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Abstract 1 

Sea ice concentration has been retrieved in Polar Regions with satellite microwave 2 

radiometers for over 30 years. However, the question remains open, what is the optimal sea 3 

ice concentration retrieval method for climate monitoring. This paper presents some of the 4 

key results of an extensive algorithm inter-comparison and evaluation experiment. Thirty sea 5 

ice algorithms entered the experiment where their skills were evaluated systematically over 6 

low and high sea ice concentrations; thin ice and areas covered by melt ponds. A selection of 7 

thirteen algorithms is shown in the article to demonstrate the results. Based on the findings, a 8 

hybrid approach is suggested to retrieve sea ice concentration globally for climate monitoring 9 

purposes. This approach consists of a combination of two algorithms, dynamic tie points 10 

implementation, and atmospheric correction of input brightness temperatures. The method 11 

minimizes inter-sensor calibration discrepancies and sensitivity to error sources with seasonal 12 

to inter-annual variations and potential climatic trends, such as atmospheric water vapour and 13 

water surface roughening by wind. 14 

 15 

1 Introduction 16 

From a perspective of climate change, it is important to know how fast the total volume of sea 17 

ice is changing. In addition to sea ice thickness (Kern et al., 2015), this requires reliable 18 

estimates of sea ice concentration (SIC). Consistency in sea ice climate records is crucial for 19 

understanding of internal variability and external forcing (e.g. Notz and Marotzke, 2012) in 20 

the observed sea ice retreat in the Arctic (Cavalieri and Parkinson, 2012) and expansion in the 21 

Antarctic (Parkinson and Cavalieri, 2012).  22 

Accuracy and precision serve as measures of performance of a SIC algorithm. Accuracy 23 

(expressed by bias) is the difference between the mean retrieval and the true value. Precision 24 

(expressed by standard deviation, SD) is the range within which repeated retrievals of the 25 

same quantity scatter around the mean value (see also Brucker et al., 2014, where precision is 26 

addressed in detail). Average accuracy of commonly known algorithms, such as NASA Team 27 

(Cavalieri et al., 1984) and Bootstrap (Comiso, 1986), is reported to be within ±5% in winter 28 

in a compact (high concentration) ice pack. Accuracy of the Bootstrap scheme applied to 29 

AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, 30 

expressed as standard deviation of the scatter around the ice line, was estimated at 2.5%. The 31 

accuracy including combined effect of surface temperature and emissivity variability was 4% 32 
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(Comiso 2009). A comparison of seven algorithms to a trusted dataset of Synthetic Aperture 1 

Radar (SAR) and ship-based observations in the Arctic showed precision of 3–5%, including 2 

sensor noise (Andersen et al., 2007). In summer and at the ice edge the retrievals are more 3 

uncertain, and accuracy can be as poor as ±20% (Meier and Notz, 2010). Inter-comparison of 4 

eleven SIC algorithms in the Arctic showed differences in SIC retrievals of 2.0–2.5% in 5 

winter in the areas of consolidated ice (5–12% for intermediate SIC) and 2–8% in summer 6 

reaching up to 12% in the Canadian Archipelago area (Ivanova et al., 2014). The large 7 

uncertainty in retrievals of the summer period is caused by increased variability in sea ice 8 

emissivity due to the surface wetness and presence of melt ponds. Part of the uncertainty at 9 

low and intermediate SICs, which is relevant both for summer and for the marginal ice zone 10 

at any time, is caused by atmospheric contributions and wind roughening of open water areas, 11 

as shown for the Arctic by Andersen et al. (2006). Marginal ice zone is characterized by 12 

increased uncertainties due to smearing and footprint mismatch effects. The uncertainties over 13 

consolidated ice during Arctic winter were explained by variations in sea ice emissivity 14 

(Andersen et al., 2007).  15 

In this study we focus on the following four error sources, to which the algorithms have 16 

different responses: 1) sensitivity to emissivity and physical temperature of sea ice, 2) 17 

atmospheric effects, 3) melt ponds, and 4) thin ice. The sensitivity to emissivity and physical 18 

temperature of sea ice depends on the selection of input brightness temperatures (Tbs) 19 

available at electromagnetic frequencies between 6 and near 90 GHz in vertical (V) and 20 

horizontal (H) polarisations, and the method applied to retrieve SIC from them, which 21 

distinguishes each algorithm among the others (explained in Sect. 2.1). Kwok (2002) and 22 

Andersen et al. (2007) showed that SIC algorithms do not reflect the near 100% ice 23 

concentration variability in the Arctic adequately. Variability due to actual ice concentration 24 

changes in the order of less than 3% is below the noise floor of the algorithms. Heat and 25 

moisture fluxes between the surface (ocean or ice) and the atmosphere are sensitive to small 26 

variations in the near 100% ice cover (Marcq and Weiss, 2012). This unresolved SIC 27 

variability can thus be of significant importance for sea ice models (and consequently coupled 28 

climate models) when assimilating these data without proper handling of the uncertainties. 29 

The apparent fluctuations in the derived ice concentration in the near 100% ice regime are 30 

primarily attributed to snow/ice surface emissivity variability around the tie point (predefined 31 

Tb for ice) and only secondarily to actual SIC fluctuations (Andersen et al., 2007).  32 
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The second error source is represented by atmospheric effects, such as water vapour, cloud 1 

liquid water (CLW) and wind roughening of the water surface. It causes the observed Tb to 2 

increase and to change as a function of polarisation and frequency, season and location 3 

(Andersen et al., 2006). This effect is usually larger during summer and early fall and over 4 

open water (also in the marginal ice zone) because of the larger amounts of water vapour and 5 

CLW in the atmosphere, and generally more open water areas present.  6 

Algorithms with different sensitivities to surface emissivity and atmospheric effects produce 7 

different estimates of trends in sea ice area and extent on seasonal and decadal time scales 8 

(Andersen et al., 2007). Effect of diurnal, regional and inter-annual variability of atmospheric 9 

forcing on surface microwave emissivity was also reported in a model study of Willmes et al. 10 

(2014). This means that not only sea ice area has a climatic trend, but atmospheric and surface 11 

parameters affecting the microwave emission may also have a trend. Such parameters can be 12 

wind patterns, atmospheric water vapour and CLW (Wentz et al., 2007), snow depth and 13 

snow properties, and the fraction of multiyear ice (MYI).  14 

However, some algorithms are less sensitive than others to these effects (Andersen et al., 15 

2006; Oelke, 1997), and it is thus important to select an algorithm with low sensitivity to 16 

them. It is particularly important to have low sensitivity to error sources, which it is currently 17 

impossible to correct for, e.g. extinction and emission by CLW or sea ice emissivity 18 

variability. We therefore designed a set of experiments to test a number of aspects related to 19 

SIC algorithm performance, ultimately to allow us to select an optimal algorithm for retrieval 20 

of a SIC climate data record.  21 

Melt ponds on Arctic summer sea ice represent an additional source of errors due to their 22 

microwave radiometric signatures being similar to open water. Virtually all SIC algorithms 23 

based on the passive microwave channels around 19, 37, and 90 GHz are very sensitive to 24 

presence of melt water on the ice. The penetration depth of microwave radiation into liquid 25 

water is a few millimetres at most (Ulaby et al., 1986), and therefore it is impossible to 26 

distinguish between ocean water (in leads) and melt water (on the ice). This is the primary 27 

reason why most SIC algorithms are less reliable during summer and potentially 28 

underestimate the actual SIC (Fetterer and Untersteiner, 1998; Cavalieri et al., 1990; Comiso 29 

and Kwok, 1996). Melt ponds may exhibit a diurnal cycle with interchanging periods of open 30 

water and thin ice. This further complicates the SIC retrieval using satellite microwave 31 

radiometry during summer and increases the level of uncertainty. Some SIC algorithms have 32 
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been shown to underestimate SIC by up to 40% in the areas with melt ponds (Rösel et al., 1 

2012b).  2 

Thin ice is known to be another challenge for the passive microwave algorithms as they 3 

underestimate SIC in such areas (Heygster et al., 2014; Kwok et al., 2007; Cavalieri, 1994). 4 

Recent studies of aerial (Naoki et al., 2008) and satellite (Heygster et al., 2014) passive 5 

microwave measurements show an increase in Tb with sea ice thickness (<30 cm), which is 6 

more pronounced for lower frequencies and horizontal polarisation. Since an instantaneous 7 

amount of thin ice can reach as much as 1 million km2 (total amount globally, Grenfell et al., 8 

1992), the effect of SIC underestimation can be significant for ice area estimates, air-sea heat 9 

and moisture exchange and modelled ice dynamics. It may also affect ice volume estimates. It 10 

is suggested that the dependency of Tb on the sea ice thickness is due to changes in near-11 

surface dielectric properties caused, in turn, by changes of brine salinity with thickness and 12 

temperature (Naoki et al., 2008).  13 

For the first time this many (thirty) SIC algorithms have been evaluated in a consistent and 14 

systematic manner including both hemispheres, and their performance tested with regard to 15 

high and low SIC, areas with melt ponds, thin ice, atmospheric influence and tie points; and 16 

covering the observing characteristics of the Scanning Multichannel Microwave Radiometer 17 

(SMMR), Special Sensor Microwave/Imager (SSM/I) and AMSR-E. The novelty of the 18 

presented approach to algorithm inter-comparison is in the implementation of all the 19 

algorithms with the same tie points, which helps avoiding subjective tuning, and without 20 

applying weather filters, which have their weaknesses (also addressed in this study). When 21 

evaluating the algorithms we have in particular focused on achieving low sensitivity to the 22 

error sources over ice and open water, performance in areas covered by melt ponds in summer 23 

and thin ice in autumn. We suggest that an optimal algorithm should be adaptable to: 1) 24 

dynamic tie points in order to reduce inter-instrument biases and sensitivity to error sources 25 

with potential climatological trends and/or seasonal and inter-annual variations and 2) 26 

regional error reduction using meteorological data and forward models. 27 

The algorithms evaluation was carried out in the context of European Space Agency Climate 28 

Change Initiative, Sea Ice (ESA SICCI) and is described in the following sections. Sect. 2 29 

describes the algorithms and the basis for selection of the thirteen algorithms to be shown in 30 

the following sections. Sect. 3 describes the data and methods. Sect. 4 presents the main 31 

results of the work: algorithms inter-comparison and evaluation, suggested atmospheric 32 
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correction and dynamic tie points approach. All the input data and obtained results are 1 

collocated and composed into a reference dataset called round robin data package (RRDP). 2 

This is done in order to achieve equal treatment of all the algorithms during the inter-3 

comparison and evaluation, as well as to provide an opportunity for further tests in a 4 

consistent manner. This dataset is available from the Integrated Climate Data Center (ICDC, 5 

http://icdc.zmaw.de/1/projekte/esa-cci-sea-ice-ecv0.html). The discussion and conclusions are 6 

provided in Sect. 5 and Sect. 6 respectively.  7 

 8 

2 The algorithms 9 

During the experiment we implemented 30 SIC algorithms and found that they form groups 10 

according to the selection of channels and how these are used in each algorithm. We also 11 

found that algorithms within each group had very similar sensitivities to atmospheric effects 12 

and surface emissivity variations. This is in agreement with sensitivity studies (Tonboe, 2010; 13 

Tonboe et al., 2011) using simulated Tbs generated by coupling a thermodynamic ice/snow 14 

model to the Microwave Emissivity Model for Layered Snow Packs. To avoid redundancy we 15 

only include here a selection of 13 sea ice algorithms (Table 1), which were chosen as 16 

representatives of the groups. 17 

2.1 Selected algorithms 18 

The first group of algorithms, represented by Bootstrap polarisation mode (BP, Comiso, 19 

1986), includes polarisation algorithms. These algorithms primarily use 19 or 37 GHz 20 

polarisation difference (difference between Tbs in vertical and horizontal polarisations of the 21 

same frequency) or polarisation ratio (polarisation difference divided by the sum of the two 22 

Tbs). The next group uses 19V and 37V channels and is represented here by CalVal (CV, 23 

Ramseier, 1991). Commonly known algorithms in this group are NORSEX (Svendsen et al., 24 

1983), Bootstrap Frequency Mode (BF, Comiso, 1986) and UMass-AES (Swift et al., 1985). 25 

Bristol (BR, Smith, 1996) represents the group that uses both polarisation and spectral 26 

gradient information from the channels 19V, 37V and 37H. The NASA Team algorithm (NT, 27 

Cavalieri et al., 1984) uses polarisation ratio at 19 GHz and gradient ratio at 19V and 37V. 28 

ASI, a non-linear algorithm (Kaleschke et al., 2001), and Near 90 GHz linear (N90, Ivanova 29 

et al., 2013) use the polarisation difference at near 90 GHz, both based on Svendsen et al. 30 

(1987). These are also called near 90 GHz or high-frequency algorithms. ESMR, named after 31 
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the single channel 18H radiometer on board Nimbus-5 operating from 1972 to 1977 (e.g. 1 

Parkinson et al., 2004), and 6H (Pedersen, 1994) are one-channel algorithms using horizontal 2 

polarisation at 18/19 GHz and 6 GHz respectively. ECICE (Shokr et al., 2008) and NASA 3 

Team 2 (NT2, Markus and Cavalieri, 2000) represent a special class of more complex 4 

algorithms where more channels are used and additional data may be needed as input. Finally 5 

we consider combinations of algorithms (hybrid algorithms), where one of the algorithms is 6 

expected to have low sensitivity to atmospheric effects over open water, and the other is 7 

expected to have a better performance over ice. This group includes the NT+CV algorithm 8 

(Ivanova et al., 2013): an average of NT and CV, the CV+N90 algorithm (Ivanova et al., 9 

2013): an average of N90 and CV, and the OSISAF algorithm (Eastwood (ed.), 2012): a 10 

weighted combination of BR over ice and BF over open water (note that BF is identical to 11 

CV). The Bootstrap algorithm is tested in its two modes separately for the reasons explained 12 

in Sect. 5.1. 13 

All the algorithms were evaluated without applying open water/weather filter, since our aim 14 

was a comparison of the algorithms themselves. We consider performance of an open 15 

water/weather filter separately in Sect. 4.4. 16 

2.2 Tie points 17 

A necessary parameter for practically every algorithm is a set of tie points – typical Tbs of sea 18 

ice (100% SIC) and open water (0% SIC). Under certain conditions, such as wind-roughened 19 

water surface or thin sea ice, it is difficult to define a single tie point to represent the surface. 20 

In nature, Tb may have a range of variability for the same ice type or open water due to 21 

varying emissivity, atmospheric conditions, and temperature of the emitting layer.  Therefore 22 

the scatter of retrieved SIC near the tie points, which correspond to 0% and 100%, may lead 23 

to negative or larger than 100% SICs. The ECICE algorithm uses the probability distribution 24 

of the radiometric observations from each surface, instead of a single tie point. 25 

In order to obtain an unbiased comparison of the algorithms, we developed a special set of tie 26 

points (Appendix A) based on the RRDP for both hemispheres and for each of the three 27 

radiometers: AMSR-E, SSM/I and SMMR. This enabled us to compare the algorithms 28 

directly without biases between the algorithms caused by differences in tie points. The set of 29 

the RRDP tie points differs from the original tie points provided with the algorithms. This is 30 

caused by the fact that we use different versions of the satellite data, which may have 31 
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different calibrations. Also, the tie points published with the algorithms are typically valid for 1 

one instrument and need to be derived for each new sensor. In this study the RRDP tie points 2 

were used for all the algorithms except ASI, NASA Team 2 and ECICE where such 3 

traditional tie points were not applicable, and therefore the original implementations of these 4 

algorithms were used.  5 

 6 

3 Data and methods 7 

3.1 Input data 8 

Single swath Tbs were used as input to the algorithms. The SMMR data were obtained from 9 

the US National Snow and Ice Data Centre – NSIDC (25 October 1978 to 20 August 1987, 10 

Njoku, 2003), EUMETSAT CM-SAF provided the SSM/I data (covering 9 July 1987 to 31 11 

December 2008, Fennig et al., 2013), and AMSR-E data were from NSIDC (from 19 June 12 

2002 to 3 October 2011; Ashcroft and Wentz, 2003). The footprints of all the channels were 13 

matched and projected onto following footprints: the 6 GHz footprint of 75 km × 43 km for 14 

AMSR; SSM/I and SMMR channels were averaged to approximately 75 km x 75 km areas 15 

for all channels, except 6 GHz and 10 GHz of SMMR, which were used in their original 16 

resolution of 148 km × 95 km and 91 km × 59 km respectively. 17 

It is important to note that different datasets may have different calibration, and it can even be 18 

the case for different versions of the same dataset. Therefore the results presented in the 19 

following (especially the derived tie points) should be applied to other datasets with caution. 20 

3.2 Validation data 21 

Ideally, every algorithm should be evaluated over open water, at intermediate concentrations 22 

and over 100% ice cover. In practise, it is difficult to find high quality reference data at 23 

intermediate concentrations, especially for large areas covering entire satellite footprint (e.g., 24 

70 km × 45 km for SSM/I at 19.3 GHz) and covering all seasons and ice types. Since the 25 

relationship between SIC and Tbs at all frequencies is assumed linear (except for the various 26 

noise contributions and a slight nonlinearity of the ASI algorithm), we argue that errors at 27 

intermediate concentrations can be found by linear interpolation between errors at 0% and 28 

100%. Thus the RRDP was built for validation of the algorithms at 0% and 100% SIC.  29 
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For the Open Water (OW) validation dataset (SIC = 0%), areas of open water were found 1 

using ice charts from Danish Meteorological Institute (DMI) and the US National Ice Center 2 

(NIC). The validation dataset for 0% SIC covered the following time periods: 1978-1987 3 

(SMMR), 1987-2008 (SSM/I), and 2002-2011 (AMSR-E). For this paper we used the subsets 4 

of 1978-1985 for SMMR, 1988-2008 for SSM/I and the full AMSR-E dataset. 5 

To create the Closed Ice (CI) validation dataset (SIC = 100%), areas of convergence were 6 

identified in ENVISAT ASAR (Advanced SAR) derived sea ice drift fields available from the 7 

PolarView (http://www.polarview.org) and MyOcean (http://www.myocean.eu) projects. The 8 

basic assumption for the convergence method to provide 100% sea ice is that during winter 9 

after 24 hours of net convergence the open water areas (leads) have either closed or refroze. 10 

During summer this assumption does not hold due to the presence of melt ponds and the lack 11 

of refreezing. The CI dataset is therefore only valid for accurate tests during winter (October–12 

April in the Northern Hemisphere and May–September in the Southern Hemisphere). The CI 13 

dataset covered years 2007-2008 for SSM/I and 2007-2011 for AMSR-E. SMMR was not 14 

included, because there were no SAR data available at that time. Note that the CI reference 15 

dataset may still have some small fraction of residual open water. This however, does not 16 

jeopardize our use of the minimum standard deviation as a measure of algorithm performance, 17 

since we are only looking for the relative differences between algorithms. 18 

Fig. 1 (Northern Hemisphere) and Fig. 2 (Southern Hemisphere) show the coverage of a 19 

subset of the RRDP for the SSM/I instrument during winters of 2007 and 2008, which 20 

contains about 30,000 data points. The dataset also includes the areas where there normally 21 

should not be any ice (blue triangles in the left panels of the figures) in order to test the ability 22 

of the algorithms to capture these correctly. The coverage of the RRDP is displayed both in 23 

terms of Tbs in the 6 channels of the SSM/I instrument (main panels), and spatial distribution 24 

(embedded maps). The other years, mentioned above and not shown in the figures, include 25 

approximately 4,000 data points per year, except the SMMR period with about 1,000 points 26 

per year, but the full dataset extends from 1978 to 2011. We are confident that these locations 27 

represent the full amplitude of weather influence on measured Tbs and hence retrieved 28 

SICs.The left panels of Fig. 1 and Fig. 2 show the RRDP SSM/I subset in a classic (Tb37v, 29 

Tb19v)-space, which is the one sustaining the BF algorithm (or CV). The ice line extends 30 

along different ice types. In the Northern Hemisphere, ice types vary from MYI with lower 31 

values of Tb37h (colouring) to first-year ice (FYI) with higher values of Tb37h. In the 32 
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Southern Hemisphere, the ice line extends between ice types A, representing FYI, and B, sea 1 

ice with a heavy snow cover (Gloersen et al., 1992). The so-called FYI and MYI tie points 2 

would typically lie along this line. The location of these different ice types can be seen on the 3 

embedded maps, and matches the expected distribution of older and younger ice in the 4 

Northern Hemisphere. In the (Tb37v, Tb19v)-space, the OW symbols are grouped mostly in 5 

one point (OW tie point), but also present some spread due to the noise induced by 6 

geophysical parameters such as atmospheric water vapour, liquid water- and ice clouds, 7 

surface temperature variability and surface roughening by wind (all collectively called 8 

geophysical noise). Note that the majority of the symbols is grouped around one point and a 9 

lot less are spread along the line, however this is not easy to see from the plots because many 10 

points are hidden behind each other. The Tb22v colouring of the OW symbols illustrates how 11 

the variability of the OW signature is mostly driven by factors impacting also the 22 GHz 12 

channel (atmospheric water vapour content). The length and orientation of the OW spread, 13 

and especially the distance from the OW points to the line of ice points, determines the 14 

strength of algorithms built on these frequencies (e.g. BF or CV) at low SIC. 15 

The right panels show the same areas but in a (Tb85v, Tb85h)-space. The ice line is very well 16 

defined (limited lateral spread), almost with a slope of one. However, it is difficult to define 17 

an OW point in this axis, since samples are now spread along a line. This “weather line” even 18 

intersects the ice line, illustrating that algorithms based purely in the (Tb85v, Tb85h)-space 19 

(like the ASI and N90 algorithms) have difficulties at discriminating open water from sea ice 20 

under certain atmospheric conditions (Kern, 2004). 21 

The embedded maps display the winter location of the OW samples (same location for the 22 

whole RRDP, for all instruments). In both hemispheres, these locations follow sea ice retreat 23 

in summer months to always capture ocean/atmosphere conditions in the vicinity of sea ice 24 

(not shown). The absence of data near the North Pole is due to the ENVISAT ASAR not 25 

covering areas north of 870. The somewhat limited coverage of the sea ice samples of the 26 

Pacific sector in the Northern Hemisphere and many areas in the Southern Hemisphere is due 27 

to scene acquisition strategies of the ENVISAT mission. 28 

After validation of the algorithms using the obtained datasets at 0% and 100% we found that 29 

some of the algorithms are hard to validate at these values because they are not designed to 30 

enable retrievals outside the SIC range of 0% –100% (NASA Team2, ECICE) or are affected 31 

by a combination of large bias and nonlinearity at high SIC (ASI). This complicates 32 
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comparison of these algorithms directly to other algorithms because these effects cut part of 1 

SD of the retrieved SIC, while we aim at evaluating the full variability around these reference 2 

values (0% and 100%). We implemented the algorithms (except these three) without cut-offs, 3 

allowing thus SIC values below 0% and above 100% as well. In order to be able to include 4 

these three algorithms in the inter-comparison, we have produced reference datasets of Tbs in 5 

every channel that correspond to values of SIC 15% and 75% for an additional evaluation. We 6 

find that the algorithms’ performance at 15% is representative of that at 0%, and so is 75% to 7 

100%. Therefore we show the results of evaluation only at SIC 15% and 75%. By 8 

“representative” here we mean that the algorithms’ ranking does not change significantly 9 

(more details in Sect. 4.1. and Table 2) even though the absolute values of SD are different.  10 

The SIC 15% dataset was constructed by mixing the average FYI signature (Tb) with the OW 11 

dataset, i.e.  12 

𝑇𝑏15 = 0.85 ∗ 𝑇𝑏0 𝑡 + 0.15 ∗ 𝑇𝑏100(𝐹𝑌),                                   (1) 13 

where Tb0 (OW Tb) is multiplied by 0.85 (85% water) and is varying with time, while Tb100 14 

(ICE Tb) is multiplied by 0.15 (15% ice) and is an average value of the FYI signature 15 

constant for all data points from the RRDP (see above) for a given year. By using the SIC 16 

15% dataset we aim at testing sensitivity of the algorithms to the atmospheric influence over 17 

the ocean and not to variability in emissivity of ice. Therefore we keep Tb of ice constant. 18 

The SIC 75% dataset was generated similarly to the SIC 15% dataset, but with full variability 19 

of ice and 25% of the average OW signature: 20 

𝑇𝑏75 = 0.75 ∗ 𝑇𝑏100 𝑡 + 0.25 ∗ 𝑇𝑏0(𝑂𝑊).                                (2) 21 

For the SIC 75% dataset the variability in Tbs is driven by variability at SIC 100% 22 

(Tb100(t)), and not at SIC 0%. We keep SIC 0% Tb (Tb0) constant at the average value of the 23 

OW signature for a given year in order to avoid the influence of seasonally varying 24 

atmospheric conditions, which would have happened if we mixed variable SIC 100% Tbs 25 

with variable SIC 0% Tbs. As a consequence, the SIC 75% dataset will reflect a lower 26 

atmospheric variability than we would have to expect from a real SIC 75% dataset. Since the 27 

CI dataset is only valid for the winter season, the same applies for this SIC 75% dataset.  28 

It is noteworthy that we originally had designed a reference dataset of SIC 85%, but the 29 

positive biases of the ASI and NASA Team 2 algorithms were larger than 15% and thus part 30 

of the SD was still cut-off at 100%. Therefore it was necessary to use a SIC 75% dataset 31 
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instead. The performance of the algorithms was consistent between the SIC 75%, 85% and 1 

100% datasets, and therefore we consider such substitution acceptable. This way of mixing 2 

Tbs is not entirely physical since we are mixing Tbs seen through two different atmospheres. 3 

However, since the majority of the signal originates from either open water or ice, and we use 4 

fixed Tbs for the remaining fraction, we consider the results to be still reasonably 5 

representative for algorithm performance evaluation. 6 

Normally, SIC products are truncated at 0% and 100% to allow only physically meaningful 7 

SIC values, though this does not apply to ECICE because it employs the inequality constraint 8 

of 0% < 𝑆𝐼𝐶 < 100% in its optimization formulation. However, as the intention here is to 9 

investigate the statistical properties of the retrievals, we will analyse actual SIC as retrieved 10 

with the algorithms, without truncation, which means the retrieved values can be negative or 11 

above 100%. Instrument and geophysical noise cause the Tbs to vary around the chosen tie 12 

points, and it cannot be avoided that at least a part of this noise is translated into some noise in 13 

the retrieved SIC.  14 

3.3 Reference dataset for melt pond sensitivity assessment 15 

Daily gridded SIC and melt pond fraction (MPF) reference dataset for the Arctic (Rösel et al., 16 

2012a) was derived from clear-sky measurements of reflectances in channels 1, 3 and 4 of the 17 

MODerate resolution Imaging Spectroradiometer (MODIS) in June–August 2009. The MPF 18 

is determined from classification based on a mixed-pixel approach. It is assumed that the 19 

reflectance measured over each MODIS 500 m × 500 m grid cell comprises contributions 20 

from three surface types: melt ponds, open water, sea ice/snow (Rösel et al., 2012a). By using 21 

known reflectance values (e.g. Tschudi et al., 2008) a neural network was built, trained, and 22 

applied (Rösel et al., 2012a). MPF is given as fraction of sea ice area (not grid cell) covered 23 

by melt ponds. For the sensitivity analysis in this work, a total of 8152 data points were 24 

selected from this dataset, so that SD of MPF over each 100 km × 100 km area was less than 25 

5%, SIC variations were less than 5%, SIC itself was larger than 95% and cloud cover less 26 

than 10%. 27 

The MODIS data were undergone a bias correction (Mäkynen et al., 2014) based on an inter-28 

comparison between ENVISAT ASAR wide swath mode (WSM) imagery, in-situ sea ice 29 

surface observations, weather station reports and the daily MODIS MPF and SIC dataset. It 30 

was found that the MODIS SIC was negatively biased by 3% and MPF was positively biased 31 
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by 8%. An investigation of the 8-day composite dataset of the MODIS MPF and SIC dataset 1 

with regard to their seasonal development during late spring/early summer confirmed the 2 

existence of such biases.  3 

MODIS SIC was only used for the summer period to evaluate the algorithms performance 4 

over melt ponds, but not for the SIC validation. This is due to lack of a sufficiently quality-5 

controlled MODIS SIC product with potential of a validation dataset. The cloud filters 6 

developed for lower latitudes are not reliable enough in the polar latitudes. Moreover, 7 

identification of ice/water in the images depends on thresholds, which will bring the problem 8 

of tie points. The validation of the MPF dataset by Rösel et al. (2012a) revealed accuracy of 9 

5% to 10%. Because of the methodology used, the MPF is tied to the other two surface types: 10 

open water in leads and openings between the ice floes and sea ice / snow. Therefore it can be 11 

assumed that the accuracy of the fraction of these two other surface types is of the same 12 

magnitude as that of the MPF: 5% to 10%, which can be considered as not sufficient for 13 

quantitative SIC evaluation. 14 

3.4 Reference dataset for the thin ice tests 15 

Sensitivity of the algorithms to thickness of thin (≤ 50  𝑐𝑚) sea ice was evaluated using a thin 16 

ice thickness dataset for the Arctic Ocean, compiled for this particular purpose. To produce 17 

this dataset, large (100 km diameter) homogenous areas of ~100% thin ice were identified as 18 

areas with dark and homogenous texture by visual inspection of 175 ENVISAT ASAR WSM 19 

scenes. The same procedure as when producing ice charts was applied. Thin ice thickness was 20 

subsequently derived for these areas using ESA’s L-band Soil Moisture and Ocean Salinity 21 

(SMOS) observations (Huntemann et al., 2014; Heygster et al., 2014). The dataset covers the 22 

time period from 1 October to 12 December 2010 and consists of 991 sea ice thickness data 23 

points. For these selected grid cells AMSR-E Tbs were extracted and used as input to the SIC 24 

algorithms. 25 

3.5 Substitution of weather filters by atmospheric correction 26 

SIC retrievals can be contaminated due to wind roughening of the ocean surface, atmospheric 27 

water vapour and CLW, as well as precipitation. Traditionally, the atmospheric effects on the 28 

SIC retrievals are removed by applying an open water/weather filter based on gradient ratios 29 

of Tbs for SMMR (Gloersen and Cavalieri, 1986) and SSM/I (Cavalieri et al., 1995): 30 
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𝑆𝑀𝑀𝑅:        𝑆𝐼𝐶 = 0          𝑖𝑓  𝐺𝑅 18 37 > 0.07                                         (3) 1 

𝑆𝑆𝑀 𝐼:        𝑆𝐼𝐶 = 0          𝑖𝑓  𝐺𝑅(19 37) > 0.05  𝑎𝑛𝑑 𝑜𝑟   𝐺𝑅(19 22) > 0.045,          (4) 2 

where the gradient ratios of Tb18v (Tb19v) and Tb37v (GR(18/37) and GR(19/37)) are most 3 

sensitive to CLW and the gradient ratio of Tb19v and Tb22v (GR(19/22)) mainly detects 4 

water vapour. We tested the performance of this technique (more details in Sect. 4.4), and 5 

found that it is removing not only atmospheric effects but also ice itself, which we found to be 6 

unacceptable for a SIC algorithm.  7 

Therefore we chose not to use the open water/weather filters, but implement an alternative 8 

solution, following Andersen et al. (2006) and Kern (2004). The suggested method consists of 9 

applying a more direct atmospheric correction methodology, where the input SSM/I Tbs in all 10 

the channels used by the algorithms are corrected with regard to atmospheric and surface 11 

effects using a Radiative Transfer Model (RTM):  12 

𝑇𝑏!"## =   𝑇𝑏!"#$%&"' − (𝑇𝑏!"# − 𝑇𝑏!"#)                                        (5) 13 

𝑇𝑏!"# = 𝑇𝑏 𝑓,𝑝,𝑊𝑆,𝑊𝑉,𝐶𝐿𝑊, 𝑆𝑆𝑇,𝑇!"! , 𝑆𝐼𝐶,𝐹𝑀𝑌𝐼                                 (6)         14 

𝑇𝑏!"# = 𝑇𝑏 𝑓,𝑝, 0,0,0, 𝑆𝑆𝑇!"# ,𝑇!"#  !"# , 𝑆𝐼𝐶,𝐹𝑀𝑌𝐼 ,                                    (7) 15 

where f – frequency, p – polarisation, WS – wind speed, WV – water vapour, SST – sea 16 

surface temperature, 𝑇!"# – ice temperature, and FMYI – MYI fraction (Meissner and Wentz, 17 

2012 and Wentz, 1997). 𝑇𝑏!"##  is measured Tb minus the difference between simulations 18 

with (𝑇𝑏!"#) and without (𝑇𝑏!"#) atmospheric effects (Meissner and Wentz, 2012 and Wentz, 19 

1997). In order to calculate 𝑇𝑏!"#, zero values were assigned to WS, WV and CLW, while 20 

𝑆𝑆𝑇!"# = 271.5𝐾 and   𝑇!"#  !"# = 265𝐾. 3-hourly fields of 10 m wind speed, total columnar 21 

water vapour, and 2 m air temperature from the ECMWF ERA-Interim Numerical Weather 22 

Prediction (NWP) re-analysis were used in this process. Following the results of Andersen et 23 

al. (2006) we did not use CLW and precipitation from the NWP data because these are 24 

considered to be less consistent with the observed Tbs (also confirmed by our own analysis). 25 

Therefore CLW is 0 also when calculating 𝑇𝑏!"# in this case. The NWP model grid cells are 26 

collocated with the AMSR-E/SSM/I swath Tbs in time and space. Using the 3-hourly NWP 27 

fields we ensure a time difference between the NWP data and the satellite data to be within 28 

1.5 h. 29 



 15 

In order to evaluate the effect of suggested atmospheric correction for SSM/I we selected six 1 

test cites in the Arctic, which are subject to different weather types: for some it is more 2 

common to have storms and strong winds, and some are typically quieter. The total amount of 3 

points sampled at these locations is 2320 and covers the entire year 2008. The results obtained 4 

were similar for AMSR-E (not shown here). 5 

3.6 The validation/evaluation procedure 6 

Tbs from the three microwave radiometer instruments (AMSR-E, SSM/I and SMMR, Sect. 7 

3.1) were extracted and collocated with the reference datasets introduced above for open 8 

water, closed ice, melt ponds, and thin ice in the RRDP. These Tb data were then used as 9 

input to the SIC algorithms. 10 

The criteria for the validation and evaluation procedure were aimed at minimizing the 11 

sensitivity to the atmospheric effects and surface emissivity variations as described in the 12 

Introduction. In addition, we considered the following aspects: 1) data record length: 13 

algorithms using near 90 GHz channels cannot be used before 1991 when the first functional 14 

SSM/I 85 GHz radiometer started to provide consistent data, 2) spatial resolution: ranges from 15 

over 100 km to less than 10 km for different channels and instruments, 3) performance along 16 

the ice edge, where new ice formation is common in winter, and 4) performance during the 17 

summer melt. Additional criteria for the algorithm selection were: the possibility of reducing 18 

regional error using, e.g., NWP data and forward models; and the possibility to use dynamic 19 

tie points. The latter is to reduce sensitivity to inter-sensor calibration differences and error 20 

sources, which may be characterized by seasonal and inter-annual variability and/or have 21 

global and regional climatological trends. 22 

 23 

4 Results 24 

4.1 The SIC algorithms inter-comparison and evaluation 25 

To evaluate performance of the algorithms, SD (Table 2) and bias (not shown) relative to the 26 

validation datasets (Sect. 3.2) were calculated for summer and winter separately. The 27 

algorithms in the Table 2 are sorted by the average SD of all the cases, starting with the 28 

smallest one. These values are averages weighted by the number of years when data were 29 

available for each instrument, thus giving more weight to SSM/I as the one providing the 30 
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longest dataset. SSM/I data were available during 21 years (1988–2008) for the low-1 

frequency algorithms, i.e. the algorithms using frequencies up to 37 GHz (except 6H because 2 

this channel was not available on SSM/I), and for high-frequency algorithms during 17 years 3 

(1992–2008). SMMR did not have high frequencies and thus only applies to the low-4 

frequency algorithms (8.7 years, November 1978–1987). The reference column (Ref) in the 5 

Table 2 contains SD of the full SIC 0% and SIC 100% datasets. It shows that the SD of the 6 

algorithms relative to each other, that is the algorithms ranking, does not change significantly 7 

when substituting SIC 100% dataset with SIC 75%, and SIC 0% dataset with SIC 15%. 8 

However, the absolute values of SD are altered.  9 

The high-frequency algorithms ASI and N90 have a clear difference in SDs at low and high 10 

SIC. This is also true for the CV+N90 algorithm, but the separation is smaller as this hybrid 11 

algorithm also contains a low-frequency component. The large SDs for these algorithms 12 

mainly originate from the low SIC cases, where the atmospheric influence is more 13 

pronounced than it is for the low-frequency algorithms. Winter SDs for most of the 14 

algorithms tend to be lower than the ones of summer in the same category of SIC and 15 

instrument. 16 

We chose to not show the biases here because we put more weight on SD in the algorithm 17 

evaluation. The bias was found to be similar within low- and high-frequency algorithm 18 

categories and it was sensitive to the choice of tie points, which made it less suitable for the 19 

evaluation procedure. In the Northern Hemisphere the stronger negative biases were 20 

dominated by the high SIC cases (with the exception of the N90, CV+N90, NT2 and ASI), 21 

while stronger positive biases were dominated by the low SIC cases. Algorithms ASI, NT2 22 

and ECICE were positively biased for all the cases in both hemispheres. Note that the 23 

algorithms ECICE and ASI were developed for the Northern Hemisphere, but were applied to 24 

both hemispheres in this study. These three algorithms are the only ones for which it was not 25 

possible to use the RRDP tie points as was done for the other algorithms, and this may explain 26 

part of the bias (see Sect. 4.5 for further discussion on tie points). For the algorithms with 27 

large biases and cut-offs at SIC 100%, the bias reduces our ability to estimate their SD 28 

properly using the chosen approach and thus makes them look better than they really are at 29 

high SIC (>75%). For example, if real SIC is 75%, an algorithm with a positive bias of 20% 30 

will have average SIC of 95%, and by cutting-off all the values above 100% it reduces the 31 
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scatter, and thus SD, to only the values in 95-100% interval. In contrast, for an algorithm with 1 

same bias and no cut-off the full scatter will be preserved and represented by a higher SD.  2 

At SIC 15% the CV (BF) algorithm had the second lowest SD (3.8% in the Northern 3 

Hemisphere and 3.5% in the Southern Hemisphere) after the 6H algorithm. Even though the 4 

6H showed such a low SD, we did not consider it as a suitable algorithm for a climate dataset 5 

because this algorithm could not be applied to SSM/I data, which shortens the time series 6 

significantly. At SIC 75% the BR algorithm had the lowest SD of 3.1% in the Northern 7 

Hemisphere and 2.9% in the Southern Hemisphere. 8 

Difference in SD between summer and winter (only SIC 15%) was lowest for the algorithms 9 

NT, NT+CV, BR, CV and OSISAF (average over both hemispheres and all three instruments 10 

amounted to 0.2–0.3%). The algorithms ESMR, ECICE, 6H, NT2 and CV+N90 had higher 11 

summer-winter differences (0.4–0.5%), while the remaining algorithms (BP, N90 and ASI) 12 

showed the highest values of 0.8–1.2%.  13 

4.2 Melt Ponds 14 

The SIC and MPF from MODIS were collocated with daily SIC retrieved by the algorithms in 15 

the Arctic Ocean for June–August 2009 to investigate the sensitivity of the algorithms to melt 16 

ponds. Due to the low penetration depth, we expect that passive microwave SIC algorithms 17 

interpret melt ponds as open water and hence in summer they provide the net ice surface 18 

fraction (𝐶), which excludes leads and melt ponds, rather than traditional SIC. Therefore we 19 

compute corresponding parameter from the MODIS data:  20 

𝐶 = 1−𝑊 = 𝑆𝐼𝐶!"#$% − 𝑆𝐼𝐶!"#$% ∗𝑀𝑃𝐹,                                  (8) 21 

where 𝑊 is surface fraction of water (leads + melt ponds). Fig. 3 shows SIC calculated by 22 

four selected SIC algorithms (CV, BR, N90 and NT) as a function of C. Note that because of 23 

the limitation to MSIC > 95% the variation in the net ice surface fraction is almost solely due 24 

to the variation in MPF, which was varying from 0 to 50% for the selected dataset.  25 

There is a pronounced overestimation of the net ice surface fraction by the CV and BR 26 

algorithms that compose the OSISAF combination (however only BR is used for high SIC). 27 

For example, at C = 90% the average SIC is 128% (CV), 115% (BR), 103% (N90) and 100% 28 

(NT). The slopes of the regression lines are close to one (0.9–1.2 for the shown algorithms), 29 

which agrees with the assumption that melt ponds are interpreted as open water by microwave 30 
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radiometry. The NT algorithm shows SIC values closest to C (the least bias of the four 1 

algorithms), which adds to our argument for using this algorithm for defining areas of high 2 

SIC (NT > 95%) for retrieval of the dynamic tie points (Sect. 4.5).  3 

4.3 Thin ice 4 

Sensitivity of selected SIC algorithms (CV, BR, OSISAF, N90, NT and 6H) to thin sea ice 5 

thickness was investigated. Fig. 4 shows SIC obtained by these algorithms as a function of sea 6 

ice thickness from SMOS (Sect. 3.4). The data are shown as averages for each sea ice 7 

thickness bin of 5 cm width with the number of measurements in each bin shown on the 8 

figure (total number of measurements is 991). The grey shading shows SD, which is 9 

calculated from all the SIC retrievals in the given bin. These SDs are calculated for each 10 

algorithm individually, but overlap each other on the figure. Since in the OSISAF 11 

combination the BR algorithm has weight of 1 for high SIC, these algorithms show identical 12 

results; therefore BR is not visible. 13 

The SIC is known to be ~100% for the cases selected, therefore one would expect all the 14 

curves to be horizontal and placed at high SIC. However, this is not going to be the case 15 

following published knowledge suggesting that SIC is underestimated for thin ice (Kwok et 16 

al., 2007, Grenfell et al., 1992). Hence, we are interested in the point where a given algorithm 17 

is no longer affected by the ice thickness. All the algorithms underestimate the SIC for ice 18 

thickness of up to 25 cm. Note that most of the algorithms also show a negative bias of about 19 

5% for ice thickness above 30 cm, i.e. ice which is not termed thin ice anymore. This could be 20 

caused by the fact that the thin ice identified in SAR images is on average smoother/less 21 

deformed and most likely has less snow than the ice used for the derivation of the sea ice tie 22 

points applied in the algorithms.  23 

Out of the five algorithms shown, N90 levels off, that is the SIC value varies by less than 5% 24 

between the neighbouring bins of SIT, at the lowest thicknesses (20–25 cm). The OSISAF 25 

and CV follow at the thicknesses of 25–30 cm, and NT and 6H at 30–35 cm. The slightly 26 

better performance of CV relative to OSISAF suggests a shift in the mixing of BR and CV in 27 

a new algorithm (using CV at higher intermediate concentrations); see the introduction of the 28 

SICCI algorithm in the discussion section. More details on the algorithm’s performance over 29 

thin ice can be found in Heygster et al. (2014). 30 
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4.4 Atmospheric correction 1 

First we implemented traditional open water/weather filters (Eqs. 3 and 4), which work as ice-2 

water classifiers. These filters set pixels to SIC 0% when they are classified as ones subjected 3 

to a high atmospheric influence over open water. This efficiently removes noise due to the 4 

weather influence in open water regions.  5 

However, we found, as did also Andersen et al. (2006), that open water/weather filters also 6 

eliminate low concentration ice (up to 30%). This is illustrated in Fig. 5, where intermediate 7 

concentration datasets were generated using equations similar to Eq. (1) from the same Tbs as 8 

used for the algorithms inter-comparison (Sect. 4.1). The filter identifies correctly the pixels, 9 

which do not contain any ice (SIC = 0%): practically all pixels are located outside the red 10 

square in the upper left plot. The filter keeps almost all the pixels containing sea ice (SIC = 11 

30%): almost all pixels are located inside the red square in the bottom right plot; only a 12 

handful values fall outside the range defined by the red box and is set to 0%. However for the 13 

cases of SIC 15% and 20%, which are shown here as an example, the filter sets SIC to 0% for 14 

all the pixels outside the red square in the upper right and bottom left plots, which 15 

corresponds to 27% of the total amount of pixels (3320) for the SIC 15% and to 9% for the 16 

SIC 20%.  17 

In order to avoid this truncation of real SIC by the open water/weather filter, we investigated 18 

an alternative approach where we applied atmospheric correction to the Tbs, as described in 19 

Sect. 3.5, before using them as input to the algorithms. The correction reduced the Tb 20 

variance by 22–35 % (19 GHz and 37 GHz channels) and up to 40% (near 90 GHz channels) 21 

when water vapour, wind speed and 2 m temperature were used in the correction scheme. 22 

Adding CLW as the fourth parameter worsened the results (19 GHz and 37 GHz channels). 23 

CLW has high spatial and temporal variability and the current ERA Interim resolution and 24 

performance for CLW is not suitable for this correction. In the following the satellite data are 25 

therefore not corrected for the influence of CLW. 26 

To illustrate the effect of the correction, we compared the SD of SIC computed from Tbs with 27 

and without correction for water vapour, wind speed and 2 m temperature (Fig. 6). The top 28 

plots show histograms of the SIC over open water for the OSISAF algorithm before the 29 

correction (left) and after (right). The distribution becomes clearly less noisy and tends to be 30 

more Gaussian-shaped. To show the effect of the correction on performance of all the 31 

algorithms (Table 1, except NT2 and ECICE), the SD of SIC is shown in the bottom plot. The 32 
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SD has decreased by 48–65% (of the original value) after the atmospheric correction for all 1 

the shown algorithms. The improvement due to the RTM correction shown in the Fig. 6 is an 2 

average measure for all the 2320 samples. It should be noted that the tie points need to be 3 

adjusted to the atmospherically corrected data. The tie points given in Appendix A are for 4 

uncorrected data. 5 

4.5 Dynamic tie points 6 

As mentioned in the Introduction, not only sea ice area/extent is characterised by seasonal 7 

variability and has a trend, but so do also atmospheric and surface effects influencing the 8 

measured microwave emission. In order to compensate for these effects, we suggest that in an 9 

optimal approach tie points should be derived dynamically.  10 

In order to generate dynamically adjusted daily tie points we first define the sampling areas 11 

for consolidated ice and open water at a distance of 100 km from the coasts. The area for the 12 

ice tie point is defined so that SIC is larger than 95% according to the NT algorithm and it is 13 

within the limits of maximum sea ice extent climatology (NSIDC, 1979–2007). The NT 14 

algorithm was chosen for this purpose because it is a standard relatively simple algorithm 15 

with little sensitivity to ice temperature variations (Cavalieri et al., 1984). The data for the 16 

open water tie point were selected geographically along two belts in the Northern and 17 

Southern hemispheres defined by the maximum sea ice extent climatology (200 km wide belt 18 

starting 150 km away from the climatology). Data points south of 50N were not used. Total of 19 

15,000 data points per day were selected. 20 

Then 5,000 Tb measurements (every day) in these areas were randomly selected among the 21 

total of 15,000 data points and averaged using a 15-day running window (± 7 days) to reduce 22 

potential noise in daily values. Selection of only 5,000 samples per day is to ensure that no 23 

days are weighted higher than others when there are differences in the number of data points 24 

from day to day. The 15-days window allows smoothing out the synoptic scales of weather 25 

perturbations and at the same time capture the onset of ice emissivity changes due to summer 26 

melt or fall freeze-up. We believe that longer time windows will induce additional (too much) 27 

smoothing over the ice, while shorter time-periods will introduce too much noise (over open 28 

water). The scatter of all the obtained 15,000 data points per day was used as a tie point 29 

uncertainty, which contributes to the total per-pixel daily uncertainty retrieved for SIC. 30 
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An example of ice tie point is presented in Fig. 7, top and middle panels, by Tb19v and Tb37v 1 

and in the bottom panels by slope of the ice line according to the Bootstrap scheme. We chose 2 

to not show the tie points of the Bristol algorithm because the polarization and frequency 3 

information from 19V, 37V and 37H channels is transformed into a 2D plane defined by x 4 

and y components (see Smith (1996) for more details), which are harder to relate to than Tbs. 5 

The open water tie points are not shown here as they have less seasonal variability (within 5 6 

K). The dynamic tie point for ice is represented by an average of the fraction of FYI and MYI 7 

in the samples of all (±7𝑑𝑎𝑦𝑠) selected ice conditions (𝑁𝑇 > 95%). Due to the change in the 8 

relative amount of FYI and MYI in the Arctic Ocean in recent years, the average ice tie point 9 

will move along the ice-line in the Tb space. 10 

Fig. 7 demonstrates that the tie points are not constant values as it is assumed traditionally 11 

(static tie points from the RRDP, also averaged FYI and MYI values, are shown by horizontal 12 

lines), but rather geophysical parameters showing seasonal and inter-annual variations. This 13 

applies particularly to the melt season, which is highlighted by the grey vertical bars for three 14 

selected years in Fig. 7, bottom plots. Therefore the dynamic approach is more suitable for the 15 

SIC algorithms. The ice tie point may vary by about 30 K during one year, which amounts to 16 

approximately 8–10% of the average value. Sensor drift and inter-sensor differences are also 17 

important aspects, which might cause an unrealistic trend in the retrieved SIC when static tie 18 

points are applied. The dynamic tie point approach compensates for these effects. 19 

A detailed description of the procedure to obtain dynamic tie points is given in the Appendix 20 

B. The tie points will vary with calibration of the input data/version number and source, so the 21 

tie points obtained here should not be used with other versions of the input data with potential 22 

different calibration. The procedure on the other hand can be applied to all 23 

versions/calibrations of the input data. 24 

 25 
5 Discussion 26 

5.1 The SIC algorithms inter-comparison and evaluation 27 

Based on validation datasets of SIC 15% and 75% we used variability (SD) in the SIC 28 

produced by the different algorithms as a measure of the sensitivity to geophysical error 29 

sources and instrumental noise. The errors from geophysical sources over open water are 30 

generated by wind induced surface roughness, surface and atmospheric temperature 31 
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variability and atmospheric water vapour and CLW. Over ice, the errors are dominated by 1 

snow and ice emissivity and temperature variability, where parameters such as snow depth, 2 

and to some extent variability in snow density and ice emissivity are important (Tonboe and 3 

Andersen, 2004). The atmosphere plays only a minor role over ice except at near 90 GHz, 4 

where liquid water/ice clouds may still be a significant error source, especially in the 5 

Marginal Ice Zone. At the same time near 90 GHz data might be less sensitive to changes in 6 

physical properties in ice and snow because of the smaller penetration depth relative to the 7 

other frequencies used. 8 

The algorithms 6H, CV, BR, OSISAF, NT and NT+CV, showed the lowest SDs (Table 2). 9 

The 6 GHz channel was not available on SSM/I, which provides the longest time series, and 10 

therefore the 6H algorithm was not considered to be an optimal SIC algorithm for a climate 11 

dataset. Bristol showed the lowest SD over high SIC (only winter is considered) while CV 12 

had the lowest SD for the low SIC cases, which suggests that combining these two algorithms 13 

would provide a good basis for an optimal SIC algorithm. 14 

The differences in SDs between summer and winter are reflecting the sensitivity of different 15 

algorithms to wind, atmospheric humidity and other seasonally changing quantities. In 16 

addition, some of these quantities may have climatological trends. Therefore small difference 17 

between the summer and winter SDs is an asset for an algorithm. The algorithms NT, 18 

NT+CV, BR, CV and OSISAF showed the lowest summer-winter differences in SD (0.2–19 

0.3% on average for both hemispheres and all three instruments). 20 

Note that the two modes of the Bootstrap Algorithm in this study were tested separately. The 21 

frequency mode (BF) of the original algorithm is applied only when Tb19v is below the ice 22 

line minus 5 K (Comiso 1995), which is the case for both 15% and 75% case. Otherwise the 23 

polarisation mode (BP) should be applied. Thus, we did not show the tests of BP for what it is 24 

originally meant – SIC near 100%. This algorithm was still evaluated along with all the others 25 

for SIC 100%, and the test indicated that BP performed quite well, but BR showed somewhat 26 

lower SDs (by about 2%) and therefore was selected for the hybrid algorithm. 27 

Evaluation of typical processing chain components, such as climatological masks, land 28 

contamination correction and gridding from swath to daily maps, is not covered by this study. 29 

This work is devoted to a systematic evaluation of algorithms using a limited but very 30 

accurate reference dataset (the RRDP). For the consistent evaluation exercise completed here, 31 

areas in the vicinity of land were excluded. 32 
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5.2 The SICCI algorithm 1 

During the algorithm evaluation and inter-comparison exercise the SICCI algorithm was 2 

introduced. It is a slightly modified version of the OSISAF algorithm in order to achieve 3 

better performance over areas with thin ice. Similar to the OSISAF algorithm, it is constructed 4 

as a weighted combination of CV and BR algorithms. In order to take more advantage of the 5 

better performance of CV for thin ice, the weights are defined as follows. For SIC below 6 

70%, as obtained by CV, the weight of this algorithm is 𝑤!" = 1, while for high values 7 

(≥90%) it is 𝑤!" = 0. Different weights were tested on the thin ice dataset. The optimal 8 

values were chosen so that the hybrid algorithm performs better over thin ice, and at the same 9 

time keeps its performance in other conditions at the same level as the original OSISAF 10 

algorithm. For the values between 70% and 90% the weight for CV is defined as 11 

𝑤!" = 1− !"!!"!!.!
!.!

,                                                         (9) 12 

where 𝑆𝐼𝐶!" is SIC (between 0 and 1) obtained by CV. The weight of BR is 1− 𝑤!". In the 13 

original OSISAF algorithm, values of 0% and 40% were used.  14 

5.3 Melt ponds 15 

Fig. 3 illustrates that the four algorithms shown (but this is also valid for all other algorithms) 16 

are sensitive to the MPF, which may mean that melt ponds are interpreted as open water by 17 

the algorithms. This is because microwave penetration into water is very small. Rösel et al. 18 

(2012b) showed that in areas with melt ponds SIC algorithms (ASI, NT2 and Bootstrap) 19 

underestimate SIC by up to 40% (corresponding to a MPF close to 40%). One may still argue 20 

that melt ponds should have different signature from that of open water due to the difference 21 

in their salinity. However, for such high frequencies as used in the algorithms (19 GHz and 22 

higher) and in cold water the salinity was found to play a less significant role (Meissner and 23 

Wentz, 2012; see also Ulaby et al., 1986). In addition, the footprint size is so large (e.g. 70 km 24 

× 45 km for 19.3 GHz channel on SSM/I) that an unresolvable mixture of surfaces might be 25 

present in it. 26 

For some applications it is important to interpret ponded ice as ice and not as open water. 27 

However, we believe that satellite microwave radiometry is incapable to estimate SIC 28 

correctly if a certain fraction of the sea ice is submerged under water. Therefore, we suggest 29 

accepting what microwave sensors actually can do; to estimate the net ice surface fraction. 30 
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The latter is similar to the well known SIC during most of the year until melt ponds have 1 

formed on top of the ice in the melting season. Additional data sources (for example MODIS) 2 

could be used to supplement summer retrievals of SIC. Unlike with microwave radiometry, 3 

open water in leads and openings between the ice floes can be discriminated from open water 4 

in melt ponds on ice floes by means of their different optical spectral properties. 5 

The algorithms shown in Fig. 3 overestimate SIC, which can be caused by higher Tbs in the 6 

areas between melt ponds. During summer these areas comprise wet snow and/or bare ice 7 

with a different physical structure than during winter. Therefore these areas have radiometric 8 

properties potentially different from those of winter, when the RRDP ice tie points were 9 

developed. This is demonstrated by Fig. 7 where the grey bars highlight that seasonal changes 10 

in the dynamic tie points to be used in the SICCI algorithm vary particularly during the 11 

summer months. The comparison of passive microwave algorithms and MODIS SIC in Rösel 12 

et al. (2012b) showed that in the areas without melt ponds the passive microwave SIC was 13 

larger than that of MODIS. Note also, however, that the tie points used here differ from those 14 

in Rösel et al. (2012b). This complicates a quantitative comparison of their results with ours 15 

and, in turn, calls for such kind of systematic, consistent evaluation and inter-comparison as 16 

shown in the present paper. Using the dynamic tie points approach (Sect. 4.5) decreases this 17 

effect: the OSISAF algorithm on average overestimated SIC by 24% when fixed RRDP tie 18 

points were used (same as in the Fig. 3) and by 17% with dynamical tie points (this example 19 

is not shown in the figure). However, even with dynamic tie points, it is likely that the areas 20 

selected to derive the 100% ice tie point during summer contain melt ponds. If this would be 21 

the case and if the selected area would have an average melt pond fraction of 10%, then the 22 

100% ice tie point would not represent 100% ice but a net ice surface fraction of only 90%. 23 

When estimating dynamic tie points, an initial SIC estimate is needed. In our case this was 24 

done using pixels with NT SIC > 95%. This algorithm is less sensitive to the surface 25 

temperature variations because it is based on polarization and gradient ratios of Tbs, which 26 

more or less cancels out the physical temperature (Cavalieri et al. 1984). In addition, it is 27 

interpreting melt ponds as open water (Sect. 4.2). This means that using NT SIC > 95% we 28 

select areas with reasonably low MPF to determine the signature of ice, which helps to avoid 29 

introducing a bias to the tie points with measurements containing melt ponds.  30 
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5.4 Thin ice 1 

All the algorithms shown for the thin ice test (Fig. 4) underestimate the SIC for ice 2 

thicknesses up to 35 cm, which confirms findings by others (see Introduction). The 6H 3 

algorithm showed the highest sensitivity to the sea ice thickness, which is in agreement with 4 

Scott et al. (2014) showing that Tbs at 6 GHz can be used to estimate thin ice thickness. The 5 

least sensitivity to thickness of thin ice was observed for the N90 algorithm; the SIC obtained 6 

by this algorithm was independent of SIT values already at thicknesses of 20–25 cm. This is 7 

caused most likely by a smaller penetration depth in the near 90 GHz channels (shorter wave 8 

length) (see also Grenfell et al., 1998). OSISAF and CV had the second least sensitivity 9 

(levelled off at 25–30 cm), which adds more weight to the choice of an OSISAF-like 10 

combination as an optimal algorithm. We suggest that, when areas of thin ice are interpreted 11 

as reduced concentration, this should be clearly stated along with an eventual SIC product. 12 

This issue is similar to melt ponds in a way that there is no simple solution, and one should be 13 

aware of the limitation, which we demonstrate by the Fig. 4. In this study we manage to 14 

quantify the effect and thus allow modellers to assimilate SIC data in a more proper way. 15 

Implementation of an algorithm that accounts for thin ice (Röhrs and Kaleschke, 2012; Röhrs 16 

et al., 2012; Naoki et al., 2008; Grenfell et al., 1992) as an additional module to this optimal 17 

algorithm could be a potential improvement. For shorter datasets, a thin ice detection 18 

technique developed for AMSR-E and SSMIS (Mäkynen and Similä, 2015) can be 19 

incorporated in order to provide a thin-ice flag.   20 

5.5 Atmospheric correction 21 

Using the RTM of Wentz (1997), we concluded that over open water, most of the algorithms 22 

were sensitive to CLW although the sensitivities of CV and 6H were small (not shown). 23 

However, we found that CLW and precipitation are less reliable in ERA Interim data and 24 

therefore represent error sources, which we cannot correct for using the suggested method. 25 

This is also confirmed in literature (Andersen et al., 2006). Therefore, it is important to select 26 

a less sensitive algorithm (e.g., CV). The algorithms BP, ASI and N90 were very sensitive to 27 

this component (not shown). Most of the algorithms were sensitive to water vapour over open 28 

water, especially BP, ASI and N90. Some of the algorithms show some sensitivity to wind 29 

(ocean surface roughness), e.g. NT and BR. But we corrected for the water vapour and wind 30 

roughening by applying the RTM correction (see Fig. 6). 31 
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It was found that atmospheric correction of Tbs for wind speed, water vapour and temperature 1 

reduces the SD in retrieved SIC for all tested algorithms at low SIC. In addition, the shape of 2 

SIC distribution got closer to Gaussian after the correction (Fig. 6). The OSISAF combination 3 

(19V/37V) improved significantly after correction over open water. Over ice the atmospheric 4 

influence is small, as was shown by the ERA Interim data we used - total water vapour and 5 

CLW content over ice were much smaller than over ocean. The atmosphere over ice is 6 

generally much colder than over ocean, and cold air can contain much less moisture 7 

(including clouds) than warmer air. In addition, when the emissivitiy is much larger over sea 8 

ice (e.g. FYI) than open water, a change in the atmospheric water vapour imposes a smaller 9 

change in the Tb measured over sea ice compared to the one measured over open water 10 

(Oelke, 1997). Correction for the effect of surface temperature variations at SIC 100%, where 11 

2 m temperature was used as a proxy, was not effective. This can be explained by the fact that 12 

different wavelengths penetrate to different depth in the ice and thus should retrieve different 13 

temperatures. 14 

The limitation of the applied correction is that, even though it reduces the atmospheric noise 15 

considerably, it does not remove it completely. There will therefore be some residual 16 

atmospheric noise over the ocean. We argue that this noise is more acceptable in a SIC 17 

algorithm than the removal of ice, but admit that this is debatable and for some applications 18 

the removal of ice may be preferable. 19 

5.6 Dynamic tie points 20 

The advantages of the suggested dynamical approach to retrieve tie points can be listed as 21 

follows. Firstly, it ensures long-term stability in sea ice climate record and decreases 22 

sensitivity to noise parameters with climatic trends. This is of importance because both sea ice 23 

area/extent and the geophysical noise parameters (sea ice emissivity, atmospheric parameters) 24 

have climatic trends. Also, as model study by Willmes et al. (2014) showed, emissivity of 25 

FYI covered by snow is characterized by seasonal and regional variations caused by 26 

atmospherically driven snow metamorphism. Secondly, the dynamical tie points are needed 27 

when accurately quantifying the SIC uncertainties. Thirdly, the dynamic tie point method in 28 

principle compensates for inter-sensor differences in a consistent manner, so no additional 29 

attempt was considered necessary to compensate explicitly for sensor drift or inter-sensor 30 

calibration differences (the SSM/I data have been inter-calibrated but not with the SMMR 31 

dataset). 32 
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The seasonal cycle in the tie points can be tracked across platforms (Fig. 7). Thus, the tie 1 

points are naturally changing geophysical parameters (or quantities obtained from such 2 

parameters), and should be dynamic as opposed to the traditional static approach. The 3 

variation amounts to approximately 20–30 K, which corresponds to about 8–12% of the 4 

average value, and the peaks in the variation occur in summer. Thus, increased variability in 5 

late spring/early summer connected to melt onset and consequent snow metamorphoses, 6 

reported by Willmes et al. (2014), is confirmed in our study.  7 

The dynamic tie points approach is only applied in time, not in space. The aim of this study is 8 

to identify an optimal SIC algorithm for a climate dataset, which requires transparent 9 

description of techniques and uncertainties. It would be difficult to come up with proper 10 

uncertainty estimate in case we divide our region of interest - more or less arbitrarily - into 11 

sub-regions. 12 

One might argue that different tie points for MYI and FYI can still be used. However, 13 

computation of the uncertainty at the boundary of both regions will become problematic. How 14 

shall one treat mixed pixels? And - most importantly - one would need a validated quality-15 

controlled ice type dataset spanning the entire period. Therefore, we would recommend that 16 

regional (dynamic) tie points would be an ideal tool for regional applications and for near-real 17 

time SIC retrieval of spatially limited areas, but not for a climate dataset. 18 

 19 
6 Conclusions 20 

A SIC algorithm for climate time series should have low sensitivity to error sources, 21 

especially those that we cannot correct for (CLW and precipitation, see Sect. 5.5) and those, 22 

which may have climatic trends. When correcting for errors it is important to adjust the tie 23 

points in order to avoid introducing artificial trends from the auxiliary data sources (e.g. NWP 24 

data). Therefore the preferred algorithm should allow adjusting the tie points dynamically. 25 

The latter is necessary to compensate for climatic changes in the radiometric signature of ice 26 

and water; and eventual instrumental drift and inter-instrument bias. In addition, this 27 

algorithm should be accurate over the whole range of SIC from 0% to 100%. Along the ice 28 

edge spatial resolution and sensitivity to new ice and atmospheric effects is of particular 29 

concern. In order to produce a long climate data record, it is also important that the algorithm 30 

is based on a selection of channels for which the processing of long time-series is possible, 31 



 28 

which are currently 19 GHz and 37 GHz. The comprehensive algorithm inter-comparison 1 

study reported here leads to following conclusions: 2 

- The CalVal algorithm is among the best (low SD, Table 2a) of the simple algorithms at low 3 

SIC and over open water. 4 

- The Bristol algorithm is the best (lowest SD, Table 2b) for high SIC. 5 

- OSISAF-like combination of CalVal and Bristol is a good choice for an overall algorithm, 6 

using CalVal at low SIC and Bristol at high SIC. 7 

In addition we conclude that: 8 

- Melt ponds are interpreted as open water by all algorithms. 9 

- Thin ice is seen as reduced SIC by all algorithms. 10 

- After atmospheric correction of Tbs, low SIC become less uncertain (less noisy) than high 11 

SIC. 12 

- Near 90 GHz algorithms are very sensitive to atmospheric effects at low SIC. 13 

- All 10 algorithms shown in the Fig. 6 improve substantially when Tbs are corrected for 14 

atmospheric effects using RTM with NWP data. The additional 3 algorithms by nature could 15 

not be corrected/tested for this. 16 

- The dynamic tie points approach can reduce systematic biases in SIC and alleviate the 17 

seasonal variability in SIC accuracy.  18 

It is clear from these conclusions that there is no one single algorithm that is superior in all 19 

criteria, and it seems that a combination of algorithms (e.g., OSISAF or SICCI) is a good 20 

choice. An additional advantage of using a set of 19 GHz and 37 GHz algorithms is that the 21 

dataset extends from fall 1978 until today and into the foreseeable future.  22 

Over ice the Bristol algorithm, chosen for the high SIC retrievals, is sensitive to the snow and 23 

ice temperature profile as well as to ice emissivity variations. Surface temperature is 24 

quantified in most NWP models, which means that there is a potential for correction. The 25 

Bristol algorithm performance over melting ice is good because the SIC as a function of net 26 

ice surface fraction has a slope close to one. The Bristol algorithm as other algorithms has a 27 

clear seasonal cycle in the apparent ice concentration at 100% SIC when using static tie 28 
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points. This means that dynamic tie points are an advantage when using Bristol (as with most 1 

of the other algorithms).  2 

Over open water the CalVal algorithm, chosen for the low SIC retrievals, is among the 3 

algorithms with the lowest overall sensitivity to error sources including surface temperature, 4 

wind, and atmospheric water vapour. Importantly, the CalVal is relatively insensitive to 5 

CLW, which is a parameter we cannot correct for due to the uncertainty of this parameter in 6 

the NWP data at high latitudes. The response of CalVal to atmospheric correction gives a 7 

substantial reduction in the noise level. The response of CalVal to thin ice is better than that 8 

of the other 19 GHz and 37 GHz algorithms and comparable to near 90 GHz algorithms. 9 

Therefore we suggest that an OSISAF or SICCI type of algorithm with dynamic tie points and 10 

atmospheric correction could be a good choice for SIC climate dataset retrievals. The 11 

selection of tie points should be done with careful attention to the melt pond issues in order to 12 

avoid melt pond contamination of the tie points in summer. Correction for wind speed, water 13 

vapour and surface temperature provides a clear noise reduction, but we found no 14 

improvement from correcting for NWP CLW. 15 

In spite of their high resolution and good skill over ice, the near 90 GHz algorithms have 16 

some limitations for a SIC climate dataset because the near 90 GHz data were not available 17 

before 1991, and they are very sensitive to the atmospheric error sources over open water and 18 

near ice edge such as CLW. Finer spatial resolution achieved by the high-frequency channels 19 

does not offset the weather-induced SIC biases over open water and near ice edge. Model data 20 

used in the RTM to correct for the influence of surface wind speed, water vapor and air 21 

temperature have a coarser spatial resolution and hence will cause artifacts in the RTM-based 22 

correction. The remaining weather effects we cannot correct for (CLW and precipitation) will 23 

become even worse and more difficult to correct for because the model is even less capable to 24 

provide the information for this parameters at the same spatial scale as would be required. 25 

Their skill over ice is approximately the same as the one of the selected Bristol algorithm.  26 

In the presented work we suggested a number of parameters, which could be used in order to 27 

select an optimal approach to retrieval of SIC climate dataset. We also suggested an approach 28 

that satisfies these requirements. However, we do not claim the suggested approach to be the 29 

best one taking into account that there is still a lot of potential for improvement in passive 30 

microwave methods. 31 
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Appendix A: The RRDP tie points 2 

Table A1. The RRDP tie points: brightness temperatures in K 3 

  Northern Hemisphere 

 AMSR-E SSM/I SMMR 

 OW FYI MYI OW FYI MYI OW FYI MYI 

6V 161.35 251.99 246.04    153.79 251.99 246.04 

6H 82.13 232.08 221.19    86.49 232.08 221.19 

10V 167.34 251.34 239.61    161.81 251.34 239.61 

10H 88.26 234.01 216.31    95.59 234.01 216.31 

18V 183.72 252.15 226.26 185.04 252.79 223.64 176.99 252.15 226.26 

18H 108.46 237.54 207.78 117.16 238.20 206.46 111.45 237.54 207.78 

22V 196.41 250.87 216.67 200.19 250.46 216.72 185.93 250.87 216.67 

22H 128.23 236.72 199.60    135.98 236.72 199.60 

37V 209.81 247.13 196.91 208.72 244.68 190.14 207.48 247.13 196.91 

37H 145.29 235.01 184.94 149.39 233.25 179.68 147.67 235.01 184.94 

Near90V 243.20 232.01 187.60 243.67 225.54 180.55    

Near90H 196.94 222.39 178.90 205.73 217.21 173.59    

Southern Hemisphere 

 AMSR-E SSM/I SMMR 

 OW FYI MYI OW FYI MYI OW FYI MYI 

6V 159.69 257.04 254.18    148.60 257.04 254.18 

6H 80.15 236.52 225.37    83.47 236.52 225.37 

10V 166.31 257.23 251.65    159.12 257.23 251.65 

10H 86.62 238.50 221.47    93.80 238.50 221.47 
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18V 185.34 258.58 246.10 185.02 259.92 246.27 175.39 258.58 246.10 

18H 110.83 242.80 217.65 118.00 244.57 221.95 110.67 242.80 217.65 

22V 201.53 257.56 240.65 198.66 257.85 242.01 186.10 257.56 240.65 

22H 137.19 242.61 213.79    129.63 242.61 213.79 

37V 212.57 253.84 226.51 209.59 254.39 226.46 207.57 253.84 226.51 

37H 149.07 239.96 204.66 152.24 241.63 207.57 149.60 239.96 204.66 

Near90V 247.59 242.81 210.22 242.41 244.84 211.98    

Near90H 207.20 232.40 197.78 206.12 235.76 200.88    

 1 

Appendix B: Retrieval of the dynamic tie points 2 

Computing of the dynamic tie points involves two steps. First, a large number of 3 

characteristic Tb samples are selected for each day. Then, these data samples are aggregated 4 

over a temporal sliding window. 5 

The open water tie point 6 

The open water data samples are selected geographically within the limits of two 200 km 7 

wide belts, one in each hemisphere. Each belt follows the mask of maximum sea ice extent 8 

climatology, which was first extended 150 km away from the pole of the respective 9 

hemisphere. A land mask extending 100 km into open sea ensures that the open water 10 

signatures are not contaminated by land spill-over effects. In the Northern Hemisphere, data 11 

points south of 50N are discarded. A maximum of 5,000 randomly selected open water data 12 

samples are kept per day. 13 

The daily open water tie point is computed as the average Tb of all selected open water data 14 

samples in a centred temporal sliding window (± 7 days). The open water tie point is 15 

computed separately for each hemisphere. 16 

The sea ice tie point 17 

The sea ice data samples are selected geographically within maximum sea ice extent 18 

climatology for each hemisphere. The ice tie point data must in addition correspond to a SIC 19 

greater than 95%, as retrieved by the NASA Team algorithm using the tie points from the 20 
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Appendix A. Additional masks ensure that samples are taken away from the coastal regions. 1 

A maximum of 5,000 sea ice data samples are kept per day. 2 

The daily sea ice tie point is computed over the same temporal sliding window as the open 3 

water tie point, and is computed separately for each hemisphere. The slope and offset of the 4 

ice line are computed using Principal Component Analysis. The ice line is the line in Tb space 5 

that goes through the FYI and MYI points (type-A and type-B ice in the Southern 6 

Hemisphere, see Fig. 1 and 2). Since the total SIC is our target (and not the partial 7 

concentrations of ice types), alternative versions of the CV and Bristol algorithms that rely on 8 

the slope and offset of the ice line were implemented. Additional criteria would be needed for 9 

further splitting the sea ice data samples into tie points based on ice types, this is not 10 

considered here. 11 

A similar approach to deriving dynamic tie points is implemented for the sea ice 12 

concentration reprocessed dataset, and operational products of the EUMETSAT OSISAF. 13 
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Table 1. The SIC algorithms shown in this study.  1 

Algorithm Acronym Reference Channels 

Bootstrap P BP Comiso, 1986 37V, 37H P 

CalVal CV Ramseier, 1991 19V, 37V F 

Bristol BR Smith, 1996 19V, 37V, 37H PF 

NASA Team NT Cavalieri et al., 1984 19V, 19H, 37V PF 

ASI ASI Kaleschke et al., 2001 85V, 85H P 

Near 90GHz linear N90 Ivanova et al., 2013 85V, 85H P 

ESMR ESMR Parkinson et al., 2004 19H 

6H 6H Pedersen, 1994 6H 

ECICE ECICE Shokr et al., 2008 19V&19H or 37V&37H P 

NASA Team 2 NT2 Markus and Cavalieri, 2000 19V, 19H, 37V, 85V, 85H PF 

NT+CV NT+CV Ivanova et al., 2013 19V, 19H, 37V PF 

CV+N90 CV+N90 Ivanova et al., 2013 19V, 37V, 85V, 85H PF 

OSISAF OSISAF Eastwood (ed.), 2012 19V, 37V, 37H PF 

P indicates that the algorithm is based on the polarisation difference or ratio at a single frequency; F indicates 2 
that the algorithm uses two different frequencies at the same polarisation (i.e., a spectral gradient). The names of 3 
the high-frequency algorithms (and the algorithms partially using high frequencies) are shown in bold, while the 4 
rest are low-frequency algorithms. 5 

 6 

Table 2a. SIC SD (in %). Low SIC: 15% (0% for SMMR), winter (W) and summer (S). No 7 

open water filter applied. Ref – SD for the full SIC 0% dataset. 8 

Northern Hemisphere 

  AMSR-E SSM/I SMMR  

Algorithm Avrg SD S W S W S W Ref 

6H 2.8 2.0 2.5   2.8 3.8 3.0 

CV 3.8 3.6 3.5 4.6 3.8 3.5 3.9 4.8 
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NT+CV 4.5 4.6 4.4 5.1 4.6 3.9 4.2 5.5 

OSISAF 4.7 5.3 4.8 5.4 4.7 3.8 4.1 5.2 

NT 5.4 5.8 5.5 5.9 5.5 4.7 4.8 6.6 

BR 6.6 7.1 6.7 6.6 6.1 6.4 6.4 7.8 

ESMR 7.2 7.6 7.0 7.9 6.9 7.1 6.5  

NT2 7.3 6.3 6.7 8.9 7.2    

ECICE 9.4 10.7 10.0 8.8 8.2    

BP 13.5 14.5 13.1 12.4 11.4 15.2 14.1 15.5 

CV+N90 15.8 15.6 15.6 16.5 15.3   19.8 

ASI 28.5 31.3 30.1 27.0 25.7    

N90 28.8 28.9 28.8 29.6 27.8   35.9 

Southern Hemisphere 

  AMSR-E SSM/I SMMR  

Algorithm Avrg SD S W S W S W Ref 

6H 2.2 2.1 2.4   1.9 2.2 2.3 

CV 3.5 3.4 3.4 3.9 4.0 3.0 3.2 3.9 

NT+CV 3.9 3.9 3.9 4.4 4.5 3.1 3.4 4.4 

OSISAF 4.3 4.8 4.8 4.9 5.0 3.2 3.4 4.3 

NT 4.4 4.6 4.6 5.0 5.2 3.4 3.7 5.0 

BR 6.1 6.7 6.5 6.3 6.2 5.5 5.7 6.9 

NT2 6.2 6.3 6.3 6.2 6.0    

ESMR 6.7 7.3 7.1 6.9 6.9 6.0 6.1  

ECICE 9.8 11.1 10.7 8.8 8.5    

BP 16.2 17.0 16.2 14.4 14.1 17.6 18.0 17.7 

CV+N90 18.9 20.5 19.8 18.0 17.5   22.0 
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ASI 28.9 32.5 31.1 26.3 25.6    

N90 35.0 38.4 36.9 32.7 32.0   40.8 

 1 

Table 2b. SIC SD (in %). High SIC: 75%, winter. No open water filter applied. Ref – SD for 2 

the full SIC 100% dataset. 3 

Northern Hemisphere Southern Hemisphere 

Alg 
Avrg 

SD 

AMSR-

E 
SSM/I Ref Alg 

Avrg 

SD 

AMSR-

E 
SSM/I Ref 

BR 3.1 3.1 3.1 4.3 BR 2.9 2.8 3.0 4.5 

OSISAF 3.1 3.1 3.1 4.3 OSISAF 2.9 2.8 3.0 4.5 

NT+CV 3.1 3.1 3.2 4.4 6H 2.9 2.9  4.8 

CV+N90 3.4 3.3 3.5 4.6 NT+CV 3.0 2.8 3.1 4.7 

NT2 3.7 3.9 3.6  CV 3.4 3.0 3.7 5.4 

6H 3.7 3.7  5.4 NT 4.3 4.2 4.4 6.6 

NT 3.8 4.0 3.7 5.7 CV+N90 4.6 4.8 4.5 5.9 

ASI 3.9 4.7 3.5  ECICE 4.9 5.4 4.6  

CV 4.5 4.5 4.5 6.4 ASI 4.9 5.9 4.3  

BP 4.6 5.2 4.3 6.2 NT2 5.8 5.7 5.8  

ESMR 4.7 3.0 5.4  ESMR 7.1 3.9 8.6  

N90 5.4 5.2 5.5 7.0 N90 8.1 8.4 7.9 10.4 

ECICE 8.1 7.4 8.5  BP 9.0 8.7 9.2 13.1 

 4 

 5 



 42 

 1 

Figure 1. Coverage graphs for the SSM/I subset of the Northern Hemisphere RRDP in winters 2 

2007 and 2008. Both the Tb and spatial coverage are displayed. In all panels, triangle symbols 3 

are used for the OW locations, and circles for CI. In the Tb diagrams, the OW symbols are 4 

coloured according to Tb22v values (left colour scale), while the CI symbols are coloured 5 

according to Tb37h values (right colour scale). The colouring of CI symbols is also used in 6 

the embedded map. Solid and dashed lines show ice and OW lines respectively. 7 

 8 

 9 

Figure 2. Same as Fig. 1, but in the Southern Hemisphere. 10 
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 1 

Figure 3. AMSR-E SIC in % (y-axis) obtained by four algorithms for the Arctic Ocean as a 2 

function of the net ice surface fraction obtained by MODIS for 21 June – 31 August 2009. 3 

The red lines show the one-to-one regressions. The black line shows the 95% SIC for NT (the 4 

limit used for the dynamic ice tie point). 5 
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 1 

Figure 4. SIC calculated by the SIC algorithms as a function of SMOS ice thickness in areas 2 

of the Arctic Ocean, which are known to be ~100% thin ice during the time period from 1 3 

October to 12 December 2010. Grey shading shows SDs of the algorithms. Number of 4 

measurements in each bin is shown above the x-axis (total number is 991). In this SIC range 5 

OSISAF is the same as BR.  6 
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 1 

Figure 5. Demonstration of the open water/weather filter performance: gradient ratio (GR) 2 

19/22 is plotted as a function of GR19/37 for SSM/I data in 2008 (entire year) for the 3 

Northern Hemisphere for SIC of 0%, 15%, 20% and 30%. The red square shows the value 4 

range outside which the open water/weather filter sets SIC values to 0% (open water). 5 
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 1 

Figure 6. Histograms SSM/I SIC obtained by the OSISAF algorithm over open water (SIC = 2 

0%) in the Northern Hemisphere in 2008 (entire year) without correction (upper panel, left) 3 

and with RTM correction (upper panel, right). The histograms contain 21 bins of 2% SIC. 4 

Bottom plot: decrease in SDs for 10 SIC algorithms due to the atmospheric correction of the 5 

measured Tbs. 6 
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 1 

Figure 7. Examples of tie points time series for the Bootstrap F algorithm in the Northern (left 2 

panels) and Southern (right panels) hemispheres: Tb19v and Tb37v ice tie points (upper and 3 

middle plots respectively) and slopes (bottom plots). The vertical bars in light grey to dark 4 

grey colours denote the progressing melt season from May to September in the Northern and 5 

from November to March in the Southern hemisphere. 6 
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