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Abstract

The microstructure of a dry alpine snowpack is a dynamic environment where microstruc-
tural evolution is driven by seasonal density profiles and weather conditions. Notably, tem-
perature gradients on the order of 10–20 K m−1, or larger, are known to produce a faceted
snow microstructure exhibiting little strength. However, while strong temperature gradients
are widely accepted as the primary driver for kinetic growth, they do not fully account for the
range of experimental observations. An additional factor influencing snow metamorphism is
believed to be the rate of mass transfer at the macroscale.

We develop a mixture theory capable of predicting macroscale deposition and/or subli-
mation in a snow cover under temperature gradient conditions. Temperature gradients and
mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and
mass transfer behavior is observed near the ground, near the surface, as well as immedi-
ately above and below dense ice crusts. Information about deposition (condensation) and
sublimation rates may help explain snow metamorphism phenomena that cannot be ac-
counted for by temperature gradients alone.

The macroscale heat and mass transfer analysis requires accurate representations of
the thermal conductivity and the effective mass diffusion coefficient for snow. We develop
analytical models for these parameters based on first principles at the microscale. The
expressions derived contain no empirical adjustments, and further, provide self consistent
values for thermal conductivity and the effective diffusion coefficient for the limiting cases of
air and solid ice. The predicted values for these macroscale material parameters are also
in excellent agreement with numerical results based on microscale finite element analyses
of representative volume elements generated from X-ray tomography.

1 Introduction

The thermodynamically active nature of snow, coupled with unusual high porosities, poses
significant challenges to modeling heat and mass transfer in a snow cover. A primary driver
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in much of the research on this subject has been efforts to explain the evolving microstruc-
ture of snow that often occurs in a matter of hours or days. Notably, snow metamorphism,
induced by strong temperature gradients in a snow cover, is known to produce a highly
faceted microstructure, the presence of which results in extremely weak layers in a snow
cover. Weak layers have been observed near the ground, near the surface, as well as above
and below dense layers (e.g., ice crusts) within a snow cover.

While strong temperature gradients are widely accepted as the primary driver in tempera-
ture gradient metamorphism (TGM), they do not fully account for the range of experimental
observations. For instance,

::::::
slightly

:
faceted crystal growth has been observed at low tem-

perature gradients
:::::::
gradient

::::::::::
(3K m−1) where rounded grains from sintering have normally

been observed (Flin and Brzoska, 2008). In contrast, Pinzer and Schneebeli (2009) note
that rounded grain forms have been observed in surface layers under temperature gradient
conditions

:::::::::
subjected

:::
to

::::::::::
alternating

::::::::::::
temperature

:::::::::
gradients

::
of

:::::::::
opposite

::::::::
direction.

An additional factor influencing snow metamorphism is believed to be the rate of mass
transfer at the macroscale. The influence of mass transfer at the macroscale is often ne-
glected for the simple fact that deposition (condensation) and sublimation rates caused by
vapor diffusion and phase changes are not known in a typical macroscale analysis. Vapor
diffusion and the associated phase changes at the macroscale pose modeling challenges
in that it forces the macroscopic analysis toward a mixture theory where the ice and humid
air constituents retain their identity. Mixture theory itself is a subject that has yet to fully
mature and many open questions remain.

Implementing a macroscopic continuum mixture theory to elucidate the coupled heat and
mass transfer phenomena occurring in snow is the central focus of this paper. We study the
effects of mass transfer near the ground, near the surface including diurnal temperature
effects, as well as adjacent to an ice crust within the snow cover. Heat and mass transfer
rates are tracked over several different time periods ranging up to 10 days.

The mixture theory analysis developed here-in requires an accurate assessment of
macroscopic properties for thermal conductivity and the effective mass diffusion coefficient
for snow. Determining these parameters requires an analysis of heat and mass transfer at
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the microscale. A major challenge in microstructural studies of snow metamorphism is the
extremely complex three-dimensional structure of the ice phase.

Historically, generating an accurate geometric representation of the microstructure of
snow and further connecting it to a subsequent heat and mass transfer analysis was simply
not possible. However, in the last two decades, the use of X-ray computed tomography has
profoundly altered experimental and theoretical research for snow at the microstructural
level. Not only can one accurately capture the true 3-D snow microstructure, the evolution
of the microstructure may be monitored in real time as metamorphism occurs. Furthermore,
finite element analysis may be coupled to experimentally produced 3-D microstructures to
model heat and mass transfer at the local scale.

High fidelity microscale numerical models, coupled with X-ray computer tomography,
have been utilized by Riche and Schneebeli (2013) and Calonne et al. (2011) for predictions
of macroscale thermal conductivity. Pinzer et al. (2012) and Flin and Brzoska (2008) use

:::::
used finite element analysis with X-ray tomography to address vapor diffusion. Evolution
of the snow microstructure and determining an effective diffusion coefficient for snow are
among their notable contributions.

We believe the finite
:::::
Finite

:
element predictions based on computer generated X-ray to-

mography snow structures provide an excellent foundation for determining material prop-
erties for thermal conductivity and the effective diffusion coefficient for snow. However, in-
stead of utilizing finite element micromechanics to generate macroscale material properties,
we rely on an interesting mathematical model developed by Foslien (1994). The analytical
model produces results for thermal conductivity and the effective diffusion coefficient for
snow that are in remarkable agreement with the finite element predictions cited above. The
model also accounts for thermal conductivity and effective diffusion coefficient properties
over the entire range of densities and temperatures possible for snow. The strong corre-
lation of thermal conductivity and diffusion coefficient for snow lends confidence to using
parameters based on the model of Foslien in the macroscopic mixture theory analysis de-
veloped here-in.
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2 Reflections on geometric scales: microscale vs. macroscale variables

The critical heat and mass transfer mechanisms for snow metamorphism play out at two
distinctly different geometric and time scales. At the microscale (on the order of millimeters)
snow exhibits an extremely complex and evolving microstructure consisting of ice grains and
humid air. At the macroscale, the geometric scale of interest is associated with the depth
of the snow cover (typically

:::::::::::::::
cover—typically on the order of meters). Macroscopic variables

of interest include density, temperature, temperature gradient, as well as the mass flux
of water vapor and the resulting deposition and sublimation that will occur within a snow
cover. These macroscopic variables are fundamental drivers for snow structure evolution
occurring at the microscale, thereby coupling local phenomena driving snow metamorphism
with macroscale heat and mass transfer.

When developing a theory that transcends multiple geometric scales, attention must be
paid to the transition from the microscale to the macroscale, commonly referred to as ho-
mogenization. An implicit requirement necessary for homogenization in an upscale process
is appropriate separation of scales, both from a geometric and physical viewpoint. Auriault
et al. (2009) provide extensive discussion of necessary conditions required for separation
of scales, all of which are satisfied for the present work.

A notable aspect of the present homogenization process is that a mixture theory is intro-
duced by defining snow at the macroscale to be a mixture composed of an ice constituent
and a humid air constituent. The constituent variables may, in turn, be appropriately aver-
aged to obtain the macroscale snow field variables. Allowing the constituents to retain their
identity provides a vehicle to study mass transfer due to condensation and sublimation at
the macroscale.

As a means of formalizing an upscaling process for snow, the concept of a representative
volume element (RVE) is introduced. The RVE must be of sufficient size such that volume
averages of the constituent variables do not change as the volume is increased.

Given an RVE, let φα denote the volume fraction of constituent α. The mixture con-
stituents are immiscible and the constituent volume fractions are space filling, leading to
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the relation

φi +φha = 1, (1)

where subscripts (i) and (ha) denote the ice and humid air constituents, respectively.
The density of snow, ρ, is defined by the volume average of the local (microscale) density

field, γm(x), that varies throughout the RVE, i.e.,

ρ=
1

V

∫
V

γm (x)dV ., (2)

::::::
where,

:::
for

:::::::
clarity,

:::
the

:::::
local

:::::::
density

:::::
may

::
be

:::::::::::
expressed

::
as

:

γm(x) = γiχi(x) + γha (1−χi(x))
:::::::::::::::::::::::::::::::

(3)

::
in

::::::
terms

::
of

::::
the

:::::::::
indicator

::::::::
function

::::::
χi(x)

::
of

::::
the

::::
ice

:::::::
phase. The subscript (m) on the local

density field is used to emphasize that the variable is defined at the microscale.
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In the case of a mixture, the integral of Eq. (2) may be broken into an ice domain and
a humid air domain as

ρ=
1

V

∫
Vi

γm (x)dV +
1

V

∫
Vha

γm (x)dV. (4)

Moreover, the following macroscale constituent densities are introduced as

γi =
1

Vi

∫
Vi

γm (x)dV, (5)

and

γha =
1

Vha

∫
Vha

γm (x)dV. (6)

Noting Eqs. (4)–(6) leads to a volume average expression for the density of snow given by

ρ= φiγi +φhaγha. (7)

We emphasize that the mixture formulation is defined entirely at the macroscale. Hence, all
variables in Eq. (7) represent macroscale quantities.

Following Özdemir et al. (2008), we introduce heat transfer variables
::::
heat

::::::::
transfer

:::::::::
properties

::::
are

:::::::::::
introduced into the micro-macro upscaling process by defining the macro-

scopic heat capacity as(
ρCV

)
=

1

V

∫
V

γm

(
CV
)

m
dV, (8)

where CV is the specific heat at constant volume. This equation provides a definition for the
specific heat of snow yielding consistent values of heat capacity at both scales. Following

7
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the same development as for the density of snow leads to the relation(
ρCV

)
= φi

(
γiC

V
i

)
+φha

(
γhaC

V
ha
)
, (9)

where the heat capacity for constituent α is given by(
γαC

V
α

)
=

1

Vα

∫
V Vα::

γm

(
CV
)

m
dV. (10)

Özdemir et al. (2008) further enforces consistency of the stored heat at the microscale and
macroscale through the relation(
ρCV

)
θ =

1

V

∫
V

γm

(
CV
)

m
θmdV, (11)

where θm and θ represent the local temperature and macroscale temperature, respectively.
Again, the integral of Eq. (11) may be separated into an ice constituent and a humid air
constituent as

(
ρCV

)
= φi

 1

Vi

∫
Vi

γm

(
CV
)

m
θmdV

+φha

 1

Vha

∫
Vha

γm

(
CV
)

m
θmdV

 . (12)

Constituent temperatures, θi and θha, are introduced through the relations

γiC
V
i θi =

1

Vi

∫
Vi

γm

(
CV
)

m
θmdV, (13)

and

γhaC
V
haθha =

1

Vha

∫
Vha

γm

(
CV
)

m
θmdV. (14)

The heat capacity of the ice constituent is spatially homogeneous
::
is

::::::::::::::
heterogeneous

:
at the

microscale
:::
but

:::::::::::::
homogeneous

:::
in

:::
the

::::
ice

::::::
phase, leading to a volume average temperature

8
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for ice given by

θi =
1

Vi

∫
Vi

θmdV. (15)

For the range of temperatures of interest, the mass fraction of water vapor in dry air is on
the order of 10−3. Hence, the thermal properties of the humid air may be taken to be those
of dry air and the heat capacity of dry air is constant for the temperature variations seen at
the microscale. This condition leads to a volume average definition for the temperature of
the humid air constituent given by

θha =
1

Vha

∫
Vha

θmdV. (16)

The temperature of snow may be determined from(
ρCV

)
θ = φi

(
γiC

V
i

)
θi +φha

(
γhaC

V
ha
)
θha. (17)

Hence, the temperature of snow does not follow the constituent volume averaging found for
the heat capacity (Eq. 9) and the density (Eq. 4) but rather is based on a volume average
weighted by the constituent heat capacities.

The temperature gradient at the microscale is a critical parameter driving temperature
gradient metamorphism. To this end, we introduce volume averaged temperature gradients
for the ice and humid air constituents

:::
are

::::::::::
introduced as

∇θi ice temperature gradient, and

∇θha humid air temperature gradient,

9
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where, for example,

∇θi =
1

Vi

∫
Vi

∇xθm (x)dV. (18)

The subscript x on the gradient operator in Eq. (18) is used to emphasize the gradient
applies at the microscale.

Given appropriate boundary conditions for the RVE, the macroscale temperature gradient
for snow satisfies the volume weighted averaging:

∇θ = φi∇θi +φha∇θha. (19)

Özdemir et al. (2008) develop the specific boundary conditions for the RVE that are neces-
sary to satisfy Eq. (19). These boundary conditions are precisely the ones used by Pinzer
et al. (2012) and Riche and Schneebeli (2013) in their finite element analyses of heat and
mass transfer at the microscale.

Finally, it is extremely important to recognize differences in behavior between local (mi-
croscale) temperature gradients and the volumed averaged macroscale temperature gra-
dient. For instance, Pinzer et al. (2012) provide a figure of the local temperature gradients
in an RVE for an applied macroscale temperature gradient of 50K m−1. The color bar for
the microscale temperature gradient indicates local values of the temperature gradient are
as high as 300K m−1. The high local values of the temperature gradient compared to the
macroscopic temperature gradient must be kept in mind when interpreting macroscopic
results, as it is the local temperature gradients that drive metamorphism. Hence, when
macroscale temperature gradients are presented as computed by the mixture theory analy-
sis, it is not unreasonable to assume the microscale temperature gradients may be an order
of magnitude higher in some areas of the RVE.

3 A mixture theory model for macroscale heat and mass transfer

10
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::::
The

::::::::::
common

::::::::
phase

:::::::::::
changes

:::::::::::
occurring

::::
in

:::::::
snow

:::::::
have

::::::::::::
motivated

:::::::::
several

:::::::
studies

:::::::::
using

:::::::::::
variants

::::::
of

:::::::::::
mixture

::::::::::::
theories.

:::::::::::::::::::::::::::
Morland et al. (1990) and

::::::::::::::::::::::::::::::::::::::
Bader and Weilenmann (1992) developed

::
a
::

4
:::::::::::

constituent
::::::::
mixture

:::::::
theory

:::
for

::::::
snow

::::::
where

:::
one

:::
of

:::
the

::::::::::::
constituents

:::::
was

::::::
water.

::::::::::::
Phenomena

:::::
such

:::
as

:::::::::::
percolation,

::::::::
melting,

::::
and

::::::::
freezing

:::
are

:::::::::::
addressed,

::::
and

:::::::::::
momentum

:::::::::
balance

:::::
plays

::
a
::::::::::
significant

::::
role

:::
in

:::
the

::::::
work.

::::
The

::::::::
present

::::
work

:::::
does

::::
not

:::::::
involve

:::::::::::
momentum

::::::::
balance,

::::
nor

:::::
does

::
it

:::::
allow

:::
for

::
a

:::::
water

:::::::::::
constituent.

:

:::::::::::::::::::::::::::::::::
Gray and Morland (1994) developed

::
a
:::::::
mixture

:::::::
theory

:::
for

:::
dry

:::::
snow

:::::::
based

::
on

::::::::::::
constituents

::
of

:::
ice

::::
and

::::
dry

:::
air.

:::::
Their

:::::
work

::
is
:::
in

:::::
sharp

::::::::
contrast

:::
to

:::
the

::::::::
present

:::::
study

:::::::
where

:::::
water

::::::
vapor

::
is

:
a
:::::::
critical

:::::::::::
component

::
of

::::
the

:::::::::::::
development.

:::::::
Indeed,

::::
the

::::::::::
emphasis

::
of

::::
the

:::::::
present

:::::
work

:::
is

:::
the

:::::::::
prediction

::
of

::::::::::
deposition

:::::::
and/or

:::::::::::
sublimation

::
of

::::::
water

::::::
vapor

::
at

:::
the

::::::::::::
macroscale.

:

Adams and Brown (1990) studied heat and mass transfer in snow using a classical
form of mixture theory . In contrast

::::::
where

::::::
water

::::::
vapor

::::
was

:::::::::
included.

::::::
Their

:::::
work

::::::::
focused

::
on

:::::::::::::::
non-equilibrium

:::::::::::
conditions

::
of

::::
the

::::::::::::
constituents

::::::::
whereas

::::
the

::::::::
present

:::::
work

::
is
:::::::

based
:::
on

::::::::::
equilibrium

:::
of

::::::::::
constituent

:::::::::::::
temperatures

::::
and

::
a
::::::::::
saturated

::::::
vapor

:::::::
density.

:::::::::::
Equilibrium

:::::::
versus

::::::::::::::
non-equilibrium

::::::::::
conditions

:::::::::
amounts

::
to

::
a

:::::
focus

:::
on

::::::::
different

:::::
time

:::::::
scales.

:::::
Aside

:::::
from

::::
the

::::::::
different

::::::
areas

::
of

::::::::::
emphasis

::
in

:::
the

::::::
study

::
of

:::::::
phase

:::::::
change

::::::::::::
phenomena

::
in

:::::
snow, the mixture

::::::::
theories

:::::
cited

:::
are

:::::::
based

:::
on

::
a

::::::::
classical

:::::::
theory

::
of

:::::::::
mixtures

::::::::
whereas

::::
the

:::::::
present

:::::
work

::
is
:::::::
largely

:::::::
based

:::
on

:
a
::::::::

volume
:::::::
fraction

::::::::
mixture

:::::::
theory

:::::::::::::::::::::
(Hansen et al. (1991)).

::::
The

:::::::
volume

::::::::
fraction theory analysis presented here-in largely follows the development of

Hansen et al. (1991) and is referred to as a volume fraction theory. The theory produces the
same balance equations found in the classical developments of mixture theory. However,
the summed constituent balance equations are not forced to reduce to those of a single
continuum except for the special case of a nondiffusing mixture. As a result of relaxing this
constraint, the physical definitions of mixture variables as well as the constraints on mass,
momentum, and energy interaction terms assume more appealing forms. We rely on the
physical arguments of Sect. 2 to define mixture quantities of interest.

::::::::::::::::::::::::::::::::::::::
Albert and McGilvary (1992) incorporated

::::
the

:::::::
effects

:::
of

::::::
mass

:::::::::
diffusion

::
in

:::
a

:::::
heat

::::
and

:::::
mass

::::::::
transfer

:::::::::
analysis

::
of

::::::
snow

::::::::::
centered

:::
on

:::::::
natural

:::::::::::
convection

:::::
and

::::
the

:::::::::::::
phenomenon

::::::
known

:::
as

:::::
wind

:::::::::
pumping.

::::
The

::::::::::
equations

::::::::::
developed

:::::::
involve

::
a
::::::::
velocity

::
of

::::
the

::::::
humid

:::
air

::::
and

11
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:::::::::
conditions

:::::::
where

:::
the

::::::
vapor

::::::::
density

::
is

:::
not

::::::::::
saturated.

:::::::
These

::::::::::
conditions

::::
only

::::::
occur

:::
in

:::::
snow

:::::
under

::::::::
extreme

:::::::::::::::
circumstances.

:::::::::::::::::::::::
Foslien (1994) performed

:::
a

::::::::::::
dimensional

::::::::
analysis

:::
of

:::
the

:::::::::::
conditions

::::::::
needed

:::
for

:::::::
natural

::::::::::
convection

::::
and

::::::::
showed

:::
the

:::::::::
Rayleigh

:::::::
number

:::
for

:::::::
typical

:::::
snow

::::::::::
conditions

::::
was

::::
1–2

:::::::
orders

::
of

::::::::::
magnitude

::::::
below

:::::
what

::
is

::::::::
needed

:::
for

::::
the

::::::
onset

::
of

:::::::
natural

:::::::::::
convection.

::::
As

:
a
::::::::::::::

consequence,

::::::
natural

:::::::::::
convection

::
is

::::
not

:::::::::::
considered

::::
and

:::
the

::::::::
present

::::::
paper

:::::::::
develops

::
a
:::::::
theory

::::
with

:::
no

:::
air

:::::::
velocity,

::::
and

:::::::
further,

::
a
:::::::::
saturated

::::::
vapor

::::::::
density.

::::
The

:::::
work

:::
of

:::::::::::::::::::::::
Calonne et al. (2014a) is

::::::::
perhaps

::::
the

::::::
most

:::::::
closely

:::::::
related

:::
to

:::
the

::::::::
present

::::
work

:::
in

:::::
that

:::::
they

::::::::::
developed

::::
the

::::::::::
governing

::::::::::
equations

::::
for

::::::::::::
macroscopic

:::::
heat

:::::
and

::::::
water

:::::
vapor

::::::::
transfer

:::
in

::::
dry

::::::
snow

::::
by

::::::::::::::::
homogenization

:::::::::
involving

::
a
:::::::::::

multiscale
:::::::::::
expansion.

::::
We

::::
draw

:::::::::::::
comparisons

:::
of

:::::
their

:::::
work

:::
for

::::
the

::::::::::
governing

::::::::::::
macroscale

::::::::::
equations

:::
as

::::
well

:::
as

::::
the

:::::::::::
expressions

:::
for

::::::::
thermal

:::::::::::
conductivity

::::
and

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::
in

::::::
snow.

:

::
A

:::::::
unique

:::::::
aspect

:::
of

:::
the

::::::::
present

::::::::::
approach

::
is

:::::
that

:::::::::
analytical

:::::::::
models,

:::::::::
grounded

:::
in

::::
first

:::::::::
principles

::
at

::::
the

:::::::::::
microscale,

::::
are

::::::::::
developed

::::
for

:::
the

:::::::::
effective

:::::::
thermal

::::::::::::
conductivity

::::
and

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

:::
in

::::::
snow.

:::
By

::::::::
starting

:::
at

:::
the

::::::::::::
microscale,

::::::
albeit

::::
with

:::::::::
idealized

:::::::::::::::
microstructures,

:::
we

::::
are

::::::::
afforded

::::
the

::::::::::
advantage

::
of

::::::
using

::::
the

::::
true

::::::::
thermal

:::::::::::::
conductivities

::
of

:::
ice

:::
(ki):::::

and
::::::
humid

:::
air

:::::
(kha)

:::
as

::::
well

:::
as

::::
the

::::::
known

:::::::::
diffusion

::::::::::
coefficient

::
of

::::::
water

::::::
vapor

::
in

:::
air

:::::::
(Dv−a).

::::
The

::::::::
resulting

::::::::
models

::
for

::::
the

:::::::
thermal

::::::::::::
conductivity

::
of

:::::
snow

::::
and

::::
the

::::::::
effective

::::::::
diffusion

:::::::::
coefficient

::::
for

:::::
snow

::::::::
contain

:::
no

:::::::::
empirical

::::::::::::
adjustments

:::::
and

::::
are

::
in

:::::::::::
remarkable

:::::::::::
agreement

::::
with

::::
high

:::::::
fidelity

:::::::::
numerical

:::::::::::
predictions

::
of

::::::
these

:::::::::::
parameters

::::::
based

:::
on

:::::
snow

:::::::::::::::
microstructures

::::::::
obtained

:::::
from

:::::
X-ray

::::::::::::
tomography.

::::
The

:::::::
models

:::::
also

:::::::::
generate

::
an

::::::::::
analytical

::::::::::
description

:::
of

:::
the

::::::::::
separation

::
of

:::::
heat

:::::::
transfer

::::
due

:::
to

:::::
mass

::::::::
diffusion

::::
and

:::::
heat

::::::::
transfer

::::
due

::
to

:::::::::::
conduction.

:

Consistent with the discussion on homogenization, we consider snow at the macroscale
to be a two-constituent mixture consisting of ice and humid air. The humid air itself is treated
as a mixture of water vapor and air. A schematic of the mixture theory analysis is shown in
Fig. ??.
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For the temperatures and pressures encountered in snow, the humid air may be treated
as a mixture of two ideal gases where each gas occupies the same volume, i.e.,

φha = φv = φa, (20)

where subscripts (v) and (a) represent water vapor and dry air, respectively. An important
consequence of representing the humid air as a mixture of ideal gases is that both the water
vapor and the air behave as though the other gas is not present, thereby greatly simplifying
the analysis and allowing one to draw on classical results for ideal gases.

The balance equations for mass, momentum, and energy for a constituent, α, are given
by

::::::::::::::::::::::::::::::::::
(Hansen (1989),Hansen et al. (1991))

:

Mass balance

∂ρα
∂t

+∇ · (ραvα) = ĉα, (21)

Momentum balance

ραaα = ∇ ·T α + ραg + p̂α, (22)

Energy balance

ραu̇α = tr (T α ·Lα) + ραrα−∇ · qα + êα. (23)

In the above, vα and aα represent the velocity and acceleration of constituent α, respec-
tively, while Lα represents the velocity gradient; uα is the internal energy, rα is the heat
supply (notably radiation), and g is the gravity vector. The dispersed density of constituent
α is denoted by ρα and is related to the true density, γα, as

ρα = φαγα. (24)

Whereas the volume fraction, φα, appears explicitly in the definition of the dispersed density,
ρα, the partial stress, T α, and the energy flux, qα, are implicitly scaled by the volume

13
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fraction. Finally, ĉα, p̂α, and êα represent mass, momentum, and energy supply terms that
arise from interactions between constituents. Following Hansen et al. (1991), the mixture
theory supply terms satisfy the appealing restrictions∑
α

ĉα = 0, (25)∑
α

p̂α = 0, (26)

and∑
α

êα = 0. (27)

In what follows, the mixture theory balance equations are further specialized to study the
macroscale coupled heat and mass transfer problem for snow.

3.1 Ice constituent mass balance

The balance of mass for the ice phase is given by

∂ρi

∂t
+∇ · (ρivi) = ĉi (28)

Assuming the mass supply is positive during condensation, we can write

ĉ= ĉi =−ĉha. (29)

Neglecting any settling velocity leads to a mass balance for the ice constituent given by

γi
∂φi

∂t
= ĉ, (30)

where the mass density of of ice is taken as constant at 917 kg m−3.
14
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3.2 Water vapor mass balance

The development for
::
of

:
the humid air mass balance differs from that of the ice constituent in

that we begin at the microscale. Furthermore, only the mass balance of the water vapor is
considered because the air acts only as a medium through which the water vapor diffuses.

Mass transfer of the water vapor may be expressed as (Bird and Lightfoot, 1960)

γvvv =
γv

γha
(γava + γvvv) + jv. (31)

Equation (31) says that the mass flux of the water vapor is due to the bulk fluid motion (the
barycentric velocity) plus a relative velocity due to diffusion. In the absence of a pressure
gradient, the barycentric velocity is zero, i.e.,

γhavha = (γava + γvvv) = 0. (32)

Mass balance due to diffusion may be expressed in the form of Fick’s law (Bird and Lightfoot,
1960) as

jv =−γhaDv–a∇x

(
γv

γha

)
, (33)

where Dv–a is the binary diffusion coefficient for water vapor in air and ∇x denotes the
gradient operator at the microscale.

The diffusive flux can be expanded to give

jv =−Dv–a∇xγv +
γv

γha
Dv–a∇xγha, (34)

but the second term on the right is negligibly small because the mass fraction of saturated
water vapor in air at 273 K is about 4(10)−3. Hence, mass transfer of water vapor at the
microscale may be described by

γvvv =−Dv–a∇xγv. (35)

In the transition to the macroscale, the same physical principles apply but one must now use
an effective diffusion coefficient for water vapor. The need to introduce an effective diffusion
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coefficient for water vapor is attributed to the presence of the ice microstructure in snow.
Specifically, the presence of the ice constituent introduces vapor transfer mechanisms that
both enhance and retard mass transfer of water vapor when compared to a medium of
humid air only. These mass transfer mechanisms are briefly discussed in Sect. 5.3.

Defining Ds as the effective diffusion coefficient for the humid air constituent at the
macroscale, there follows

φvγvvv = ρvvv =−Ds∇γv, (36)

where vv and γv now represent appropriately volume averaged macroscale variables. Note
that the mass flux of water vapor is based on the dispersed density, ρv, in order to account
for the reduced volume occupied by the humid air in the mixture. Finally, since only the
humid air constituent is associated with diffusion in a mixture of ice and humid air, Ds also
represents the effective diffusion coefficient for snow.
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Again, noting air is simply the medium for mass transfer of water vapor, the balance of
mass for the vapor phase may be written as

∂ρv

∂t
+∇ · (ρvvv) = ĉv. (37)

Substitution of the diffusive flux into Eq. (37) and noting ĉv = ĉha =−ĉ leads to

∂ρv

∂t
−∇ · (Ds∇γv) =−ĉ. (38)

Expanding the time derivative of the dispersed density of the water vapor gives

∂ρv

∂t
= γv

∂φv

∂t
+φv

∂γv

∂t
, (39)

but

∂φv

∂t
=
∂φha

∂t
=−∂φi

∂t
. (40)

The above results, along with the mass balance for the ice constituent (Eq. 30), can be used
to write Eq. (38) as

φv
∂γv

∂t
−∇ · (Ds∇γv) = ĉ

(
γv

γi
− 1

)
, (41)

but the quantity γv

γi
� 1. Neglecting this term and noting φv = φha, the mass balance equa-

tion for the water vapor becomes

φha
∂γv

∂t
−∇ · (Ds∇γv) =−ĉ. (42)

Equation (42) states that changes in the water vapor density at the macroscale are due to
the divergence of the water vapor flux and sublimation or condensation as defined through
the mass supply.

17
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3.3 Momentum balance

The momentum balance for the ice phase can be used to find the stress and strain in the
ice phase. However, the effect that the ice stress has on the vapor density of the water is
neglected, so the ice phase momentum balance is not considered further.

The momentum balance for the humid air phase becomes important when bulk fluid mo-
tion occurs as in the case of natural convection. Foslien (1994) has shown the Rayleigh
number for a typical snow cover is more than an order of magnitude below the critical
value for the onset of convection, so convection is unlikely to occur except in extreme cir-
cumstances. Therefore, the momentum balance of the humid air phase is not considered
further.

3.4 Energy balance for the ice
:::
Ice

:
constituent

::::::
energy

:::::::::
balance

The energy balance for the ice constituent may be expressed at the macroscale as

ρiu̇i = tr (T i ·Li) + ρiri−∇ · qi + êi. (43)

In the above, any velocity gradient in the ice, Li, is attributed to settling and may be ne-
glected. Moreover, heat generation from solar radiation is also neglected but could easily
be included as Colbeck (1989) and McComb et al. (1992) have done. These assumptions
reduce the energy balance for ice to

ρiu̇i =−∇ · qi + êi. (44)

The internal energy of the non-deforming ice is assumed to be a function of temperature
only and is given by

ui = CVi (θi− θref), (45)

where CVi is the specific heat of ice at constant volume and θref is the reference temper-
ature. The heat flux at the macroscale is expressed as Fourier’s law of heat conduction
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as

qi =−φi k
eff
i ∇θi, (46)

where keff
i is the effective

:::
keff

i :::
is

:::
the

::::::::
effective thermal conductivity for the ice phase at the

macroscale
:
in

::::::
snow. This parameter should not be confused with the thermal conductiv-

ity of pure ice
:::
(ki):as differences arise due to the microstructure of ice implicitly present

::::::::
complex

::::::::::::::
microstructural

::::::::
network

::
of

::::
the

:::
ice

::::::
phase

:
in snow.

::::
The

:::::::::
tortuosity

::
of

::::
the

:::
ice

:::::::
phase,

::
for

:::::::::
example,

::::::
plays

::
a

::::
role

::
in

::::
keff

i .
::::
The

:::::
only

::::::::::::::
microstructure

::::::
where

:::
ki ::::

and
:::
keff

i ::::::
would

:::
be

::::::
equal

::
for

::::::::::::::::
one-dimensional

:::::
heat

:::::::
transfer

::::::
would

:::
be

:::
the

:::::
pore

:::::::::::::
microstructure

:::::::::
discussed

::
in

::::
the

:::::::
present

::::::
paper.

::
In

::
a

::::
3-D

::::::::
analysis

::
of

::::::
snow,

::::
the

:::
two

:::::::::::
parameters

::::
are

:::::::::::::
fundamentally

:::::::::
different.

:

Combining Eqs. (44)–(46), the energy balance for the ice phase is given by

φiγiC
V
i

∂θi

∂t
= ∇ ·

(
φik

eff
i ∇θi

)
+ êi. (47)

3.5 Humid air constituent energy balance

As with the ice phase, the work term and the energy source term of the humid air constituent
are neglected, thereby reducing the energy equation to

ρhau̇ha =−∇ · qha + êha. (48)

The internal energy for the humid air mixture of ideal gases is given by

γhauha = γa C
V
a (θha− θref) + γv

(
CVv (θha− θref) +usg

)
, (49)

where usg is the internal energy change when water changes from a solid to a vapor
:::::
latent

::::
heat

::
of

:::::::::::
sublimation

:::
of

:::
ice. The above assumes the reference value of the internal energy of

ice was set to zero as was the case.
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The definition of
::
for

:
the energy flux vector for water vapor

:
a
::::::::
mixture

::::
may

:::
be

:::::::
written

:::
as

:::::::::::::::::::::::
(Bird and Lightfoot, 1960)

:

q = qc + qd,
:::::::::::

(50)

::::::
where

::
qc

:::
is

:::
the

:::::::::::
conductive

:::
flux

:::::
and

::
qd

:::::::::::
represents

::
a

::::::::::::
‘’contribution

:::::
from

:::
the

:::::::::::::
interdiffusion

::
of

:::::::
various

:::::::
species

:::::::::
present.”

::
In

::::
the

:::::
case

::
of

::
a

:::::::
mixture

:::
of

:::::
water

::::::
vapor

::::
and

::::
air,

:::
the

:::::::
energy

::::
flux

::
is

:::::
given

:::
by

qha =−kha∇xθha +usgγvvv,
::::::::::::::::::::::::::

(51)

::::::
where

:::::
γvvv,

::
is

:::
the

::::::
mass

:::
flux

:::
of

:::::
water

::::::
vapor diffusing through airis (Bird and Lightfoot, 1960).

::::
Now

:::::::::
consider

:::::
snow

:::
at

::::
the

:::::::::::
macroscale

:::::::::
composed

:::
of

::
a

:::::::
mixture

:::
of

::::::
humid

:::
air

::::
and

::::
ice.

:::
At

:::
this

::::::
scale,

::::
Eq.

::::
(51)

:::::
must

:::
be

:::::::::
modified

::
as

:

qha =−φhak
eff
ha∇θha +φhausgγvvv.

:::::::::::::::::::::::::::::::
(52)

::::
The

:::::::::::::
interpretation

::
of

:::
the

:::::::
volume

::::::::
fraction

::
in

:::::
each

:::::
term

::
on

::::
the

::::::::::::::
right-hand-side

:::
of

:::
the

::::::
above

::::::::
equation

::
is

:::::
clear

::::::
when

::::
one

::::::
views

:::
the

:::::::
energy

::::
flux

:::::::
across

:
a
::::::::
surface

::
of

::
a
:::::::::::
macroscale

:::::::
control

:::::::
volume

::
of

::::::
snow.

:::::::::::
Specifically,

::::
the

::::
true

:::::::
energy

::::
flux

:::
of

::::::
humid

:::
air

:::::
must

:::
be

:::::::
scaled

:::
by

:::
the

:::::
area

:::::::
fraction

::
of

:::
the

::::::
humid

:::
air

::
at

::::
the

::::::
control

::::::::
surface.

:::::
From

:::::::::::
quantitative

:::::::::::
stereology,

:::
the

:::::
area

:::::::
fraction

::
is

:::::
equal

::
to

::::
the

:::::::
volume

::::::::
fraction,

:::::::::
resulting

::
in

:::
Eq.

:::::
(52.

::::::
Noting

::::
Eq.

:::::
(36),

::::::
mass

::::::::
transfer

::
of

::::
the

:::::::
humid

:::
air

::::
may

::::
be

::::::::::
expressed

:::
as

::
a
::::::::
diffusive

:::::
flux,

:::::::
leading

::
to

:

qha =−φhak
eff
ha∇θha−usgDs∇γv. (53)

Again
::::::
where

:::
Ds:::::::::::

represents
::
an

:::::::::
effective

::::::::
diffusion

::::::::::
coefficient

:::
for

::::::
snow.

:::
As

::
in

::::
the

:::::
case

:::
of

::::
the

:::
ice

:::::::
phase, one must recognize that keff

ha and Ds represent the

::::::::::
represents

:::
an

:::::::::
apparent effective thermal conductivity for

:
of

:
the humid air and the effective
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diffusion coefficient for snow, respectively; and these parameters apply at the macroscale
.
::
in

:::::
snow

::::
and

::::
this

::::::::::
parameter

:::
is

::::::::
different

:::::
from

:::
the

::::
true

::::::::
thermal

::::::::::::
conductivity

::
of

::::::
humid

:::
air

:::
as

:
a
:::::
pure

:::::::::::
substance.

::::
The

::::::::::
difference

::
in

:::
the

::::
two

::::::::::::
parameters

::
is

:::::
again

::::::::::
attributed

::
to

::::
the

::::::::
complex

:::::::::::::
microstructure

:::
of

:::
the

:::::::
humid

:::
air

::::::
phase

::
in

::::::
snow.

:::
In

:::::
brief,

::::
just

:::
as

:::
the

::::::::
thermal

::::::::::::
conductivity

::
of

:::::
snow,

:::
ks::

is
:::::::::::
influenced

:::
by

::::::::::::::
microstructure,

:::
so

::::
are

::::
keff

i ::::
and

::::
keff

ha :::
as

::
all

::::::
three

:::::::::::
parameters

::::
are

:::::::::::
macroscale

::::::::::
quantities.

:::
As

::::::
such,

::::
they

::::::::
depend

:::
on

::
a
:::::
host

::
of

:::::::::::::::
microstructural

:::::::::
variables

:::::
other

::::
than

::::::::::::
temperature.

:

Substituting Eqs. (49) and (53) into Eq. (48) leads to

φha
(
γa C

V
a + γvC

V
v

) ∂θha

∂t
+usg

(
φha

∂γv

∂t
−∇ · (Ds∇γv)

)
= ∇ ·

(
φhak

eff
ha∇θha

)
+ êha,

(54)

but

ĉ= ∇ · (Ds∇γv)−φha
∂γv

∂t
, (55)

from the mass balance of the water vapor given by Eq. (42). Therefore, Eq. (54) governing
the energy balance of humid air assumes the form

φha
(
γa C

V
a + γvC

V
v

) ∂θha

∂t
= ∇ · (φha k

eff
ha ∇θha) + êha +usgĉ. (56)

Hence, the change in internal energy for the humid air is attributed to the divergence of the
heat flux, energy exchange with the ice constituent through the energy supply, and energy
exchange through phase changes accounted for by the mass supply.

4 Separation of scales: macroscale observations

In this section, we discuss some observations that lead to important simplifications in the
macroscale heat and mass transfer solution. Moreover, we demonstrate separation of the
time scales for local and global heat and mass transfer, a condition required for homoge-
nization.
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4.1 Macroscale temperatures

An important simplification in the analysis of heat and mass transfer at the macroscale is to
assume the constituent temperatures are equal and write

θ = θi = θha,

where θ is the macroscale temperature of snow. Justification for assuming the ice and humid
air temperatures are equal starts by writing a one-dimensional heat conduction equation at
the microscale given by

∂θα
∂t

=

(
kα

γαCVα

)
∂2θα
∂x2

. (57)

Equation (57) is non-dimensionalized by introducing the following dimensionless variables:

t∗ = t/to, x∗ = x/Lc, and θ∗ =
θ− θinit

θf − θinit
.

The resulting non-dimensional equation is

∂θ∗

∂t∗
=

(
tokα

L2
cγαC

V
α

)
∂2θ∗

∂x∗2
. (58)

The time scale, tmicro
o , for heat conduction on the microscale is introduced as

tmicro
o =

γαC
V
α L

2
c

kα
. (59)

The time scale, tmacro
o , for heat conduction in a snow cover is similarly defined as

tmacro
o =

(
φiγiC

V
i +φhaγhaC

V
ha

)
H2

ks
, (60)

where H is the height of the snowpack and ks represents the thermal conductivity for snow.
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Riche and Schneebeli (2013) provide an expression for the thermal conductivity of snow
as a function of snow density. Assuming a snow density of 200 kg m−3, a depth of one
meter, and a microscale characteristic length of one mm(Christon, 1990), the ratio of the
time scale for heat conduction on the macroscale of the snowpack to the time scale for heat
conduction on the microscale is on the order of 106 which suggests that macroscale thermal
equilibrium between the ice and humid air constituents is a good assumption. Moreover, the
large separation of scales in the time domain is consistent with the discussion of Auriault
et al. (2009) regarding separation of time scales necessary for homogenization.

The assumption of uniform constituent temperatures at the macroscale should not be
confused with the local (microscale) temperature. Under a macroscale temperature gradi-
ent, local constituent temperatures in the interior of the RVE differ due to different thermal
conductivities of the ice and humid air. Further, temperature gradients within individual con-
stituents are also present at the microscale. A warmer ice grain is separated from a colder
ice grain by pore space, for example. These temperature differentials drive the mass trans-
fer process at the microscale. Again, an excellent insight into microscale thermal behavior
is provided in Fig. 4 of Pinzer et al. (2012).

Thermal equilibrium of the ice and humid air constituents at the macroscale allows the
constituent energy equations, (Eqs. 47 and 56), to be added together to yield an energy
equation for snow with a single temperature as

(
φhaγhaC

V
ha +φiγiC

V
i

) ∂θ
∂t

= ∇ · (ks∇θ) + ĉusg, (61)

where θ is the temperature of the snow. Notably, the constituent energy supply terms sum to
zero in the energy equation for snow and the volume averaged constituent effective thermal
conductivities have been combined

::::::::
absorbed

:
into a thermal conductivity for snow(

:
, ks). ,

:::
as
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ks = φik
eff
i +φhak

eff
ha .::::::::::::::::::

(62)

:::::
While

::::
the

::::::::
effective

::::::::
thermal

::::::::::::::
conductivities,

::::
keff

i ::::
and

::::
keff

ha,
::::
are

::::::
never

::::::::::
computed

:
,
::
it

::::::
would

:::
be

:::::::::
important

::
to

:::
do

:::
so

::
if
::::
one

::::::::
wanted

::
to

::::::
study

:::::::::::::::
non-equilibrium

:::::::::::
constituent

:::::::::::::
temperatures

:::
on

::
a

:::::
short

::::
time

::::::
scale

::::
with

::
a

:::::::
mixture

:::::::
theory.

::::
One

::::
can

::::::
make

:
a
::::::
direct

::::::::::
connection

:::
of

:::
keff

i ::::
and

::::
keff

ha ::::
with

:::
the

:::::
work

::
of

::::::::::::::::::::::
Calonne et al. (2014a).

:::::::::::
Specifically,

::::
the

:::::::::
effective

:::::::::
thermal

::::::::::::
conductivity

::::
for

::::::
snow

:::
is

::::::::
defined

:::
in

::::::
Eqn.

:::::
(25)

:::
of

:::::::::::::::::::::::
Calonne et al. (2014a) as

:

keff =
1

|Ω|

∫
Ωa

ka (∇ta + I)dΩ +

∫
Ωi

ki (∇ti + I)dΩ

 .
:::::::::::::::::::::::::::::::::::::::::::::::::

(63)

::::
The

::::::
above

::::::::
equation

:::::
may

:::
be

:::::::::::
rearranged

::
as

:

keff = φa
1

|Ωa|

∫
Ωa

ka (∇ta + I)dΩ +φi
1

|Ωi|

∫
Ωi

ki (∇ti + I)dΩ.

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(64)

::::::::::
Comparing

:::::
Eqs.

:::::
(62)

::::
and

:::::
(64)

::::::::
provides

::
a
:::::
clear

::::::::::::::
mathematical

:::::::::::::
interpretation

::
of

::::
keff

i ::::
and

:::
keff

ha:::
as

keff
ha =

1

|Ωa|

∫
Ωa

ka (∇ta + I)dΩ,

:::::::::::::::::::::::::::

(65)
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::::
and

keff
i =

1

|Ωi|

∫
Ωi

ki (∇ti + I)dΩ.

::::::::::::::::::::::::::

(66)

Finally, recent research work has shown the thermal conductivity of snow to be
anisotropic, see for example Schertzer and Adams (2011) and Riche and Schneebeli
(2013). We avoid this complexity at present as it becomes a non-issue for the one-
dimensional heat and mass transfer theory developed subsequently.

::
To

::::::::::::
summarize,

::::
the

::::::::::
governing

:::::::::::
equations

:::
for

:::::
heat

:::::
and

::::::
water

::::::
vapor

::::::::
transfer

:::
in

::::::
snow

:::
are

::::::
given

:::
by

:::::
Eqs.

::::
(42)

::::
and

::::::
(61).

::::::
These

::::::::::
equations

::::
are

::::::::
identical

:::
to

:::::::::::
macroscale

::::::::::
equations

:::::::::
developed

::::
by

:::::::::::::::::::::::::::::
Calonne et al. (2014a) through

::
a
:::::::::::

description
:::

at
::::
the

:::::
pore

::::::
scale

::::::
using

::::
the

:::::::::::::::
homogenization

::
of

::::::::
multiple

::::::
scale

::::::::::::
expansions.

::::
The

::::::::
equality

:::
is

:::::
best

::::::
shown

:::
by

:::::::::::
multiplying

:::
the

:::::::::::::::
right-hand-side

:::
of

::::
Eq.

:::::
(20)

:::
in

::::::::
Calonne

::::
by

:::::::
(ρi/ρi)::::

and
:::::::::::

relabeling
::::::::
(Lsg/ρi)::::

as
::::
usg,

::::::::
resulting

::
in

::::
Eq.

::::
(61

::
of

::::
the

::::::::
present

::::::
paper.

::::
Eq.

:::::
(42)

::
is

::::::::
already

::::::::
identical

::
in

:::::
form

:::
to

::::
Eq.

::::
(21)

::
of

:::::::::::::::::::::
Calonne et al. (2014a).

:

:::::
While

:::::
the

:::::::::::
equations

::::
of

:::::::::::::::::::
Foslien (1994) and

::::::::::::::::::::::::::::::::
Calonne et al. (2014a) governing

:::::
the

:::::::::::
macroscale

:::::::::
response

:::
of

:::::
heat

::::
and

::::::
mass

::::::::
transfer

::
in

::::::
snow

::::
are

:::::::::
identical,

::::
the

:::::::::
emphasis

:::
of

:::::::::
Calonne’s

:::::
work

:::
is

:::
on

::::::::::
upscaling

::::::::
whereas

::::
the

::::::::
present

::::::
paper

::::::::
focuses

::::
on

:::::::::
solutions

::
of

::::
the

:::::::::::
macroscale

:::::::::
behavior.

::::
We

:::::
also

::::::::
address

:::::::::::
similarities

::::
and

:::::::::::
differences

:::
in

::::
the

::::::::::
calculation

:::
of

:::::::
thermal

::::::::::::
conductivity

::::
and

::::
the

:::::::::
effective

:::::::::
diffusion

::::::::::
coefficient

:::
for

:::::::
snow,

:::::::
critical

:::::::::::
parameters

::::::::
affecting

:::::::::::
macroscale

:::::::::::
sublimation

::::
and

::::::::::
deposition

:::::
rates

:::
in

:
a
::::::
snow

::::::
cover.

4.2 Saturated vapor density at the macroscale

A physical interpretation of the mass supply term, ĉ, is the mass rate at which water vapor
is condensing to form ice per unit volume of snow. Hobbs (1974) provides an expression for
the condensation of water vapor to ice driven by a difference in the vapor pressure and the
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saturated vapor pressure over ice, (p− psat), as

αcmmol
(
p− psat

)
(2πmmolΩθ)1/2

kg m−2 s−1.,

where mmol is the mass per molecule of water, Ω is Boltzman’s constant, and αc is the
condensation coefficient.

Multiplying the above expression by the specific surface area of snow, ξ, and utilizing the
ideal gas law for water vapor provides an explicit expression for the mass supply driven by
a difference in vapor density given by

ĉ=
ξRθαcmmol

(
γ− γsat

)
(2πmmolΩθ)1/2

. (67)

In the absence of diffusion, Eq. (67) can be combined with the mass balance equation
(Eq. 42) for the water vapor as

φv
∂γv

∂t
=
ξRθαcmmol

(
γ− γsat

)
(2πmmolΩθ)1/2

. (68)

If the saturated vapor density over the ice is held constant, the time for the vapor den-
sity difference between the pore density and the saturated vapor density to become
0.1 % of the initial density difference can be computed. Following Foslien (1994), for
a

:::::::::::::::::::::::::::::
Delaney et al. (1964) measured

::::
the

:::::::::::::
condensation

::::::::::
coefficient,

::::
αc,

::
of

::::
ice

::
to

:::
be

:::::::
0.0144

:::
for

::::::::::::
temperatures

:::::::::
between

::::
271 K

::::
and

::::
260 K

:
.
:::
For

::
a
:
snow density of 200 kg m−3

::::
and

:
a
::::::::
specific

:::::::
surface

:::::
area

::
of

::::::
1400 m−1, the time for the vapor density

:
in

::::
the

:::::
pore

:
to reach equilibrium

is approximately 10−3
:::::::::
1.1(10)−3

:
seconds. Hence, the vapor density in a pore can be as-

sumed to be the saturated vapor density throughout the process of heat and mass transfer
occurring at the macroscale where the time scale of interest is on the order of hours or
days.
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The knowledge that the vapor pressure
:::::::
density

:
may be assumed saturated in

a macroscale analysis affords a critical simplification in the mixture theory analysis in that
a constitutive law for the mass supply is no longer needed. Instead, the mass supply is com-
puted from Eq. (42) by noting the water vapor is always saturated at the snow temperature,
leading to

ĉ= ∇ · (Ds∇γsat
v )−φha

∂γsat
v

∂t
. (69)

:::
We

:::::::::::
emphasize

:::::
that

::::
Eq.

::::
(67)

:::
is

:::
not

::::::::
utilized

::
in

::::
the

::::::::::
snowpack

:::::::::
modeling

:::
of

::::::
water

::::::
vapor

:::::::::
deposition

:::::
and

:::::::::::
sublimation

:::::
found

:::
in

:::::
Sect.

::
6

::
as

::
it
::
is

:::::::::
replaced

::
by

::::
Eq.

:::::
(69).
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4.3 Formulation summary

At this point, we restrict the development to a one-dimensional model and write the energy
equation, (Eq. 61), as(
φhaγhaC

V
ha +φiγiC

V
i

) ∂θ
∂t

=
∂

∂x

(
ks
∂θ

∂x

)
+ ĉusg. (70)

The mass supply equation, (Eq. 69), representing phase changes due to condensation or
sublimation assumes the one-dimensional form

ĉ=
∂

∂x

(
Ds
∂γsat

v

∂x

)
−φha

∂γsat
v

∂t
. (71)

The saturated vapor density may be expressed as purely a function of temperature (Dorsey,
1968) leading to

∂γsat

∂x
=

dγsat

dθ

∂θ

∂x
and

∂γsat

∂t
=

dγsat

dθ

∂θ

∂t
.

Noting the above, the mass supply equation, (Eq. 71), is expressed as

ĉ=
∂

∂x

(
Ds

dγsat
v

dθ

∂θ

∂x

)
−φha

dγsat
v

dθ

∂θ

∂t
. (72)

Finally, substituting Eq. (72) into Eq. (70) leads to a single partial differential equation gov-
erning the energy balance for snow given by(
φhaγhaC

V
ha +φiγiC

V
i +usgφha

dγsat

dθ

)
∂θ

∂t
=

∂

∂x

(
kcon+d

s

∂θ

∂x

)
, (73)

where

kcon+d
s = ks +usgDs

dγsat
v

dθ
. (74)

The thermal conductivity kcon+d
s is the thermal conductivity that would be measured

experimentally when studying heat transfer through a snow cover. It involves a thermal
28
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conductivity due to
::::::
kcon+d

s :::
is

::::
the

:::::::::
apparent

:::::::::
effective

::::::::
thermal

::::::::::::
conductivity

::
of

:::::
snow

:::::
that

::::::::
accounts

:::
for

:::::
heat

:
conduction, ks, with an added term resulting from mass latent heat

::
as

::::
well

::
as

:::::::
energy

:
transfer due to mass

:::::
water

::::::
vapor

:
diffusion.

Equation (74) is useful to study the significance of heat transfer due to mass diffusion.
However, rather

::::::
Rather

:
than combining Eqs. (70) and (72) and solving Eq. (73), it is more

insightful to solve Eqs. (70) and (72) separately. Retaining a separate equation for the mass
supply allows one to quantify macroscale deposition and sublimation rates, a fundamental
objective of the theory developed here-in.

5 Evaluation of the effective thermal conductivity and the effective diffusion coeffi-
cient for snow

Solution of the energy equation (Eq. 70) and the mass balance equation (Eq. 72) re-
quires knowledge of macroscale parameters for thermal conductivity as well as the effec-
tive diffusion coefficient for snow. Calonne et al. (2011) and Riche and Schneebeli (2013)
have performed extensive numerical studies using finite element analysis coupled with
X-ray computer tomography to quantify the thermal conductivity for snow as a function
of density at a fixed temperature. Calonne et al. (2011) also provide thermal conductiv-
ity predictions at two separate temperatures. Pinzer et al. (2012) performed similar

:::
and

::::::::::::::::::::::::::::::
Christon et al. (1994) performed numerical studies aimed at determining the effective diffu-
sion coefficient for snow.

:::::::::::::::::::::::::
Calonne et al. (2014a) also

:::::
used

:::::
finite

:::::::
element

::::::::::::::::
micromechanics

::
to

::::::
predict

:::
an

::::::::
effective

:::::::::
diffusion

::::::::::
coefficient

:::
for

:::::
snow

:::::::::
although

::::
the

:::::::
specific

::::::::::
numerical

:::::::::
approach

::
to

::::::::
evaluate

::::
this

::::::::::
parameter

::::::::
followed

::
a

:::::::::::::
fundamentally

::::::::::
approach.

:

Regardless of the parameter being studied, a drawback of microscale finite element anal-
ysis (micromechanics) is that the results provide heat and mass transfer properties at a sin-
gle temperature and density. Hence, a complete characterization of these parameters as
a function of density and temperature requires a significant number of micromechanics so-
lutions at multiple densities and temperatures followed by a curve fitting exercise.
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Rather than relying on finite element micromechanics solutions, we present an analytical
approach developed by Foslien (1994) to predict values for the thermal conductivity and
the effective diffusion coefficient of snow. Foslien’s model has several attractive features
including:

– excellent correlation with the cited finite element results for thermal conductivity and
effective diffusion coefficient for snow,

– density effects are explicitly introduced in the analytical model through volume frac-
tions while temperature effects appear implicitly through thermal conductivity proper-
ties for ice and air,

– the effects of mass diffusion on the energy flux are explicit and the relative influence
on the energy flux is readily determined,

– the model provides self-consistent results for thermal conductivity and effective diffu-
sion coefficient for the limiting cases of air and ice,

– the model is developed from first principles and contains no empirical coefficients of
adjustment.

Foslien’s development begins by formulating microscale heat and mass transfer models for
classic microstructures consisting of ice and humid air acting in parallel and series, respec-
tively. Heat and mass transfer properties for snow are then proposed using arguments from
quantitative stereology.

Figure ??a shows an ice matrix with humid air pores in parallel to an applied temperature
gradient. In this pore microstructure, energy is transferred in parallel through the snowpack.
The energy fluxes for the ice (qi) and humid air ( qha) constituents are simply added together
to obtain the total energy flux through the snowpack. Because the thermal conductivity of
ice is roughly 100 times larger than for the humid air, the ice phase plays a dominant role in
heat transfer for this microstructure.
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The second microstructure studied, referred to as a lamellae microstructure, consisted
of ice and humid air layers oriented perpendicular to the energy flux, Fig. ??b. In this case,
energy flows in series through the respective layers. Hence, the energy flux in the humid
air constituent must equal the energy flux through the ice constituent. An interesting fea-
ture of mass transfer in the lamellae microstructure is that diffusion via the “hand to hand”
model described by Yosida (1955) is naturally present and accounted for in the develop-
ment. Specifically, diffusion is enhanced as the total path length for diffusion is reduced by
the ice layer which acts as both a source and sink for water vapor.

The two microstructures studied by Foslien (1994) were first considered by de Quervain
(1963) and produce two very different heat and mass transfer results that are believed to
represent the extremes possible for ice and humid air mixtures.

5.1 Pore microstructure

Foslien’s heat and mass transfer analysis of the pore microstructure begins by writing en-
ergy flux expressions for the ice and humid air constituents at the macroscale. The energy
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flux of the ice is attributed to heat conduction leading to

qi =−ki
∂θ

∂x
. (75)

The energy flux of the humid air is attributed to conduction of the humid air and the mass
flux of water vapor. Following Bird and Lightfoot (1960) we can write

qha =−kha
∂θ

∂x
−usgDv–a

dγsat

dθ

∂θ

∂x
. (76)

The energy flux of the pore microstructure is introduced as

qpore =−kpore
∂θ

∂x
, (77)

Energy transfer in the pore microstructure occurs in parallel and the energy flux is simply
the volume average of the energy fluxes of the ice and humid air leading to

kpore = φiki +φhakha +φhausgDv–a
dγsat

dθ
. (78)

5.2 Lamellae microstructure

The discontinuous nature of the lamellae microstructure in the direction of interest intro-
duces a complexity in the spatial gradients as the constituent gradients must be defined
with respect to a differential length, dxα. Hence the constituent energy fluxes assume the
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form

qi =−ki
∂θ

∂xi
, (79)

and

qha =−kha
∂θ

∂xha
−usgDv–a

dγsat

dθ

∂θ

∂xha
. (80)

The average temperature gradient expressed in terms of the macroscale coordinate x is
given by

∂θ

∂x
= φi

∂θ

∂xi
+φha

∂θ

∂xha
. (81)

The energy flux through the lamellae microstructure is introduced as

qlam =−klam
∂θ

∂x
. (82)

Equations (79)–(82) may be combined to arrive at

klam =
ki

(
kha +usgDv–a

dγsat

dθ

)
φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

. (83)

5.3 Snow properties

Foslien proposed an
::::
The

:::::::::
apparent

:::::::::
effective

::::::::
thermal

:::::::::::
conductivity

::::
for

::::::
snow

:::::::::
accounts

:::
for

::::
heat

:::::::::::
conduction

:::
as

:::::
well

:::
as

::::::::
energy

::::::::
transfer

::::
due

:::
to

::::::
water

::::::
vapor

::::::::::
diffusion.

::::
The

::::::::
mixture

::::::
theory

::::::::::::
development

:::
of

:::::::::
Sections

::
3

::::
and

::
4

:::::
leads

:::
to

:::
an

:::::::::::
expression

:::
for

:::
the

:::::::::
apparent

::::::::
thermal

:::::::::::
conductivity

:::::
given

:::
by

::::
Eq.

::::
(74)

::::
and

:::::::::
repeated

:::::
here

::
as

:

kcon+d
s = ks +usgDs

dγsat
v

dθ
.

::::::::::::::::::::::::

(84)
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::::
The

:::::::
thermal

::::::::::::::
conductivities

::
of

::::
the

:::::
pore

::::
and

::::::::
lamellae

:::::::::::::::
microstructures

::::::
given

:::
by

:::::
Eqs.

::::
(78)

:::
and

:::::
(83),

::::::::::::
respectively,

:::::
also

:::::::
include

::::
heat

:::::::::::
conduction

:::
as

::::
well

:::
as

:::::::
energy

:::::::
transfer

::::
due

:::
to

:::::
mass

::::::::
diffusion.

::::::
Using

::::::
these

::::::::::::
expressions,

:::::::::::::::::::::::
Foslien (1994) proposed

:::
an

:::::::::
apparent

:
effective thermal

conductivity for snow that includes energy transfer due to mass transport of water vapor
given by

kcon+d
s = φikpore +φhaklam. (85)

Justification for Eq. (85) is provided by considering a snow surface section as shown in
Fig. ??. When a test line is arbitrarily drawn through the surface section, a fraction of the to-
tal length will pass through the ice constituent and the remainder will pass through the humid
air constituent. If one imagines one-dimensional heat transfer occurring along the test line;
anytime the line passes through ice, heat transfer along that portion of the line

::::
heat

:::::::
transfer

:::::::
through

:::
the

::::
ice

::::::
phase is dominated by the pore microstructural model

:::::::::::::
microstructure where

the thermal conductivity of ice plays the dominant role in energy transfer
:
is
:::::::
nearly

::::
100

:::::
times

:::
that

:::
of

:::
air. In contrast, anytime the test line passes through the humid air constituent, heat

transfer is occurring in a manner similar to
::::::
would

::
be

:::::::::::
dominated

::
by

:
the lamellae microstruc-

ture. Finally, under conditions of isotropy, the
:::::
Using

::::
the

::::::
lineal

::::::::
fraction

:::
as

::::
the

:::::::::
weighted

::::::::
behavior

::
of

::::
the

::::::::
thermal

::::::::::::
conductivity

::::
and

:::::::::::
recognizing

::::
the

:
lineal fraction is identical to the

volume fraction
:::::
under

:::::::::::
conditions

::
of

::::::::
isotropy

:
(Underwood, 1970) leading

:::::
leads

:
directly to

Eq. (85).
The energy flux through snow is introduced as

qs = ks
∂θ
∂x +usgDs

dγsat

dθ
∂θ
∂x .

Combining Eqs. (78), (83) with (85) and comparing the results with
:::::
leads

:::
to

::
an

:::::::::::
expression

::
for

::::
the

:::::::::
apparent

::::::::
effective

:::::::
thermal

::::::::::::
conductivity

::
of

::::::
snow

:::::
given

:::
by
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kcon+d
s = φi (φhakha +φiki) +φha

kikha

φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+usg
dγsat

v

dθ

φi (φhaDv–a) +φha

 kiDv–a

φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

 .
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(86)

::::::::::
Comparing

:
Eq. (86) leads to the following

:::
and

:::::
(86)

:::::::
reveals

:
expressions for the thermal

conductivity of snow and the effective diffusion coefficient for snow given by

ks = φi (φhakha +φiki) +φha
kikha

φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

, (87)

and

Ds = φi (φhaDv–a) +φha

 kiDv–a

φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

 . (88)

Despite the presence of the binary diffusion coefficient of water vapor in air
:
in

::::
the

::::::::::
expression

::
for

:::
ks, it should be emphasized that the result given in Eq. (87) represents the thermal

conductivity for snow as predicted
:::::::::
predicted by the analytical model. The effective thermal

conductivity including enhancement due to diffusion is given by Eq. (74).
:::::::::
Similarly,

:::::::
thermal

:::::::::::
conductivity

:::::::::::
parameters

:::::::
appear

::
in

:::
the

:::::::::
equation

:::
for

:::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::
of

::::::
snow,

:::
Ds.:::::::

These
:::::::
results

::::
are

::
a

:::::::::::::
consequence

:::
of

::
a

::::::
direct

::::::::::
application

:::
of

:::::
heat

::::
and

::::::
mass

::::::::
transfer

:::::::::
principles

:::
on

::::
the

:::::::::
idealized

::::::::::::::::::::
microstructures—the

:::::::::::
parameters

:::
of

::::::::
thermal

::::::::::::
conductivity

::::
and

::::::::
diffusion

::::::
simply

:::
do

::::
not

::::::::
separate

:::
at

:::
the

::::::::::::
macroscale.

Calonne et al. (2011) and Riche and Schneebeli (2013) provide curve fits of snow thermal
conductivity as a function of density based on their finite element micromechanics analyses.
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Calonne’s data included analysis of crystal structures of all types while Riche’s data was
limited to depth hoar and faceted crystals which produce higher thermal conductivities in
the direction of interest (normal to the ground).

Figure ?? provides the predictions of Eq. (87) for a temperature of 253 K against the
curve fits of Calonne et al. (2011) and Riche and Schneebeli (2013). The correlation of the
analytical model is excellent as the model virtually tracks the numerical results of Riche and
Schneebeli (2013) whose data were also generated at 253 K. Fosliens’s predicted curve at
271 K shifts downward toward the curve generated by Calonne et al. (2011), also generated
at 271 K, but remains well within the bounds of both curves generated through finite element
analysis of real microstructures. Furthermore, the most significant deviation of the analytical
model occurs at a density for solid ice where Foslien’s model predicts the self-consistent
correct result of thermal conductivity for ice.

Changes in thermal conductivity as a function of temperature were observed by Calonne
et al. (2011) for temperatures of 271 K and 203 K, respectively. Figure ?? shows the thermal
conductivity line predicted by Foslien along with the numerical micromechanics predictions
of Calonne et al. (2011). Excellent correlation of the analytical model and the finite element
analyses is again observed.

:::::::
Figures

:::
??

:::::
and

:::
??

:::::::::::::
demonstrate

:::
the

::::::::::
proposed

::::::
model

:::
for

::::::::
thermal

::::::::::::
conductivity

::
of

::::::
snow

:::::
does

::
an

:::::::::
excellent

::::
job

::
of

:::::::::::
quantifying

::
ks:::

as
::
a

::::::::
function

::
of

:::::::
density

:::::
and

::::::::::::
temperature.

:::::::::
However,

:::
the

::::::::
complex

:::::::
nature

::
of

::::
the

::::::::::::::
microstructure

::
of

::::::
snow

::::
and

::::
the

:::::::
inability

:::
to

::::::
relate

:::
the

::::::::::
geometric

::::::::
structure

:::
to

::::::::
material

:::::::::::
properties

:::::::
results

::
in

:::::::::::
significant

:::::::
scatter

::
in

::::
the

::::::::
thermal

::::::::::::
conductivity

:::::::::
properties

::::::
when

:::::::
viewed

::::::
solely

:::
as

:
a
::::::::
function

::
of

::::::::
density.

:

:::::::::::::::::::::::::::::::
Calonne et al. (2014b) performed

::
a
:::::::

series
:::

of
:::::::::::::

experiments
::::

on
::::::
snow

:::::::::::::::
metamorphism

::::::::
showing

:
a
::::::::::
variability

::
of

::::::
snow

:::::::
thermal

::::::::::::
conductivity

::::::
under

:::::
near

::::::::
constant

:::::::
density

:::::::::::
conditions.

::::
The

:::::::::::
experiments

:::::
also

::::::::
showed

:::
the

:::::::::::
anisotropic

::::::::::
properties

::
of

::::
the

:::::::
thermal

::::::::::::
conductivity

::::::
tensor

:::::::::
increased

::::::
during

:::::::::::::::
metamorphism.

:::::::::::::::::::::::::::
Lowe et al. (2013) developed

::
a
::::::::::::::
microstructural

::::::::::
parameter

:::
that

::::
can

:::
be

:::::
used

:::
to

:::::::
reduce

:::
the

:::::::
scatter

::
in

::::::::
thermal

:::::::::::
conductivity

:::::::::::
predictions

::::::
based

:::
on

:::::::
density

::::::
alone.

::::
The

:::::::::::
parameter

:::::
also

:::::::::
provides

::
a

:::::::
means

:::
of

:::::::::::::
incorporating

:::::::::::
anisotropic

:::::::::
behavior

:::
of

:::::::
thermal

::::::::::::
conductivity.

::
It
::::::
would

::::
be

:::::::::::::
advantageous

:::
to

::::::
refine

::::
the

::::::::
thermal

::::::::::::
conductivity

::::::
model
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::
of

::::
Eq.

:::
(87

:::
to

:::::::
include

::::::::::::::
microstructural

:::::::
effects

:::::
other

:::::
than

::::::::
density.

:::::
Such

::
a
:::::::::::
refinement

::::
may

:::
be

::::::::::
particularly

:::::::::
important

::::::
when

:::::::::
extending

::::
the

::::::
current

::::::::::::::::
one-dimensional

::::::::
analysis

::
to

:::::::
higher

::::::
spatial

:::::::::::
dimensions

:::::::
needed

:::
for

:::::::::
modeling

:::::
heat

::::
and

:::::
mass

::::::::
transfer

::
in

::::::::
complex

:::::::
terrain.

:

The value of the effective diffusion coefficient, Ds, for snow has a long history of dispute.
Giddings and LaChapelle (1962) claimedDs to be less than the diffusion coefficient of water
vapor in air due to the fact that ice grains interfere with diffusion paths. In contrast, Yosida
(1955) conducted experiments where the diffusion coefficient was estimated to be 3.5–5
times larger than that for air while experiments by Sommerfeld et al. (1987) found that the
diffusion coefficient was about twice that for air. Yosida (1955) provided a classic description
of diffusion being enhanced by water vapor moving between ice grains in a “hand to hand”
fashion, thereby shortening the pathway required for water vapor to travel. It is interesting
to note that the mechanisms for diffusion argued by Giddings and LaChapelle (1962) and
Yosida (1955) both have merit and are competing against one another.

Christon et al. (1994) provided some of the first micromechanics finite element work on
mass transfer for snow and generated predictions for the effective diffusion coefficient rang-
ing from 1.0–1.93 times the diffusion coefficient for water vapor in air. Christon’s results
have been criticized, perhaps unfairly in our view, due to the simplistic microstructure mod-
els that he was forced to work with at that time. Pinzer et al. (2012) have laid any questions
about the influence of microstructure to rest by performing finite element analysis on real
snow microstructures generated through X-ray computer tomography. Their finite element
predictions show a diffusion coefficient for snow to be very nearly that of diffusion of water
vapor in air, perhaps an enhancement of 5–13

:::::::::
1.05-1.13 for snow compared to diffusion of

water vapor in air based on the data provided in Fig. 11 of their work.
Despite wildly more complex microstructures, the results of Pinzer et al. (2012) are largely

consistent with Christon’s results
:::
the

:::::::
results

::
of

::::::::::::::::::::
Christon et al. (1994). Indeed, in reference

to studies on the vapor flux and its dependence on microstructure over time, Pinzer et al.
(2012) note that “the flux stays constant in time, despite the dramatic changes in the struc-
ture”.
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The diffusion coefficient given by Eq. (88) divided by the diffusion coefficient of water
vapor in air is plotted in Fig. ?? to show Foslien’s predicted diffusion enhancement as
a function of density at a snow temperature of 263 K. Also plotted in Fig. ?? are the dif-
fusion enhancement ratios of Christon (1990) for two microstructural geometries in their
applicable density ranges as well as the more recent predictions of Pinzer et al. (2012)
based on real snow microstructures determined from X-ray tomography. Pinzer’s results
show a range of diffusion enhancement at any given density that represents the range
of diffusion enhancement computed over time as the microstructure evolved

::::::::
represent

::::
the

:::::::
bounds

::
of

::::
the

:::::
finite

::::::::
element

::::::::::
predictions

:::::::
shown

::
in

::::::
Figure

:::
11

:::
of

::::
their

:::::
work.

Foslien’s model predicted a maximum diffusion enhancement for snow compared to air of
1.23 with enhancements for typical snow densities in the range from 1.0–1.2. These values
are in excellent agreement with the numerical predictions of Christon (1990) and the more
recent results of Pinzer et al. (2012). In brief, we agree with view of Pinzer et al. (2012) in
that any enhancement of water vapor diffusion in snow compared to diffusion of water vapor
in air is minimal.

::::::::::::::::::::::::::
Calonne et al. (2014a) have

::::::::
recently

:::::::::
computed

:::
an

::::::::
effective

:::::::::
diffusion

::::::::::
coefficient

:::
for

:::::
snow

::
by

:::::::
solving

::::
the

:::::
field

:::::::::
equations

::::
for

:::::
mass

::::::::
transfer

:::
on

::
a
::::::
series

:::
of

::::::
RVE’s

::::::::::
computed

:::::
from

::::
3-D

:::::::
images

::
of

::::::
snow.

::::
The

:::::::
results

::::
are

::::::::::
interesting

::
in

:::::
that

::::
they

::::::
show

::::::::::
normalized

::
a
:::::::
values

::
of

:::::
Deff

:::::::
starting

::
at

::::
1.0

:::
for

:::
air

::::
and

::::::::
steadily

::::::::::
decreasing

:::
to

::::::
values

:::
as

::::
low

:::
as

:::
0.2

:::
for

::::::
snow

:::::::::
densities

::
of

::::
500 kg m−3

:
.
:::::
They

::::::::
defined

:::
the

::::::::
effective

:::::::::
diffusion

:::::::::
coefficient

:::
of

:::::
snow

:::
as

:

Deff =
1

|Ω|

∫
Ωa

Dv (∇gv + I)dΩ.

::::::::::::::::::::::::::::

(89)
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:::::::::
Following

::::
the

::::::::
previous

:::::::::::
discussion

:::
on

::::::::
thermal

::::::::::::
conductivity,

:::
the

:::::::
above

::::::::
equation

:::::
may

:::
be

::::::
written

:::
as

:

Deff = φha
1

|Ωa|

∫
Ωa

Dv (∇gv + I)dΩ.

::::::::::::::::::::::::::::::::

(90)

::::::::::
Introducing

::::
the

::::::::
notation

Deff
a =

1

|Ωa|

∫
Ωa

Dv (∇gv + I)dΩ,

:::::::::::::::::::::::::::::

(91)

::
as

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::
of

:::::::
humid

:::
air

::
in

:::::
snow

::::::
leads

::
to

:

Deff = φhaD
eff
a .::::::::::::::

(92)

::
Of

::::::::
interest

:::::
here

::
is

::::
the

::::::::
volume

:::::::
fraction

:::
of

::::
the

::::::
humid

:::
air

:::::::::::
constituent

::::::::
leading

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::
of

:::
the

:::::::
humid

:::
air.

:

:::
An

::::::::::
interesting

::::::::
exercise

::
at

::::
this

:::::
point

::
is

:::
to

::::::::
compare

::::
the

::::::
results

:::
of

:::::::::::::::::::::::
Calonne et al. (2014a) to

:::::
those

::
of

:::::::::::::::::
Foslien (1994) for

::::
the

:::::::::
idealized

::::::::::::::
microstructures

:::::::::
identified

:::
in

:::
the

::::::
paper

:::
as

:::
the

:::::
pore

:::::::::::::
microstructure

:::::
and

::::
the

::::::::
lamellae

::::::::::::::
microstructure.

::::::
First,

:::::::::
consider

::::
the

:::::
pore

::::::::::::::
microstructure

::::::
where

:::
the

::::
ice

::::::
phase

::::
and

::::
the

::::::
humid

:::
air

::::::
phase

::::
are

::
in

::::::::
parallel

::
to

::::
the

:::::::
energy

::::
flux.

::::::::::
Calonne’s

:::::::::
numerical

:::::::
results

::::
will

:::::::::
produce

:::
an

:::::::::
effective

::::::::
diffusion

:::::::::::
coefficient

::::::
given

:::
by

::::
Eq.

:::::
(92).

:::::
The

:::::::::
presence

::
of

:::::
the

::::::
humid

::::
air

::::::::
volume

::::::::
fraction

::
is

:::
in

::::::::
precise

:::::::::::
agreement

:::::
with

::::
the

::::::::
present

:::::::::::
paper—see

::::
the

::::
first

:::::
term

:::
of

::::
Eq.

:::::
(88)

::::::
sans

::::
the

:::
ice

::::::::
volume

::::::::
fraction

::::::
which

:::::::
arises

:::::
from

:::
the

::::::::::
combined

::::::
snow

:::::::
model.

::::
The

:::::::::::::
interpretation

:::
of

::::
the

::::::
humid

:::
air

::::::::
volume

::::::::
fraction

::
in

::::::
these

:::::::::
equations

::
is

:::::
quite

:::::
clear

:::
as

::::
the

:::
ice

::::::
phase

:::::
acts

:::
as

:
a
:::::::::
blockage

::::
and

::::::
limits

:::
the

::::::::
amount

::
of

:::::
area

::
for

:::::::
humid

::
air

::::::
mass

:::::::::
transport

::
to

::::::
occur.

:

::::
Now

::::::::::
consider

::::::::::
applying

::::
the

:::::::::::
definition

:::
of

:::::
the

::::::::::
effective

:::::::::
diffusion

:::::::::::
coefficient

::::
of

:::::::::::::::::::::::
Calonne et al. (2014a) to

:::::
the

::::::::::
lamellae

::::::::::::::::
microstructure

:::::::
where

:::::::::
energy

:::::::::
transfer

::::
is
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:::::::::::::
perpendicular

:::
to

::::
the

::::::::::
ice/humid

:::
air

::::::::
layers.

::::::::::
Calonne’s

:::::::::
definition

:::::
will

::::::
again

:::::::::
produce

:::
an

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::::::
given

::
by

::::
Eq.

:::::
(92).

:::::::
Hence,

::::
the

::::::::
effective

:::::::::
diffusion

::::::::::
coefficient

::
of

:::
the

::::::
humid

:::
air

::
is

::::::
again

::::::
scaled

:::
by

::::
the

:::::::
volume

:::::::
fraction

::
of

::::
the

::::::
humid

::::
air.

::::
The

:::::::::
influence

::
of

::::
the

:::
ice

::::::
phase

:::
on

::::
the

::::::::
effective

::::::::
diffusion

:::
of

::::::
water

:::::
vapor

::
is
::::::::::::::
fundamentally

:::::::
different

:::
for

::::
the

::::::::
lamellae

::::::::::::::
microstructure

::::::::::
compared

::
to

::::
the

:::::
pore

::::::::::::::
microstructure.

:::::
First,

::::
the

:::
ice

:::::
does

:::
not

:::
act

:::
as

::
a

:::::::::
blockage

::
of

::::::::
diffusion

::::::
paths

:::
for

::::::
water

:::::
vapor

::
in
::::
the

::::::::
lamellae

::::::::::::::
microstructure

::
as

::
it

:::::
does

::
in

:::
the

:::::
pore

::::::::::::::
microstructure.

:::::::::
Secondly,

::::
the

:::
ice

::::::
phase

:::::::
actually

::::::::::
enhances

:::::
water

::::::
vapor

::::::::
diffusion

::
in

::::
the

::::::::
lamellae

::::::::::::::
microstructure

:::
by

::::::::::
shortening

::::
the

::::::::
pathway

::::::::
needed

:::
for

:::::
water

::::::
vapor

::
to

:::::
travel

::::
via

:::
the

::::::::::::::
“hand-to-hand”

::::::::::::
mechanism

:::::::::
described

:::
by

::::::::::::::
Yosida (1955).

::::::
Taken

:::::::::::
collectively,

:::::
these

:::::::
factors

::::::::
suggest

::::
the

:::::::::
influence

:::
of

::::
the

:::::::
volume

::::::::
fraction

:::
of

::::::
humid

::::
air

:::
on

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient,

:::::
Deff

a ,
:::
of

:::
Eq.

:::::
(92)

::::::
should

::::::
scale

:::
as

:::::::
(1/φha)

:::
as

::::::::
opposed

:::
to

::::
φha.

:

::::
Now

:::::::::
consider

:::::::::
Foslien’s

::::::::::
analytical

:::::::
model

::
of

::::
the

:::::::::
lamellae

::::::::::::::
microstructure

::::::
given

:::
by

::::
the

:::::::
second

:::::
term

:::
of

::::
Eq.

::::
(88

:::::
sans

::::
the

::::::::
leading

::::::
term,

:::::
φha,

::::::
which

:::
is,

:::::::
again,

:::::::::
attributed

:::
to

::::
the

:::::::::
combined

:::::
snow

:::::::
model.

:

Da =

 kiDv–a

φi

(
ka +usgDv–a

dγsat
v

dθ

)
+φhaki

 .
::::::::::::::::::::::::::::::::::::::

(93)

::::::::
Dividing

:::
the

::::::::::
numerator

::::
and

:::::::::::::
denominator

:::
by

::
ki ::::

and
:::::::::::
recognizing

::::
the

::::::::
thermal

:::::::::::
conductivity

::
of

:::
ice

::
is

::::::::
roughly

::::
100

:::::
times

::::
that

:::
of

:::
air

::::::::
reveals,

::
to

::::
first

::::::
order,

::
a

:::::::::
predicted

::::::::::
enhanced

::::::::
diffusion

:::::::::
coefficient

::::::
given

:::
by

Deff =Deff
a /φha.

::::::::::::::
(94)

:::
As

:::::::::
discussed

:::::::
above,

:::
we

:::::::
believe

::::
this

::::::::::
enhanced

:::::
value

::
of

::::
the

::::::
humid

:::
air

::::::::
diffusion

::::::::::
coefficient

::
is

:::::::
correct

::
in
:::::

that
::::
the

:::
ice

:::::::
phase

:::
in

::::
the

::::::::
lamellae

::::::::::::::
microstructure

:::
is

::::
not

::::::::
blocking

:::::::::
diffusion

:::
but

:::::::
instead

:::::::::::
enhancing

::::::::
diffusion

::::::::
through

::::
the

:::::::::::::::
‘’hand-to-hand”

::::::
notion

:::
of

::::::::::::::
Yosida (1955).

::::
For

::::::::
example,

::::::
given

::::
an

::::
ice

:::::::
volume

::::::::
fraction

:::
of

:::::
0.5,

:::
we

:::::::
would

:::::::
expect

:::
an

:::::::::
effective

:::::::::
diffusion

:::::::::
coefficient

:::
to

:::
be

::::
near

:::::::
double

:::::
what

::::::
would

:::
be

::::::
found

::
in

:::
air

:::
as

::::::
water

:::::
vapor

::::::
would

:::::
only

:::::
have

::
to
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:::::
travel

::::
half

:::
the

:::::::::
distance

::::::::::
compared

::
to

::::
the

::::::::
distance

::::::::
traveled

::
in

::::::
humid

:::
air

:::::::
alone.

:::
We

:::::
note

::::
that

:::
the

::::::
humid

:::
air

:::::::
volume

::::::::
fraction

::
in

::::
the

::::::::::::
denominator

::
of

::::
Eq.

:::::
(93)

::::
was

:::
not

::::::::::
artificially

::::::::::
introduced

:::
and

:::::::::
naturally

::::::
arose

:::
in

::::
the

:::::::::::::
development.

:::
In

:::::
brief,

:::::
Eq.

::::
(93

::
is

:::::::
arrived

:::
at

:::
by

:::::::::
requiring

::::
the

:::::::::::::::
one-dimensional

:::::::
energy

::::
flux

::::::::
through

:::
the

:::
ice

::::
and

::::
the

::::::
humid

:::
air

::
to

:::
be

::::::
equal.

:

::::::::::
Comparing

:::::
Eqs.

:::::
(92)

::::
and

:::::
(94)

:::::::::
suggests

::::
that

::
if
::::
one

:::::
were

:::
to

::::::::
multiply

:::::::::
Foslien’s

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

:::
for

::::
the

:::::::::
lamellae

::::::::::::::
microstructure

:::
by

:::::
φ2

ha,
:::::
then

:::
the

:::::::
results

:::
of

:::::::::
Foslien’s

::::::
model

::
of

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

:::
for

::::::
snow

::::
may

:::
fall

::::::::::
somewhat

:::
in

::::
line

::::
with

:::
the

:::::
data

::::::
shown

::
in

:::::::
Figure

::
9
::
of

::::::::::::::::::::::
Calonne et al. (2014a).

:::::::
Figure

:::
??

:::::::
shows

::::
the

::::::
result

::
of

::::
this

:::::::::
exercise.

::::
The

:::::::::::
comparison

:::
of

::::::::
Foslien’s

:::::::::
modified

:::::::::
diffusion

:::::::::
coefficent

:::::
with

:::
the

:::::::
results

:::
of

::::::::
Calonne

::::
are

:::::::::::
surprisingly

::::::
close.

:::::::
Finally,

:::
we

:::::
note

::::
that

:::::
none

::
of

::::
the

::::::::::
numerical

::::::::::
predictions

:::::::
shown

::
in

::::
the

:::::
data

::
of

::::::
Figure

:::::
(??)

:::
use

::::
the

::::::::::
definition

:::
of

::::
the

::::::::
effective

:::::::::
diffusion

:::::::::::
coefficient

::::::
found

:::
in

::::::::::::::::::::::
Calonne et al. (2014a).

::::::::::::::::::::::::::::
Christon et al. (1994) evaluate

:::
an

::::::::
average

::::::
mass

::::
flux

:::::::::
traveling

::::::::
through

:::
the

::::::::::::
boundaries

::
of

:::
the

:::::
RVE

::
in

:
a
:::::::::::::
fully-coupled

::::
heat

::::
and

::::::
mass

:::::::
transfer

:::::::::::::::::::::::::::::::::::
analysis.Pinzer et al. (2012) evaluate

:::
the

:::::
mass

::::
flux

::
in

::
a
:::::
slice

::
in
::::

the
::::::
RVE,

:::::::::::::
perpendicular

::
to

::::
the

::::::::::::
temperature

:::::::::::::
gradient—an

:::::::::
approach

::::::
similar

:::
to

:::::::::
Christon.

::
It
:::::::

would
:::
be

::::::::::
extremely

::::::::::
interesting

:::
to

:::::::::
evaluate

::::
the

::::::::
effective

:::::::::
diffusion

:::::::::
coefficient

:::
on

:::
an

:::::
RVE

::
of

::
a

::::
real

::::
3-D

::::::::::::::
microstructure

:::::
using

::::
the

::::::::
different

:::::::::
numerical

:::::::::
methods

::
of

:::::::::::::::::::::
Calonne et al. (2014a),

:::::::::::::::::::
Pinzer et al. (2012),

::::
and

:::::::::::::::::::::
Christon et al. (1994).

:::::
While

::::
the

::::::::::
idealized

:::::::::::::::
microstructures

:::::::
utilized

::::
by

:::::::
Foslien

::::
are

::::
not

::::::::::::::
representative

:::
of

::::
the

::::::::
complex

::::::::::::::
microstructure

::
of

::::::
snow,

::::
the

::::
heat

::::
and

::::::
mass

::::::::
transfer

::::::::::::
mechanisms

:::::::::::
associated

::::
with

:::::
each

:::::::::::::
microstructure

::::
are

::::::
clearly

::::::::
present

::
in

:::::
snow.

::::
We

:::::::
believe

:::
the

:::::::
original

:::::::
model

:::::::::
developed

:::
by

:::::::
Foslien

::
is

:
a
:::::::::::
reasonable

:::::::::
estimate

::
of

::::
the

::::::::
effective

::::::::
diffusion

::::::::::
coefficient

::
of

::::::
snow.

::::
The

:::::::::
excellent

::::::
results

::::
for

:::::::::::
predictions

:::
of

::::::::
thermal

::::::::::::
conductivity

:::::::
based

:::
on

::::
the

::::::::::
idealized

:::::::::::::::
microstructures

::::::::
provides

:::::
some

::::::::
support

:::
for

::::
the

:::::::::
proposed

::::::::
diffusion

::::::::::
coefficient

:::::::
model.

5.3.1 Thermal conductivity with diffusion

The effective thermal conductivity for snow including the enhancement of heat transfer due
to mass diffusion is given by Eq. (74

::
84). Figure ?? shows the enhancement of the effective

thermal conductivity incorporating diffusion effects as a function of density at three different
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temperatures. For instance, at a density of 250 kg m−3, the heat transfer enhancement due
to diffusion is 9 and 3 % for temperatures of 268 and 257 K, respectively. These values
are reasonably consistent with calculated values provided by Riche and Schneebeli (2013)
showing latent heat transfer contributions to be approximately 14 and 1 % for temperatures
of 268 and 257 K, respectively. Specific densities were not provided for the calculations of
Riche and Schneebeli (2013) but the average density of their samples was 254 kg m−3.

The analytical predictions of Foslien shown in Fig. ?? suggest the importance of latent
heat transfer by diffusion is most prominent in low density snow at temperatures near freez-
ing. In this case, the enhancement of heat transfer due to diffusion may be as high as
30–40 % for low density snow. These results are consistent with the numerical studies of
Christon et al. (1994) who note: “the enhancement due to the transport of latent energy is
seen to peak at about 40 % of the conduction for the lowest density and the highest base
temperature”.

In closing, results from the analytical model for the thermal conductivity of snow, ks,
and the effective diffusion coefficient for snow, Ds, proposed by Foslien are in excellent
agreement with cited finite element micromechanics analyses and, further, the parameter
predictions are self-consistent with the limiting cases of air and solid ice. The results lend
confidence to using the predicted parameters for ks and Ds over the entire spectrum of tem-
peratures and densities encountered in the macroscale heat and mass transfer analyses
presented in Sect. 6.

6 Numerical results for macroscale heat and mass transfer

In this section, numerical results of the nonlinear equations (Eqs. 70 and 72) governing heat
and mass transfer in a snowpack are presented. The specific problem at hand is to model
the heat and mass transfer in a one-meter deep snow cover with complexities associated
with a real snowpack such as dense layers and a time varying surface boundary condition
for temperature. Figure ?? shows a schematic of the analysis. A Galerkin finite element
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method was used to discretize the spatial domain, and the Crank-Nicholson time integration
method is used to advance the solution in time.

Figure ?? shows the density profile of the snowpack for the numerical simulations. The
snowpack had a seasonal snow density of 240 kg m−3 with a dense layer starting at 64 and
ending at 86 cm. The density was assumed to increase from 240 kg m−3 to 600 kg m−3 over
8 cm with a similar rate of decrease at the top end of the ice crust to a density of 120 kg m−3.

The snow density at the ground level was set to solid ice in an effort to impose realistic
boundary conditions. If the density at the ground layer is less than solid ice, the snowpack
can be viewed as having no barriers below it. In this case, the model would predict that
saturated air enters the snowpack at the ground level with no specified source for this vapor.

Numerical results corresponding to two test cases are presented. The first problem is
designed to study the impact of the dense layer on macroscopic temperature gradients and
deposition (condensation) and sublimation rates. Colbeck (1993) stressed the importance
of developing a theory of snow which incorporates the effect of dense layers on the heat
transfer in snow. The second problem focuses on the effect of diurnal temperature fluctu-
ations on the surface of the snowpack. Of interest here are the near surface temperature
gradients compared to the average temperature gradient in the snowpack. Condensation
and sublimation rates near the surface are also of interest.

6.1 Influence of an ice crust

To study the influence of the ice crust on heat and mass transfer, an isothermal snowpack
at 0◦C was initially assumed. Boundary conditions at the ground and surface were 0

::::
0◦C

and −20◦C, respectively, thereby initiating a temperature gradient through the snowpack.
Figure ?? shows the temperature profile in the snowpack after 1, 5, and 10 days, respec-

tively. In the dense layer of snow, the temperature gradient is noticeably reduced at any
time due to the higher thermal conductivity of the dense snow. The dense layer also has
the effect of producing a much higher temperature gradient in the near surface fresh snow
cover in the pack. Figure ?? shows that, even after 10 days, the temperature gradient near
the surface is approximately 60◦C m−1, three times the average temperature gradient. The
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high temperature gradients near the surface are even more notable when one considers the
significant amplification of temperature gradients that occur at the microscale as discussed
in Sect. 2 and demonstrated in Fig. 4 of Pinzer et al. (2012).

Figure ?? shows both condensation and sublimation occurring in the snowpack with sig-
nificant activity near the dense ice crust. Near the surface, condensation is occurring be-
cause water vapor is diffusing toward the surface which is colder and, therefore, an area
of lower saturation for the vapor density. The water vapor must then condense if the air
is not to become supersaturated. Just below the dense layer, Fig. ?? shows another area
of condensation near the dense ice crust. Condensation occurs here due to the decrease
in humid air volume fraction in the direction of the water vapor diffusion. If the amount of
air available to hold water decreases, then the amount of water vapor must also decrease.
Just above the dense layer, the opposite is true. Here, Fig. ?? shows that sublimation is
occurring because the vapor volume fraction is increasing in the direction of vapor flow.
Sublimation must occur to keep the increasing amount of air saturated.

Local weakening above and below dense layers in a snow cover have been observed
(Adams and Brown, 1982). If condensation is known to enhance depth hoar growth (Col-
beck, 1983), then the condensation occurring below the dense layer in Fig. ?? could con-
tribute to the weakening observed in this region of a snowpack. We note that temperature

::::::::::::
Temperature gradients are relatively low below the ice crust, although in the range of where
faceted crystal growth has been observed in field studies. The sublimation occurring above
the dense layer may contribute to any snowpack weakness observed here.

Sublimation is also observed near the ground after 10 days and appears to be increas-
ing with time. At a sublimation rate of 4 mg m−3 s−1 occurring just above the ground after
10 days, a decrease in density of 1 kg m−3 would take about 3 days. This slow rate of change
in density is consistent with experimental studies on temperature gradient metamorphism,
where little change is density is observed despite the dramatic changes in the crystal struc-
ture of snow (Pinzer et al., 2012).
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6.2 Effect of diurnal temperatures

To study diurnal temperature effects, the surface of the snowpack was subjected to a har-
monic temperature boundary condition given by

θ(1, t) =−20− 10sin
πt

43200
, (95)

with the lower surface temperature held fixed at 0◦C. The boundary condition given by
Eq. (95) has a mean value of −20◦C with a 10◦C fluctuation about the mean. Initial con-
ditions for the temperature through the snowpack were specified based on the average
temperature gradient of −20◦C m−1 at time t= 0.

Figure ?? shows the temperature profile over a 24 h period at day 5, after any transients
have disappeared. Only the upper half-meter of the snowpack is shown. Strong tempera-
ture gradients are observed in the fresh snow near the surface, with gradients as high as
−150◦C m−1 as shown in Fig. ??. The large temperature gradients found near the surface
are also accompanied by active condensation and sublimation throughout a 24 h cycle,
Fig. ??. Both the temperature gradient and the mass exchange are likely to impact mi-
crostructural changes that occur in the near surface snow cover.

7 Summary

We have developed a macroscale mixture theory analysis for modeling condensation and
sublimation rates in a snow cover under temperature gradient conditions. The theory is
general enough to accommodate arbitrary density profiles with any desired time dependent
surface boundary conditions. Condensation and/or sublimation is observed near the ground
and the surface as well as immediately above and below dense layers such as ice crusts.
Macroscale temperature gradients can be surprisingly high compared to the average tem-
perature gradient in the snowpack.

Strong macroscale temperature gradients coupled with enhanced
condensation/sublimation rates warrant further

:
A

::::::::::::::
quantitatively

::::::::
correct

::::::::::::
macroscale
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::::::::
analysis

::
of

::::::::::::
constituent

::::::
mass

::::::::::
exchange

:::::::
brings

::::
out

:::
an

:::::::::::
interesting

:::::::::::
microscale

:::::::::
analysis

:::::::
problem

:::::
that

::
is

:::::::
worthy

:::
of

:::::::::
attention.

:::::::
Recent

::::::::::
numerical

:
studies of heat and mass transfer

at the microscale . In current finite element micromechanics analyses, the vapor flux
at the microscale is driven by microscale temperature gradients. The local temperature
gradients are induced by imposing a specified macroscopic temperature gradient formed
by specifying a temperature differential on the lower and upper surfaces of the RVE.

:::::
begin

:::
by

:::::::
solving

::::
the

:::::::
steady

:::::
state

::::::::
diffusion

:::::::::
equation

:::
for

:::::
heat

::::::::
transfer

::::
with

::::
the

:::::::::::
appropriate

:::::::
thermal

::::::::::
properties

::
of

::::
ice

::::
and

::::::
humid

::::
air.

::::::::
Dirichlet

:::::::::
boundary

::::::::::
conditions

::::
for

:::::::::::
temperature

::::
are

::::::::
specified

:::
at

:::
the

::::
top

::::
and

:::::::
bottom

::
to

::::::::
simulate

::
a
::::::::
desired

:::::::::::
temperature

:::::::::
gradient.

::::::
Once

:::
the

:::::
local

:::::::::::
temperature

:::::
field

::
is

::::::::::::
determined,

::
a
::::::::
solution

:::
for

::::::
mass

:::::::::
transport

:::
is

:::::::::
obtained

:::
for

::::
the

::::::
humid

::
air

:::::::
phase.

:::::
The

:::::
vapor

::::::::
density

:::::::::
boundary

::::::::::
conditions

::::
are

:::::::::
specified

:::
at

:::
the

:::::::
ice/air

::::::::
interface

:::
by

:::::::::
assuming

:::
the

::::::
vapor

:::::::
density

::
is
::::::::::
saturated,

::::::::
thereby

:
a
::::::::
function

::
of

::::::::::::
temperature

:::::
only.

::::::::::
Therefore,

:::
the

::::::
mass

::::
flux

::
in

:::::
such

::::
an

::::::::
analysis

::
is

:::::::::::
essentially

::::::::
dictated

:::
by

::::
the

:::::::::::
macroscale

::::::::::::
temperature

::::::::
gradient.

:

::::
The

:::::::
mixture

:::::::
theory

:::::::
results

:::
for

:::::::::::
macroscale

::::::::::
deposition

:::::
and

::
or

:::::::::::
sublimation

::::
tell

:::
an

:::::::
entirely

:::::::
different

::::::
story.

::::
For

:::::::::
example,

::::::::
consider

:::
the

:::::::
effects

::
of

:::::::
diurnal

:::::::::::::
temperatures

:::
on

:::::
heat

::::
and

:::::
mass

:::::::
transfer

:::::
near

:::
the

::::::::
surface

:::
as

:::::
seen

::
in

::::::::
Figures

:::
??

::::
and

::::
??.

::::::
Figure

::::
??

::::::
shows

:::::::
strong

::::::::
negative

:::::::::::
temperature

:::::::::
gradients

::
at

::
6
::::
and

:::
24

:::::
hours

:::::::::
between

::::::
x=0.9 m

:::
and

::::::
x=1.0 m

:::
(the

:::::::
region

::::::::
bounded

::
by

::::
the

:::
ice

:::::
crust

::::
and

::::
the

::::::::
surface).

::::::
Now,

::::::::
examine

:::::::
Figure

:::
??

::::::::
showing

::::::
mass

:::::::::
exchange

:::
at

:::
the

:::::
same

:::::
time

:::::::
periods

::::
and

:::::
snow

:::::::
depth.

::::
The

:
6
:::::
hour

::::
plot

::::::
shows

::::::::::
deposition

:
is
:::::::::
occurring

::::::
while

:::
the

::
24

:::::
hour

::::
plot

:::::::
shows

:::::::::::
sublimation

::
is

::::::::::
occurring.

::::
The

:::::::::
boundary

::::::::::
conditions

:::::
used

:::
for

:::::::::::
microscale

::::::::
analyses

::::::::::
described

::::::
above

:::::::
cannot

::::::::
capture

::::
this

::::::::::
interesting

:::::::::::::
phenomenon

:::
as

::::
the

::::::
results

::::
are

::::::
driven

::
by

::::::::::::
temperature

::::::::
gradient

:::::
only.

:

Just as the temperature gradient is specified in the aforementioned micromechanical
analysis, it is also possible to specify an independent net mass transfer boundary
condition on the RVE. Specifying an independent mass flux allows one to represent
either condensation or sublimation based on macroscale conditions . In brief, knowledge

::::
The

:::::::::::
decoupling

::
of

::::::::::::
macroscale

:::::::::::::::::::::
deposition/sublimation

::::::::::::
phenomena

::::::
from

:::
the

::::::::::::
macroscale

:::::::::::
temperature

::::::::
gradient

:::::::
should

::::::
come

::
as

:::
no

::::::::
surprise

:::::
from

:::
the

::::::::
mixture

::::::
theory

:::::::::
analysis.

:::::::
Indeed,
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:::
the

::::::
ability

:::
to

:::::
show

:::::
this

:::::::::::::
phenomenon

::
is

::::
the

::::::::::::
fundamental

::::::
driver

:::
for

:::::::::::
developing

::
a
::::::::

mixture

::::::
theory

::
to

::::::
begin

:::::
with.

::
If

::::
this

:::::
were

:::
not

::::
the

:::::
case,

::::
one

::::::
could

:::::::
simply

::::::::
generate

::
a
::::::::
thermal

::::::
profile

::::
from

::::
the

:::::::
energy

::::::::
equation

::::
and

::::::
move

:::
on.

:

::::::
Given

:::
the

::::::::
mixture

::::::
theory

:::::::
results

::::::::::
described

:::::::
above,

::
it

::::::
would

:::
be

::::::::::
interesting

:::
to

::::::::::
investigate

:
a
:::::::::

transient
:::::::::::

microscale
:::::::::

solution
:::::::::
exploring

::::
the

:::::::
effects

:::
of

::::::::::
imposing

::::::
mass

::::
flux

::::::::::
boundary

:::::::::
conditions

:::
for

::::
the

::::::
vapor

:::::
while

:::::
using

::::
the

:::::::::
saturated

::::::
vapor

:::::::
density

:::::::
(based

:::
on

:::
the

::::::::::::
temperature

:::::
field)

::
as

:::
an

::::::
initial

:::::::::
condition

:::
for

:::
the

:::::::
humid

:::
air.

::::::::
Perhaps

:::::
such

:::
an

:::::::::
analysis

:::::
could

:::::
help

:::::::
explain

::::::::::::::
microstructural

::::::::
evolution

:::::::
(kinetic

:::::::
growth

:::::::
versus

:::::::::
sintering)

:::::
under

::::::::::
conditions

::::::
where

::::::::::
specifying

:::
the

::::::::::::
temperature

:::::::
gradient

::::::
alone

::
is

:::::::
unable

::
to

:::
do

:::
so.

:::::::::::::::::::::::::
Christon (1990) developed

:
a
::::
fully

::::::::
coupled

::::
heat

::::
and

:::::
mass

::::::::
transfer

:::::::::::
formulation,

:::::::::
although

:::::::::
boundary

::::::::::
conditions

::::::::
involved

:::::::::::
temperature

::::
and

:::::::::::
temperature

::::::::
gradient

:::::
only.

:

::::::::::
Knowledge

:
of the condensation or sublimation rates at the macroscale provides the foun-

dation for a fully coupled solution of heat and mass transfer at the microscale.
::
In

:::
this

::::::
spirit,

:::
the

:::::::
mixture

:::::::
theory

:::
for

:::::
snow

::::
can

::::::::
simulate

:::::::::::
interesting

:::::::::::
macroscale

:::::::::
problems

:::::::::
featuring

::::::
terrain

::::::::
changes,

::::
ice

:::::::
crusts,

::::::::
surface

:::::::
effects,

::::::
snow

::::::
storm

:::::::::::
deposition,

::::::::
extreme

::::::::::::::
temperatures,

::::
etc.

::::
Heat

::::
and

::::::
mass

:::::::
transfer

:::::::
results

:::::
from

:
a
::::::::
mixture

::::::
theory

::::::::
analysis

::::::
could

::::
then

:::
be

:::::
used

:::
as

::::::
inputs

::
for

::
a
:::::
host

::
of

::::::::::
interesting

::::::::::::::
microstructural

::::::::
studies.

:

Finally, analytical expressions of thermal conductivity and the effective diffusion coeffi-
cient for snow were developed from first principles of heat and mass transfer phenomena at
the microscale. The equations developed provide an elegant path to modeling thermal con-
ductivity and the effective diffusion coefficient of snow that are needed for the macroscale
mixture theory analysis. The model is also capable of quantifying the significance of latent
heat transfer to the total energy flux.

The Supplement related to this article is available online at
doi:10.5194/tcd-0-1-2015-supplement.
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