
eff
ha∇θha−usgD

eff
s ∇γv, (53)

where Deff
s represents an effective diffusion coefficient for snow.

As in the case of the ice phase, one must recognize that keff
ha represents an effective

thermal conductivity of the humid air in snow and this parameter is different from the true15

thermal conductivity of humid air as a pure substance. The difference in the two parameters
is again attributed to the complex microstructure of the humid air phase in snow. In brief,
just as the effective thermal conductivity of snow, keff

s is influenced by microstructure, so are
keff

i and keff
ha as all three parameters are macroscale quantities. As such, they depend on a

host of microstructural variables other than temperature.20

Substituting Eqs. (49) and (53) into Eq. (48) leads to

φha
(
γa C

V
a + γvC

V
v

) ∂θha

∂t
+usg

(
φha

∂γv

∂t
−∇ ·

(
Deff

s ∇γv

))
= ∇ ·

(
φhak

eff
ha∇θha

)
+ êha,

(54)

but

ĉ= ∇ ·
(
Deff

s ∇γv

)
−φha

∂γv

∂t
, (55)
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from the mass balance of the water vapor given by Eq. (42). Therefore, Eq. (54) governing
the energy balance of humid air assumes the form

φha
(
γa C

V
a + γvC

V
v

) ∂θha

∂t
= ∇ · (φha k

eff
ha ∇θha) + êha +usgĉ. (56)

Hence, the change in internal energy for the humid air is attributed to the divergence of the
heat flux, energy exchange with the ice constituent through the energy supply, and energy5

exchange through phase changes accounted for by the mass supply.

4 Separation of scales: macroscale observations

In this section, we discuss some observations that lead to important simplifications in the
macroscale heat and mass transfer solution. Moreover, we demonstrate separation of the
time scales for local and global heat and mass transfer, a condition required for homoge-10

nization.

4.1 Macroscale temperatures

An important simplification in the analysis of heat and mass transfer at the macroscale is to
assume the constituent temperatures are equal and write

θ = θi = θha,15

where θ is the macroscale temperature of snow. Justification for assuming the ice and humid
air temperatures are equal starts by writing a one-dimensional heat conduction equation at
the microscale given by

∂θα
∂t

=

(
kα

γαCVα

)
∂2θα
∂x2

. (57)
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Equation (57) is non-dimensionalized by introducing the following dimensionless variables:

t∗ = t/to, x∗ = x/Lc, and θ∗ =
θ− θinit

θf − θinit
.

The resulting non-dimensional equation is

∂θ∗

∂t∗
=

(
tokα

L2
cγαC

V
α

)
∂2θ∗

∂x∗2
. (58)

The time scale, tmicro
o , for heat conduction on the microscale is introduced as5

tmicro
o =

γαC
V
α L

2
c

kα
. (59)

The time scale, tmacro
o , for heat conduction in a snow cover is similarly defined as

tmacro
o =

(
φiγiC

V
i +φhaγhaC

V
ha

)
H2

keff
s

, (60)

whereH is the height of the snowpack and keff
s represents the effective thermal conductivity

for snow.10

Riche and Schneebeli (2013) provide an expression for the effective thermal conductivity
of snow as a function of snow density. Assuming a snow density of 200 kg m−3, a depth of
one meter, and a microscale characteristic length of one mm, the ratio of the time scale for
heat conduction on the macroscale of the snowpack to the time scale for heat conduction on
the microscale is on the order of 106 which suggests that macroscale thermal equilibrium15

between the ice and humid air constituents is a good assumption. Moreover, the large
separation of scales in the time domain is consistent with the discussion of Auriault et al.
(2009) regarding separation of time scales necessary for homogenization.

The assumption of uniform constituent temperatures at the macroscale should not be
confused with the local (microscale) temperature. Under a macroscale temperature gradi-20

ent, local constituent temperatures in the interior of the RVE differ due to different thermal
21



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

conductivities of the ice and humid air. Further, temperature gradients within individual con-
stituents are also present at the microscale. A warmer ice grain is separated from a colder
ice grain by pore space, for example. These temperature differentials drive the mass trans-
fer process at the microscale. Again, an excellent insight into microscale thermal behavior
is provided in Fig. 4 of Pinzer et al. (2012).5

Thermal equilibrium of the ice and humid air constituents at the macroscale allows the
constituent energy equations, (Eqs. 47 and 56), to be added together to yield an energy
equation for snow with a single temperature as(
φhaγhaC

V
ha +φiγiC

V
i

) ∂θ
∂t

= ∇ ·
(
keff

s ∇θ
)

+ ĉusg, (61)

where θ is the temperature of the snow. Notably, the constituent energy supply terms sum to10

zero in the energy equation for snow and the volume averaged constituent effective thermal
conductivities have been absorbed into an effective thermal conductivity for snow, keff

s , as

keff
s = φik

eff
i +φhak

eff
ha . (62)

While the effective thermal conductivities, keff
i and keff

ha, are never computed , it would be
important to do so if one wanted to study non-equilibrium constituent temperatures on a15

short time scale with a mixture theory.
One can make a direct connection of keff

i and keff
ha with the work of Calonne et al. (2014a).

Specifically, the effective thermal conductivity for snow is defined in Eqn. (25) of Calonne
et al. (2014a) as

keff
s =

1

|V |

∫
V a

ka (∇ta + I)dV +

∫
V i

ki (∇ti + I)dV

 , (63)20

where tα characterizes the temperature fluctuation in constituent α and I is the identity
tensor.
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The above equation may be rearranged as

keff
s = φa

1

|Va|

∫
V a

ka (∇ta + I)dV +φi
1

|Vi|

∫
V i

ki (∇ti + I)dV. (64)

Comparing Eqs. (62) and (64) provides a clear mathematical interpretation of keff
i and

keff
ha as

keff
ha =

1

|Va|

∫
V a

ka (∇ta + I)dV, (65)5

and

keff
i =

1

|Vi|

∫
V i

ki (∇ti + I)dV. (66)

Finally, recent research work has shown the effective thermal conductivity of snow to
be anisotropic, see for example Schertzer and Adams (2011) and Riche and Schnee-
beli (2013). We avoid this complexity at present as it becomes a non-issue for the one-10

dimensional heat and mass transfer theory developed subsequently.
To summarize, the governing equations for heat and water vapor transfer in snow are

given by Eqs. (42) and (61). These equations are identical to macroscale equations de-
veloped by Calonne et al. (2014a) through a description at the pore scale using the ho-
mogenization of multiple scale expansions. The equality is best shown by multiplying the15

right-hand-side of Eq. (20) in Calonne by (ρi/ρi) and relabeling (Lsg/ρi) as usg, resulting in
Eq. (61) of the present paper. Eq. (42) is already identical in form to Eq. (21) of Calonne
et al. (2014a).

While the equations of Foslien (1994) and Calonne et al. (2014a) governing the
macroscale response of heat and mass transfer in snow are identical, the emphasis of20

Calonne’s work is on upscaling whereas the present paper focuses on solutions of the
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macroscale behavior. We also address similarities and differences in the calculation of ef-
fective thermal conductivity and the effective diffusion coefficient for snow, critical parame-
ters affecting macroscale sublimation and deposition rates in a snow cover.

4.2 Saturated vapor density at the macroscale

A physical interpretation of the mass supply term, ĉ, is the mass rate at which water vapor5

is condensing to form ice per unit volume of snow. Hobbs (1974) provides an expression for
the condensation of water vapor to ice driven by a difference in the vapor pressure and the
saturated vapor pressure over ice, (p− psat), as

αcmmol
(
p− psat

)
(2πmmolΩθ)1/2

kg m−2 s−1,

where mmol is the mass per molecule of water, Ω is Boltzman’s constant, and αc is the10

condensation coefficient.
Multiplying the above expression by the specific surface area of snow, ξ, and utilizing the

ideal gas law for water vapor provides an explicit expression for the mass supply driven by
a difference in vapor density given by

ĉ=
ξRθαcmmol

(
γv− γsat

v

)
(2πmmolΩθ)1/2

. (67)15

In the absence of diffusion, Eq. (67) can be combined with the mass balance equation
(Eq. 42) for the water vapor as

φv
∂γv

∂t
=
ξRθαcmmol

(
γv− γsat

v

)
(2πmmolΩθ)1/2

. (68)

If the saturated vapor density over the ice is held constant, the time for the vapor density
difference between the pore density and the saturated vapor density to become 0.1 % of20
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the initial density difference can be computed. Delaney et al. (1964) measured the con-
densation coefficient, αc, of ice to be 0.0144 for temperatures between 271 K and 260 K.
For a snow density of 200 kg m−3 and a specific surface area of 1400 m−1, the time for the
vapor density in the pore to reach equilibrium is approximately 1.1(10)−3 seconds. Hence,
the vapor density in a pore can be assumed to be the saturated vapor density throughout5

the process of heat and mass transfer occurring at the macroscale where the time scale of
interest is on the order of hours or days.

The knowledge that the vapor density may be assumed saturated in a macroscale analy-
sis affords a critical simplification in the mixture theory analysis in that a constitutive law for
the mass supply is no longer needed. Instead, the mass supply is computed from Eq. (42)10

by noting the water vapor is always saturated at the snow temperature, leading to

ĉ= ∇ · (Deff
s ∇γsat

v )−φha
∂γsat

v

∂t
. (69)

We emphasize that Eq. (67) is not utilized in the snowpack modeling of water vapor
deposition and sublimation found in Sect. 6 as it is replaced by Eq. (69).

4.3 Formulation summary15

At this point, we restrict the development to a one-dimensional model and write the energy
equation, (Eq. 61), as

(
φhaγhaC

V
ha +φiγiC

V
i

) ∂θ
∂t

=
∂

∂x

(
keff

s

∂θ

∂x

)
+ ĉusg. (70)

The mass supply equation, (Eq. 69), representing phase changes due to condensation or
sublimation assumes the one-dimensional form20

ĉ=
∂

∂x

(
Deff

s

∂γsat
v

∂x

)
−φha

∂γsat
v

∂t
. (71)

25



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

The saturated vapor density may be expressed as purely a function of temperature (Dorsey,
1968) leading to

∂γsat
v

∂x
=

dγsat
v

dθ

∂θ

∂x
and

∂γsat
v

∂t
=

dγsat
v

dθ

∂θ

∂t
.

Noting the above, the mass supply equation, (Eq. 71), is expressed as

ĉ=
∂

∂x

(
Deff

s

dγsat
v

dθ

∂θ

∂x

)
−φha

dγsat
v

dθ

∂θ

∂t
. (72)5

Finally, substituting Eq. (72) into Eq. (70) leads to a single partial differential equation gov-
erning the energy balance for snow given by(
φhaγhaC

V
ha +φiγiC

V
i +usgφha

dγsat
v

dθ

)
∂θ

∂t
=

∂

∂x

(
kcon+d

s

∂θ

∂x

)
, (73)

where

kcon+d
s = keff

s +usgD
eff
s

dγsat
v

dθ
. (74)10

The thermal conductivity kcon+d
s is the apparent effective thermal conductivity of snow that

accounts for heat conduction, keff
s , as well as energy transfer due to water vapor diffusion.

Rather than combining Eqs. (70) and (72) and solving Eq. (73), it is more insightful to
solve Eqs. (70) and (72) separately. Retaining a separate equation for the mass supply
allows one to quantify macroscale deposition and sublimation rates, a fundamental objective15

of the theory developed here-in.

5 Evaluation of the effective thermal conductivity and the effective diffusion coeffi-
cient for snow

Solution of the energy equation (Eq. 70) and the mass balance equation (Eq. 72) requires
knowledge of macroscale parameters for effective thermal conductivity as well as the effec-20

tive diffusion coefficient for snow. Calonne et al. (2011) and Riche and Schneebeli (2013)
26
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have performed extensive numerical studies using finite element analysis coupled with X-
ray tomography to quantify the effective thermal conductivity for snow as a function of
density at a fixed temperature. Calonne et al. (2011) also provide effective thermal con-
ductivity predictions at two separate temperatures. Pinzer et al. (2012) and Christon et al.
(1994) performed numerical studies aimed at determining the effective diffusion coefficient5

for snow. Calonne et al. (2014a) also used finite element micromechanics to predict an ef-
fective diffusion coefficient for snow although the specific numerical approach to evaluate
this parameter followed a fundamentally approach.

Regardless of the parameter being studied, a drawback of microscale finite element anal-
ysis (micromechanics) is that the results provide heat and mass transfer properties at a sin-10

gle temperature and density. Hence, a complete characterization of these parameters as
a function of density and temperature requires a significant number of micromechanics so-
lutions at multiple densities and temperatures followed by a curve fitting exercise.

Rather than relying on finite element micromechanics solutions, we present an analytical
approach developed by Foslien (1994) to predict values for the effective thermal conductivity15

and the effective diffusion coefficient of snow. Foslien’s model has several attractive features
including:

– excellent correlation with cited finite element results for effective thermal conductivity
and effective diffusion coefficient for snow,

– density effects are explicitly introduced in the analytical model through volume frac-20

tions while temperature effects appear implicitly through thermal conductivity proper-
ties for ice and air,

– the effects of mass diffusion on the energy flux are explicit and the relative influence
on the energy flux is readily determined,

– the model provides self-consistent results for effective thermal conductivity and effec-25

tive diffusion coefficient for snow for the limiting cases of air and ice,
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– the model is developed from first principles of heat and mass transfer applied to simple
microstructures and contains no empirical coefficients of adjustment.

Foslien’s development begins by formulating microscale heat and mass transfer models for
classic microstructures consisting of ice and humid air acting in parallel and series, respec-
tively. Heat and mass transfer properties for snow are then proposed using arguments from5

quantitative stereology.
Figure ??a shows an ice matrix with humid air pores in parallel to an applied temperature

gradient. In this pore microstructure, energy is transferred in parallel through the snowpack.
The energy fluxes for the ice (qi) and humid air ( qha) constituents are simply added together
to obtain the total energy flux through the snowpack. Because the thermal conductivity of10

ice is roughly 100 times larger than for the humid air, the ice phase plays a dominant role in
heat transfer for this microstructure.

The second microstructure studied, referred to as a lamellae microstructure, consisted
of ice and humid air layers oriented perpendicular to the energy flux, Fig. ??b. In this case,
energy flows in series through the respective layers. Hence, the energy flux in the humid15

air constituent must equal the energy flux through the ice constituent. An interesting fea-
ture of mass transfer in the lamellae microstructure is that diffusion via the “hand to hand”
model described by Yosida (1955) is naturally present and accounted for in the develop-
ment. Specifically, diffusion is enhanced as the total path length for diffusion is reduced by
the ice layer which acts as both a source and sink for water vapor.20

The two microstructures studied by Foslien (1994) were first considered by de Quervain
(1963) and produce two very different heat and mass transfer results that are believed to
represent the extremes possible for ice and humid air mixtures.

5.1 Pore microstructure

Foslien’s heat and mass transfer analysis of the pore microstructure begins by writing en-25

ergy flux expressions for the ice and humid air constituents at the macroscale. The energy
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flux of the ice is attributed to heat conduction leading to

qi =−ki
∂θ

∂x
. (75)

The energy flux of the humid air is attributed to conduction of the humid air and the mass
flux of water vapor. Following Bird and Lightfoot (1960) we can write

qha =−kha
∂θ

∂x
−usgDv–a

dγsat
v

dθ

∂θ

∂x
. (76)5

The energy flux of the pore microstructure is introduced as

qpore =−kpore
∂θ

∂x
, (77)

Energy transfer in the pore microstructure occurs in parallel and the energy flux is simply
the volume average of the energy fluxes of the ice and humid air leading to

kpore = φiki +φhakha +φhausgDv–a
dγsat

v

dθ
. (78)10

5.2 Lamellae microstructure

The discontinuous nature of the lamellae microstructure in the direction of interest intro-
duces a complexity in the spatial gradients

:
, as the constituent gradients must be defined

with respect to a differential length, dxα. Hence the constituent energy fluxes assume the
form15

qi =−ki
∂θ

∂xi
, (79)

and

qha =−kha
∂θ

∂xha
−usgDv–a

dγsat
v

dθ

∂θ

∂xha
. (80)
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The average temperature gradient expressed in terms of the macroscale coordinate x is
given by

∂θ

∂x
= φi

∂θ

∂xi
+φha

∂θ

∂xha
. (81)

The energy flux through the lamellae microstructure is introduced as

qlam =−klam
∂θ

∂x
. (82)5

Equations (79)–(82) may be combined to arrive at

klam =
ki

(
kha +usgDv–a

dγsat
v

dθ

)
φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

. (83)

5.3 Snow properties

The energy flux for snow accounts for heat conduction as well as energy transfer due to
water vapor diffusion. From Eqs. (73) and (74), the energy flux may be identified as10

qs =−
(
keff

s +usgD
eff
s

dγsat
v

dθ

)
∂θ

∂x
. (84)

Foslien (1994) proposed an energy flux for snow that includes energy transfer due to heat
conduction and mass diffusion as

qs = φiqpore +φhaqlam. (85)

Justification for Eq. (85) is provided by considering a snow surface section as shown in15

Fig. ??. When a test line is arbitrarily drawn through the surface section, a fraction of the
30
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total length will pass through the ice constituent and the remainder will pass through the
humid air constituent. If one imagines one-dimensional heat transfer occurring along the
test line; heat transfer through the ice phase is dominated by the pore microstructure where
the thermal conductivity of ice is nearly 100 times that of air. In contrast, anytime the test
line passes through the humid air constituent, heat transfer would be dominated by the5

lamellae microstructure. Using the lineal fraction as the weighted behavior of the thermal
conductivity and recognizing the lineal fraction is identical to the volume fraction under
conditions of isotropy (Underwood, 1970) leads directly to Eq. (85).

Combining Eqs. (77-78) and ((82-83) with (85) leads to an expression for the energy flux
of snow given by10

qs =−

φi (φhakha +φiki) +φha

 kikha

φi

(
kha +usgDv–a

dγsat
v

dθ

)
+φhaki

 ∂θ
∂x

−

φi (φhaDv–a) +φha

 kiDv–a

φi

(
kha +usgDv–a

dγsat
v

dθ

)
+φhaki

usg
dγsat

v

dθ

∂θ

∂x
. (86)

Motivated by the functional forms of Eqs. (84) and (86), we define the effective thermal
conductivity and effective diffusion coefficient as:

keff
s = φi (φhakha +φiki) +φha

 kikha

φi

(
kha +usgDv–a

dγsat
v

dθ

)
+φhaki

 , (87)15

and

Deff
s = φi (φhaDv–a) +φha

 kiDv–a

φi

(
kha +usgDv–a

dγsat
v

dθ

)
+φhaki

 . (88)
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Despite the presence of the binary diffusion coefficient of water vapor in air in the ex-
pression for keff

s , it should be emphasized that the result given in Eq. (87) represents the
effective thermal conductivity for snow as predicted by the analytical model. Similarly, con-
stituent thermal conductivity parameters appear in the equation for the effective diffusion
coefficient of snow, Deff

s . These results are a consequence of a direct application of heat5

and mass transfer principles for the lamellae microstructure—the parameters of thermal
conductivity and diffusion simply do not separate at the macroscale for this microstructure.

A good deal of clarity in the physical interpretation of keff
s and Deff

s may be achieved
through an order of magnitude analysis of the various terms in Eqs. (87) and 88. To begin,
for the range of temperatures of interest, one may show kha and

(
usgDv–a

dγsat
v

dθ

)
are of10

the same order of magnitude. Now rearrange Eqs. (87) and 88 by dividing numerator and
denominator of the last term in each by ki, leading to:

keff
s = φi (φhakha +φiki) +φha

 kha

φi

[
kha+usgDv–a

dγsat
v

dθ
ki

]
+φha

 , (89)

and

Deff
s = φi (φhaDv–a) +φha

 Dv–a

φi

[
kha+usgDv–a

dγsat
v

dθ
ki

]
+φha

 . (90)15

The value of the thermal conductivity of ice is on the order of 100 times that of the
term

(
kha +usgDv–a

dγsat
v

dθ

)
. Therefore, neglecting the term in square brackets in the above

expressions for keff
s and Deff

s leads to:

keff
s = φi (φhakha +φiki) + kha, (91)
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and

Deff
s = φiφhaDv–a +Dv–a. (92)

Eqs. (91) and 92 reveal a desirable consistency in terms. Specifically, the effective ther-
mal conductivity of snow depends only on the thermal conductivities of ice and humid air,
respectively, while the effective diffusion coefficient for snow depends only on the binary5

coefficient of water vapor in air. Hence, the thermal conductivity and diffusion expressions
decouple from one another.

Owing to the ‘’clean” nature of the simplified forms for keff
s andDeff

s , one might be tempted
to use them at all times. That approach is, indeed, valid for the effective thermal conduc-
tivity as the simplified effective thermal conductivity curve is nearly identical to the original10

proposed by Foslien. However, important differences arise in the diffusion predictions.
Figure ?? shows the effective diffusion curves predicted by Eqs. (88) and 92, respec-

tively. The two curves are identical over a wide range of densities from approximately 0-
400 kg m−3. As the curves deviate at higher densities, the original form proposed by Foslien
is necessary to drive Deff

s to the known limiting value of zero for solid ice. The consistency15

of Foslien’s model is impressive in this regard.
There is yet another physically pleasing aspect of Foslien’s model for the effective dif-

fusion coefficient for snow. Using the simplified form of Eq. 92, one can write the effective
diffusion coefficient as

Deff
s = φi (φhaDv–a) +φha

(
Dv–a

φha

)
. (93)20

The leading volume fraction in each of the terms in the above equation is attributed to the
volume fraction weighting of the snow model proposed by Foslien, allowing us to identify
effective diffusion coefficients for the pore and lamellae microstructures as

Dpore = (φhaDv–a) and Dlam =

(
Dv–a

φha

)
.
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In the case of the effective diffusion coefficient for the pore microstructure, the humid air
volume fraction leads Dv–a. The interpretation of φha is quite clear as the ice phase acts as
a blockage and limits the amount of area for humid air mass transport to occur.

The influence of the ice phase on the effective diffusion of water vapor is fundamentally
different for the lamellae microstructure compared to the pore microstructure. First, the ice5

does not act as a blockage of diffusion paths in the lamellae microstructure as it does in the
pore microstructure. Secondly, the ice phase actually enhances water vapor diffusion in the
lamellae microstructure by shortening the pathway needed to travel via the ‘’hand to hand”
mechanism described by Yosida (1955). For example, given an ice volume fraction of 0.5,
one would expect the diffusion coefficient of the lamellae microstructure to be double that10

found in humid air as water vapor would only have to travel half the distance compared to the
distance traveled in humid air alone. Taken collectively, these factors suggest the influence
of φha on the diffusion coefficientDlam should scale as (1/φha), precisely as Foslien’s model
predicts.

While the idealized microstructures utilized by Foslien are not representative of the com-15

plex microstructure of snow, the mass transfer mechanisms described above that are as-
sociated with each microstructure are clearly present in snow. Importantly, the proposed
diffusion model captures these mechanisms.

5.3.1 Effective thermal conductivity

Calonne et al. (2011) and Riche and Schneebeli (2013) provide curve fits of snow effective20

thermal conductivity as a function of density based on their finite element micromechanics
analyses. Calonne’s data included analysis of crystal structures of all types while Riche’s
data was limited to depth hoar and faceted crystals which produce higher thermal conduc-
tivities in the direction of interest (normal to the ground).

Figure ?? provides the predictions of Eq. (87) for a temperature of 253 K against the25

curve fits of Calonne et al. (2011) and Riche and Schneebeli (2013). The correlation of the
analytical model is excellent as the model virtually tracks the numerical results of Riche and
Schneebeli (2013) whose data were also generated at 253 K. Fosliens’s predicted curve at
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271 K shifts downward toward the curve generated by Calonne et al. (2011), also generated
at 271 K, but remains well within the bounds of both curves generated through finite element
analysis of real microstructures. Furthermore, the most significant deviation of the analytical
model occurs at a density for solid ice where Foslien’s model predicts the self-consistent
correct result of thermal conductivity for ice.5

Changes in effective thermal conductivity as a function of temperature were observed by
Calonne et al. (2011) for temperatures of 271 K and 203 K, respectively. Figure ?? shows
the effective thermal conductivity line predicted by Foslien along with the numerical mi-
cromechanics predictions of Calonne et al. (2011). Excellent correlation of the analytical
model and the finite element analyses is again observed.10

Figures ?? and ?? demonstrate the proposed model for effective thermal conductivity
of snow does an excellent job of quantifying keff

s as a function of density and temperature.
However, the complex nature of the microstructure of snow and the inability to relate the ge-
ometric structure to material properties results in significant scatter in the effective thermal
conductivity properties when viewed solely as a function of density.15

Calonne et al. (2014b) performed a series of experiments on snow metamorphism show-
ing a variability of snow effective thermal conductivity under near constant density con-
ditions. The experiments also showed the anisotropic properties of the effective thermal
conductivity tensor increased during metamorphism. Löwe et al. (2013) developed a mi-
crostructural parameter that can be used to reduce the scatter in effective thermal conduc-20

tivity predictions based on density alone. The parameter also provides a means of incor-
porating anisotropic behavior of effective thermal conductivity. It would be advantageous to
refine the effective thermal conductivity model of Eq. (87) to include microstructural effects
other than density. Such a refinement may be particularly important when extending the
current one-dimensional analysis to higher spatial dimensions needed for modeling heat25

and mass transfer in complex terrain.
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5.3.2 Effective diffusion coefficient

The value of the effective diffusion coefficient, Deff
s , for snow has a long history of dispute.

Giddings and LaChapelle (1962) claimed Deff
s to be less than the diffusion coefficient of

water vapor in air due to the fact that ice grains interfere with diffusion paths. In contrast,
Yosida (1955) conducted experiments where the diffusion coefficient was estimated to be5

3.5–5 times larger than that for air while experiments by Sommerfeld et al. (1987) found
that the diffusion coefficient was about twice that for air. Yosida (1955) provided a classic
description of diffusion being enhanced by water vapor moving between ice grains in a
“hand to hand” fashion, thereby shortening the pathway required for water vapor to travel. It
is interesting to note that the mechanisms for diffusion argued by Giddings and LaChapelle10

(1962) and Yosida (1955) both have merit and are competing against one another.
Christon et al. (1994) provided some of the first micromechanics finite element work on

mass transfer for snow and generated predictions for the effective diffusion coefficient rang-
ing from 1.0–1.93 times the diffusion coefficient for water vapor in air. Christon’s results have
been criticized, perhaps unfairly in our view, due to the simplistic microstructure models that15

they were forced to work with at that time. Pinzer et al. (2012) have laid any questions about
the influence of microstructure to rest by performing finite element analysis on real snow
microstructures generated through X-ray computer tomography. Their finite element predic-
tions show a diffusion coefficient for snow to be very nearly that of diffusion of water vapor
in air, perhaps an enhancement of 1.05-1.13 for snow compared to diffusion of water vapor20

in air based on the data provided in Fig. 11 of their work.
Despite wildly more complex microstructures, the results of Pinzer et al. (2012) are largely

consistent with the results of Christon et al. (1994). Indeed, in reference to studies on the
vapor flux and its dependence on microstructure over time, Pinzer et al. (2012) note that
“the flux stays constant in time, despite the dramatic changes in the structure”.25

The diffusion coefficient given by Eq. (88) divided by the diffusion coefficient of water
vapor in air is plotted in Fig. ?? to show Foslien’s predicted diffusion enhancement as
a function of density at a snow temperature of 263 K. Also plotted in Fig. ?? are the diffusion
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enhancement ratios of Christon (1990) for two microstructural geometries in their applicable
density ranges as well as the more recent predictions of Pinzer et al. (2012) based on real
snow microstructures determined from X-ray tomography. Pinzer’s results show a range of
diffusion enhancement at any given density that represent the bounds of the finite element
predictions shown in Fig. 11 of their work.5

Foslien’s model predicted a maximum diffusion enhancement for snow compared to air of
1.23 with enhancements for typical snow densities in the range from 1.0–1.2. These values
are in excellent agreement with the numerical predictions of Christon (1990). The favorable
comparison is significant in that Christon’s simpler microstructures largely resemble a com-
bination of the pore and lamellae structures. The more recent numerical results of Pinzer10

et al. (2012) fall very much in line with results generated by Christon et al. (1994). In brief,
we agree with view of Pinzer et al. (2012) in that any enhancement of water vapor diffusion
in snow compared to diffusion of water vapor in air is minimal.

Calonne et al. (2014a) have recently computed an effective diffusion coefficient for snow
by solving the field equations for mass transfer on a series of RVE’s computed from 3-D15

images of snow. The results are interesting in that they show normalized values of Deff
s

starting at 1.0 for humid air alone and steadily decreasing to values as low as 0.2 for snow
densities of 500 kg m−3.

Calonne et al. (2014a) defined the effective diffusion coefficient of snow as

Deff
s =

1

|V |

∫
V a

Dv−a (∇gv + I)dV, (94)20

where gv represents water vapor fluctuation in the air phase.
Following the previous discussion on effective thermal conductivity, the above equation

may be written as

Deff
s = φha

1

|Va|

∫
V a

Dv−a (∇gv + I)dV. (95)
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Introducing the notation

Deff
a =

1

|Va|

∫
Va

Dv (∇gv + I)dV, (96)

as the effective diffusion coefficient of humid air in snow leads to

Deff
s = φhaD

eff
a . (97)

Of interest here is the volume fraction of the humid air constituent leading the volume5

averaged effective diffusion coefficient of the humid air. The linearly decreasing nature of
the numerical predictions of Calonne et al. (2014a) as a function φha suggests Deff

a is nearly
constant for the various samples. Hence, the volume fraction of Eq. 95 acts in a manner
similar to the pore microstructure, restricting the pathway for diffusion. While the mecha-
nism to slow diffusion is accounted for by φha in Eq. 95, it is not readily apparent how this10

equation accounts for diffusion enhancement via the ‘’hand to hand” mechanism of diffusion
described by Yosida (1955), where the pathway of diffusion may be significantly shortened
by the ice phase.

We believe an interesting line of inquiry is to compare the finite element results of Pinzer
et al. (2012) and Calonne et al. (2014a) for evaluating the effective diffusion coefficient of15

snow, as their results are fundamentally different. Both use real 3-D snow microstructures
and, we believe, a similar finite element numerical approach for the heat and mass transfer
solutions. What is the difference then? One possibility is the way in which the diffusion co-
efficients are computed given an

:
a finite element solution. Pinzer et al. (2012) evaluate the

mass flux in a slice in the RVE, perpendicular to the temperature gradient—an approach20

similar to Christon. In contrast Calonne et al. (2014a) utilize Eq. 95 to compute the diffu-
sion coefficient. It would be extremely interesting to explore this topic by taking a single
microstructure, evaluating Deff

s using both approaches.
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5.3.3 Thermal conductivity with diffusion

The apparent effective thermal conductivity for snow including the enhancement of heat
transfer due to mass diffusion is given by Eq. (74). Figure ?? shows the enhancement of
thermal conductivity incorporating diffusion effects as a function of density at three different
temperatures. For instance, at a density of 250 kg m−3, the heat transfer enhancement due5

to diffusion is 9 and 3 % for temperatures of 268 and 257 K, respectively. These values
are reasonably consistent with calculated values provided by Riche and Schneebeli (2013)
showing latent heat transfer contributions to be approximately 14 and 1 % for temperatures
of 268 and 257 K, respectively. Specific densities were not provided for the calculations of
Riche and Schneebeli (2013) but the average density of their samples was 254 kg m−3.10

The analytical predictions of Foslien shown in Fig. ?? suggest the importance of latent
heat transfer by diffusion is most prominent in low density snow at temperatures near freez-
ing. In this case, the enhancement of heat transfer due to diffusion may be as high as
30–40 % for low density snow. These results are consistent with the numerical studies of
Christon et al. (1994) who note: “the enhancement due to the transport of latent energy is15

seen to peak at about 40 % of the conduction for the lowest density and the highest base
temperature”.

In closing, results from the analytical model for the thermal conductivity of snow, keff
s ,

and the effective diffusion coefficient for snow, Deff
s , proposed by Foslien are in excellent

agreement with cited finite element micromechanics analyses and, further, the parameter20

predictions are self-consistent with the limiting cases of air and solid ice. The results lend
confidence to using the predicted parameters for keff

s and Deff
s over the entire spectrum of

temperatures and densities encountered in the macroscale heat and mass transfer analy-
ses presented in Sect. 6.
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6 Numerical results for macroscale heat and mass transfer

In this section, numerical results of the nonlinear equations (Eqs. 70 and 72) governing heat
and mass transfer in a snowpack are presented. The specific problem at hand is to model
the heat and mass transfer in a one-meter deep snow cover with complexities associated
with a real snowpack such as dense layers and a time varying surface boundary condition5

for temperature. Figure ?? shows a schematic of the analysis. A Galerkin finite element
method was used to discretize the spatial domain, and the Crank-Nicholson time integration
method is used to advance the solution in time. The code used to generate the results of
Section 6.1 is provided in the Supplement.

Fig. ?? shows
::
??

:::::::
shows

:::
a

::::::::::
schematic

:::
of

::::
the

::::::
snow

:::::::
cover

::::::::::::::
characteristics

:::::
and

::::
the10

:::::::::::
asscociated

::::::::
density

:::::::
profile

:::
for

:
the density profile of the snowpack for the numerical

simulations
:::::::::::
macroscale

:::::
heat

:::
and

::::::
mass

:::::::
transfer

::::::::::
numerical

:::::::
studies. The snowpack had a sea-

sonal snow density of 240 kg m−3 with a dense layer starting at 64
:
cm and ending at 86 cm.

The density was assumed to increase from 240 kg m−3 to 600 kg m−3 over 8 cm with a sim-
ilar rate of decrease at the top end of the ice crust to a density of 120 kg m−3.15

The snow density at the ground level was set to solid ice in an effort to impose realistic
boundary conditions. If the density at the ground layer is less than solid ice, the snowpack
can be viewed as having no barriers below it. In this case, the model would predict that
saturated air enters the snowpack at the ground level with no specified source for this vapor.

Numerical results corresponding to two test cases are presented. The first problem is20

designed to study the impact of the dense layer on macroscopic temperature gradients and
deposition (condensation) and sublimation rates. Colbeck (1993) stressed the importance
of developing a theory of snow which incorporates the effect of dense layers on the heat
transfer in snow. The second problem focuses on the effect of diurnal temperature fluctu-
ations on the surface of the snowpack. Of interest here are the near surface temperature25

gradients compared to the average temperature gradient in the snowpack. Condensation
and sublimation rates near the surface are also of interest.
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6.1 Influence of an ice crust

To study the influence of the ice crust on heat and mass transfer, an isothermal snowpack
at 0◦C was initially assumed. Boundary conditions at the ground and surface were 0◦C and
−20◦C, respectively, thereby initiating a temperature gradient through the snowpack.

Figure ?? shows the temperature profile in the snowpack after 1, 5, and 10 days, respec-5

tively. In the dense layer of snow, the temperature gradient is noticeably reduced at any
time due to the higher thermal conductivity of the dense snow. The dense layer also has
the effect of producing a much higher temperature gradient in the near surface fresh snow
cover in the pack. Figure ?? shows that, even after 10 days, the temperature gradient near
the surface is approximately 60◦C m−1, three times the average temperature gradient. The10

high temperature gradients near the surface are even more notable when one considers the
significant amplification of temperature gradients that occur at the microscale as discussed
in Sect. 2 and demonstrated in Fig. 4 of Pinzer et al. (2012).

Figure ?? shows both condensation and sublimation occurring in the snowpack with sig-
nificant activity near the dense ice crust. Near the surface, condensation is occurring be-15

cause water vapor is diffusing toward the surface which is colder and, therefore, an area
of lower saturation for the vapor density. The water vapor must then condense if the air
is not to become supersaturated. Just below the dense layer, Fig. ?? shows another area
of condensation near the dense ice crust. Condensation occurs here due to the decrease
in humid air volume fraction in the direction of the water vapor diffusion. If the amount of20

air available to hold water decreases, then the amount of water vapor must also decrease.
Just above the dense layer, the opposite is true. Here, Fig. ?? shows that sublimation is
occurring because the vapor volume fraction is increasing in the direction of vapor flow.
Sublimation must occur to keep the increasing amount of air saturated.

Local weakening above and below dense layers in a snow cover have been observed25

(Adams and Brown, 1982). If condensation is known to enhance depth hoar growth (Col-
beck, 1983), then the condensation occurring below the dense layer in Fig. ?? could con-
tribute to the weakening observed in this region of a snowpack. Temperature gradients are
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relatively low below the ice crust, although in the range of where faceted crystal growth
has been observed in field studies. The sublimation occurring above the dense layer may
contribute to any snowpack weakness observed here.

Sublimation is also observed near the ground after 10 days and appears to be increas-
ing with time. At a sublimation rate of 4 mg m−3 s−1 occurring just above the ground after5

10 days, a decrease in density of 1 kg m−3 would take about 3 days. This slow rate of change
in density is consistent with experimental studies on temperature gradient metamorphism,
where little change is density is observed despite the dramatic changes in the crystal struc-
ture of snow (Pinzer et al., 2012).

6.2 Effect of diurnal temperatures10

To study diurnal temperature effects, the surface of the snowpack was subjected to a har-
monic temperature boundary condition given by

θ(1, t) =−20− 10sin
πt

43200
, (98)

with the lower surface temperature held fixed at 0◦C. The boundary condition given by
Eq. (98) has a mean value of −20◦C with a 10◦C fluctuation about the mean. Initial con-15

ditions for the temperature through the snowpack were specified based on the average
temperature gradient of −20◦C m−1 at time t= 0.

Figure ?? shows the temperature profile over a 24 h period at day 5, after any transients
have disappeared. Only the upper half-meter of the snowpack is shown. Strong tempera-
ture gradients are observed in the fresh snow near the surface, with gradients as high as20

−150◦C m−1 as shown in Fig. ??. The large temperature gradients found near the surface
are also accompanied by active condensation and sublimation throughout a 24 h cycle,
Fig. ??. Both the temperature gradient and the mass exchange are likely to impact mi-
crostructural changes that occur in the near surface snow cover.
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7 Summary

We have developed a macroscale mixture theory analysis for modeling condensation and
sublimation rates in a snow cover under temperature gradient conditions. The theory is
general enough to accommodate arbitrary density profiles with any desired time dependent
surface boundary conditions. Condensation and/or sublimation is observed near the ground5

and the surface as well as immediately above and below dense layers such as ice crusts.
Macroscale temperature gradients can be surprisingly high compared to the average tem-
perature gradient in the snowpack.

A quantitatively correct macroscale analysis of constituent mass exchange brings out
an interesting microscale analysis problem that is worthy of attention. Recent numerical10

studies of heat and mass transfer at the microscale begin by solving the steady state dif-
fusion equation for heat transfer with the appropriate thermal properties of ice and humid
air. Dirichlet boundary conditions for temperature are specified at the top and bottom of the
RVE to simulate a desired temperature gradient. Once the local temperature field is deter-
mined, a solution for mass transport is obtained for the humid air phase. The vapor density15

boundary conditions are specified at the ice/air interface by assuming the vapor density
is saturated, thereby a function of temperature only. Therefore, the mass flux in such an
analysis is essentially dictated by the macroscale temperature gradient.

The mixture theory results for macroscale deposition and or sublimation tell an entirely
different story. For example, consider the effects of diurnal temperatures on heat and mass20

transfer near the surface as seen in Figures ?? and ??. Figure ?? shows strong negative
temperature gradients at 6 and 24 hours between x=0.9 m and x=1.0 m (the region bounded
by the ice crust and the surface). Now, examine Figure ?? showing mass exchange at the
same time periods and snow depth. The 6 hour plot shows deposition is occurring while the
24 hour plot shows sublimation is occurring. The boundary conditions used for microscale25

analyses of an RVE described above cannot capture this interesting phenomenon as the
results are driven by temperature gradient only.
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The divergent behavior of macroscale deposition/sublimation phenomena from the
macroscale temperature gradient should come as no surprise from the mixture theory anal-
ysis. Indeed, the ability to show this phenomenon is the fundamental driver for developing a
mixture theory to begin with. If this were not the case, one could simply generate a thermal
profile from the energy equation and move on.5

Given the mixture theory results described above, it would be interesting to investigate
a transient microscale (RVE) solution exploring the effects of imposing mass flux boundary
conditions for the vapor while using the saturated vapor density (based on the temperature
field) as an initial condition for the humid air. Perhaps such an analysis could help explain
microstructural evolution (kinetic growth versus sintering) under conditions where specifying10

the temperature gradient alone is unable to do so. Christon (1990) developed a fully coupled
heat and mass transfer formulation, although boundary conditions involved temperature and
temperature gradient only.

Knowledge of the condensation or sublimation rates at the macroscale provides the foun-
dation for a fully coupled solution of heat and mass transfer at the microscale. In this spirit,15

the mixture theory for snow can simulate interesting macroscale problems featuring terrain
changes, ice crusts, surface effects, snow storm deposition, extreme temperatures, etc.
Heat and mass transfer results from a mixture theory analysis could then be used as inputs
for a host of interesting microstructural studies.

Finally, analytical expressions of thermal conductivity and the effective diffusion coeffi-20

cient for snow were motivated from simple microstructures whose heat and mass transfer
are grounded in first principles. The equations developed provide an elegant path to mod-
eling thermal conductivity and the effective diffusion coefficient of snow that are needed for
the macroscale mixture theory analysis.

Nomenclature25

Arabic Letters

aα Acceleration of constituent α (m s−2)
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ĉα Mass supply of constituent α (kg m−3 s−1)

CV Specific heat of snow at constant volume (J kg−1 K−1)

CVα Specific heat of constituent α at constant volume (J kg−1 K−1)

Deff
lam Effective diffusion coefficient of lamellae microstructure (m2 s−1)

Deff
pore Effective diffusion coefficient of pore microstructure (m2 s−1)5

Deff
s Effective diffusion coefficient of snow (m2 s−1)

Dv−a Diffusion coefficient of water vapor in air (m2 s−1)

êα Energy supply of constituent α (W m−3)

g Gravity vector (m s−2)

gv Vector characterizing water vapor density fluctuation in the air phase10

H Snowpack height ( m)

I Identity tensor

jv Diffussive flux of water vapor (kg m−2 s−1)

kα Thermal conductivity of constituent α (W m−1 K−1)

keff
α Effective thermal conductivity of constituent α (W m−1 K−1)15

klam Apparent effective thermal conductivity of lamellae microstructure including mass
diffusion effects (W m−1 K−1)

kpore Apparent effective thermal conductivity of pore microstructure including mass diffu-
sion effects (W m−1 K−1)

keff
s Effective thermal conductivity of snow (W m−1 K−1)20
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kcon+d
s Apparent effective thermal conductivity of snow including mass diffusion effects

(W m−1 K−1)

Lα Velocity gradient tensor of constituent α (s−1)

Lo Length scale ( m)

mmol Mass of a water molecule (kg)5

p Vapor pressure ( Pa)

p̂α Momentum supply of constituent α (N m−3)

q Energy flux (W m−2)

qc Energy flux due to conduction (W m−2)

qd Energy flux due to interdiffusion of species (W m−2)10

qα Energy flux of constituent α (W m−2)

qs Energy flux of snow (W m−2)

R Water vapor gas constant (J kg−1 K−1)

rα Heat supply of constituent α (W kg−1)

T Partial stress tensor of constituent α ( Pa)15

ta Vector characterizing temperature fluctuation in the air phase

ti Vector characterizing temperature fluctuation in the ice phase

to Time scale ( s)

uα Specific internal energy of constituent α (J kg−1)
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usg Latent heat of sublimation of ice (J kg−1)

vα Velocity of constituent α (m s−1)

va Velocity of air component (m s−1)

vv Velocity of water vapor component (m s−1)

V Volume (m3)5

x Position vector ( m)

Greek Symbols

αc Condensation coefficient

χi Indicator function for the ice constituent

γα True density of constituent α–as opposed to a dispersed density (kg m−3)10

Ω Boltzman’s constant (J K−1 molecule−1)

φα Volume fraction of constituent α

ρ Snow density (kg m−3)

ρα Dispersed density of constituent alpha (kg m−3)

θ Temperature ( K)15

θα Temperature of constituent α ( K)

θfinal Final temperature ( K)

θinit Initial temperature ( K)

θref Reference temperature ( K)
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ξ Specific surface area of snow ( m−1)

Operators

∇ Gradient operator

∇x Gradient operator applied at the microscale

Subscripts5

α Arbitrary constituent

a Air component

ha Humid air constituent

i Ice constituent

m Indicates variable applies at the microscale10

ref Reference

s Snow

v Water vapor component

Superscripts

∗ Dimensionless variable15

eff Effective—applies at the macroscale

sat Saturated water vapor in air

The Supplement related to this article is available online at
doi:10.5194/tcd-0-1-2015-supplement.
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