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Abstract 21 

In recent years, marked improvements in our knowledge of the statistical properties of the 22 

spatial distribution of snow properties have been achieved thanks to improvements in measuring 23 

technologies (e.g., LIDAR, TLS, and GPR). Despite of this, objective and quantitative 24 

frameworks for the evaluation of errors and extrapolations in snow measurements have been 25 

lacking. Here, we present a theoretical framework for quantitative evaluations of the uncertainty 26 

of point measurements of snow depth when used to represent the average depth over a profile 27 

section or an area. The error is defined as the expected value of the squared difference between 28 

the real mean of the profile/field and the sample mean from a limited number of measurements. 29 

The model is tested for one and two dimensional survey designs that range from a single 30 

measurement to an increasing number of regularly-spaced measurements. Using high-resolution 31 

(~ 1m) LIDAR snow depths at two locations in Colorado, we show that the sample errors follow 32 

the theoretical behavior. Furthermore, we show how the determination of the spatial location of 33 

the measurements can be reduced to an optimization problem for the case of the predefined 34 

number of measurements, or to the designation of an acceptable uncertainty level to determine 35 

the total number of regularly-spaced measurements required to achieve such error. On this basis, 36 

a series of figures are presented that can be used to aid in the determination of the survey design 37 

under the conditions described, and under the assumption of prior knowledge of the spatial 38 

covariance/correlation properties. With this methodology, better objective survey designs can be 39 

accomplished, tailored to the specific applications for which the measurements are going to be 40 

used. The theoretical framework can be extended to other spatially distributed snow variables 41 

(e.g., SWE) whose statistical properties are comparable to those of snow depth.  42 



1 Introduction 43 

The assessment of uncertainties of snow measurements remains a challenging problem in 44 

snow sciences. Snow cover properties are highly heterogeneous over space and time and the 45 

representativeness of measurements of snow stage variables (e.g., snow depth, snow density, and 46 

snow water equivalent (SWE)) is often overlooked due to difficulties associated with the 47 

assessment of such uncertainties. This has been, at least in part, due to the limited knowledge of 48 

the characteristics of the spatial statistical properties of variables such as snow depth and SWE, 49 

particularly at the small-scales (sub-meter to tens of meters). However, a turning point has been 50 

reached in recent years thanks to improvements in remote sensing of snow (e.g., light detection 51 

and ranging (LiDAR) and Radar technologies), which have allowed significant progress in the 52 

quantitative understanding of the small-scale heterogeneity of snow covers in different 53 

environments, with resolutions and areas of coverage previously unresolved with the standard 54 

methods of measurement (e.g., Trujillo et al., 2007; Trujillo et al., 2009; Mott et al., 2011). 55 

Point or local measurements of snow properties will continue to be necessary for purposes 56 

that range from inexpensive evaluation of the amount of snow over a particular area, to 57 

validation of models and remote sensing measurements. Such measurements have a footprint 58 

representative of a very small area surrounding the measurement location (i.e., support, 59 

following the nomenclature proposed by Blöschl (1999)), and the integration of several 60 

measurements is necessary for a better representation of the snow variable in question over a 61 

given area. Because of this, tools for quantitative evaluations of the representativeness and 62 

uncertainty of measurements need to be introduced, and the uncertainty of such measurements 63 

should be more widely discussed in the field of snow sciences. 64 



Currently, efforts to assess the reliability and uncertainty of snow measurements have 65 

focused on statistical analyses using point measurements (e.g., Yang and Woo, 1999; Watson et 66 

al., 2006; Rice and Bales, 2010; Lopez-Moreno et al., 2011; Meromy et al., 2013) or 67 

synthetically generated fields in a Monte Carlo framework (e.g., Kronholm and Birkeland, 2007; 68 

Shea and Jamieson, 2010), and comparisons between remotely sensed and ground data (Chang et 69 

al., 2005; Grünewald and Lehning, 2014). These studies have been useful to empirically quantify 70 

uncertainties associated with point measurements; However, these type of approaches do not 71 

provide a quantitative framework for the assessment of uncertainties associated with a particular 72 

sampling design, they do not allow for an optimal sampling strategy (e.g., selecting the number 73 

of points and locations for a desired accuracy level), and they do not take advantage of the 74 

increased knowledge of the characteristics of the heterogeneity of snow cover properties. 75 

Another possible approach is one in which the expected error in the estimation of a particular 76 

statistical moment of a field over a defined domain (e.g., areal mean or standard deviation from a 77 

finite number of measurements) is determined on the basis of known statistical properties of the 78 

field in question. Such approach uses geostatistical principles that have been proposed by 79 

Matheron (1955; 1970) and others, and that have been applied in mining geostatistics (Journel 80 

and Huijbregts, 1978), the analysis of uncertainties when measuring precipitation (Rodríguez-81 

Iturbe and Mejía, 1974), and for a more general analysis of the effects of sampling of random 82 

fields as examples of environmental variables (e.g., Skøien and Blöschl, 2006), among others. 83 

Despite of these examples, there is to the authors’ knowledge no attempt of implementing such 84 

type of approach in snow sciences, tailoring the methodology to the particular analysis of 85 

uncertainties when measuring snow variables such as snow depth. Such an implementation 86 

appears to be lacking in numerous studies that use point measurements to represent snow 87 



distribution, addressing the spatial extrapolation of such point measurements as the “true” spatial 88 

distribution of snow depth when evaluating the performance of interpolation methodologies, 89 

regressions trees, and hydrological models. These comparisons ignore the intrinsic error incurred 90 

when extrapolating the original point measurements, leaving a proportion of uncertainty that can 91 

be significant unaccounted for. This is the principal motivation of the present study, with the 92 

intention of spreading the use of more objective and quantitative methodologies for error 93 

evaluation in snow sciences. Also, the approach that is presented below can be used for objective 94 

survey design to estimate snow distribution from point measurements. We do not intend to 95 

present our approach as novel in the general geostatistical sense; instead, we present the 96 

derivation with the specific application for snow sciences in mind. However, because of the 97 

general nature of the random fields’ theory that the development is based on, similar 98 

developments can indeed be applied to other environmental variables that can be described as a 99 

random field. 100 

On this basis, the error in the estimation of spatial means from point measurements over a 101 

particular domain (e.g., a profile, or an area) can be quantified as the expected value of the 102 

squared difference between the real mean and the sample mean obtained from a limited number 103 

of point measurements. Such an approach, as it will be shown here, uses spatial statistical 104 

properties of snow depth fields in a way that allows for an objective evaluation of the estimation 105 

error for snow depth measurements. The sections below illustrate the use of such methodology 106 

for optimal design of sample strategies in the specific context of snow depth. However, the 107 

methodology can also be implemented for other snow variables such as snow water equivalent, 108 

given that similar geostatistics can be used to characterize their spatial organization. 109 



2 Background 110 

Let  denote a random field function of the coordinates x in the n-dimensional space 111 

. Bold letters represent a location vector from hereon. In our case, the field can represent e.g.: 112 

snow depth or snow water equivalent (SWE) at a given time of the year. The mean of the process 113 

over a domain A (e.g., a profile section or an area) is defined as: 114 

µz A( ) = 1
A

z x( )
A∫ dx

  
(1) 115 

In practice, the mean is often obtained from the arithmetic average of measurements at a 116 

finite number of locations, N, within the domain: 117 

Z = 1
N

z xi( )
i=1

N

∑   (2) 118 

The performance of the estimator  can be evaluated by calculating the expected value of 119 

the square difference between the estimator  and the true mean  120 
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For a 1st order stationary process (i.e., the mean independent of location; e.g., Cressie (1993), 122 

section 2; and Journel and Huijbregts (1978), section 2 ), (3) can be expressed as 123 
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where VAR[ ] and COV[ ] are the variance and the covariance, respectively. If we further 125 

assume that the process is second order stationary (e.g., Cressie (1993), section 2; and Journel 126 

and Huijbregts (1978), section 2), that is, if the mean and the variance are independent of the 127 

location, and the covariance function depends only on the vector difference 
  
x

i
− x

j , 
. (3) can be 128 

expressed as 129 
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(5) 130 

where CORR[ ] is the correlation function, and 
  
σ

p

2  is the variance of the point process. 131 

The first two terms in (5) are the total sum of the covariances (or correlation as 
  
σ

p

2  has been 132 

factored out) between all point locations  (e.g., measurement locations). The first of 133 

the two terms is only a function of the number of points, while the second is a function of the 134 

number of points, N, and the correlations between the locations. Such correlations are themselves 135 

a function of the separation vectors (both in magnitude and direction), and the parameters of the 136 

correlation function. These two terms are independent of the size of the area A, and can be 137 

thought of as the portion of the error caused by the correlation between the point processes at the 138 

locations  (e.g., measurement locations). Term 3 accounts for the correlation between 139 

the measurement locations and the continuous process over the domain A. This term can be seen 140 

as a negative contribution to the total error assuming that the sum of the integrals is positive. The 141 

term is a function of the number of points, N, the domain area, A, the location of the points and 142 

i = 1,. . . ,N

i = 1,. . . ,N



the correlation structure, characterized using the parameters of the correlation function. Lastly, 143 

term 4 is the contribution to the error caused by the intrinsic correlation structure of the 144 

continuous process over the domain. This term is a function of the domain (e.g., size and shape 145 

of A) and the correlation structure (e.g., parameters of the correlation function). 146 

3 Data 147 

For the analyses and tests of the methodology presented here, Light Detection and Ranging 148 

(LIDAR) snow depths obtained as part of the NASA’s Cold Land Processes Experiment (CLPX) 149 

will be used (Cline et al., 2009). The dataset consists of spatially distributed snow depths for 1-150 

km x 1-km areas (Intensive Study Areas - ISAs) in the Colorado Rocky Mountains close to 151 

maximum snow accumulation in April, 2003. The data were processed from snow-on (8-9 April, 152 

2013) and snow-off (18-19 September, 2013) LIDAR elevation returns with an average 153 

horizontal spacing of 1.5 m and vertical tolerance of 0.05 m. The final CLPX snow depth 154 

contour product (0.10 m vertical spacing) was generated from these returns. This product was 155 

used to generate gridded snow depth surfaces with 1024x1024 elements over the ISAs, for a grid 156 

resolution of 0.977 m. For this study two areas will be used: the Fraser – St Louis Creek ISA 157 

(FS) and the Rabbit Ears – Walton Creek ISA (RW) (Figure 1). The FS ISA is covered by a 158 

moderate density coniferous (lodgepole pine) forest on a flat aspect with low relief. The RW ISA 159 

is characterized by a broad meadow interspersed with small, dense stands of coniferous forest 160 

and with low rolling topography. The snow depth distributions in these ISAs show differences 161 

that are relevant for the analysis of the methodology introduced here. At the FS ISA, the snow 162 

depth distribution is relatively isotropic (Figure 1b), with short spatial correlation memory and 163 

little variations in the spatial scaling properties (i.e., power-spectral exponents and scaling 164 

breaks) with direction (Trujillo et al., 2007). On the other hand, the spatial distribution of snow 165 



depth in the RW ISA is more anisotropic (Figure 1c), with longer spatial correlation memory 166 

along a principal direction aligned with the predominant wind direction versus shorter memory 167 

along the perpendicular direction, and with variations in the power-spectral exponents and 168 

scaling breaks according to the predominant wind directions (Trujillo et al., 2007). 169 

4 One-dimensional process 170 

The spatial representation of the snow cover requires a basic assumption on the scale or 171 

resolution at which a field or profile is going to be represented. This relies on the spatial support 172 

of the measurements. For the case of snow depths, point measurements from local surveys using 173 

a snow depth probe are frequently used for this representation. Generally, there are additional 174 

sources of uncertainty associated with these types of measurements, such as the accuracy of the 175 

position of the measurement in space or deviations in the vertical angle of penetration of the 176 

probe through the snow pack. These uncertainties are additional to any of the uncertainties 177 

estimated using the methodology discussed here. 178 

The one-dimensional case provides a good opportunity to illustrate the limitations of point 179 

measurements. Consider the case of a snow depth profile that is measured using a snow depth 180 

probe at a regular spacing “d”. Each of these point measurements is meant to represent the mean 181 

snow depth over a particular distance surrounding the measurement, and the question is: over 182 

what distance is such assumption valid? In this case, the intrinsic assumption is that the 183 

measurement is representative over the distance “d”, but at this point the validity of such 184 

assumption is not proven.  185 

The answer to this question is conditioned to how variable the profile is and over what 186 

distances. To look at this, let us look at two snow depth profiles, one in a forested environment 187 



(FS) and another in an open environment (RW) in the Colorado Rocky Mountains (Figure 2a and 188 

Figure 3a, respectively). The variability in the profiles is markedly different, with variations over 189 

shorter distances in the forested area, and a smoother profile in the open and wind influenced 190 

environment. This is reflected in the spatial correlation structure of these snow depth profiles, 191 

with stronger correlations over longer distances in open and wind-influenced environments with 192 

respect to that in forested environments (Trujillo et al., 2007; Trujillo et al., 2009). These 193 

differences should be considered when selecting the sampling frequency required to capture the 194 

variability and accurately represent the mean conditions within a particular sampling spacing. 195 

This is illustrated by comparing the mean snow depth for a particular resolution to the point 196 

value at the center of the interval (Figure 2b in a forested environment and Figure 3b in an open 197 

and wind-influenced environment). In the Figures, average versus point values at several 198 

sampling intervals are compared for normalized profiles (µ = 0, σ = 1) separated every 30 m in 199 

both the x (east) and y (north) directions and for an area of 500 m by 500 m. The 30-m separation 200 

between profiles is chosen to reduce the spatial correlation between them. Firstly, the resulting 201 

comparison shows that the point values generally overestimate the variability in mean snow 202 

depths if we replace the mean snow depth distribution by its point sample. To clarify this, let us 203 

consider here two snow depth profiles, one with the snow depths at the nominal scale (~1 m), 204 

and a second one with a moving average (MA) of the first one with an averaging window equal 205 

to the sampling spacing. Ultimately, the variance/standard deviation of the first profile (~1 m) is 206 

larger than that of the MA, with a distribution that reflects these differences. The samples drawn 207 

from the first profile will reflect a larger variance than that of the samples from the MA profile as 208 

they are drawn from these distributions, and this is what is reflected in Figure 2 and Figure 3. 209 

The degree of overestimation can be quantified through the slope of the regression line (in red in 210 



Figure 2b and Figure 3b). In the forested environment (Figure 2b), the slopes range between 0.8 211 

and 0.13, with decreasing slopes with increasing spacing. These slopes indicate that, on average, 212 

the mean values are 0.8 times the point values for the 5 m spacing and 0.1 times the point values 213 

for the 100 m spacing. In the open and wind-dominated environment, the slopes are higher and 214 

range between 0.97 and 0.23 from 5 m spacing and 100 m spacing, respectively. A clear 215 

difference emerges: forested environments require shorter separation between single 216 

measurements if the snow depth profile is to be accurately captured by the measurements. The 217 

variability within the size of the interval determines the degree of uncertainty associated with the 218 

point measurements, as the sub-interval variability is related to the degree of overestimation of 219 

the mean value within the interval. Secondly, the differences between average and point values 220 

for each spacing distance are generally more scattered in the forested environment than in the 221 

open environment, and in both environments the degree of scattering increases with spacing 222 

(Figure 2c and Figure 3c). However, it is important to note here that we are comparing 223 

normalized profiles (µ = 0, σ = 1), allowing us to focus on the rescaled spatial variations. What is 224 

highlighted is the relevance of the spatial structure of the profile rather than the absolute 225 

variance. This spatial structure can be quantified by, for example, the spatial 226 

covariance/correlation function. 227 

Additionally to the differences in the correlation structure, there are also differences in the 228 

absolute variability in snow depth in these environments (Figure 4). As opposed to the 229 

normalized snow depth discussed above, the subinterval standard deviation as a function of 230 

interval size along the profiles is higher in the open and wind-influenced environment at RW 231 

versus the forested environment at FS (Figure 4a). Mean standard deviation values in the open 232 

environment are twice as large as those at the forested environment towards the larger interval 233 



sizes (~100 m). The standard deviation increases with interval size in both environments, with 234 

the steepest increase at the lower interval sizes. Furthermore, the standard deviation tends to 235 

stabilize more rapidly in the forested environments, with an increase of only 1.8 cm between 30 236 

m and 100 m. On the other hand, the standard deviation continues to increase in the open 237 

environment at RW, with less of an asymptotical behavior for the scales analyzed. 238 

Complementary, the shaded areas (25% to 75% quantiles) give an idea of the variability of 239 

standard deviation values, with a much wider range in RW versus FS, and an increase in the 240 

range between quantiles with interval size in RW. 241 

Consistent with the standard deviation, the sub-interval mean range (range defined as the 242 

difference between the maximum and minimum snow depths within an interval) increases with 243 

interval size in both FS and RW (Figure 4b). However, the mean range is larger in the open 244 

environment at RW and the rate of increase with interval size is also steeper. Similarly, the 245 

shaded areas indicate wider distribution of range values in the open environment at RW, while 246 

relatively uniformly distributed around the mean across interval sizes in the forested environment 247 

at FS. The results in Figure 2-Figure 4 illustrate this contrasting behavior between the snow 248 

covers in these environments and their influence on measurement strategies: that is, the forested 249 

environments requires shorter separation between measurements for accurate representation of 250 

the snow cover, however, in the wind-influence and open environment, the subinterval 251 

variability is higher indicating wider variations around any sampled measurement within the 252 

interval. 253 

Ultimately, the number and distance between measurements and the specific arrangement of 254 

the measurements are all conditioned to what the measurements are needed for. Hydrologic 255 

applications may not require a highly detail representation of a snow depth profile (or a field), 256 



and representing the average conditions over a given distance (or area) is sufficient, but small-257 

scale process-based studies may require a more detailed characterization over shorter distances 258 

(or smaller areas). This implies that the decision depends on the particular use that the 259 

measurements will support. In the following sections, the equations presented in the Background 260 

(section 2) will be applied to evaluate the uncertainty associated with multiple measurement 261 

designs for profiles and fields of snow depth. 262 

4.1 Case 1: Single measurement along a profile section 263 

Equation (2) can be used to evaluate the uncertainty of a single measurement along a profile 264 

section of length L. For this case, as well as for the following cases in this article, an exponential 265 

covariance with a decay exponent ν (ν > 0) will be assumed: 266 

COV h,σ ,ν( ) =σ 2 exp −ν h( )   for σ2 > 0, and ν > 0 (6) 267 

were σ2 is the variance, and h  is the length of the vector h . For this one-dimensional case 268 

and combining (6) and (5), the following expression is obtained: 269 
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 (7) 271 

where x is the distance from one extreme of the section to the location of the measurement 272 

(Figure 5a). The normalized squared error σ
Z

2 x,L,ν( ) σ
p

2  is minimized at x equal to half of the 273 

section length, L/2, regardless of ν. The existence of a correlation in the profile leads to this 274 

solution, as the middle location contains more information about its surroundings. Also, this 275 

solution is different from the solution for an uncorrelated profile (e.g., white noise), for which 276 



the squared error would be equal to the variance, independent of the location of the 277 

measurement. 278 

The results here are confirmed with an analysis of LIDAR snow depths profiles in FS and 279 

RW (Figure 6). The analysis consists of calculating the difference between the mean and the 280 

point value for sections of a given length (varied between 10 m – 50 m) and for x (Figure 5a) 281 

between 0 and L along the profile sections. Each sample section of length L will provide a single 282 

difference for each of the x values. These sample differences are then used to calculate the mean 283 

normalized squared error for each x, and the same is repeated for each section length L. The 284 

results indicate that the real snow depth profiles behave as predicted by the model of the error, 285 

with a minimum error at x equal to half of the section length. Another difference highlighted by 286 

these results is the difference between the sample errors in the forested environment (FS) versus 287 

the open environment (RW) for the larger interval sizes (e.g., 50 m). The sampled normalized 288 

squared error in the forested environment shows only a mild decrease in the square error to 289 

around 0.7-0.8 towards the inside of the section length. However, this decrease is achieved for 290 

the measurement along most of the interval length with the exception of the extremes. This can 291 

be explained by the relationship between the spatial memory of snow depth (e.g., the correlation 292 

function) and the section length. Densely forested environments exhibit correlation lengths that 293 

are shorter than those in open and wind influenced environments (e.g., Trujillo et al., 2007; 294 

Trujillo et al., 2009). As the section length increases beyond such correlation lengths, a 295 

measurement location towards the middle of the interval contains less information of the 296 

surrounding snow depths in a forested environment (e.g., FS) versus an open and wind 297 

influenced environment (e.g., RW). This is observed in Figure 6c versus Figure 6f, with the 298 

results in RW showing a more clear minimum towards the center of the profile section. The 299 



results also show a poorer performance of the model in RW versus FS, as the exponential 300 

correlation model has a poorer fit in RW at the shorter-lag range; However, model performance 301 

is improved for longer section lengths (e.g., Figure 6c and f) 302 

Model and sampled results thus support that the measurement location can be fixed in the 303 

middle of the interval, and the normalized squared error can then be described as a function of 304 

both, the exponential decay exponent, ν, and the length of the section, L (Figure 7a). The 305 

normalized squared error increases with interval length, with a steeper increase for larger 306 

exponential decay exponents, for which the squared error approaches that of an uncorrelated 307 

field more rapidly. The theoretical model is tested on the snow depth fields at FS and RW. The 308 

test consists of calculating the sampled normalized squared error as the average of all squared-309 

differences between the mid-section snow depth and the mean from all LIDAR grid-points 310 

within each interval of length L. This is done for profiles separated every 30 m, similar to the 311 

analysis above, and for profiles along the x and y directions. The theoretical normalized squared 312 

error is estimated from (7) using the exponential decay exponent from the model fitted to the 313 

sampled correlation function. The results show that the theoretical model reproduces the sampled 314 

squared error remarkably well, even reproducing the anisotropic properties of the correlograms, 315 

represented by the different exponents of the exponential model along x and y directions (Figure 316 

7b and c). The model also reproduces the different behavior of the squared error between both 317 

fields (i.e., FS and RW), showing that the normalized squared error increases more rapidly and is 318 

larger in the forested environment (Figure 7b) versus the open environment (Figure 7c). 319 

However, it should be noted here that as the error is normalized and as the variance of the field in 320 

the open environment is larger (Figure 4a), the absolute squared error could reach higher values 321 

in the open environment (RW). In this regard, one feature to discuss here is the assumption that 322 



the point variance of snow depth in these environments has been estimated as the spatial variance 323 

over the entire study area, as it is generally practiced in time series analysis and geostatistics. In 324 

practice, this is the only possible approach because there is limited information to estimate the 325 

point variance from multiple realizations of the process at each spatial location, as inter- and 326 

intra- annual snow depth fields are not available, not only for these areas, but for almost any area 327 

where this methodology may be applied. 328 

4.2 Case 2: Three measurements along a profile section 329 

From (5) it is also evident that increasing the number of measurements will reduce the 330 

squared error. In the case of three measurements separated by a distance ‘a’, with the middle 331 

measurement centered in the section of length L (Figure 5b), and for an exponential covariance 332 

function with parameter ν, (5) leads to the following expression for this particular case: 333 
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  (8) 334 

Equation (8) can be minimized to determine the optimal separation distance between points, 335 

a, as a function of L and ν: 336 

aoptimal = − 1
ν
ln t( )   (9) 337 

where 338 

t = B + B2 − 4AB
2A

 339 



A = 4ν
9

 340 

and B = − 4
3L
exp −νL

2
⎛
⎝⎜

⎞
⎠⎟  341 

The combination of (8) and (9) can be used to determine the normalized squared error, 342 

σ
Z

2 σ
p

2 , and the optimal distance, aoptimal, for the measurement pattern in Figure 5b. The model 343 

predicts that the normalized squared error is minimized at an intermediate location between 0 344 

and L/2 (black lines in Figure 8a and b). The results show an increase in the error with interval 345 

size, L, as well as little sensitivity of aoptimal to ν. This latter feature can be seen as an advantage 346 

since small biases in the estimation of ν will not result in significant biases in the estimation of 347 

aoptimal. One could almost assume a value of aoptimal without prior knowledge of the exponential 348 

decay exponent, selecting aoptimal within the range of values indicated by the model for a rage of 349 

possible exponential decay exponents. Note that aoptimal is located close to the 60% distance from 350 

the center towards the outer boundary of the profile section for all section lengths (Figure 8a and 351 

b). On the other hand, the measurement error displays a higher sensitivity to ν around aoptimal, 352 

indicating that biases in the estimation of ν would have a more noticeable effect on the 353 

estimation of the measurement error. This is further clarified in Figure 8c, in which the 354 

normalized error (not squared) and aoptimal can be obtained for corresponding profile section 355 

lengths (L) and exponential decay exponents (ν) based on the isolines shown. For example, for a 356 

profile section of 30 m, and an exponential decay exponent of 0.2 m-1, the normalized error is 357 

0.32 and aoptimal is 9.63 m (see intersect of the two isolines in Figure 8c). The normalized error in 358 

Figure 8c is not squared, highlighting the sensitivity of the measurement error to ν, which 359 



represents the degree of spatial correlation of the profile in this case (e.g., lower values indicate 360 

stronger spatial memory/correlation, hence lower measurement errors). 361 

The performance of the model is tested against the normalized squared error obtained from 362 

the same snow depth profiles in FS and RW. The test consists of estimating the normalized 363 

squared error for profiles sections of length between 10 m and 80 m, with a being varied between 364 

0 and L/2 (Figure 9). For each value of a, the normalized squared error is estimated based on the 365 

means obtained using the three snow depth samples for each section. All squared differences are 366 

then averaged to obtain the values presented in the Figure. Sampled and modeled errors follow 367 

the same trend across all a values and for the different L values in Figure 9. The minimum error 368 

is also reproduced by the model proving the applicability of the model for estimating the optimal 369 

separation between measurements. The model does perform better in the forested environment of 370 

FS versus RW, particularly for lower a values. This can be justified as the exponential 371 

covariance model displays a better fit in FS over RW, particularly over the lower range of lag 372 

values. Also, note that both the modeled and sampled normalized squared errors are lower for the 373 

snow depth profiles at RW because of the longer spatial memory of the snow depth distribution 374 

in this environment (higher spatial correlations) when compared to that in FS. 375 

4.3 Case 3: N measurements along a profile section 376 

As stated above, the measurement error can be reduced by increasing the number of 377 

measurements taken over a given section of length L. Let us focus on the case of stratified 378 

sampling where N regularly spaced measurements are taken over the interval (Figure 5c), and to 379 

quantify this reduction we can use (5) and the exponential covariance model. Equation (5) can 380 

then be reduced to: 381 
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The normalized squared error (σ
Z

2 σ
p

2 ) obtained with (10) for profiles sections of lengths 383 

between 10 and 80 shows a steep decrease with N (Figure 10), with a steeper decrease for higher 384 

exponential decay exponents. For the longer profile sections (e.g., 80, Figure 10d), little 385 

reductions are achieved in the squared error beyond only a few measurements (e.g., N = 16). 386 

Equation (10) and the results in Figure 10 can be used to determine the number of measurements 387 

necessary to achieve a desired accuracy level. One could, for example, design a survey to sample 388 

a snow depth profile with a mean value every 10 m. The number of measurements required to 389 

achieve a desired level of accuracy can be obtained from Figure 10a, based on previous 390 

knowledge of the sample estimate of the exponential decay exponent. This can be achieved 391 

thanks to the intra-annual and inter-annual persistence of the spatial patterns, and hence, the 392 

spatial statistical properties of snow depth fields in mountain environments, as shown in previous 393 

studies using both manual surveys and LIDAR measurements (e.g., Deems et al., 2008; Sturm 394 

and Wagner, 2010; Schirmer et al., 2011; Melvold and Skaugen, 2013; Helfrich et al., 2014). A 395 

detailed spatial survey (e.g., dense manual measurements or TLS), sampling different portions of 396 

an area can be used to determine the covariance/correlation characteristics of the snow depth 397 

distribution, with which the model for the error can be applied. An a priori estimate of the 398 

exponential decay exponent may also be possible and will be tested in future applications of the 399 

framework, given the relative insensitivity of the error with respect to ν. 400 



Following the method described in the previous section, we test the performance of the 401 

model against the normalized squared error obtained from the same snow depth profiles in FS 402 

and RW. In this case, the sampled squared error is estimated based on the N regularly-spaced 403 

measurements distributed along the profile sections of length L. As the snow depth fields are 404 

gridded at ~1-m resolution, the location of the measurements is approximated to the closest 405 

coordinate in the profile section following the pattern in Figure 5c. Once again, sampled and 406 

modeled errors follow closely the same trend for the different L values in both FS and RW 407 

(Figure 11). The error decreases with N, with a rapid decay at the lower N values, illustrating that 408 

the error can be drastically reduced by simply increasing the number of measurements by a small 409 

amount. The normalized squared error across all N values is lower for RW than for FS, 410 

consistent with the higher spatial correlations observed in the snow depth fields of RW versus 411 

FS. Once again, there are some differences between the sampled and modeled normalized 412 

squared error in RW for the shorter profile lengths and for small N values: a consequence of the 413 

poorer fit of the exponential model for the shorter lag range in RW. However, the model is still 414 

able to reproduce the error in both fields, and the applicability of the model is illustrated even 415 

when the fit of the correlation model can be improved. 416 

5 Two-dimensional process 417 

Similar to the one-dimensional process, equation (5) can be formulated to calculate the 418 

squared error in the two-dimensional space. To exemplify this, we apply the methodology to an 419 

isotropic process over the x-y plane for three cases in a square area: (a) one single measurement 420 

in the center of the area, (b) five measurements radiating out from the center (Figure 12a), and 421 

(c) N by N measurements regularly spaced in the x and y directions (Figure 12b). 422 



For the isotropic case, the covariance/correlation function is only dependent on the 423 

magnitude of the lag vector, 424 
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and, consequently, the error is represented by, 427 
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 429 

The exponential correlation function for the isotropic case takes the following form: 430 

CORR h,ν( ) = exp −νh( )  (13) 431 

where h is the magnitude of the lag vector. Replacing into the expression for σ Z
2 , we obtain, 432 
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 (14) 433 

For the case of a rectangular area of side dimension Lx and Ly in the corresponding x and y 434 

directions, the equation becomes, 435 
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 (15) 436 

The limits of the integrals can be changed depending on the desired location of the origin. In 437 

this case, the origin is located at the lower-left corner. 438 

As discussed earlier, the first term is only a function of N, such that the base error is the 439 

variance of the point process divided by the number of points. The second term is a function of 440 

N, the location of the points, and the decay rate ν. The third term is a function of N, A, the 441 

location of the points, and the decay rate ν. The fourth term is a function of A and ν, but is 442 

independent of the location of the points and N (i.e., independent of the survey design, and only a 443 

function of the correlation structure of the continuous process). 444 

5.1 Case 1: Single measurement in the center of the area 445 

In this case, we focus on a single measurement in the middle of a square area of side 446 

dimension L. Numerical solution of (15) shows that the normalized squared error increases 447 

rapidly with L, with a steeper increase for higher exponential decay exponents (Figure 13a), 448 

which approach a normalized squared error of 1 for L values less than 10 (e.g., 1 ≤ ν ≤ 5). The 449 

theoretical results in Figure 13a can be used to determine the discrepancy between a single 450 

measurement in the middle of an area and the areal mean for a second order stationary and 451 

anisotropic process with an exponential covariance/correlation function. Comparison of the 452 

modeled and sampled normalized square errors for the FS snow depth field indicate very good 453 

agreement between modeled and sample errors (Figure 13b). The sample error is estimated 454 



following the same procedure explained for the one-dimensional cases, although in the two-455 

dimensional space. Both sampled and modeled errors show the same behavior across L values 456 

between 1 m and 100 m, although the scatter in the sampled error increases for larger L values. 457 

This can be explained by the smaller number of samples to estimate the mean normalized 458 

squared error and the fact that the correlation structure decays rapidly and a single sample 459 

becomes less correlated to the surrounding area for these larger areas. The model introduced here 460 

can then be used to assess the representativeness of a single measurement over an area 461 

objectively and accurately, and it can be extended for other covariance/correlation functions as 462 

needed. 463 

5.2 Case 2: Five measurements radiating out from the center of the area 464 

The case five measurements radiating out from the center (Figure 12a), with a point in the 465 

middle of the area and four points separated by a distance a from the center leads to a similar 466 

optimization problem as illustrated in case 2 of the one-dimensional examples (section 4.2). In 467 

the two-dimensional case, (15) does not have an explicit solution for a, and numerical 468 

implementation is required. The equation can be solved by simply replacing the point 469 

coordinates and the correlation function parameters. Following this approach, the normalized 470 

squared error can be obtained for areas of varying sizes (Figure 14). Similar to the one-471 

dimensional example (case 2, section 4.2), σ
Z

2 σ
p

2  decreases with a, reaching a minimum at an 472 

intermediate distance from the middle point outwards. The decay in σ
Z

2 σ
p

2  is more rapid for 473 

the least correlated processes (i.e., higher decay exponents) reaching a value close to the base 474 

normalized square error that is a function of the number of points (i.e., 1/N = 1/5 in this case). An 475 

extended analysis of the effect of each of the terms in the equation is included in the 476 



Supplementary Information. The error, as shown in Figure 14, is minimized as a consequence of 477 

two balancing terms that lead to this intermediate solution. The optimal solution is a balance 478 

between reducing the correlation between the individual measurements (e.g., increasing the 479 

separation between the location of the measurements) but increasing the correlation between the 480 

measurements and the surrounding area (e.g., locating the measurements closer to the middle of 481 

the area). These two competing effects lead to an optimization problem based on the location of 482 

the point measurements. For the least correlated processes, the error behaves closer to the 483 

behavior of an uncorrelated field once the measurements become effectively decorrelated (e.g., a 484 

> 1 in Figure 14b for ν = 5). Figure 14 exemplifies how (15) can be used to determine the 485 

optimal measurement location for areas of different sizes, and to determine the associated error 486 

with configurations other than the optimal. 487 

The performance of the model is tested against the normalized squared error obtained from 488 

the snow depth field in FS. The test consists of estimating the normalized squared error for 489 

square areas of side dimension (L) between 10 m and 79 m, with a being varied between 0 and 490 

L/2 (Figure 15). For each value of a, the normalized squared error is estimated based on the 491 

means obtained using the five snow depth samples for each section. All squared differences are 492 

then averaged to obtain the values presented in the figure. Once again, the sampled and modeled 493 

errors follow the same trend across all a values and for the different L values. The minimum 494 

error and aoptimal are also reproduced closely by the model, and as the area size increases, the 495 

sampled and modeled error approach the error for an uncorrelated field at larger separations (i.e., 496 

0.2). These results illustrate that the performance of the model in the two-dimensional space is 497 

remarkable, similar to what was observed in the one-dimensional case. 498 



5.3 Case 3: N by N measurements regularly spaced in the x and y directions 499 

Similarly to the one-dimensional case, the two-dimensional case of N by N regularly spaced 500 

measurements (Figure 12b) leads to a decreasing normalized squared error with N (Figure 16). 501 

There is a sharp decrease in the error with just increasing the number of measurements in the 502 

lower range of N. The analysis illustrates that stratified sampling, as the one shown here, is an 503 

excellent approach to minimizing the error. For example, for the area of 10 by 10, increasing N 504 

to 4 (N2 = 16) reduces the normalized squared error to less than 0.05. It is also worth noting here 505 

that for this two-dimensional case, the error is less sensitive to the value of the exponential decay 506 

exponent (ν) for the higher N values as the mean is accurately captured regardless of the 507 

correlation of the field. Beyond a certain number of measurements regularly distributed in the 508 

area, the measurements gather enough information such that there are only very minor 509 

improvements with the addition of new measurements, regardless of the exponent value. Figure 510 

16 serves as an example of how the methodology can be used for objective selection of the 511 

number of measurements necessary to achieve a desired accuracy level using prior knowledge of 512 

the spatial covariance function. 513 

The performance of the model is tested again for square areas of side dimension (L) between 514 

10 m and 79 m using the snow depth field in FS, and for an increasing number of rows/columns 515 

of measurements leading to a total number of measurements of N2 (Figure 17). The results 516 

illustrate again the accurate performance of the theoretical model, with sampled and model errors 517 

following closely the same squared errors. Both sampled and modeled errors increase as the size 518 

of the area increases, as expected. These results complete the model performance tests for the 519 

two-dimensional isotropic case. 520 



6 Summary and Conclusions 521 

A methodology for an objective evaluation of the error in capturing mean snow depths from 522 

point measurements is presented based on the expected value of the squared difference between 523 

the real average snow depth and the mean of a finite number of snow depth samples within a 524 

defined domain (e.g., a profile section or an area). The model can be used for assisting the design 525 

of survey strategies such that the error is minimized in the case of a limited and predetermined 526 

number of measurements, or such that the desired number of measurements is determined based 527 

on a predefined acceptable uncertainty level. The model is applied to one- and two-dimensional 528 

survey examples using LIDAR snow depths collected in the Colorado Rockies. The results 529 

confirm that the model is capable of reproducing the estimation error of the mean from a finite 530 

number of samples for real snow depth fields. 531 

Here, we should highlight some of the implications of the assumptions made in the model. In 532 

simplified terms, the second-order stationarity assumption implies that the mean and the variance 533 

of the process/variable (e.g., snow depth) are independent of the spatial location, and that the 534 

covariance is dependent only on the separation vector (i.e., lag). Although these assumptions 535 

may not be as adequate over larger scales (e.g., greater than 100 m), at smaller scales the 536 

assumption in the context of the model application to snow depth should be valid. We present 537 

these examples to show how the error can be quantified with good accuracy around such smaller 538 

scales. Application of such types of approaches at larger scales will require additional 539 

evaluations with particular attention as to what the specific demands of the application are. Also, 540 

the methodology as presented here is not suitable for discontinuous snow covers if both snow-541 

covered and snow-free areas are considered in the error estimation. This case has not been 542 

considered in the development here. 543 



Implementation of the model in practice requires prior assumption of a 544 

correlation/covariance model and estimates of the parameters of this model (e.g., the decay 545 

exponent for the exponential case). In the examples here we use LIDAR data for the parameter 546 

estimation, which we have done to illustrate the applicability of the model and its ability to 547 

estimate the error using real snow depth data. Snow distribution in mountain environments has 548 

been shown to be consistent intra- and inter-annually because the controlling processes are 549 

relatively consistent during the season and from season to season. Such consistency suggests that 550 

the correlation/covariance model should also be consistent, as well as the parameters of the 551 

model. These parameters can be estimated via a dense survey either manually or with TLS of one 552 

or more small plots of a size similar to the size that is aimed to be represented. These surveys 553 

would not necessarily have to be repeated as the parameters and covariance models should be 554 

preserved. Detailed surveys can be conducted under different conditions to characterize the range 555 

of the correlation models and parameters (e.g., after a snow storm, or close to peak 556 

accumulation). Also here, we should point out that although we show results for a wide range of 557 

the exponential decay exponent values, we are finding that most of the values that we have 558 

observed are in the lower range of those presented (e.g., 0.1-0.2 m-1). Hence, the biases in the 559 

estimated error and the survey design remain small. 560 

Currently, remote sensing technologies (e.g., TLS, Airborne LiDAR, and ground penetrating 561 

radar) are allowing for the characterization of snow cover properties at increasing resolutions in 562 

both space and time. Such improvements can be utilized in the context presented here providing 563 

information about the range of best fitting covariance/correlation models and parameters for 564 

different conditions, supporting the application of methodologies such as the one presented here. 565 

With such improvements, survey designs can be optimized such that estimation errors can be 566 



explicitly addressed and accounted for, particularly when extrapolating a limited number of 567 

measurements to estimate the spatial distribution of snow. Such applications will continue to be 568 

relevant despite of the aforementioned improvements, as access to these technologies is limited 569 

by their cost and the expertise that is required for their application. 570 

  571 
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 577 

Figures 578 

Figure 1. (a) Location of the Fraser and Rabbit Ears study areas in the state of Colorado (in 579 
grey). (b) LIDAR Snow depth distributions on April 8, 2003, at the Saint Louis Creek Intensive 580 
Study Area (ISA) and (c) on April 9 at the Rabbit Ears ISA. 581 

Figure 2. (a) Sample normalized snow depth profile (mean = 0, standard deviation = 1) in a 582 
forested environment from LIDAR (1-m resolution) at the Fraser – St. Louis Creek (FS) 583 
intensive study area (ISA) of the Cold Land Processes eXperiment (CLPX) (Trujillo et al., 2007; 584 
Cline et al., 2009). The profile is sampled with regular separations (spacing) of 5 m, 10 m, 25 m, 585 
50 m, and 100 m (from top to bottom, respectively). (b) Average values within sampling 586 
intervals (same as in (a)) versus point samples for normalized snow depth profiles in the FS ISA. 587 
The red line is a linear regression fit, with slope β and r2 as indicated in each plot. (c) Histograms 588 
of the difference between the point and average values for each of the sampling intervals. The 589 
vertical red line marks the mean difference. 590 

Figure 3. (a) As Figure 2 but for an open and wind influenced environment at the Rabbit Ears 591 
– Walton Creek (RW) ISA of the CLPX (Trujillo et al., 2007; Cline et al., 2009). (b) Average 592 
values within sampling intervals (same as in (a)) versus point samples for normalized snow depth 593 
profiles in the RW ISA. The red line is a linear regression fit, with slope β and r2 as indicated in 594 
each plot. (c) Histograms of the difference between the point and average values for each of the 595 
sampling intervals. The vertical red line marks the mean difference. 596 

Figure 4. Sub-interval standard deviation (a) and range (b) for varying interval lengths for 597 
profiles of snow depth in a forested environment (FS) and an open and wind-influenced 598 
environment (RW) in the Colorado Rocky Mountains (same regions as those in Figure 2 and 599 
Figure 3). The mean standard deviation and mean range for the study areas are shown by the 600 
solid lines, while the shaded areas cover the quantiles between 25% and 75% of the values for all 601 
the intervals in these areas.  602 

Figure 5. Survey designs for the sampling of a snow profile. 603 

Figure 6. Comparison of the theoretical and sampled normalized squared error ( ) for 604 
the case of a single measurement along a profile section of length L, as in Figure 5a. The survey 605 
case applied to profiles in FS and RW along the x and y directions. Solid lines are the theoretical 606 
error using exponential decay exponents derived from the functions fitted to the sampled 607 
correlation functions of the two surfaces in the x and y directions. 608 

Figure 7. (a) Theoretical normalized squared error for a single measurement in the middle of a 609 
section of length, L, and for an exponential correlation function with a decay exponent, ν. (b) and 610 
(c) Comparison of the theoretical and sampled normalized squared error for the same survey case 611 
applied to profiles in FS and RW along the x and y directions. Dashed lines are the theoretical 612 
error from (7) using exponential decay exponents derived from the functions fitted to the 613 
sampled correlation functions of the two surfaces in the x and y directions. 614 

Figure 8. (a) and (b) Theoretical normalized squared error for the three-point pattern along a 615 
profile section in Figure 5b, and for profile section lengths (L) of 1 (a) and 25 (b). Each of the 616 
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colored lines corresponds to a specific decay exponent, ν, and the black line marks the 617 
theoretical solution for aoptimal. (c) Theoretical normalized error and aoptimal for isolines of profile 618 
section lengths (L) and exponential decay exponents (ν) for the three-point pattern along a profile 619 
section of length L in Figure 5b. 620 

Figure 9. Theoretical and sampled normalized squared error ( ) for the three-point 621 
pattern along a profile section in Figure 5b, and for profile section lengths (L) between 10 m and 622 
80 m in FS and RW. The solid lines are the theoretical error from (8) using exponential decay 623 
exponents derived from the functions fitted to the sampled correlation functions of the two 624 
surfaces in the x and y directions, while the dots correspond to the sampled error for profiles in 625 
FS (a-d) and RW (e-h). 626 

Figure 10. Theoretical normalized squared error ( ) for the N-point pattern along a 627 
profile section in Figure 5c, and for profile section lengths (L) between 10 and 80 obtained from 628 
(10). 629 

Figure 11. Theoretical and sampled normalized squared error ( ) for the N-point pattern 630 
along a profile section in Figure 5c, and for profile section lengths (L) between 10 m and 80 m in 631 
FS and RW. The solid point markers are the theoretical error from (10) using exponential decay 632 
exponents derived from the functions fitted to the sampled correlograms of the two surfaces in 633 
the x and y directions, while the circle markers with the dotted lines correspond to the sampled 634 
error for profiles in FS (a-d) and RW (e-h). 635 

Figure 12. Sample survey designs with (a) a 5-point pattern centered in the area, and (b) a 636 
regularly spaced pattern. For the 5-point pattern, a can vary between 0 and L/2, while for the N x 637 
N points pattern, the separation between the measurements is determined by the number of 638 
points. 639 

Figure 13. (a) Theoretical normalized squared error ( ) for the two-dimensional case 640 
with a single measurement in the middle of a square area with side dimension L. (b) Theoretical 641 
and sampled normalized squared error for the same two-dimensional survey applied to the snow 642 
depth field in FS. The dashed line is the theoretical error derived for an exponential decay 643 
exponent of 0.17 derived from the sampled correlation function of snow depth in FS, while the 644 
solid line is the sampled normalized squared error for the snow cover in FS. 645 

Figure 14. Theoretical normalized squared error ( ) as a function of the distance a from 646 
the center of the area for square areas of side dimensions (L) between 10 and 80. Each curve 647 
corresponds to an exponential decay (ν) between 0.1 and 5. 648 

Figure 15. Theoretical and sampled normalized squared error ( ) for the 5-point pattern 649 
in Figure 12a over square areas of side dimensions (L) between 10.7 m and 79.1 m. The 650 
separation distance (a) is varied from the center outwards. The solid line is the theoretical error 651 
derived for an exponential decay exponent of 0.17 derived from the sampled correlation function 652 
of snow depth in FS, while the solid red point markers are the sampled normalized squared error 653 
for the snow cover in FS. 654 
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Figure 16. Theoretical  normalized squared error ( )  for the N by N point pattern in 655 
Figure 12b, and for areas of side dimension (L) between 10 and 80. The exponential exponent is 656 
varied between 0.1 and 5. 657 

Figure 17. Theoretical and sampled normalized squared error ( ) for the N by N point 658 
pattern in Figure 12b, and over square areas of side dimensions (L) between 10.7 m and 79.1 m. 659 
The solid black point markers are the theoretical error for an exponential decay exponent of 0.17 660 
derived from the sampled correlogram of snow depth in FS. The dotted red lines with circle 661 
markers are the sampled normalized squared error for the snow cover in FS. 662 
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