We thank all referees for their interesting and constructive feedback that helped us to improve the
paper. The reviewer’s comment is colored in black, our answer is in blue and the subsequent changes
in the paper are described in red (see also modifications directly in the paper). The mentioned lines
correspond to the latest version of the paper.

Reply to referee #1

The authors addressing certainly a very important issue in snow modelling, name the influence of
micro-structure on snow mechanics. They approach the structure with the Discrete Element Method
(DEM). However, following points should be addressed in the article:

Comment 1 There is no reference as to which temperature the mechanical behaviour is connected
to or how the temperature dependence is taken into account.

As investigated in section 3.2.2, the simulated macroscopic behavior of dry snow strongly depends on
the microscopic cohesion ;.. and friction coefficient tan ¢ at the contacts. The effects of temperature
on the mechanical behavior of snow could be taken into account by changing the microscopic contact
law from a fixed law to a temperature-dependent law, to the extent that sintering effects remain
limited. However, the aim of the article is to propose a mechanical model accounting explicitly for
snow microstructure. The final goal of the model is to investigate the link between the geometry of
the microstructure and the mechanical behavior of snow for a fixed microscopic contact law. That is
why this temperature dependence was not implemented.

To clarify this point, the following text was added to the paper 1. 317-320: “In the following, we
fixed the microscopic cohesion to 1 MPa. In future studies, effects of temperature on the macroscopic
behavior of snow, to the extent that sintering effects remain limited, could also be considered by
accounting for the influence of temperature on the microscopic cohesion.”

Comment 2 The DEM model taking into account the interaction between snow grains is not pre-
sented in a clear way: The cohesion model needs a better explanation and presentation in formulas for
the reader to understand e.g. what is tan(phi) referring to?

The friction coefficient tan¢ corresponds to the ratio between the normal force and the shear
force between two spheres sliding against each other. This notation is commonly used to describe a
Mohr-Coulomb model.

To clarify the definition of the microscopic contact law, the following figure (Fig. 1, Fig. 3 in the
paper) and a description of the role of each parameters in the contact law (1. 166-169) were added.

Comment 3 Is bonding or re-bonding taken into account?

As explained in the text (1.142-144), the bonds that exist in the initial microstructure are elastic,
cohesive and frictional. The new bonds created during deformation are only elastic and frictional.
Sintering during deformation is therefore not taken into account.

The following text was added 1.144 “Sintering during deformation is therefore not taken into ac-
count.”

Comment 4 No validation e.g. comparison with experiments has been presented for the DEM model
developed. Therefore, are the material properties chosen meaningful?
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Figure 1: Behavior of a sphere-sphere contact in two simple cases: normal loading (a) and simple
shearing under constant normal force f,, (b).

The microscopic contact law was set according to typical values of cohesion and friction coefficient
found in the literature for ice. We agree that an important scatter on these parameters remains, and, as
shown by the sensitivity analysis, that this scatter directly affects the macroscopic compressive behavior
of snow. As pointed by reviewer, the model was not evaluated by experiments. This evaluation would
also help to adjust precisely the microscopic contact law parameters (e.g. temperature dependence).
However, this is beyond the scope of the paper, which focuses on the presentation of a new mechanical
model accounting directly for the geometry of the snow microstructure.

This point is now indicated as future work 1.482-485.

Reply to referee #2 (Mark Hopkins)

This paper presents an interesting discrete element based dynamic microstructural snow model. The
model snow microstructure was derived from muCT imagery and implemented by replacing each voxel
of the muCT derived structure with a sphere whose diameter equals the width of the cubic voxel.
Discrete elements or grains are defined by a preprocessing algorithm that delineates the location of
necks or weak points in the structure. Only the surface spheres that cover the elements participate
in interactions between neighboring grains. The spheres at grain boundaries are linked by an elastic
constitutive model that supports both tension and compression in the normal direction and shear in
the tangential direction. Once the tensile strength of the bond is exceeded in response to the stresses
that arise when the sample is loaded the cohesive bond is broken. Once broken the grain/spheres
interact through a model that supports elastic compression and frictional sliding. The DEM model
is simple and avoids the complexity of a full polyhedral treatment. While this method creates some
artificial roughness due to the inherent bumpiness in grain-grain contacts, as the sphere radius > 0
the bumpiness is diminished.

As an initial presentation of a new snow modeling technique this paper strikes a good balance be-
tween laying out the model details, exploring the sensitivity of the model to the grain-grain constitutive
model, sphere diameter, sample size (RVE), and friction coefficient. Finally, results of large-strain uni-
axial compression experiments on muCT derived samples having different densities and microstructures
are presented. The comparison shows that sample density is a good proxy for a samples response to
compression from initial elastic loading through failure. I am sure that the model can be used to study



other loading states as well.

Comment 1 I have questions about the cohesive failure model. Does the failure occur in one time
step? There appears to be no strain-softening? If not then the failure will send shock waves that
radiate outward from the failure site. This is mitigated to some degree by the global damping that
is imposed on the system. If this is the case then the problem is better addressed by the addition of
strain-softening so that failure is attenuated over a number of time steps.

The failure of one sphere-sphere contact occurs in one time step. The failure of one grain-grain
contact composed of multiple sphere-sphere contacts occurs generally in more than one time step. We
effectively observed some elastic waves that radiate from the failure site. As explained 1.8 p.1434, we
used a numerical global damping to dissipate energy in the system. This damping also dissipates some
of the elastic energy released from a failure site. The sensitivity analysis revealed a low sensitivity of the
macroscopic behavior to the global damping which strongly affects these elastic waves. We therefore
believe that these waves do not lead to extra bond failure and so do not affect the macroscopic behavior.
Considering more advanced microscopic contact laws (e.g. including sintering) is an ongoing work.

Minor comments P 1432 L 1: “The interactions between the members of two different clumps are

frictional and cohesive, ...” Should mention elastic as well. Changed as suggested.
P 1436, L 10: “.. and snow deforms ...” — “.. and the snow sample deforms.”. Changed as
suggested.

P 1436, L 25: “compacity” I learn something new every day. Changed into “density”.

Reply to referee #3

The authors present a discrete element snow model based on 3D tomography images of the snow.
The model is capable to describe the rapid and large deformation of the snow dominated by grain
rearrangement. The voxels of an upscaled binary X-ray tomography image are replaced with elastic
spheres. Snow grains are considered as rigid bodies, and they are represented in the model as clumps
of bonded spheres. Bonds between the ice grains are represented by a cohesive contact law. Simulation
results of the confined compression of snow samples of different snow types are presented and analyzed.
Sensitivity analysis of different model parameters is also presented. Based on the simulations the
authors conclude that density alone is a sufficient descriptor of the rapid compression behavior of
snow, the microstructure only plays a secondary, practically negligible role.

The authors address an important point in snow mechanics. Namely, the effect of microstructure
on the mechanical behavior of snow. X-ray tomography is a modern and popular tool to obtain
detailed microstructural information of snow. The authors apply a sophisticated method to convert
the tomography data into a discrete element (DE) model. As they correctly point it out, a DE approach
is more suitable for the simulation of large deformations than a finite element one. In this respect it is
correct to use a DE model to simulate snow compression which is dominated by the large displacement
and rearrangement of the ice grains in the snow. On the other hand, a microstructure-based DE model
consist of a large number of spheres resulting in a long computational time. The authors claim that
a DE model is computationally more effective than a finite element simulation. While it is possible
that a voxel based finite element model requires more computational time, an adaptive tetrahedral
mesh can reduce the computational time considerably. The Youngs modulus and tensile strength
of a4 mm x 4 mm x 4 mm snow sample (similar size that is used by the authors in the present



paper) can be easily calculated on a common desktop computer with a single processor. I am not
sure if this is the case with the simulations presented here. In fact, the authors never mention the
computational time and hardware required to run their simulations. The work presented here is an
important contribution to out understanding of the mechanical behavior of snow. It is a novel method,
and with further development it can be a useful tool to study snow deformation on the microscopic
level. The manuscript is clearly written with high quality figures. It is easy to understand, the relevant
works are referenced with one notable exception (see below).

Comment 1 The most comprehensive discrete element snow model is presented in M.Michael: A
Discrete Approach to Describe the Kinematics between snow and a Tire Tread, PhD thesis, University
of Luxembourg, 2014. This must be mentioned and referenced.

Changed as suggested.

Comment 2 The bottleneck of microstructure-based snow simulations is the huge computational
power required. The authors take steps to reduce the computational time of their simulations by
using unrealistic material properties (elastic modulus, density), but they never mention the time and
hardware their simulations require. Do they run on a desktop machine with a single processor or they
require a supercomputer with 100s of processors?

The simulations presented in this paper run on a desktop computer with a single processor (2.7
GHz) and 16 Gb RAM. The typical computing time of the simulation is on the order of one day to one
week. More precisely, the test shown in section 3.1 runs in 15 h with, in average, 8 time-step iterations
per second. It requires 2.5 Gb RAM. The sample s-RG0 of rounded grains (4% mm?) is composed of
800 grains, and described with about 10° spheres (1.5 x 10°, if the spheres in the inside of the grains
are not removed). The mean number of sphere-sphere contacts per cohesive inter-granular bond is 14.

To answer this point, the computing costs are now described in section 2.3.2.

Comment 3 It would be very useful to include the 3D picture of representative samples of the
different snow types used in this study (for example s-DF, s-FCDH and S-RGO0). Similar to figure 1.

As suggested, a 3D picture of sample s-DF, s-FCDH and s-RGO (see Figure 2) was added to the
paper.

Comment 4 In this model the bonds between ice spheres are represented by several sphere-sphere
contacts. As with every discretization, there is a minimum number of spheres that can properly
represent a continuous contact. Mixed deformation modes like bending (the most common deformation
mode of the necks in snow compression) require a fine discretization i.e. alarge number of spheres at the
contacts. This should be studied by comparison with finite element simulations of bond deformation
or at least mentioned in the paper. At a very minimum, the number of spheres at the narrowest necks
in the different snow models should be given.

We agree that bending forces can be affected by the number of spheres used to describe one inter-
granular contact. However, the sensitivity analysis showed that the simulated mechanical behavior is
relatively insensible to the number (if reasonably large) of spheres used to describe the microstructure.
The comparison with finite-element would be interesting, but very time-consuming and limited to the
elastic phase (which is not the objective of this work). Moreover, the finite-element method is also
related to a certain discretization of the microstructure and the deformation of the grains themselves
modifies the stress distribution in the bonds, which limits the comparison with the DEM approach.
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Figure 2: Example of different snow microstructural patterns used in this study: (a) sample s-DF, (b)
sample s-FCDH and (c) sample s-RGO. The size scale is the same for the three images.

Sample Sphere Grain Total sphere Mean sphere num-
name radius (um)  number number ber per contact
s-DF 17.18 2900 546 773 16.2

s-DFRG  19.64 2703 263 495 9.0

s-FCDF 24.13 1261 212 066 17.9

s-FC 20.93 2011 371 824 21.2

s-FCDH  24.13 1809 247 618 15.1

s-RGO 19.64 1967 273 069 13.6

s-RG1 24.55 1261 212 066 17.8

Table 1: Details on the discretization of the microstructure of the different samples into clumps of
spheres.

To clarify this point, the mean number of spheres used to describe one bond in the sample s-
RG1 used to illustrate the method (sections 3.1 and 3.2) is now indicated in section 2.3.2. Further
information on the discretization of the grains into clumps of spheres is also indicated in Table 1.

Comment 5 The authors write on page 9 line 8:“However, for the parameters considered in this
study, the mean effective intergranular friction coefficient remains close to the microscopic friction
coefficient defined at the sphere-sphere interaction.” It is hard to believe (and it contradicts to my
experience with discrete element modeling) that surfaces consisting of spheres with different size will
show similar friction coefficients. What parameters do you refer to?

As shown in Figure 3 in the paper, the bumpiness of the grain contact creates a non-constant
shear force resisting to sliding for a constant normal force. This force depends on the relative position
of the two contact planes composed of spheres. Since the description of the planes with spheres is
periodic, the relation between normal force and shear force for a given sliding direction is also periodic
(to the extent that boundary effects are limited). This period is proportional to the sphere radius.
But the scatter and the mean value of the friction coefficient (ratio between the mean shear force
and the normal force) are not sensitive to the sphere size, for relatively large contacts. Moreover, the
sensitivity analysis showed that the simulated mechanical behavior is relatively insensible to the size



of the spheres used to describe the microstructure.

Comment 6 By using a physically unrealistic value for the Youngs modulus, E, the contact behavior
becomes completely unrealistic. Therefore, a direct comparison with real snow measurements becomes
impossible. This should be emphasized in the paper. It should be also mentioned that changing E will
change the point of bond failure.

As pointed by the reviewer, the strain at inter-granular failure is over-estimated in our approach
since the chosen contact stiffness is artificially low to reduce the computing costs. Indeed, the Young’s
modulus of ice is estimated to be around 10!° Pa (Petrovic, 2003) and we use a microscopic contact
stiffness of 107 Pa (Table 2). First of all, the aim of this paper is to propose and present a new
methodology to model large deformations of snow directly based on the microstructure captured by
tomography. The evaluation with experiments and the subsequent adjustment of the microscopic
contact law (E, ¢, tan ¢) is beyond the scope of the paper. Second, in the model, grains (or clumps)
are rigid. Therefore, there is no explicit link between the Young’s modulus of ice and the elastic
modulus to be used in the microscopic contact law. Third, in case of non-cohesive discrete element
models (without clump), it has been shown (e.g. Cleary, 2010; Lommen et al., 2014) that the overall
mechanical behavior (not the elastic phase) is not sensitive to the contact elastic modulus when the
interpenetration remains limited (< 0.5% of grain radius). As shown in Figure 4c of the paper (now
Fig. 6¢), the inter-penetration is on the order of a few percents of the sphere radius. In our model, the
simulated behavior might be thus sensitive to the elastic modulus, but is not completely unrealistic
(see answer to comment 8). In conclusion, a direct comparison with real snow measurements is possible
but might require an adjustment of the microscopic contact law (E, 0., tan¢) and, in particular, of
the elastic contact modulus. This is now mentioned at the end of the paper.

We add subsection 3.2.3, details on lines 188 and 194-196 to clarify the sensitivity to F.

Comment 7 Do you expect your model to describe real snow behavior? Would it be possible to
fit the model to real snow measurements? What are the fitting parameters (if there are any) in the
model? These points should be discussed in the paper.

See answer to comments 6 and 8.

Comment 8 On page 9 line 22 you write: “the elasticity of the contacts is expected to have little
influence on the macroscopic response of the sample.” Why do you expect this? In the initial, elastic
phase, as well as in the final, dense compaction phase E should have a strong effect. A sensitivity
analysis must be done to prove this.

In the limit of rigid grains (inter-penetration small compare to the sphere radius), the elasticity
of the contacts is generally shown to have little influence on the macroscopic response (except in the
macroscopic elastic phase) of the sample (e.g., Cleary, 2010; Lommen et al., 2014). This is why we
expected the little influence of E on the overall mechanical behavior in our domain of interest (the
brittle frictional phase).We add this precision 1.188, 1194-196.

We evaluated the sensitivity of the computed stress-strain curves to the microscopic Young’s mod-
ulus (see Figure 3). Indeed, E has an effect on the compute stress-strain curve, especially in the
two phases mentioned by the reviewer, namely the elastic and dense compaction phases. We already
explained in the paper that the elastic phase is for sure not well represented by the model, as written
1.3 p.1442 (“we would not expect the present DEM model to provide a correct macroscopic Young’s
modulus”), 1.6 p.1441 (“the strain interval for the elastic phase is overestimated”). For the dense
compaction phase and high macroscopic strains, we mentioned 1.3-5 p.1443 that “the assumption of
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Figure 3: Computed stress-strain curves for different Young’s moduli.

rigid grains is no longer valid and the simulated behavior becomes very sensitive to the value chosen
for the Young’s modulus”.

Actually, the granular interpenetration encountered during the brittle/frictional phase (see Figure
5¢ in the paper) are too large (around a few percents) to ensure completely the assumption of rigid
grains (< 0.5%). That is why there is some sensitivity to F in this phase. For a future comparison to
real experiments, this sensitivity cannot be neglected and the value of E might be adjusted (increased
probably). In the context of the paper, this sensitivity remains limited and do not change the feasibility
of the approach and the conclusion that the main effect of the microstructure on the mechanical
behavior under compression is expressed through its density.

To clarify the points raised in comments 6, 7 and 8 about the choice of the contact law parameters,
especially E, a section on the sensitivity to E was added (sect. 3.2.3) and the future work necessary
to evaluate the model with experiments is now described at the end of the paper.

Comment 9 What are the typical number of spheres in a model? This should be mentioned.
This is now mentioned in section 2.3.2.

Comment 10 Although it is not realistic, the calculated Youngs modulus should be mentioned in
paragraph 3.1.1.

We do not agree. This discrete element model is not suited and intended to compute Young’s
moduli, since the deformation is constrained to be inter-granular and the microscopic Young’s modulus
of ice is artificially low. Mentioning values of the macroscopic Young’s modulus might mislead the
reader.

Comment 11 On page 14 line 16 you write: ”It turns out that the value tan(phi) has little effect
on the computed mechanical behavior for macroscopic strains in the range [0,0.2].” This contradict
to your conclusions in paragraph 3.1.2 where you conclude that in the brittle/frictional phase grain
sliding (so the friction between grains) is the dominant mechanism. This requires clarification or
further explanation.



The exact strains chosen to separate the three deformation regimes are slightly arbitrary. But
here, we define the brittle/frictional regime for a macroscopic strain between 0.02 and 0.3. The
friction coefficient has little effect on the computed mechanical behavior for macroscopic strains in the
range [0,0.2]. In paragraph 3.1.2, it is explained that bond breaking, structural re-arrangement and
grain sliding are the dominant mechanisms (see 1.14-18 p.1436). Friction plays a role in this regime
(for macroscopic strain larger than 0.2) but is not THE dominant mechanism for the entire regime.
This is never written in the paper. On the contrary, it is mentioned 1.18-20 p.1438 that “microscopic
friction is not the dominant deformation mechanism in the so-called brittle/frictional phase”. There
is no contradiction.

Comment 12 Looking at figure 7a, it is interesting that tan(phi) has such a high effect in the final,
dense compaction phase. This should be mentioned and explained in the text.

We added the following text (1.307-309) to emphasize this effect: “In the so-called dense compaction
phase, the increase of non-cohesive intergranular contacts (see Fig. 5¢) thus enhances the effect of the
microscopic friction coefficient on the macroscopic mechanical behavior.”

Comment 13 Figure 7b shows some surprising results. First, the slope of the curve in the initial,
elastic phase should not depend on sigma(ice) since practically no bonds are broken yet. Second, in
the final, dense compaction phase when most contacts are not cohesive any more, sigma(ice) should
not have an effect on the compaction curve. How do you explain these?

As explained 1.2, p.1434, the Young’s modulus was set as E = 10 - 0. to ensure that the inter-
penetration of grains remain limited. For the sensitivity analysis to o;.., we kept this relation to ensure
that the microscopic strain at inter-granular failure remains constant. In Figure 8b (now), the slope of
the curve in the initial elastic phase is proportional to the Young’s modulus which is here artificially
proportional to the microscopic cohesion.

To clarify this point, we add this explanation in the legend of the corresponding figure.

We were also surprised by this dependance on ;.. in the dense compaction phase, but the contra-
diction suggested by the reviewer (“most contacts are not cohesive anymore”) is not correct. Figure
5¢ shows that in the final compaction phase, the number of cohesive bonds is still important (more
than the half of the initial bonds are still cohesive for a macroscopic strain of 0.5). That is why there
can still be a high dependence on ;.. in this phase. Note that the linear relation between macroscopic
stress and microscopic cohesion is also enhanced by the fact that the microscopic strain at failure is
kept constant in this analysis.

Comment 14 It is a mistake to discretize the snow geometry using spheres with different diameters
in the comparison of the simulated compression behavior of the different snow types. Especially, since
the effective friction between grains can depend on the size of the spheres. 20 micrometers should have
been used for all samples. It is in fact a bit suspicious that it is exactly those 3 samples that show
slightly different behavior that have a sphere size of 20 micrometers instead of 25.

The size of the spheres has to be compared to “one size” representative of the microstructure
geometry. Here, we use the equivalent spherical radius to define “one size” of the microstructure
geometry. To be consistent, we chose smaller spheres for the samples with the smallest equivalent
spherical radius. To avoid any suspicion, Figure 4 shows the stress-strain curve of the tree mentioned
samples for a sphere size of about 20 and 25 micrometers. No significant effects of the sphere size
on the stress-strain curve are observed. Moreover, as already shown in the sensitivity analysis, the
sphere size has little effect on the simulated stress-strain curves. But to be consistent with the typical
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Figure 4: Simulated stress-density relation for the samples s-DF, s-DFRG and s-RG and two different
factors (4 and 5) of resolution reduction.

size of the snow microstructure, we made the choice to distinguish these three samples from the rest
of the data set. Note that we do not make any conclusion out of small differences observed in the
stress-density curves since we cannot ensure that they are not due to modeling artefacts.

Comment 15 Instead of ”equi-temperature metamorphism” write ”isothermal metamorphism”.
page 5 line 13 and page 17 line 4.
Changed as suggested.

References

Cleary, P. W.: DEM prediction of industrial and geophysical particle flows, Particuology, 8, 106-118,
2010.

Lommen, S., Schott, D., and Lodewijks, G.: DEM speedup : Stiffness effects on behavior of bulk
material, Particuology, 12, 107-112, doi:10.1016/j.partic.2013.03.006, 2014.

Petrovic, J. J.: Mechanical properties of ice and snow, J. Mat. Sci., 38, 1-6, 2003.



