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Abstract

We propose a method to compute nearly noise-free
:::::::
reduce

:::
the

::::::
error

::::::::::
generated

::::::
when

::::::::::
computing

:
sea ice deformation fields from SAR-derived motion and present the results

of its application to RGPS sea ice trajectories
:::
sea

::::
ice

:::::::
motion. The method is based on two

steps. The first step consists of using a triangulation of the positions taken from the sea ice
trajectories to define a mesh on which a first estimate of sea ice deformation is computed.
The second step consists of applying a specific smoother to the deformation field to reduce
the artificial noise that arises along discontinuities in the sea ice motion field.

::::
This

:::::::
method

::
is

::::
here

:::::::
applied

:::
to

::::::
RGPS

::::
sea

:::
ice

:::::::::::
trajectories

:::::::
having

:
a
:::::::::
temporal

::::
and

::::::
spatial

::::::::::
resolution

::
of

::::::
about

:
3 days

::::
and

:::
10 km,

::::::::::::
respectively.

:
From the comparison between unfiltered and filtered fields,

we estimate that the artificial noise causes an overestimation of about 60 % of opening and
closing. The artificial noise also has a strong impact on the statistical distribution of the
deformation and on the scaling exponents estimated with multi-fractal analysis.

::::::::::
multifractal

::::::::
analysis.

::::
We

::::
also

::::::
show

::::
that

::
a

::::::
similar

::::::
noise

::
is

:::::::
present

:::
in

:::
the

::::::::::::
deformation

:::::
fields

:::::::::
provided

::
in

:::
the

::::::
widely

:::::
used

:::::::
RGPS

::::::::
dataset.

:
These findings may have serious implications for previous

studies as the constant overestimation of the opening and closing could lead to a large
overestimation of freezing in leads, salt rejection and sea ice ridging.

1 Introduction

Sea ice motion can be retrieved from satellite SAR images us-
ing cross correlation techniques and feature tracking algorithms
(Hollands and Dierking, 2011)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok et al., 1990; Fily et al., 1990; Hollands and Dierking, 2011) .

Sea ice deformation is then estimated by computing the spatial derivatives of the sea ice
motion. The most popular dataset providing both sea ice motion and deformation is the
RADARSAT Geophysical Processor System (RGPS) dataset (Kwok, 1998). It covers the
Central

::::::::
Western Arctic for the period 1996–2008 at temporal and spatial resolution of about

3 days and 10 km, respectively.
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As deformation determines sea ice opening (i.e. positive divergence) and closing
(i.e. negative divergence), it may be used to estimate important global quantities, such
as the ice production in leads, with some assumptions on sea ice growth and redistribution
(Kwok et al., 1995). Using the RGPS dataset, Kwok (2006) estimated that deformation-
related ice production is about 25–40 % of the winter ice production in both the perennial
and seasonal ice zone. Kwok et al. (2008) also showed that the deformation-related ice
production derived from the RGPS dataset is up to two times higher than the one estimated
by numerical models, implying a potential underestimate of the associated sea ice–ocean
feedbacks.

In addition to essential information about sea ice opening and closing, the analysis of
sea ice motion and deformation also gives a particular insight to the underlying physics
controlling the sea ice dynamics and provides precious information with which to validate
sea ice models. Marsan et al. (2004) described how the statistics of sea ice deformation
vary as a function of spatial scale, while Rampal et al. (2008) generalized these scaling
properties to both the spatial and temporal domains. Stern and Lindsay (2009) and Herman
and Glowacki (2012) documented the seasonal and inter-annual variability of the spatial
scaling exponents. Girard et al. (2009, 2011) showed that classical sea ice models do not
capture these statistical properties.

The estimation of these global quantities (e.g. total opening/closing) and statistical prop-
erties (e.g. spatial scaling exponents) may be impacted by errors in sea ice deformation
data. Uncertainty on deformation is usually seen as a consequence of motion tracking
errors that depend on the algorithm and parameters used. Lindsay and Stern (2003) es-
timated the standard deviation of the error in area change to be about 1.4 km2 for a 10
by 10 km cell when the tracking error (i.e. tie point) is about 100 m. This error estimate is
equivalent to the level of significance of 0.005 per day for 3 day intervals estimated by Kwok
and Cunningham (2002), and used to determine the error on ice production as being less
than 1 % of the total.

However, two other sources of error can be identified. Both are linked to the definition of
the boundary of the cell (usually quadrangle) over which deformation is computed. Lindsay
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and Stern (2003) showed that unrealistic deformation is often obtained when this boundary
is too irregular. Also, spurious openings and closings (that we will refer to as artificial noise
hereafter) are caused by unfavorable orientation of the cell boundary relative to the discon-
tinuities in the sea ice motion field, also called dynamic discontinuities, slip lines or linear
kinematic features. Lindsay and Stern (2003) evaluated the standard deviation of the error
in area change due to the boundary definition to be about 3.2 km2 for a 10 by 10 km cell,
which is more than twice the error from tracking mentioned above. Kwok (2006) stated that
this artificial noise would lead to an overestimation of the ice volume production, although
no precise number was given. Lindsay et al. (2003) proposed to reduce this error by com-
bining cells together, but this solution reduces the benefits of having high resolution data
and reduces the spatial range over which one could perform scaling analysis.

This paper proposes a method to avoid unrealistic values and to significantly reduce the
noise obtained when computing sea ice deformation from SAR-derived motion and presents
an example of its application to sea ice trajectories coming from the RGPS dataset. The
complete method is described in Sect. 2. In Sect. 3, we discuss the quality of the obtained
deformation fields and we analyze the impacts of removing the artificial noise on the es-
timated global opening/closing and on the spatial scaling of the deformation. Section 4
concludes the paper with a discussion on potential improvements of the method and on
implications of our findings for the existing literature.

2 Method

The method we developed is based on two steps. The first step consists of defining a mesh
by doing a triangulation of a set of tracked points. For each individual triangular cell, the
deformation is calculated using the motion of its three nodes estimated from the tracking
procedure. The second step consists of applying a specific smoother to the obtained defor-
mation fields to reduce the artificial noise.
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2.1 Application to simple test cases

In order to present the method, we first define a simple setup on a square domain having
a normalized area equal to 1. In this domain, tracked points are distributed uniformly with
a mean distance d between them (see for example Fig. 1 with d= 0.1).

:
d
::
is

:::::::::
hereafter

::::::
called

:::
the

:::::::::::
normalized

::::::::::
resolution.

In the first test case, a single crack is defined (black line on Fig. 1). This crack passes
by the center of the domain and makes an angle θ with the horizontal x axis. We want to
simulate a discontinuous displacement field that is induced by the presence of that crack.
To do so, we keep the points located below the crack (lower part of the domain in Fig. 1)
as fixed, and we require the points above the crack (upper part of the domain in Fig. 1) to
move with the same displacement. The two components of the imposed displacement, up
and un, correspond to the displacement parallel and normal to the crack, respectively.

The first step of the method is to perform a Delaunay triangulation of these points to gen-
erate a mesh on which deformation is computed. The spatial derivatives of the displacement
are obtained by calculating the following contour integrals as in Kwok et al. (2008) around
the boundary of each triangle:

ux =
1

A

∮
udy (1)

uy =− 1

A

∮
udx (2)

vx =
1

A

∮
vdy (3)

vy =− 1

A

∮
vdx, (4)

where A is the encompassed
:::
cell area. For example, ux is approximated by:
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ux =
1

A

∑
i=1

nm
:

1

2
(ui+1 +ui)(yi+1− yi), (5)

where n= 3 and subscript n+ 1 = 1
::::::
m= 3

::::
and

:::::::::
subscript

:::::::::
m+ 1 = 1. The shear εs:::::

εshear, and
divergence εn :::

εdiv:deformations are computed as:

εsshear:::
=

√
(ux− vy)2 + (uy + vx)2, (6)

εndiv::
= ux + vy. (7)

In the case of a slip line, un is set to zero. No opening or closing should occur and shear
should have the same value along the crack. Figure 1a and b show the divergence and
shear computed for such a case, with up = 0.01 and un = 0. The divergence field exhibits
spurious positive (opening) and negative (closing) values along the slip line. The shear field
also exhibits some noise, but that is hardly visible on the figure.

This artificial noise generates an overestimation of the total opening (and closing). Re-
peating the slip line experience

:::::::::::
experiment 100 times, with θ varying from −arctan(0.2) to

+arctan(0.2) and with different meshes, we find that the rms
::::
root

::::::
mean

:::::::
square

:::::
(rms)

:
error

per unit crack is about 20 % of the sliding distance up for both the opening and closing. In
other words, with a 100 km long crack and a sliding distance of 1 km, the artificial opening
(and closing) would be about 20 km2.

::
It

::
is

::::::::::
particularly

::::::::::
interesting

:::
to

::::
note

::::
that

::::
this

:::::
error

:::::
does

:::
not

:::::::
depend

:::
on

::::
the

:::::::::::
normalized

:::::::::
resolution

::
d

::::
(we

::::::
tested

::::
with

::
d
::::::
equal

::
to

::::
0.1,

::::
0.01

::::
and

:::::::
0.001).

:

::::::
When

:::::::::
repeating

::::
the

::::::
same

::::
test

:::::
case

::::
with

:::::::::::::
quadrangles

:::::::
instead

:::
of

:::::::::
triangles,

:::
we

::::::
found

::
a

::::
rms

:::::
error

::
of

:::::::
about

:::
18 %

::
of

:::
the

:::::::
sliding

:::::::::
distance

::::
up. For comparison, Lindsay and Stern

(2003) found an error per unit crack of about 15 % of the sliding distance, for a
::::::
similar

::::
test

::::
case

::::
on

:
a
:

mesh made of square cells. It is particularly interesting to note that this error
does not depend on the normalized resolution d (we tested with d equal to 0.1, 0.01 and
0.001)

::::
This

::::::::
analysis

:::::::
shows

::::
that

:::::
using

:::::::::
triangles

:::::
only

::::::::::
generates

:::
an

::::::::
increase

:::
of

::::::
about

:::
10 %

::
of

:::
the

:::::::::
opening

:::::
(and

::::::::
closing)

:::::
error

::::::::::
compared

:::
to

:::::
using

:::::::::::::
quadrangles.

:::::
This

:::::::::
increase

::
of

::::
the
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::::
error

:::
is

::::::
minor

::::::::::
compared

::
to

::::
the

:::::::::::
advantages

:::
of

::::::
using

:::::::::
triangles.

:::::::::::::
Triangulation

::::::::
methods

::::
are

:::::
more

:::::::
flexible.

::
It
::::::::
roughly

:::::::
doubles

::::
the

::::::::
number

::
of

::::::::::::
deformation

:::::::::
estimates

::::
and

::
it
::::::::::
increases

:::
the

:::::::::
resolution

::
at

::::::
which

::::::::::::
deformation

::
is

::::::::
defined.

::::
For

:::
the

::::
rest

:::
of

::::
this

::::::
paper,

:::
we

:::::
then

:::::
only

:::::::
present

::::::
results

:::
on

:::::::::
triangular

::::::::
meshes

:::
but

::::
the

:::::::
method

::::::
could

::::
also

:::
be

:::::::
applied

:::
to

:::::
other

::::
type

:::
of

::::::::
meshes.

In order to remove the artificial noise in the deformation fields one could apply a typical
smoother . For example, we can define a kernel around each individual cell as the set

:::::::::
smoother

::::
over

:::
all

::::
the

:::::
cells

::
of

::::
the

::::::
mesh.

::::
We

:::::
here

:::::::
denote

::
C

::::
the

:::
list

:::
of

::
all

::::
the

:::::
cells

::::
and

:::
for

:::::
each

:::
cell

::::::
c ∈ C,

::::
we

::::::
define

:::
the

:::::::
kernel

:::::::
Kc ⊂ C:::

as
::::
the

::::::
subset

:
of cells that can be reached by

crossing a maximum of n edges(see
:
.
:::
An

:::::::::
example

::
of

::::::
kernel

:::::
with

:::::
n= 7

::
is
:::::::
shown

::
in

:
Fig. 1c

and dfor an example with n= 7).
:
.
::::
The

:::::
size

::
of

::::
the

::::::
kernel

:::
is

::::::
noted

:::::
|Kc|.::::

For
:::
the

:::::::::
example

::::::
shown

::
in

::::
Fig.

:::
1c

::::
and

::
d,

:::::
|Kc|::

is
::::::
equal

::
to

:::
87.

:
The components of the filtered deformation are

then defined by averaging local derivatives over the selected cells .
::
as

:::
an

::::::::::::::
area-weighted

:::::::
average

:::::
over

::::
the

:::::
cells

::
of

::::
the

:::::::
kernel.

:::
For

:::::::::
example,

::::
the

:::::::
filtered

::::::
value

:::
for

:::
ux :::

on
:::
the

::::
cell

::
c
::
is

:::::::
defined

:::
as

ũcx =

∑
k∈Kc

Akukx∑
k∈Kc

Ak
.

:::::::::::::::::

(8)

This method reduces part of the artificial noise but is not appropriate since it ruins the lo-
calization of the shear and adds unreal deformation to non-deforming cells.

:
It
:::::
also

::::::::
modifies

:::
the

::::::
spatial

::::::
scale

::
at

::::::
which

:::
the

::::::::::::
deformation

::
is

::::::::
defined,

::::::::
resulting

:::
in

:
a
::::::::::::
modification

::
of

::::
the

:::::
value

::
of

:::
the

::::::
shear

::::::
along

:::
the

::::::
crack.

:::::
With

::::
the

::::::
single

:::::
crack

::::::
case,

:::
the

::::::::::::::
area-weighted

::::::::
average

:::
of

:::
the

:::::
shear

:::
for

::::
the

::::
cells

::::
cut

::
by

::::
the

:::::
crack

::
is
::::::
found

:::
to

::
be

:::::::::
inversely

::::::::::::
proportional

::
to

:::
n.

We propose a better method based on the fact that the deformation is by nature con-
stant along a linear kinematic feature. Averaging motion derivatives along these features
could then filter out the noise without spoiling the information on the real deformation.

::::::::
Contrary

:::
to

:::
the

::::::::::
smoother

::::::::::
presented

:::::
here

:::::::
above,

::::
the

::::::
scale

:::
at

::::::
which

::::
the

::::::::::::
deformation

::
is

:::::::
defined

::::::::
remains

:::::::::
constant

::::
with

::::
the

:::::::
second

::::::::
method.

:::
In

:::::
other

:::::::
words,

:::
the

::::::
mean

::::::
value

::
of

::::
the

:::::
shear

::::::
along

::::
the

:::::
crack

:::::::::
obtained

::::
with

::::
the

:::::::
second

::::::::
method

:::::
does

::::
not

::::
vary

:::
as

::
a
::::::::
function

::
of

:::
n.

:::
We

:::::
also

:::::::
verified

:::::
that

::
in

::::
the

:::::
case

:::
of

::
a

:::::::
regular

::::::
mesh

::::
and

::
a
::::::
single

::::::
crack

::::::::
aligned

::::
with

::::
the

7
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::::::
x-axis,

:::
the

::::::::::::::
area-weighted

::::::::
average

::
of

::::
the

::::::
shear

:::::
along

::::
the

:::::
crack

::
is

:::::::
strictly

::::::::
constant

:::::::::
whatever

:::
the

:::::
value

:::
of

::
n.

:

To detect the cells that are involved in the mapping of each linear kinematic feature, we

define a threshold for total deformation (
√
ε2n + ε2s:::::::::::::

√
ε2div + ε2shear). Only the cells whose total

deformation is above the threshold are taken into account
::::::::
selected

:
to build the smoothing

kernels (see Fig. 1e and f for an example with n= 7). Thanks to this preselection of cells,
our method reduces the noise while preserving the

::
No

::::::::
filtering

::
is

:::::::
applied

:::
on

:::
the

:::::
cells

::::::
where

:::::::::::
deformation

::
is

::::::
below

::::
the

:::::::::
threshold.

::::
We

:::::::
denote

::
S

::::
the

:::
list

::
of

:::
all

::::
the

::::::::
selected

:::::
cells.

::::
For

:::::
each

:::
cell

:::::::
s ∈ S,

:::
we

:::::::
define

::::
the

::::::
kernel

::::::::
Ks ⊂ S:::

as
::::
the

:::::::
subset

:::
of

:::::
cells

::::
that

::::
can

::::
be

::::::::
reached

:::
by

::::::::
crossing

::::
only

:::::::::
selected

:::::
cells

::::
and

::
a

:::::::::
maximum

:::
of

::
n

:::::::
edges.

::::
|Ks|:::

is
:::
the

:::::
size

::
of

::::
the

:::::::
kernel.

::
In

:::
the

:::::
case

::
of

::::
the

::::::
single

::::::
crack

:::
the

:::::
size

::
of

::::
the

::::::
kernel

::
is
::::::
alway

::::::
equal

::
to

::::::::
2n+ 1,

::::::
except

:::
for

::::
the

:::::::
kernels

:::::::
whose

::::::
center

::
is
::::::

close
:::
to

:::
the

::::::::::
boundary

::
of

::::
the

::::::::
domain.

:::::
The

::::::
kernel

:::::
size

::::
may

:::::
then

::
be

:::
as

::::
low

:::
as

::::::
n+ 1.

::::
Our

:::::::
method

::::::::::
preserves

::::
the localization of the deformation .

::
by

::::::::
avoiding

::::::
mixing

:::
the

::::::::::::
deformation

::::::::
between

::::::
LKFs

::::
(i.e.,

:::::
cells

::::::
where

::::
the

:::::::::::
deformation

:::
is

::::::::
intense)

::::
and

:::
the

:::::::::::
surrounding

::::
rigid

::::::
plates

:::::
(i.e.,

:::::
cells

::::::
where

:::::::::::
deformation

::
is

:::::::
almost

::::::
zero).

:::::::::
Moreover,

::::
the

::::
way

:::
the

::::::::::
smoothing

:::::::
kernels

:::
are

:::::
built

::::::::
ensures

::::
that

:::::::::::
deformation

:::::::::
between

:::::
LKFs

::::
that

::::
are

:::
not

::::::::::
connected

:::
will

:::
not

:::
be

:::::::::
averaged

:::::::::
together.

:

The proposed method relies on two parameters: the deformation threshold that deter-
mines which cells are selected and parameter n that determines how far we extend the
kernel. In our test cases, the threshold value is chosen to be small enough to select all the
deforming cells.

:::
For

:::::::::::
application

:::
to

::::
real

:::::
data,

::::
the

::::::
choice

:::
of

::::
this

::::::::::
parameter

::
is

:::::::
critical

::::
and

::
is

:::::::
detailed

::
in
::::::::
Section

::::
2.2.

:
The impact of parameter n on the total error, defined as the sum of

the opening and closing errors, is shown in Fig. 2 (line with disk symbols). This error, when
normalized by the sliding distance up, decreases from about 40 % to a residual error that
depends on the normalized resolution. For a resolution of 0.1, the residual error is about
10

::::
(i.e.,

::::
the

:::::
error

::::::::::
remaining

:::
for

::::::::
n > d−1)

:::
is

:::::
about

::
5 % as shown in Fig. 2. Simple analytical

developments (not shown here) and numerical experiments with d ranging [0.1–0.001] show
that the residual error for the single slip case is proportional to the normalized resolution,
whereas the initial error does not depend on the normalized resolution.
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The two other curves in Fig. 2 (with square and triangle symbols) correspond to the
normalized errors found for experiments considering a secondary crack as shown in Fig. 3.
The domain is now divided in 3 blocks. Points below the principal crack are still fixed. Points
above the principal crack experience

::::::::::
experiment

:
the same displacement un, perpendicular

to the principal crack, but have distinct tangent components up for the block on the left or
u′p for the block on the right of the secondary crack.

To get one crack opening while the other is closing, u′p is defined as up−un. The ex-
ample in Fig. 3 is given for up = 0.01 and un =−0.0025, so that the principal crack should
be closing whereas the secondary crack should be opening. Before filtering, the computed
divergence field is highly polluted by the noise. Once the deformation is filtered (here with
n= 3), the divergence field better matches the expected opening and closing. At the inter-
section of the two cracks though, the solution may be incorrect, as the method does not
distinguish cracks when they intersect and thus averages deformation over cells belonging
to different cracks.

:
It
:::::::
should

:::
be

::::
also

::::::
noted

:::::
that

::
at

::::
the

::::::::::::
intersections

::
of

::::
two

:::::::
cracks

::::
the

::::
size

::
of

:::
the

:::::::
kernel

::::
|Ks|:::::

may
:::
be

::
as

:::::
high

:::
as

::::::
3n+ 1

::::
(for

:::::::::::::
three-branch

::::::::::::
intersections

:::
as

::
in

::::
Fig.

:::
3)

::
or

::::::
4n+ 1

::::
(for

:::::::::::
four-branch

:::::::::::::
intersections).

:

This mixing of intersecting cracks explains why the normalized error (triangle and square
symbols on Fig. 2), after having rapidly decreased for small n as in the single crack case,
starts to increase for larger n. This simple test case shows that the shape of this function
depends on the ratio un

up
and that the optimal value for n would be 4 for un

up
= 1

8 and 2 for
un
up

= 1
4 .

:::::
From

::::
this

:::::::::
analysis,

:::
we

:::::::
identify

::::::
n= 3

:::
as

:::
an

:::::::
optimal

::::::
value

:::
as

:
it
::
is
::::
the

::::
only

::::::
value

:::
for

:::::
which

::::
the

:::::::
median

:::::
error

::
is

::::::::
reduced

:::
by

::
at

:::::
least

:
a
::::::
factor

::
of

::
3

::
in

::::
any

::
of

:::
the

::::::::::
test-cases

::::::::::
presented

:::::
here. In real cases, to define an optimal value for n is more difficult as it would depend on
the number of intersecting cracks and on the local ratio between divergence and shear. To
optimize

::::
For

::::
this

::::::
study,

:::
we

::::::
chose

:::
to

::::
use

::
a

:::::::::
constant

::::::::::
parameter

::
n

::::
and

:::
its

:::::::::
reference

::::::
value

::
is

:::::
fixed

::
at

:::::::
n= 3.

:::
To

::::::::
validate

:
the choice of the methodparameters,

::
’s

:::::::::::
parameters

:::::
(i.e.,

::
n

:::
and

::::
the

:::::::::
threshold

:::
on

::::
the

::::
total

:::::::::::::
deformation), we present in Sect. 3 another metric based on

a multi-fractal
::::::::::
multifractal

:
scaling analysis of the deformation fields.
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2.2 Application to RGPS sea ice trajectories

The RGPS Lagrangian displacement product provides trajectories of sea ice “points” ini-
tially located on a 10 km regular grid (http://rkwok.jpl.nasa.gov/radarsat/lagrangian.html).
The position

::::::::
positions

:
of these points are updated when two successive images are avail-

able and treated by the tracking algorithm. The time interval between two updates is typically
3 days. Spatial coordinates are given in the SSM/I polar stereographic projection, with the
origin of the Cartesian grid located on the North Pole and the

::::::::
negative

:
y axis aligned to the

45◦W meridian.
The RGPS Lagrangian deformation product provides the deformation of each cell (which

is quadrangle) of the original grid. The deformation of a cell is updated each time the posi-
tion of one of its nodes is

::
all

:::
its

::::::
nodes

::::
are updated. This method has two serious problems:

first,
:
a

:::::::
serious

::::::::
problem

:::::::::
because cells may become so distorted that spatial derivatives are

ill-definedand secondly, artificial deformation may arise when only part of the nodes of a cell
are updated at the same time. As the RGPS deformation dataset does not provide for each
cell the position of its nodeand the date of their last update, it is not possible to filter the data
to avoid these problems. These problems are

:::
this

:::::::::
problem.

::::
This

::::::::
problem

:::
is specific to the

RGPS deformation product and would not appear if each pair of images was treated sepa-
rately with its own grid as in the GlobICE Image Pair product (http://www.globice.info)

::::
and

::
in

:::
the

:::::::::
ENVISAT

::::::::::::
Geophysical

::::::::::
Processor

::::::::
System

:::::::
(EGPS)

::
(http://rkwok.jpl.nasa.gov/envisat/).

To tackle these problems, we reprocessed the RGPS Lagrangian displacement product
to build a new deformation dataset called the RGPS Image Pair Product. We first identify
the tracked points corresponding to each pair of images (i.e. the set of points whose position
has been updated at the exact same date and with the same time interval). We generate
a Delaunay triangulation of these points. Then we compute the deformation over what we
consider as being well-shaped cells, i.e. only for triangles having an area between 5 and
400 km2, their angles higher than 5◦ or all their edges shorter than 25 km. We also only keep
meshes if they have at least 200 nodes, and we discard single and pairs of triangles that
are not connected to other cells. Using triangles instead of quadrangles roughly doubles the

10
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number of deformation estimates, and increases the resolution of the deformation product
up to 7. Figure 4 shows an example of a mesh and a sea ice divergence field after the
processing of the data corresponding to one pair of images. Artificial noise, characterized
by a succession of highly negative and positive values, is clearly visible and, as expected,
is mainly located along lines.

::::::
Using

:::::::::
triangles

:::::::
instead

:::
of

:::::::::::::
quadrangles

::::::::
roughly

::::::::
doubles

::::
the

::::::::
number

:::
of

::::::::::::
deformation

:::::::::
estimates,

:::::
and

::::::::::
increases

:::
the

::::::::::
resolution

:::
of

::::
the

::::::::::::
deformation

:::::::
product

::::
up

::
to

::
7 km

:
.
::::::::
Another

::::::::::
advantage

::
is

::::
that

::::::::::::
triangulations

::::
can

:::
be

::::::
made

::
on

::::
any

::::
set

::
of

::::::
points

::
(if

::::
they

::::
are

:::
not

:::
all

::::::::
aligned),

:::::
which

::
is
::::
not

:::
the

:::::
case

:::::
with

:::::::::::::::
quadrangulation

::::::::::::::::::::::
(Bremner et al., 2001) .

::
If

:::
the

:::::::
tracked

:::::::
points

:::
are

:::::
given

:::
on

::
a

:::::::
regular

::::
grid,

::::::::::::::::
quadrangulation

:::::
could

:::
be

::::::
easily

::::::::::
performed

::::
and

::::::
could

:::
be

:::::::::
preferred.

::::::::
However

:::
for

:::::
most

::
of

::::
the

:::::::::
available

::::::::
datasets

::::
(for

::::::::
example

:::::::::
GlobICE

::::
and

:::::::
EGPS),

::::
the

::::
data

::::
are

:::
not

::::::
given

:::
on

:
a
:::::
grid

:::
but

:::
as

::
a

:::
list

:::
of

::::::
points.

:::::
The

:::::::
method

::::::::::
presented

:::::
here

::::::
based

:::
on

:::::::::
triangles

::
is

::::
then

:::::
very

::::::::
flexible

::::
and

::::
can

::::
be

:::::::
applied

:::
to

::::::
many

::::::::
different

:::::::::
sources

::
of

::::::
data.

::
In

::::
the

:::::
next

:::::::
section,

::::
the

:::::::::
unfiltered

:::::
and

:::::::
filtered

::::::::::::
deformation

:::::
fields

:::::::::
obtained

:::
on

::::::::::
triangular

::::::::
meshes

::::
are

:::::::::
compared

:::
to

:::
the

:::::::
RGPS

:::::::::::
deformation

::::::
fields.

:::::
The

::::::::::
smoothing

::::::::::
procedure

::
is

::::
not

:::::::
applied

:::
to

:::
the

::::::
RGPS

::::::::::::
deformation

:::::
fields

:::::::::
because

::
it

::::::::
requires

::
to

::::::
know

:::
the

::::::::::
neighbors

:::
of

:::::
each

::::
cell

::::
and

::::
this

::::::::::
information

::
is
::::
not

:::::::
present

:::
in

:::
the

::::::
RGPS

:::::::::::
Lagrangian

::::::::::::
deformation

::::::::
dataset.

:

To apply the smoother, we first need to detect the cells that are suspected to map the lo-
cation where

::
of

:
linear kinematic featuresare. Thomas et al. (2008) proposed to use a shear

threshold based on the level of noise resulting from the motion tracking error. Instead, here
we use a fixed threshold based on the total deformation (as in the simple test case pre-
sented above) to give more weight to the cracks suffering from artificial divergencewhile
keeping an important weight for the shear deformation. Cells showing total deformation
greater than the threshold are thus selected and others simply not taken into account for
the filtering procedure. Figure 5 shows the unfiltered total deformation rate and the selected
cells (those with their edges in black) for a threshold equal to 0.02 per day.

Decreasing the threshold increases the number of selected cells and finally leads to
excessive smoothing. Increasing the threshold reduces the number of selected cells and
finally splits linear features into disconnected pieces for which the smoother is not efficient

11
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anymore.
:::::::
Indeed

:
if
::
a

::::::
kernel

:::::
only

::::::::
contains

::::
one

::::
cell,

::::
the

:::::::::
smoother

:::::
does

:::
not

:::::::
modify

::::
the

:::::
value

::
of

:::
the

::::::::::::
deformation

::::
over

::::
that

:::::
cell.

To quantify the effect of this threshold on the quality of the selection, we define an index
based on the size of the smoothing kernels . In the case of an isolated crack, the size of the
kernel

::::
|Ks|:(i.e. the number of cells that can be reached by crossing

::::
only

::::::::
selected

:::::
cells

::::
and

a maximum of n edges)is maximum when equal to 2n+ 1. It can be as small
:
.
:::
As

:::::::::
explained

::
in

:::::
Sect.

::::
2.1,

:::
the

::::
size

:::
of

:::
the

::::::
kernel

:::::
|Ks|:::::

could
:::
be

:::
as

::::
low as n+1 if

:::
for

::::::
single

::::::
cracks

::::::
when the

center of the kernel is at the boundary of the mesh . In the case of
:::
and

:::
as

:::::
high

::
as

:::::::
4n+ 1

::
for

:
two intersecting cracks, the maximum size of the kernel increases up to 4n+ 1. We then

define the quality index as the percentage of treated cells having a kernel size between
n+ 1 and 4n+ 1. For the example of Fig. 5, the quality index is equal to 89 %.

We explored the sensitivity of this quality index to the threshold value for the entire winter
season 2006–2007 and with the parameter n equal to 3.

::
3,

::::::
which

::
is

::::
the

:::::::::
reference

::::::
value

:::::::
defined

::
in

:::::
Sect.

::::
2.1.

:
For deformation thresholds equal to 0, 0.01, 0.02, 0.03, 0.04 and 0.05

per day, median quality indices are equal to 33, 78, 78, 76, 74 and 72 %, respectively.
::::::
Based

::
on

::::
this

:::::::
quality

::::::
index,

::::
the

:::::::::
threshold

:::::::
values

::::
0.01

::::
and

:::::
0.02

::::
per

:::::
days

:::
are

::::
the

:::::
best.

:
The value

of 0.02 per day is chosen as the reference value for the deformation threshold.
::
To

::::::::
quantify

:::
the

::::::
range

::
of

::::
the

::::::
quality

::::::
index

::::::::
obtained

:::::
with

:::
this

::::::::::
reference

::::::
value,

:::
we

::::
look

:::
at

:::
the

:::::::::::
percentage

::
of

:::::
pairs

::
of

::::::::
images

:::
for

:::
the

::::::
entire

::::::
winter

:::::::::::
2006-2007

:::
for

::::::
which

:::
the

:::::::
quality

::::::
index

::
is

:::::
lower

:::::
than

::
50 %

::::
and

:::
we

::::::
found

::::
that

:::::
only

:::
14 %

:
of

::::
the

:::::
pairs

:::
of

:::::::
images

:::::
have

::
a
:::::::
quality

::::::
index

:::::
lower

:::::
than

::
50 %

:
.
:::
To

:::::::
further

::::::::
validate

:::
the

:::::::
choice

::
of

::::
the

::::::
model

::::::::::::
parameters,

::
a
::::::::::::
consistency

::::::
check

::::::
based

::
on

::
a
:::::::::::
multifractal

:::::::
scaling

::::::::
analysis

::
of

::::
the

:::::::::::
deformation

::::::
fields

::
is

:::::::::
proposed

::
in

:::::
Sect.

:::
3.

Figure 6 shows the sea ice divergence field after the application of the smoother with the
parameter n equal to 3. Compared to the unfiltered divergence field shown in Fig. 4, the
filtered field exhibits much less artificial noise and its interpretation is now much easier.
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3 Results and discussion

In this section, we compare the original RGPS deformation data to the unfiltered and filtered
versions of our RGPS Image Pair dataset. A validation metric

:::::::::::
consistency

::::::
check based on

spatial scaling analysis is proposed and the differences between the three datasets in terms
of spatial scaling and total opening/closing are discussed.

To compare the original RGPS deformation data with the unfiltered and filtered defor-
mation data produced by our method, we generate composite pictures of the deformation
rates for specific periods. The periods have to be large

::::
long enough to ensure a good spa-

tial coverage, but not too large
::::
long

:
to avoid mixing incoherent information. For this study,

we select the data for which the time of the first and second images, noted tk−1 and tk
respectively, are within a period of 8 days centered on a target date, and for which the time
interval, ∆t= tk− tk−1, is between 1 and 6 days. For the RGPS dataset, we add a criterion
to reject cells larger than 400 km2.

Selected cells may cover the same area but correspond to different dates and time inter-
vals. This redundancy may impact statistical distribution and scaling analysis, so we apply
a second selection step. We first define a regular grid at a resolution of 20 km. For each
box of this grid, we find the cells whose center is in the box and we keep only those whose
date, defined as (tk + tk−1)/2, is the closest to the target date. This selection step creates
some gaps in the coverage but is necessary to ensure a minimum consistency of the com-
posite fields. Note that no averaging or interpolation is done during the generation of the
composite deformation fields.

Figure 7 shows the divergence rate for the period 2–10 February 2007 given by the
RGPS Lagrangian deformation dataset. Some features are so polluted by a succession of
highly negative and positive values that it is very difficult to identify which

:::::
where

:
cracks

are opening, closing or sliding. Figure 8 shows the unfiltered divergence rate for the same
period obtained after the first step of our method. As in the RGPS dataset, the artificial
noise is important and mainly located along linear kinematic features. Figure 9 shows the
filtered divergence rate obtained with a deformation threshold of 0.02 per day and n= 3.
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The reduction of the noise makes much easier the identification of the opening and closing
cracks.

3.1 Validation
::::::::::::
Consistency

:::::::
check

To validate
::::::::
evaluate

:
our method in a more quantitative way, we propose a metric based on

a spatial scaling analysis. Scaling analysis is a powerful tool to characterize sea ice dynam-
ical behavior, and has been successfully used in previous studies to reveal the power-law
scaling of sea ice deformations (Marsan et al., 2004; Rampal et al., 2008). Since the result
of the scaling analysis is by definition very sensitive to the presence of noise and extreme
values in the analyzed field, one may use it to check the presence of spurious noise in
deformation datasets.

::::
The

::::::::
spurious

::::::
noise

::
in

::::
the

::::::::::::
deformation

:::::
fields

::::::::::::
corresponds

:::
to

::::
high

:::::::
values

::
of

::::::::::::
deformation

:::
and

:::
is

::::::::::
potentially

::::::::
present

:::
for

:::::
any

::::::
active

::::::
linear

::::::::::
kinematic

:::::::::
features.

::::
This

::::::
noise

:::::
may

:::::
then

::::::
impact

::::
the

:::::::::::
distributions

:::
of

:::::
shear

::::
and

:::::::::
absolute

:::::::::::
divergence

::::
and

::::::
modify

:::::
their

::::::
mean

:::::::::
(1st-order

::::::::
moment)

::::
but

::::::
even

::::::
more

:::::
their

::::::::::
standard

:::::::::
deviation

:::::::::::
(2nd-order

:::::::::
moment)

:::::
and

::::::::::
skewness

:::::::::
(3rd-order

::::::::::
moment).

:::::::::
Moreover

::::
this

::::::
noise

::
is
::::

the
::::::::
highest

::
at

::::
the

::::::::::
resolution

:::
of

:::
the

:::::
data

::::
but

::::::
rapidly

::::::::::
decreases

:::
for

::::::
larger

:::::::
spatial

::::::
scales.

::::
We

:::::
then

::::::
expect

::::
that

::::
the

:::::::::
presence

::
of

::::::
noise

::
in

:::
the

:::::::::::
deformation

:::::
fields

::::
will

:::::
have

::
a

::::::
strong

:::::::
impact

:::
on

:::
the

::::::
result

::
of

::::
the

:::::::
scaling

::::::::
analysis,

::::::::::
especially

::
for

::::
the

::::::::
smallest

:::::::
scales

::::
and

::::
the

:::::::::::::
highest-order

:::::::::
moments

::
of

::::
the

:::::::::::
distribution.

:
Indeed, we as-

sume that the power-law model for the spatial scaling of sea ice deformations has no physi-
cal reason to not hold over several orders of magnitude. This assumption is based on Weiss
and Marsan (2004) who showed that the power-law model for the spatial scaling of the open
water density, which can be directly related to sea ice divergence, is valid down to 0.2 km.
Therefore, any significant departure from the power-law model when approaching the spa-
tial resolution of the data can

:::::
could

:
be seen as an indicator of the remaining noise in the

deformation field.
To perform the scaling analysis of sea ice deformation, we implemented a coarse graining

method similar to the one proposed by Marsan et al. (2004) and applied it to the unfiltered
and filtered versions of our RGPS Image Pair dataset. Sea ice shear and

::::::::
absolute

:
diver-

14
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gence rates are computed at different spatial scales ranging from 7 to 700 km. The values
obtained for each scale

:::
For

::::
the

::::::
lowest

::::::
scale,

::::::
which

::
is

:::::
also

:::
the

::::::
scale

::
of

:::
the

::::::::::
triangular

:::::
cells,

::
all

::::
the

:::::
cells

::::
are

::::::
taken

::::
into

::::::::
account.

::::
For

::::
the

::::::
other

:::::::
scales,

::::
the

:::::::
coarse

::::::::
graining

::::::::::
procedure

::::::
covers

::::
the

:::::::
domain

:::::
with

::::::
boxes

:::
of

::::::::
different

:::::
sizes

:::::
(14,

:::
28,

::::
56,

:::::
112,

:::::
224,

::::
448

::::
and

:::::
896 km

:
).

::::
The

::::::
boxes

:::::::
actually

:::::::
overlap

::::::
each

:::::
other

:::::
since

::
a

::::::::
distance

::::::
equal

::
to

::::
half

:::
the

::::
box

::::
size

::::::::::
separates

::::
their

::::::::::
respective

::::::::
centers.

::::
For

:::::
each

::::
box,

::::
we

::::::
select

:::
the

:::::
cells

::::
that

:::::
have

:::::
their

::::::
center

::
in

::::
the

::::
box.

:::::
When

::::
the

:::::
sum

::
of

:::
the

:::::
area

:::
of

:::::
those

:::::
cells

::
is

:::::::
greater

:::::
than

::::
half

::::
the

::::
box

:::::
area,

:::
the

::::::::::::
deformation

::::
over

::::
the

::::
box

::
is

:::::::
defined

:::
by

::::::::::
averaging

::::
the

::::::
spatial

:::::::::::
derivatives

::
of

::::
the

:::::::::::::
displacement

:::::::::
weighted

::
by

::::
the

:::::::
surface

::
of

:::::
each

:::::
cell.

::::
The

::::::
spatial

::::::
scale

:::
for

:::
this

:::::
new

::::::::
estimate

:::
of

:::
the

::::::::::::
deformation

::
is

:::
the

::::::
square

:::::
root

::
of

::::
the

::::
sum

:::
of

:::
the

::::
cell

::::::
areas.

:::::
The

:::::
shear

:::::
and

::::::::
absolute

:::::::::::
divergence

:::
for

:::::
each

::::
box

are then reported
::
as

::
a
::::::::
function

:::
of

::::
the

::::::
spatial

::::::
scale

:
on a log-log plot (see Fig. 10 for the

absolute divergence rate). The mean value 〈ε̇L〉 (where ε̇L is either the shear rates or the
absolute divergence rates, computed at scale L) relates to scale L following a power law.
The power-law exponent is evaluated by applying a linear regression of the logarithm of
〈ε̇L〉 vs. the logarithm of L. Due to the finite size of the domain the power-law model is not
expected to hold for the largest scales. For this reason we restrict the power-law regression
of the data to the spatial scales 7, 14, 25, 50, 100 and 200 km.

The artificial noise particularly induces a strong departure from
::::::
filtered

::::::
shear

:::::
and

::::::::
absolute

:::::::::::
divergence

:::::::
closely

:::::::
follows

:
the power-law model at the smallest scales (see

::
for

:::
the

:::::::
spatial

:::::::
scaling

:::
as

:::::
their

::::
first

:::::
order

::::::::::
moments

::::
are

::::
well

:::::::
aligned

:::::
with

:::
the

:::::::::::
power-law

::
fit

:::
for

:::
the

:::::::
spatial

::::::
scales

::::::::
ranging

:::::
from

::
7

::
to

::::
200 km

::::
(see

:::::
right

::::::
panel

::
of

:
Fig. 10 ).

:::
for

:::
the

:::::::::
absolute

:::::::::::
divergence).

:::::
This

:::
is

:::
not

::::
the

::::::
case

:::
for

::::
the

:::::::::
unfiltered

::::::::::::
deformation

::::::
fields

:::::
(see

:::
left

::::::
panel

:::
of

:::
Fig.

::::
10)

::::
and

::::
we

:::::::
explain

::::
this

:::::::
strong

:::::::::
departure

:::::
from

::::
the

::::::::::
power-law

::::::
model

:::
by

::::
the

:::::::::
presence

::
of

:::::::
artificial

:::::::
noise. If the power-law fits were computed only from 50 to 200 km, spatial scal-

ing exponents would be similar for the filtered and unfiltered data. Furthermore, the other
moments 〈ε̇qL〉 of the distributions (see Fig. 11, for the absolute divergence rate, with q, the
moment order, ranging from 0.5 to 3) computed from the unfiltered deformation fields also
exhibit a strong departure from the power law, whereas the moments computed from the
filtered deformation fields are well aligned with the power-law fits.
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The method parameters are then chosen to minimize
::
By

::::::::::
definition,

::
if

:
a
:::::::
scaling

::::::
holds

:::
for

:
a
::::::
given

::::::
range

::
of

:::::::
scales,

::
it
:::::::
should

:::
be

::::::::::
respected

:::
for

::::
any

::::
pair

::
of

:::::::
scales

::::::
within

::::
this

::::::
range.

:::
To

::::::::
evaluate the deviation from the power law . To evaluate this deviation

:::::::
scaling, we compute

the power-law exponents for each pair of successive spatial scales (i.e. from 7 to 14 km,
from 14 to 25 km, and so on) and we take the minimum and maximum values of these
exponentsto define the min–max error on the

:
.
::::::
Those

:::::::
values

:::
as

:::::
well

:::
as

::::
the

:
exponents

previously obtained (i.e. with the whole range from 7 to 200 km ).
:::
are

:::::::::
reported

::
as

::
a
::::::::
function

::
of

:::
the

:::::::::
moment

:::::
order

::
q

::
in

::::
Fig.

::::
12.

::::
The

:::::::::::
relationship

:::::::::
between

::::
the

::::::::::
power-law

::::::::::
exponents

::::
and

:::
the

::::::::
moment

::::::
order

::
q

::
is

::::::
called

::::
the

::::::::
structure

::::::::
function

:::::
β(q)

::::
and

:::
is

:::::::
defined

:::
by

::::::::::::::
〈ε̇qL〉 ∼ L−β(q).

::::
The

:::::::::
minimum

::::
and

:::::::::
maximum

::::::::::
exponents

:::::::
define

:::
the

:::::
bars

:::::::
around

:::::
β(q).

:

::
To

:::::::
check

::::
that

:::
the

::::::::::
reference

:::::::
values

:::
for

:::
the

:::::::
model

:::::::::::
parameters

::::
are

::::
well

::::::::
chosen,

::::
we

::::
look

::
at

:::
the

:::::::::
deviation

:::::
from

::::
the

::::::
power

::::
law.

:::::
This

:::::::::
deviation

::
is

:::::::::
evaluated

:::
by

::::
the

:::::::::
min–max

:::::
error.

::::
For

:::::
each

::::::::
moment

::::::
order,

:::
the

:::::::::
min–max

:::::
error

::
is
::::::::
defined

:::
as

:::
the

::::::::::
difference

::::::::
between

::::
the

:::::::::
minimum

:::
and

::::::::::
maximum

::::::::::
exponents

:::::::::
obtained

::::
with

::::
any

:::::
pairs

::
of

:::::::
spatial

::::::
scales

::::::
within

:::
the

::::::::
defined

::::::
range.

:
It
::::::
other

::::::
words,

::
it
::
is

::::
the

::::::
length

:::
of

:::
the

::::
bar

::::::
drawn

:::
on

::::
Fig.

::::
12. Applied to the composite fields

used as example here, this metric validates the choice of using n= 3 and
:::
we

::::
find

::::
that

:::::
using

:
a threshold for the total deformation of 0.02 per day , as this combination gives the

lowest min–max errors.
::::
error

:::
for

:::
the

:::::::
highest

::::::
order.

::::
For

:::
the

::::::::::
parameter

::
n,

::::
the

::::::
lowest

:::::::::
min–max

::::
error

:::
for

::::
the

:::::::
highest

:::::::::
moment

:::::
order

::
is

:::::::::
obtained

::::
with

:::::::
n= 2,

:::
but

::::::
n= 3

::
is

::::::
better

:::
for

::::
the

:::::
other

::::::::
moment

:::::::
orders.

::::
The

:::::::::::
application

::
of

::::
our

::::::
metric

::
to

::::
this

::::::
single

:::::::::
example

::::::
tends

::
to

::::::::
indicate

::::
that

:::
the

:::::::::
reference

:::::::
values

::::
are

::::
well

::::::::
chosen.

::::::::::
However,

::::
this

::::::
metric

:::::::
should

:::
be

::::::::
applied

::
to

::
a
::::::
larger

:::::::
number

::
of

::::::::::
examples

::
to

::::::
really

:::::::
identify

:::
the

:::::
best

::::::
values

:::
for

::::
the

:::::::::::
parameters.

:

3.2 Discussion

Comparing the original RGPS deformation to the unfiltered deformation allows us to evalu-
ate the impact of using a triangulation to define well-shaped triangular cells. As in Lindsay
and Stern (2003), we observe unrealistic values for the shear and divergence rates retrieved
from the RGPS deformation dataset. For the period 2–10 February 2007, the composite pic-
ture made from RGPS has maximum opening, closing and shear rates equal to 1.73,−6.73
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and 66.47 per day, respectively. These extreme values arise from highly distorted cellsor
from cells with inconsistent updates for the positions of their nodes .

::
A
:::::
very

::::::
small

:::::::
fraction

::
of

:::
the

::::::::
dataset

::
is

::::::::
polluted

:::
by

::::::
these

::::::::::
unrealistic

:::::::
values,

::::::::
however

::
it
::::
has

::
a
:::::
high

::::::
impact

:::
on

::::
the

::::::::::
multifractal

:::::::
scaling

:::::::::
analysis,

:::::::::::
particularly

:::::
when

:::::::
looking

:::
at

:::
the

::::::::
highest

::::::::
moment

::::::
orders

:::
of

:::
the

::::::::::::
distributions.

::
In

:::::::::::::::::::::::
Marsan et al. (2004) and

::::::::::::::::::::::::::
Stern and Lindsay (2009) ,

:::::::::
additional

:::::::::::
constraints

::
on

::::
the

:::::
initial

::::
and

:::::::
current

:::::
size

::
of

::::
the

:::::
cells

:::::
were

:::::::
applied

::::
and

::::
the

:::::
cells

::::
with

::::
total

::::::::::::
deformation

::::::
higher

:::::
than

::
1

:::
per

:::::
day

:::::
were

::::
not

:::::
taken

:::::
into

::::::::
account.

:::
In

::::::
many

:::::
other

::::::::
studies

::::::
based

:::
on

::::
the

::::::
RGPS

::::::::::::
deformation

::::::::
dataset,

:::
the

:::::::::
presence

::::
and

::::::::
impacts

:::
of

:::::
these

::::::::::
unrealistic

::::::::
extreme

:::::::
values

:::
are

::::::
simply

::::
not

::::::::::
discussed.

:

::::
The

:::::::
simple

::::
fact

::
of

::::::::::
redefining

::
a

::::
new

::::::
mesh

:::::
from

::::
the

::::::
actual

::::::::
position

::
of

::::
the

:::::::
RGPS

::::::
nodes

::::::
allows

:::
us

:::
to

:::::
avoid

::::::
badly

::::::::
shaped

:::::
cells

::::
and

:::::
then

:::
to

::::::::::::
significantly

:::::::
reduce

::::
the

::::::::
number

::::
and

::::::::::
magnitude

::
of

::::::::
extreme

:::::::
values. For the same period, the composite picture obtained from

the unfiltered version of our RGPS Image Pair dataset has maximum opening, closing and
shear rates equal to 0.63,−1.17 and 1.97 per day, respectively. The smoother

::::
also

:
logically

decreases the extreme values. For this example, the filtered composite picture has maxi-
mum opening, closing and shear rates equal to 0.13, −0.20 and 0.73 per day, respectively.

Comparing the filtered and unfiltered deformation allows us to analyze the impact of
the artificial noise. From the scaling analysis for the total deformation, shear and absolute
divergence, we found that the scaling exponents estimated from the unfiltered fields are
systematically higher

:::::
larger

:::
in

::::::::::
magnitude

:
by about 100 % for the absolute divergence and

by about 50 % for the shear and total deformation. In the example corresponding to Fig. 10,
the power-law exponent for the absolute divergence is −0.38 for the unfiltered field, instead
of−0.20 for filtered data (for the shear:−0.17 instead of−0.1, and for the total deformation:
−0.19 instead of −0.12). For each moment, we observe that using unfiltered data leads
to a systematic overestimation of the scaling exponents of about 100 % for the absolute
divergence and 50 % for the shear and total deformation.

:::
We

::::
also

::::::::::
performed

::::
the

::::::::::
multifractal

::::::
scaling

::::::::
analysis

:::
on

::::
the

:::::::
original

::::::
RGPS

::::::::::::
deformation

:::::::
dataset

::::
with

::::
the

:::::
same

:::::::::::
constraints

:::
on

:::
the

::::
data

:::
as

::
in

::::::::::::::::::::::::::::
Stern and Lindsay (2009) and

:::
we

::::::
found

::::
that

:::
the

::::::::::
departure

:::::
from

:::
the

::::::::::
power-law

::
is

::::::
similar

::
to

::::
the

::::
one

:::::::::
observed

:::
for

:::
the

::::::::::
unfiltered

:::::::::::
deformation

:::::
data

::::
set.
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The impact of the artificial noise may also be illustrated by
:
is

:::::
also

:::::
seen

:::
on

:
the struc-

ture function β(q) which is defined by 〈ε̇qL〉 ∼ L−β(q) (see Fig. 12). The bars around β(q)
correspond to the min–max errors used for the validation. As a consequence of the sys-
tematic overestimation of the scaling exponents, the curvatureof β(q)

::
its

:::::::::
curvature, which

indicates the degree of multifractality of the deformation fields, is found twice as high for
the unfiltered divergence field (0.20) than for the filtered one (0.11). For the shear and total
deformation, the overestimation of the curvature is about 50 %, with a value of 0.16 instead
of 0.1.

Differences are also seen in the cumulative distribution of the closing and opening rates
(see Fig. 13, for the period 2–10 February 2007). Differences between the RGPS and the
unfiltered deformation may be due to differences in the coverage and the selection of the
data, but also come from the difference in resolution (10 km for the RGPS instead of 7 km)
and from the impact of distorted cells included in the RGPS dataset. Differences between
the filtered and unfiltered deformation induce a modification of the shape of the distribution.
The distribution of the filtered divergence field is closer to an exponential distribution (lin-
ear in the semi-log plot), while the distribution of the unfiltered divergence field is clearly
a stretched exponential.

Finally, we compare the three datasets by computing the total area that has been opened
and closed. For the original RGPS deformation data, 40 000 km2 have been opened during
the period 2–10 February 2007, whereas 39 000 km2 have been closed. For our unfiltered
data, we find lower values of 30 000 and 38 000 km2, respectively. For the filtered data
these numbers drastically drops

::::
drop

:
down to 15 000 and 24 000 km2, respectively. In this

example the artificial noise is then responsible of an overestimation of the opening and
closing of about 100 and 60 %, respectively. Over the entire winter season 2006–2007, the
cumulated

::::::::::
cumulative

:
opening and closing are both 60 % higher in the unfiltered data than

in the filtered data.
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4 Conclusions

A method is proposed to derive accurate sea ice deformation fields from SAR-derived mo-
tion products. The first step of the method consists of a triangulation of the tracked points
to generate a mesh of triangular cells on which a first estimate of deformation is computed.
The second step consists of applying a smoother to the deformation fields. The method
relies on two parameters: a deformation threshold and the size of the smoothing kernel.

By applying the method to simple test casesand to real data, optimal values for the
method parameters are proposed. The

::::::::
idealized

::::
test

:::::::
cases,

:::
we

::::::
show

::::
that

:::::
using

:::::::::
triangles

:::::::
instead

::
of

::::::::::::
quadrangles

::::::::
induces

::
an

:::::::::
increase

::
of

::::::
about

:::
10 %

:
of

::::
the

::::::::
opening

::::
and

:::::::
closing

:::::
error,

::::::::
whereas

::::
our

::::::::::
smoothing

:::::::
method

::::::::
reduces

::::
the

::::::::
opening

::::
and

:::::::
closing

:::::
error

:::
by

::
at

:::::
least

::
a
::::::
factor

::
of

::
3

::
in

::::
any

:::
of

:::
the

::::::::::
test-cases

::::::::::
presented

::::::
here.

::::
The

::::::::::
sensitivity

::
to

::::
the

::::::
value

::
of

::::
the

:::::::::
threshold

:::::
used

::
to

::::::
detect

::::::::::::
deformation

::::::::
features

:::
is

:::::::::
analyzed

::::
with

::
a

:::::::
quality

:::::
index

:::::
and

:::
the

:
efficiency of

our method is assessed using a metric based on a spatial scaling analysis and comparison
between the unfiltered and filtered deformation fields.

The proposed method is used to produce a new deformation dataset called RGPS Im-
age Pair Product. Compared to the RGPS deformation dataset, the RGPS Image Pair
dataset does not exhibit unrealistic large values caused by badly shaped cellsor inconsistent
updates of the cell node position. Moreover, our method drastically reduces the artificial
noise arising along dynamic discontinuities.

By comparing the unfiltered and filtered deformation fields for winter 2006–2007, we es-
timate that this artificial noise may cause an overestimation of the opening and closing of
about 60 %. We also estimate that the spatial scaling exponents as computed in Marsan
et al. (2004) and Stern and Lindsay (2009) could have been overestimated by about 100 %
for the absolute divergence and by about 60 % for the shear and total deformation.

The findings of the present study indicate that errors in sea ice deformation fields re-
trieved from SAR-derived motion may have been strongly underestimated, leading to po-
tential significant biases on the estimates of sea ice production, salt rejection and sea ice
ridging that one may find in the literature.
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The method proposed here is applicable to other sea ice drift datasets, as provided, for
example, by GlobICE project. The method can handle Lagrangian trajectories or displace-
ment between pairs of images. The same method could be applied to buoys

::::
buoy

:
trajecto-

ries when their spatial resolution is high enough, as with nested arrays of buoys (Hutchings
et al., 2011, 2012).

The method proposed here could be modified to better manage intersecting cracks and
to adapt its parameters depending on the local fields. However, substantial improvements
may also come by combining within tracking algorithms, the detection of dynamic disconti-
nuities and the computation of sea ice deformation as proposed by Thomas et al. (2008).

:
A

::::::::
complete

::::::::::
validation

:::::
using

::::::::::::
independent

:::::::::
datasets

::::::
should

:::::
also

:::
be

::::::
done.
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Figure 1. Example of the divergence (a, c, e) and shear (b, d, f) obtained for the single crack test
case at a

:::::::::
normalized

:
resolution of 0.1. The relative displacement parallel and normal to the crack

(black line) are set to 0.01 and 0, respectively. (a) and (b) correspond to the unfiltered deformation
fields, (c) and (d) to the deformation fields filtered with a classical smoothing kernel and (e) and
(f) to the deformation fields filtered with our smoother. Triangles in white show the kernel defined
for the triangle in green. With both smoothers the kernel corresponds to cells that can be reached
by crossing a maximum of n edges (here n= 7). The classical smoother takes all the cells into
account whereas our smoother only takes into account the cells whose deformation is above a given
threshold.
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Figure 2. Root mean square ridging
::::::
closing/opening error normalized by up and computed from 100

realizations of the single crack (disks) and double cracks test cases (squares and triangles) at the
resolution 0.1. For all curves, up = 0.01.
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Figure 3. Example of the unfiltered (left panel) and filtered (right panel) divergence obtained for the
double cracks test case at a normalized resolution of 0.1. The domain is divided in 3 blocks. Points
below the principal crack are fixed. Points above the principal crack experience

:::::::::
experiment the same

displacement un, perpendicular to the principal crack (here un =−0.0025) but have distinct tangent
components, up for the block on the left (here up = 0.01) and u′p for the block on the right of the
secondary crack (here u′p = 0.0125). Triangles in white show the kernel defined for the triangle in
green. In this example, the parameter n is equal to 3.
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Figure 4. Unfiltered divergence rate computed from the RGPS sea ice trajectory dataset and corre-
sponding to the pair of images taken at tk−1 = 3 February 2007 17:44:00 UTC and tk = 7 February
2007 17:26:35 UTC.
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Figure 5. Unfiltered total deformation rate for the same example as in Fig. 4. Triangles in black are
above the threshold for the total deformation (here, 0.02 per day) and are then selected to be treated
by the smoother.
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Figure 6. Filtered divergence rate after the application of the smoother to the selected cells (see
Fig. 5). In this example, the parameter n is set to 3.

:::
The

::::::::
triangles

::::
that

::::
have

:::::
been

:::::::
treated

:::
by

:::
the

::::::::
smoother

:::
are

:::::
those

:::
in

:::::
black

::
in

:::
Fig.

:::
5.

:::
For

:::
the

:::::
other

::::::::
triangles,

::::
the

:::::
value

::
of

:::
the

:::::::::::
deformation

:::::::
remains

:::
the

:::::
same

::
as

::
in
::::
Fig.

::
4.
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Figure 7. Composite picture of the divergence rate given by the RGPS deformation dataset for the
period 2–10 February 2007. RGPS cells are here represented by squares as their actual shape is
not known.
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Figure 8. Composite picture of the unfiltered divergence rate computed after the first step of our
method for the period 2–10 February 2007.
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Figure 9. Composite picture of the filtered divergence rate for the period 2–10 February 2007 ob-
tained with a threshold parameter equal to 0.02 per day and with the parameter n equal to 3.
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Figure 10. Scaling analysis: absolute divergence rate as a function of the spatial scale, from the un-
filtered (left panel) and filtered (right panel) composite deformation field for the period 2–10 February
2007.

:::::
2007

:::::
(each

::::
color

:::::::::::
corresponds

:::
to

:
a
:::::::
different

::::
box

::::
size

:::::
used

::
for

:::
the

:::::::
coarse

:::::::
graining

::::::::::
procedure).

The mean values 〈|ε̇n|〉 :::::
〈|ε̇div|〉:are represented by circles and the dashed lines are power-law fits of

the first six mean values (here, from 7 to 200 km)
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Figure 11. Multi-fractal
:::::::::
Multifractal

:
analysis: moments of the absolute divergence rates 〈|ε̇n|q〉

::::::
〈|ε̇div|q〉:as a function of the scale L for q = 0.5 to 3, from the unfiltered (left panel) and filtered (right
panel) composite deformation field for the period 2–10 February 2007. Dashed lines are power-law
fits of the first six values (here, from 7 to 200 km).
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Figure 12. Structure function β(q) corresponding to the exponents of the power-law relationship
between the absolute divergence rate and the spatial scale: 〈|ε̇n|q〉 ∼ L−β(q):::::::::::::::

〈|ε̇div|q〉 ∼ L−β(q). The
bars on the graph indicate the deviation from the power law as they correspond to the minimum and
maximum power-law exponents obtained for two successive spatial scales.
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Figure 13. Cumulative probability functions, in other words the probabilities of exceedance, for the
RGPS, unfiltered and filtered composite divergence fields shown in Figs. 7–9, respectively.
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