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Abstract. Rapid and large deformations of snow are mainly controlled by grain rearrangements,

which occur through the failure of cohesive bonds and the creation of new contacts. We exploit a

granular description of snow to develop a discrete element model based on the full three-dimensional

microstructure captured by microtomography. The model assumes that snow is composed of rigid

grains interacting through localized contacts accounting for cohesion and friction. The geometry of5

the grains and of the intergranular bonding system are explicitly defined from microtomographic data

using geometrical criteria based on curvature and contiguity. Single grains are represented as rigid

clumps of spheres. The model is applied to different snow samples subjected to confined compres-

sion tests. A detailed sensitivity analysis shows that artifacts introduced by the modeling approach

and the influence of numerical parameters are limited compared to variations due to the geometry of10

the microstructure. The model shows that the compression behavior of snow is mainly controlled by

the density of the samples, but that deviations from a pure density parameterization are not insignifi-

cant during the first phase of deformation. In particular, the model correctly predicts that, for a given

density, faceted crystals are less resistant to compression than rounded grains or decomposed snow.

For larger compression strains, no clear differences between snow types are observed.15

1 Introduction

Knowledge of the mechanical properties of snow is required for many applications such as avalanche

risk forecasting, optimizing over-snow vehicle traffic, quantifying loads on structures, etc. (Shapiro

et al., 1997). Snow is a material composed of air, ice and sometimes liquid water and impurities.

Snowflakes can take numerous different forms controlled by the atmospheric conditions (e.g. Bentley20

and Humphreys, 1931; Nakaya, 1954). Once deposited on the ground, snow continues to evolve.
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Indeed, its high porosity and its temperature close to its melting point promote rapid changes in

the microstructure through water vapor transport or melting/refreezing processes (e.g., Flin, 2004;

Fierz et al., 2009; Schneebeli and Sokratov, 2004; Vetter et al., 2010). As a consequence, the snow

material is characterized by a wide range of densities and microstructural patterns classified into25

different snow types (Fierz et al., 2009). In addition, the ice matrix of the snow microstructure

exhibits different types of mechanical behavior such as elasticity, visco-plasticity and brittle failure,

depending on the applied load, strain rate and temperature (Petrovic, 2003). This variety of snow

types and deformation mechanisms is a major scientific obstacle to improving knowledge on the

mechanical properties of snow (Brown, 1989).30

Numerous studies have attempted to measure the macroscopic mechanical behavior of different

snow types under various loading conditions (strain rate and type of experiment) and temperatures.

Mellor (1975); Salm (1982); Shapiro et al. (1997) reviewed the main results of these experimental

studies. Global trends of increasing strength and stiffness with density have been reported. However,

plots of mechanical properties versus density generally show a wide scatter (Mellor, 1975). Density35

alone therefore appears to be insufficient to fully characterize snow’s mechanical behavior (Keeler

and Weeks, 1968; Voitkovsky et al., 1975; Shapiro et al., 1997), although it continues to be used

as the main microstructure descriptor in the majority of existing studies. It appears necessary to

better account for the microstructure in order to derive more relevant indicators of the mechanical

properties of snow (Shapiro et al., 1997).40

Models incorporating state variables describing microstructural features such as grain and bond

size were developed (Hansen and Brown, 1986; Nicot, 2004; Mahajan and Brown, 1993) based on

2D stereological observations (e.g., Kry, 1975; Keeler, 1969; Edens and Brown, 1995). However,

these 2D-based models inevitably introduce a biased representation of the snow microstructure (e.g.,

Alley, 1986). With micro-computed tomography (µCT), it is now possible to obtain a 3D image of45

the microstructure at resolutions down to a few microns (Brzoska et al., 1999; Coléou et al., 2001;

Schneebeli and Sokratov, 2004). The images obtained can be used as direct input for mechanical

simulations (Schneebeli, 2004; Srivastava et al., 2010; Hagenmuller et al., 2014c; Chandel et al.,

2014). These µCT-based mechanical models nevertheless tend to be computationally extremely ex-

pensive, especially when the microstructure is meshed with finite elements (FE) of similar sizes and50

no degree of freedom is blocked. Moreover, such FE simulations are inherently limited to relatively

small strains and simple material models for ice.

Rapid and large deformations of snow are mainly controlled by grain rearrangements, which are

enabled by bond failure and creation. This type of deformation is involved in the release of slab

avalanches (Schweizer et al., 2003), in the characterization of a snow profile with an indenter (Bader55

and Niggli, 1939; Schneebeli and Johnson, 1998), or when a vehicle wheel comes in contact with

snow on the ground (Yong and Fukue, 1977). To model this specific deformation regime, we pro-

pose to describe snow as a granular material, i.e., to simplify the microstructure into a set of rigid
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grains interacting only through their contacts. This assumption of snow as a granular material can be

considered as reasonable for strain rates greater than 10−4 s−1 and for natural seasonal snow with60

a relatively high porosity (> 0.6) (Hansen and Brown, 1988). It drastically reduces the number of

degrees of freedom in the microstructure and makes it possible to simulate snow deformation with

the discrete element method (DEM), which is better suited than FE to model large discontinuous

deformations governed by microscale processes such as bond breakage and compaction of broken

fragments. To our knowledge, the first attempt in this direction was conducted by Johnson and Hop-65

kins (2005) who investigated snow mechanics with DEM using a simplified representation of the

microstructure based on random cylinders with hemispherical ends. Recently, Michael (2014) used

DEM to study the interaction between snow and a tire tread, snow microstructure being represented

as a random assembly of spheres deposited by gravity.

In the present paper, we propose to model dry snow deformation at high loading rates using70

the DEM approach based on the real 3D microstructure of snow directly captured by µCT. In the

first part, the different microstructure images used are presented. The DEM model, which requires

a method to translate the microstructural information into discrete elements, and the definition of

a contact law, is then described. The model capabilities are evaluated on one particular type of

loading, namely uniaxial confined compression, obtained through an imposed uniaxial strain and75

lateral periodic boundary conditions. This loading involves the creation of new contacts and particle

rearrangements, which the model aims to capture. The third section begins with a detailed analysis

of the model’s sensitivity to its parameters. Lastly, the model is applied to the different snow samples

and the simulated compressive behavior is analyzed.

2 Data set and modeling procedure80

2.1 3D image data set

Seven different µCT snow images were considered, spanning different snow types (decomposing

and fragmented precipitation particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar

(DH), (Fierz et al., 2009)). These images were obtained from previous controlled cold-room ex-

periments (samples s-DFRG, s-RG0, s-RG1 measured by Flin et al. (2004) during an isothermal85

metamorphism experiment; sample s-FC measured by Calonne et al. (2011) during a temperature

gradient experiment) or field sampling (sample s-DF measured by Flin et al. (2011) and samples

s-FCDF and s-FCDH measured by Hagenmuller et al. (2013)). All samples were scanned with X-

ray absorption tomography after impregnation of the material with 1-chloronaphtalene (Flin et al.,

2004). The µCT images have a voxel resolution ranging between 5 and 10 µm. The grayscale images90

were binary segmented with the technique described by Hagenmuller et al. (2013) with an effective

resolution of two voxels. The characteristics of the different images are summarized in Table 1.

Typical snow microstructural patterns used in this study are shown in Figure 1.
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Sample

name

Sample

code

Type Voxel size

(µm)

Side length

(mm)

Density

(kg m−3)

Equivalent spher-

ical radius (µm)

s-DF Ip04 DF 8.59 5.84 145 128

s-DFRG I08 DF/RG 9.82 4.91 145 111

s-FCDF 4 FC/DF 9.65 5.79 163 191

s-FC 2A FC 8.37 5.00 319 183

s-FCDH 9 FC/DH 9.65 5.79 183 179

s-RG0 I15 RG 9.82 4.91 182 146

s-RG1 I23 RG 9.82 4.91 242 191
Table 1. Description of the microtomographic images used in this study. All images are cubic. Density and

equivalent spherical radius were computed directly from the binary images. The equivalent spherical radius req

is defined as 3V/S, with V the volume of ice and S the snow surface area. It represents a typical length scale

of the ice matrix.

1 mm

a) b) c)

Figure 1. Example of different snow microstructural patterns used in this study: (a) sample s-DF, (b) sample

s-FCDH and (c) sample s-RG0. The scale is the same for the three images.

2.2 Snow microstructure representation

In practice, the output of tomography is a binary image composed of air and a continuous ice matrix,95

without clearly identifiable grains. The first step thus consists in detecting grains in these binary im-

ages. Since the grains are not well separated but rather sintered together, their definition is generally

not objective. In the present study, the algorithm developed by Hagenmuller et al. (2014b) was used

and is briefly described in the following. In the second step, we explain how the detected grains,

which can have complex shapes, are represented in terms of discrete elements by clumping spheres100

together.

2.2.1 Grain segmentation

Hagenmuller et al. (2014b) developed an algorithm to segment the snow microstructure into grains

that are mechanically relevant. The algorithm detects the zones of reduced ice thickness, correspond-
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ing to the bonds, based on geometrical criteria on curvature and contiguity. First, potential bond105

candidates are identified using the value of the minimal principal curvature κmin in the ice matrix.

The bond candidates are located on concavities (κmin < 0). A parameter κ̃t sets the sensitivity of

this pre-segmentation to curvature: a low value of κ̃t yields numerous bond candidates, whereas a

higher value of κ̃t yields fewer bond candidates, which are then located only on the most pronounced

concavities. Second, the bond candidates are refined: their area is minimized and highly contiguous110

grains, i.e., grains that share a large proportion of their total surface, are merged. A contiguity pa-

rameter ct defines the threshold for the merging: a grain is merged to its neighbor if Sint < ct×Stot,

where Sint is the contact area between the two grains and Stot is the total grain surface area. Hagen-

muller et al. (2014b) showed that this grain segmentation algorithm is able to detect the bonds that

support the highest stresses locally. With the assumption of homogeneous ice strength, the algorithm115

detects the potential failure paths in the microstructure and is thus relevant for the DEM approach.

2.2.2 Clumps of spheres

The segmented grains are represented by sets of voxels. This description must then be translated into

discrete elements that can be handled by a DEM model. In principle, clumping of basic geometrical

units such as spheres (e.g., Ferellec and McDowell, 2010) or considering polyhedral elements (e.g.,120

Lee et al., 2009) can be relevant solutions to capture the morphology of such irregular 3D particles.

We chose the former approach, namely the sphere clumping approach because it is much simpler in

terms of numerical implementation. In particular, the clumping approach is free of the singularity

issues involved in the definition of contacts between faces, edges and points, which are difficult to

handle and computationally demanding in terms of calculation (Matsushima et al., 2009).125

In the present study, a very simple technique based on non overlapping spheres was used to de-

scribe (or mesh) the snow grains into discrete elements. Following grain segmentation, the resolution

of the 3D image was reduced by an adjustable factor. Then all voxels at the interface between two

grains or between air and ice were replaced by a sphere with a diameter equal to the side-length of

the voxel with the same center position (Fig. 2). The sphere diameter thus depends on the reduction130

of the initial image resolution. Each grain decomposed into numerous spheres behaves as a rigid

body. The contact between grains is computed via the detection of contacts between the spheres.

Considering spheres only at the surface of the grains diminishes the computational cost. Owing to

the use of equally sized spheres, relatively large time steps can be taken for the simulations.

2.3 Discrete element model135

Discrete element modeling was performed with the Yade DEM code (https://yade-dem.org/doc/

(Šmilauer et al., 2010)) using a soft contact approach (Cundall and Strack, 1979; Radjai and Dubois,

2011). Each grain is represented by a single clump, itself composed of a rigid aggregate of multiple

spheres, called clump members. The motion equations are solved on the clump. The positions of its
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a) b) c)

Figure 2. Granular description of the ice matrix. The binary image (a) is segmented into grains (b) separated

by bonds (in black). The grains detected are themselves represented as clumps of spheres (c).

members are updated according to the clump’s overall motion. The forces and moments acting on140

the clump are the sum of the forces acting on its members. In the model, only contact forces are used

and no volumetric forces are considered (no gravity). The interactions between the members of two

different clumps are elastic, frictional and cohesive, cohesion being active only for the contacts that

exist in the initial undeformed microstructure. Sintering during deformation is therefore not taken

into account.145

2.3.1 Contact law

In this section, the contact law between two spheres of radius r is detailed, and the resulting contact

law between two grains (or clumps) is briefly described. The material, ice, is described by a Young’s

modulus E, a Poisson ratio ν, a normal cohesion σn, a shear cohesion σt, and a friction angle ϕ.

The force fn acting on a sphere S1 in contact with a sphere S2 along the normal direction n pointing150

from S1 to S2 depends on E, σn, and the overlap δ between the spheres, as follows:

fn = −(Erδ)n if −Erδ < 4σnr
2

fn = 0 and cohesion is broken if −Erδ ≥ 4σnr
2 (1)

where r denotes the sphere radius and a positive (resp. negative) sign of δ corresponds to compres-

sion (resp. tension). Equation (1) simply describes a linear spring with a stiffness Kn = Er and a155

maximum force 4σnr
2 in tension before breakage (Fig. 3a). The force ft acting on S1 in the tangent

plane depends on E, ν, σt, ϕ, and the accumulated shear displacement ut (Fig. 3b). Let us define

the elastic shear force fet =−(νEr)ut and the frictional shear force fst = (fet /|fet |)|fn|tan(ϕ). The

force ft is then:

ft = fet if |fet |< 4σtr
2 + |fn|tan(ϕ)160

ft = fst and cohesion is broken if |fet | ≥ 4σtr
2 + |fn|tan(ϕ). (2)
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Figure 3. Behavior of a sphere-sphere contact (a,b) and a grain-grain contact (c,d) in two simple cases: normal

loading (a,c) and simple shearing (b,d) under constant normal force (fn, Fn). The grain-grain contact is here

composed of seven sphere-sphere contacts. The small spheres have a radius r. The intergranular contact area is

denoted A. The number of sphere-sphere interactions in the grain-grain contact is denoted N =A/(4r2).

The tangential force ft also adds a torque tt = d(−n)×ft on sphere S1, with d= r−δ/2 the distance

from the center of S1 to the contact point. Note that if cohesion is broken either in tension or in shear,

then both σt and σn are set to zero on this contact. The new contacts have no cohesion.

In this study, cohesion strengths in tension (σn) and in shear (σt) are assumed to be equal and are165

simply denoted σice (σn = σt = σice). Furthermore, we use a constant Poisson ratio of 0.3. Hence

the considered contact law is fully parameterized by the contact stiffnessE (elastic part), the strength

σice (cohesive part), and the friction coefficient tanϕ linking the shear force resisting to sliding to

the applied normal force (frictional part).

Considering now intergranular contacts, they are generally composed of several sphere-sphere170

contacts as described above (Figs. 3c and 3d). For normal loading and simple shearing, the overall

cohesion force of a granular contact of area A is the sum of the cohesion force 4σicer
2 of the

N =A/(4r2) equally loaded sphere-sphere contacts (Fig. 3c). This overall cohesion is thus equal

to σiceA. For friction, the bumpy surface at the contacts between grains yields an effective granular

friction coefficient varying with displacement (Fig. 3d). However, for the parameters considered175

in this study, the mean effective intergranular friction coefficient remains close to the microscopic

friction coefficient defined at the sphere-sphere interactions (tan(ϕ)).
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2.3.2 Motion equation integration

A sufficiently short time step dt is necessary for the stability of the algorithm and the physical rele-

vance of the simulation. Usually the critical time step dtc is estimated from the propagation speed of180

elastic waves in the sample, on the basis of a single degree-of-freedom mass m connected to ground

by a linear spring of stiffness k: dtc ≈
√
m/k (Radjai and Dubois, 2011). Here, m corresponds to

the smallest grain mass, which is at least composed of one sphere, and k is the spring coefficient of

a sphere-sphere interaction. Hence, the critical time step can be estimated as:

dtc ≈
√
ρicer3/(Er) = r

√
ρice/E. (3)185

Since the main focus of this study is on deformation regimes controlled by grain rearrangements,

the elasticity of the contacts is expected to have little influence on the macroscopic response of

the sample in the domain of interest (e.g., Cleary, 2010; Lommen et al., 2014). Hence, the value

of E was decreased compared to the real stiffness of ice, and the value of ρice was increased, in

order to increase dtc and speed up the simulations. The contact stiffness E must nevertheless remain190

large enough to ensure that overlaps remain small compared to the sphere radius (assumption of

rigid grains). The maximum stress at the contacts is expected to be on the order of the cohesion

(σice), which yields an overlap δ ≈ r · (E/σice). Accordingly, a value E = 10 ·σice, corresponding

to δ/r < 0.1, was chosen to expedite the simulations. As will be discussed later (Sect. 3.2.2), this

value of E is slightly too low to completely fulfill the rigid grain assumption, but the effect of E was195

considered sufficiently small, at least in a first step. Similarly, the density of ice ρice was taken as

104 kg m−3 (instead of 917 kg m−3 for real ice). We checked that this artificial adjustment of the

grain mass does not affect the overall simulated mechanical behavior, since the inertial effects are

negligible under the loading conditions considered (Sect. 3.2.2). These choices allowed us to use a

time step dt= 5× 10−7 s < dtc.200

To dissipate kinetic energy and avoid numerical instabilities, a numerical damping (coefficient

λa) was also used (Šmilauer et al., 2010). The basic idea of this damping is to decrease forces that

increase particle velocities, and vice versa. A value λa = 0.2 was used in this study. In practice,

this parameter appears to have little effect on the simulated mechanical behavior as long as the

simulations are quasi-static.205

The simulations presented in this paper were run on a desktop computer with a single processor

(2.7 GHz) and 16 Gb RAM. The typical computing time of the simulation is on the order of one day.

More precisely, the test shown in Sect. 3.1 runs on this computer in 15 h with, in average, 8 time-step

iterations per second. It requires 2.5 Gb RAM. The sample s-RG0 of rounded grains (43 mm3) is

composed of 800 grains, and described with about 105 spheres (1.5× 105, if the spheres located210

inside the grains are not removed). On this sample, the mean number of sphere-sphere contacts per

cohesive inter-granular bond is 14.
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Figure 4. Boundary conditions used in the present study. The grains (medium gray) are compressed between

two plates composed of spheres (black): the bottom plate is fixed and the top plate is moving down with a

constant velocity Vplate. Periodic space was used in the horizontal directions. Elements (hatched) crossing the

periodic cell limits (dotted lines) appear on the opposite side of the samples. Note that this figure represents a

2D simulation for clarity purposes, but the simulations performed are 3D.

2.3.3 Boundary conditions

The boundary conditions were chosen to reproduce strain-controlled vertical confined compression

of snow. Hence, the samples were placed between two horizontal plates discretized using spheres of215

the same size as the spheres used to describe the grain shape (Fig. 4). The bottom plate was fixed and

a constant vertical velocity Vplate was applied to the top plate. The contact law between the grains

and the plates is the same as the intergranular contact law. In the horizontal directions, periodic

boundary conditions were applied.

The velocity of the upper plate Vplate prescribes the compressive strain rate imposed on the sam-220

ple. A value of Vplate = 10−2 m s−1 was chosen, checking that kinetic energy always remained neg-

ligible compared to the total energy in the sample (see Sect. 3). Therefore, the simulated mechanical

behavior can be regarded as quasi-static, and independent of Vplate. In addition, let us recall that the

granular-like behavior of snow is valid only for relatively high strain rates (ε̇ > 10−4 s−1, (Narita,

1983)), a condition that is largely fulfilled with the value of Vplate considered.225

3 Results

First, a typical simulation performed with the sample of rounded grains (s-RG1) is described to give

an overview of the deformation mechanisms occurring during compression loading. A sensitivity

analysis of the model to the DEM parameters and microstructure representation is then presented.

Lastly, the model is applied to all snow images described in Table 1.230
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Name Symbol Value

Material properties

Young’s modulus E 10 MPa

Poisson ratio ν 0.3

Friction angle tan(ϕ) 0.2

Normal cohesion strength σn = σice 1 MPa

Shear cohesion strength σt = σice 1 MPa

Density of the grains ρice 104 kg m−3

Boundary condtions

Side length of the cubic snow sample L0 4 mm

Compression velocity Vplate 10 mm s−1

Integration of motion equation

Time step dt 5× 10−7 s

Non-viscous damping coefficient λa 0.2

Representation of the microstructure

Segmentation parameter on curvature κ̃t 1.0

Segmentation parameter on contiguity ct 0.25

Radius of the spherical members r 25 µm
Table 2. Model parameters used for the simulations presented in this paper.

3.1 Deformation phases

The model parameters used for this first simulation are summarized in Table 2. The sample un-

dergoes uniaxial compression with an imposed global vertical strain Ezz defined as the ratio of the

displacement of the upper plate to the initial height L0 of the sample. In response, the sample pro-

duces a vertical reaction force Fz , which defines an overall vertical stress Σzz = Fz/L
2
0, with L2

0 the235

horizontal cross-section area of the sample. The relation between the imposed macroscopic strain

Ezz and the resulting macroscopic stress Σzz is shown in Fig. 5a. When the sample is compressed,

its density ρ increases as ρ= ρ0/(1−Ezz), where ρ0 is the initial density. The work of the imposed

deformation adds mechanical energy to the sample, which is stored as kinetic and elastic energy,

and dissipated through plasticity (shear sliding), bond breaking and non-viscous damping (Fig. 5b).240

During deformation, cohesive bonds are broken and new non-cohesive contacts are created (Fig. 5c).

The distributions of overlap δ between spheres are shown for different strain values on Fig. 5d. The

mechanisms observed can be classified into three phases corresponding to different macroscopic

strain intervals.
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3.1.1 Elastic phase for Ezz . 0.02245

After the initiation of the compression, the snow structure first undergoes elastic deformation. The

work of the loading is completely stored as elastic energy at the bonds. No cohesive bonds are bro-

ken, nor are any new bonds created. If the upper plate is moved back to its initial position, the stress

decreases to zero and the microstructure fully recovers its initial state with no residual deformation

or stress. As a consequence, a linear relationship between stress Σzz and strain Ezz is observed in250

this elastic phase. The slope of the stress-strain relation quantifies the effective elastic modulus Es

of the granular assembly. It is noteworthy that a significant number of bonds are in tension (negative

overlaps exist, as shown in Fig. 5d), even if the macroscopic loading is compression.

3.1.2 Brittle/frictional phase for 0.02 . Ezz . 0.3

When the strain increases (Ezz & 0.02), the first bonds start to break and the snow sample deforms255

with an approximately constant resistance of about 10 kPa. This apparent plastic behavior is caused

by the geometrical rearrangements of grains made possible by bond breakage and grain sliding. If the

upper plate is moved back to its initial position, permanent deformations are observed. The breaking

of bonds leads to small negative “jumps” of the stress, which are balanced by friction on the broken

bonds, the activation of other cohesive bonds and the creation of new bonds, thus resulting in the260

almost constant macroscopic stress. The friction between grains yields plastic dissipation. Kinetic

energy always remains negligible compared to total energy. The number of cohesive contacts appears

to strongly decrease during this phase, but the total number of interactions only decreases slightly.

The structure tightens because bond failure permits grains to move into the pore space.

3.1.3 Dense compaction phase for 0.3 . Ezz265

In this phase, hardening of the structure is observed. The stress progressively increases, following an

exponential-like trend. This phase starts when the grain packing has reached a certain density (here

≈ 450 kg m−3) and can no longer accommodate the imposed displacement with little resistance.

The stress increase is accompanied by the creation of numerous contacts. Because most contacts are

not cohesive in this phase, the distribution of overlaps shows a clear majority of bonds loaded in270

compression. Kinetic energy remains negligible compared to total energy.

3.2 Sensitivity analysis

A specific sensitivity analysis was conducted for the following model parameters (Table 2):

– The parameters related to the microstructure representation, namely the number of grains

used to discretize the microstructure (controlled by the parameters κ̃t and ct of the grain seg-275

mentation algorithm) and the size of the spheres used to describe the grain shape (controlled

by r).
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Figure 5. Results of the model applied to sample s-RG1 (rounded grains) with the parameters listed in Table 2:

(a) Macroscopic stress-strain curve, (b) evolution of energy components with strain, (c) total number of bonds

and number of cohesive bonds as a function of strain, (d) occurrence distribution of the relative grain overlap

for three different imposed strains.

– The parameters related to the material properties, namely the values of cohesion σice and

microscopic friction coefficient tan(ϕ). As discussed above, the other parameters (ρice, E)

appearing in the contact law are expected to have little influence on the results in the brit-280

tle/frictional phase (see section 2.3.2). However, since the values of these parameters were

chosen artificially to expedite the computations, a sensitivity study has also been conducted.

– The side-length of the sampleL0. The model is expected to characterize the mechanical behav-

ior of the sample regardless of its size. For this purpose, the sample needs to be large enough

and at least larger than a representative elementary volume (REV). Investigations of the REV285

size related to the compressive behavior of snow will be presented.

3.2.1 Microstructure representation

Figure 7a shows the stress-strain curves obtained for different sphere sizes, i.e., different reduc-

tions of the resolution of the initial 3D grain image. The simulated mechanical behavior appears

relatively insensitive to the sphere size in the range [20,40] µm. The stress-strain curve, however,290
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a) b)

Figure 6. Example of the discrete element representation of two grains but with different effective resolutions

(diameters of spheres).
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Figure 7. Simulated stress-strain curves for different sphere sizes (a) and number of grains (b). In b, the images

with 397, 668, 857 and 1132 grains were obtained with the segmentation parameter (κt, ct) set to (1.3,0.08),

(1.3,0.16), (1.0,0.25) and (0.7,0.5), respectively.

starts to deviate for the largest spheres tested (60 µm), due to an insufficiently fine description of the

microstructure. Accordingly, a sphere size in the range [20,40] µm appears, here, as a reasonable

choice to describe the mechanical behavior.

The total number of grains in the sample is not absolute, but depends on the chosen segmentation

parameters κt and ct. The same image of the sample s-RG1 was segmented into more or fewer grains295

with different sets of parameters κt and ct. As shown in Fig. 7b, the simulated mechanical behavior

is not very sensitive to the number of grains in the range [668,1132], but the stress-strain curve

obtained with a very low number of grains (397) differs significantly. This reflects the requirement

that the chosen decomposition into grains should be sufficiently fine to preserve the microstructure’s

essential degrees of freedom.300
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3.2.2 Friction and cohesion at intergranular contacts

Serway and Jewett (2007) reported a static ice-ice coefficient of friction equal to 0.1. Note, however,

that the uncertainty on this quantity remains high, and this reported value of tan(ϕ) only provides

an order of magnitude. Figure 8a shows the simulated stress-strain curve for different values of the

friction coefficient between 0.1 and 0.4. It turns out that the value of tan(ϕ) has little effect on the305

computed mechanical behavior for macroscopic strains in the range [0,0.2]. In contrast, for larger

strains, the stress increases significantly with the value of tan(ϕ). In the so-called dense compaction

phase, the increase of non-cohesive intergranular contacts (see Fig. 5c) thus enhances the effect of

the microscopic friction coefficient on the macroscopic mechanical behavior.

Petrovic (2003) reported tensile strength of ice in the range [0.7,3.1] MPa. The data are widely310

scattered due to the effects of temperature, strain rate, crystal size, etc. As shown in Fig. 8b, the

modeled macroscopic behavior of snow strongly depends on the microscopic cohesion at the con-

tacts. For a given strain Ezz , an almost linear relationship between Σzz and σice is observed. In

the case of pure tension without creation of new contacts, this linear relation between the micro-

scopic and macroscopic strengths would be obvious. In the present case of compression, however,315

which involves spatial grain rearrangements and creation of new contacts, this linear relation was

not necessarily expected. In the following, we fixed the microscopic cohesion to 1 MPa. In future

studies, effects of temperature on the macroscopic behavior of snow, to the extent that sintering ef-

fects remain limited, could also be considered by accounting for the influence of temperature on the

microscopic cohesion.320

3.2.3 Contact stiffness and ice density

With the value E = 10 MPa used in this study, the typical granular interpenetrations encountered

during the brittle/frictional phase (Fig. 5d) are too large (around a few percents of the grain radius)

to completely ensure the assumption of rigid grains. Accordingly, Fig. 9a shows that the mechanical325

response of the sample is not completely independent of E in this phase. However, this sensitivity

on E remains limited compared to the typical ’noise’ level on the stress-strain curves, and was con-

sidered as acceptable in this study. We note that simulations with E = 100 MPa take as much as one

week computational time compared to simulations with E = 10 MPa, which becomes prohibitive

when trying to compare the response of different snow types. As expected, we also observe that the330

influence of E dramatically increases in the dense compaction phase.

In order to expedite the simulations, the density of ice ρice was, here, taken as 104 kg m−3 instead

of 917 kg m−3. Figure 9b shows the sensitivity of the computed mechanical behavior for different

values of ρice. As shown, this artificial adjustment of ρice to 104 kg m−3 does not affect the overall
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contact stiffness E varies here as E = 10×σice in order to keep a constant microscopic strain at failure.
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Figure 9. Computed stress-strain curves for different Young’s moduli (a) and ice densities (b).

simulated mechanical behavior. This is explained by the very low inertial effects on the overall335

mechanical behavior.

3.2.4 Representative elementary volume

The representative elementary volume (REV) can be defined as the smallest fraction of the sample

volume over which the measurement or simulation of a given variable will yield a value repre-
15
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Figure 10. Simulated stress-strain curves for different volume sizes on sample s-RG1 (a) and sample s-DF (b).

sentative of the macroscopic behavior. We assessed the representativity of mechanical simulations340

performed on volumes of about 5x5x5 mm3, by considering the results obtained with smaller sub-

volumes. Two snow samples, namely s-DF and s-RG1, which span the tested range of snow density

(Table 1), were considered. As shown in Fig. 10, the simulated stress-strain curves progressively

converge with increasing volume. For the smallest tested volumes, stress fluctuations associated

with the failure of single bonds are so large that it is not possible to define a homogeneous mechani-345

cal behavior. For volumes larger than 4x4x4 mm3, however, the variations of the stress-strain curves

with the volume size become negligible compared to the variability associated with the choice of

the model parameters. The sample sizes used in this study (see Table 1) can therefore be regarded as

large enough to be representative of the mechanical behavior of snow under compression. Note that

these REV sizes related to compression appear much larger than the REV sizes related to density350

measurements (1.53 mm3, (Srivastava et al., 2010)), but are in good agreement with the REV sizes

associated with geometrical parameters characterizing the microstructural bonding system (33− 63

mm3, (Hagenmuller et al., 2014a)).

3.3 Behavior of different snow microstructures

The numerical compression experiments were applied to different snow samples spanning different355

snow types (see Table 1). The same model parameters, summarized in Table 2, were used for all
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images. The sample sizes are indicated in Table 1. The only parameter differing between the samples

is the sphere size used (or effective resolution of the 3D image). Samples s-FCDF, s-FC, s-FCDH

and s-RG1 are characterized by similar values of the equivalent spherical radius req , which roughly

characterizes the mean thickness of the ice matrix (Table 1). The sensitivity analysis on sample s-360

RG1 showed that the representation of the ice matrix with spheres with a 25 µm radius, in practice

corresponding to a reduction of the 3D image resolution by a factor of 5, is satisfactory. This value

r = 25 µm was therefore used for samples s-FCDF, s-FC, s-FCDH and s-RG1. Samples s-DF, s-

DFRG and s-RG0 present a finer ice matrix characterized by lower values of the equivalent spherical

radius (Table 1). These samples were therefore decomposed into spheres with a 20 µm radius ,365

corresponding to a reduction of the 3D image resolution by a factor of 4 only.

Figure 11a shows the simulated stress-strain curves computed for all the samples. The three

different phases identified on sample s-RG1 can be distinguished in all cases: elastic phase, brit-

tle/frictional phase and dense compaction phase. After the elastic phase, the first bonds start to break

for a macroscopic stress Σzz ranging between 1 kPa and 12 kPa, depending on the snow sample.370

For sample s-FC, the brittle/frictional phase is almost absent and the structure almost immediately

exhibits pronounced hardening. In contrast, samples s-DF, s-DFRG, s-FCDF, s-FCDH and s-RG0

present the plastic brittle/frictional phase and can undergo very large deformations (up to 0.4) with

an almost constant stress. As discussed below, the level of this stress plateau appears to slightly differ

between the samples. Note also that the results obtained for samples s-DF and s-DFRG, which are375

both mainly composed of decomposed and fragmented snow with a density of 145 kg m−3, are very

similar, which confirms the consistency of the model.

A remarkable result, shown in Fig. 11b, is that, when plotted as stress-density relations, all the

data appear to collapse, at least as a first approximation, onto a single trend. This result shows that

the resistance of snow to compression is mainly a function of density, even if the microstructures380

tested span very different snow types. Some variability, which cannot be explained by density only,

is nevertheless observed between the samples, especially during the brittle/frictional phase. Hence,

for similar density values below 300 kg m−3, samples s-FCDF and s-FCDH, which are mainly com-

posed of faceted crystals, present systematically lower resistances than samples s-DF, s-DFRG and

s-RG0, composed of decomposed and fragmented snow or rounded grains. Sample s-RG1, which385

results from isothermal metamorphism of precipitation particles, presents the highest resistance to

compression in the density range [250,300] kg m−3. The model predictions are therefore consistent

with the commonly accepted idea that snow types resulting from a temperature-gradient metamor-

phism are less resistant to mechanical loading than snow types resulting from an isothermal meta-

morphism (e.g., Jamieson and Johnston, 1990).390

For density values greater than 300 kg m−3, no significant trend between the different snow types

was recognized. The shape and size of the grains in the initial microstructure do not appear to be

determinant during this high compaction phase of the samples. In this phase, the material is largely
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Figure 11. Simulated stress-strain curves (a) and stress-density relation (b) for the different snow samples

(Table 1). The legend is the same for a and b.

broken into individual grains so that the compacity of the assembly is largely independent of the

initial microstructure.395

4 Discussion

4.1 Identification of potential model artifacts

We discuss here the potential artifacts introduced by the model in the simulation of the mechanical

behavior of snow under compression.

4.1.1 Elastic phase400

Let us recall that the model is composed of rigid grains that cannot deform. Only the contacts be-

tween members of different grains can deform to account for intergranular strain. With FE simula-

tions Hagenmuller et al. (2014b) showed that even if the highest strains (or stresses) are located on

the bonds, the overall elastic strain is mainly due to the deformation of the grains themselves, since
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they represent the vast majority of the ice volume. Therefore, even if a realistic value was used for405

the Young’s modulus of ice at the contacts, we would not expect the present DEM model to provide

a correct macroscopic Young’s modulus. The objective of the model is not to reproduce the elastic

properties of snow, but to capture large deformations governed by grain rearrangements. Further-

more, since the Young’s modulus at contacts was chosen relatively small compared to the stiffness

of ice (see Sect. 2.3.2), the strain interval for the elastic phase is overestimated. In real snow, irre-410

versible damage starts to occur for smaller strains of about 10−4 (Hagenmuller et al., 2014c).

4.1.2 Brittle/frictional phase

This phase is controlled by the progressive failure of cohesive bonds and the friction between grains.

Failures of intergranular bonds are determined by the force distribution in the sphere-sphere inter-

actions. According to the sensitivity analysis, the model appears to be insensitive to the size of the415

spheres used to discretize the shape of the grains, and to the number of grains (in reasonable ranges).

The friction between grains depends on the roughness of the grain surfaces and on the microscopic

friction coefficient. The regular mesh used in the present study tends to create “bumpy” grain sur-

faces (Figure 2), but, according to the sensitivity analysis, the size of these “bumps” does not alter

the model’s results. Moreover, the model exhibits low sensitivity to the friction coefficient in this420

phase. These results indicate that both the granular description of the snow microstructure and the

representation of grains as clumps of spheres are satisfactory to reproduce the mechanical behavior

of the material during the brittle/frictional phase.

4.1.3 Dense compaction phase

In this phase, rearrangements of grains can no longer be accommodated within the pore space. The425

grains form a dense packing. Above a certain macroscopic stress level, we can expect high intragran-

ular stresses to develop, which could lead to ice grains breaking into smaller parts. The assumption

of “unbreakable" grains thus becomes questionable. Moreover, the high intergranular stresses yield

large overlaps between spheres compared to their radius. The assumption of rigid grains is no longer

valid and the simulated behavior becomes very sensitive to the value chosen for the Young’s modu-430

lus.

In summary, the approach retained in this study, consisting in modeling snow as a granular mate-

rial, is certainly reasonable and promising when attempting to reproduce the brittle/frictional defor-

mation phase but is inappropriate to simulate pure elasticity or high compaction phases.

4.2 Influence of density and microstructure on the mechanical behavior of snow435

We discuss here the first-order role played by density on the simulated mechanical behavior. As

explained in the introduction, density is often described as an insufficient mechanical indicator, be-

cause of the substantial scatter observed in property-density relations derived from direct experi-
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mental measurements (e.g., Mellor, 1975). In contrast, in this study, density appears to be a very

good indicator of the resistance of snow under compression, with only a little scatter attributable to440

the snow type. In other microstructure-based models, a similar strong dependence on density was

also observed for thermal conductivity (Calonne et al., 2011), tensile strength (Hagenmuller et al.,

2014c) or the Young’s modulus (Kochle and Schneebeli, 2014). The main difference between the

microstructure-based simulations and direct experimental measurements is the size of the volume

tested. Hence, we argue that the spatial variability of density in the large samples used in experiments445

might constitute an explanation for the scatter observed in property-density relations, especially for

properties that are extremely sensitive to density.

Furthermore, the dominant role played by density in the mechanical behavior simulated is proba-

bly also relative to the loading conditions considered. In compression, both the mechanical properties

and density are expected to depend on the grain bonding system, thus promoting the existence of an450

apparent relation between stress and density (Shapiro et al., 1997). The model appears capable of

reproducing this feature, and we expect the dependence on density to be less pronounced in the case

of different loading conditions, such as shear, for which microstructure properties and anisotropy are

expected to be greater.

5 Conclusions455

This paper presents a novel approach to modeling the mechanical behavior of snow under large and

rapid deformations based on the complete 3D microstructure of the material. The geometry of the

microstructure is directly translated into discrete elements by accounting for the shape of the grains

and the initial bonding system of the ice matrix. The grains are rigid and the overall deformations are

only due to the geometric rearrangements of grains made possible by bond failure. The sensitivity460

analysis of the model to its parameters showed that the effects of the microstructure geometry on the

simulated mechanical response are not shadowed by numerical artifacts.

In this study, the model was used to reproduce the mechanical behavior of snow under confined

compression. The representative volume related to this type of loading was estimated to be 43−
53 mm3. The numerical results showed that, for this type of loading, the mechanical behavior of465

snow is mostly controlled by density. The stress-density relationships computed for different samples

follow a single trend with little variability, even if the tested microstructures span very different

snow types. Nevertheless, noticeable second-order effects of the microstructure are observed during

the brittle/frictional deformation phase (past the initial elastic regime). In particular, for a given

density, snow samples resulting from temperature gradient metamorphism appear to be less resistant470

to compression than those resulting from isothermal metamorphism. The model appears capable of

accounting for the role of the microstructure on the mechanical properties. During the latter high
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compaction phase observed for high-density values, the model did not reveal any clear influence of

the grain shape and size.

To further investigate the influence of microstructure on snow mechanical properties, this DEM475

model could straightforwardly be applied to other loading conditions. In particular, investigating

shear loading can be useful in the context of slope stability and avalanche release. Another promising

prospect would consist in numerically reproducing the penetration of an indenter in the snow mi-

crostructure, with the objective of better understanding the signals delivered by micro-penetrometers,

which are routinely used for snow characterization (Schneebeli and Johnson, 1998). Lastly, directly480

conducting mechanical experiments in the µCT (Wang and Baker, 2013; Schleef et al., 2014) would

also be useful to evaluate the model and possibly reduce the uncertainties on the microscopic contact

parameters. A large scatter exists in the literature on the values of ice cohesion and friction coeffi-

cient, and systematic comparisons between experimental results and numerical simulations could

help improving the knowledge on these mechanical parameters.485
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