
Response to reviewer #1 
 
We first would like to sincerely thank the reviewer for his throughout review and his numerous 
useful comments that, we believe, contribute to significantly improve our manuscript. Each 
answer/comment of the reviewer below is followed by a “response” and when applicable by a 
more specific description of the “change(s)” we made to the manuscript. 
 
 
General comment 1:  
 
“Determining the deformation of a material element using a finite set of discreet points 
leads to a  “boundary definition” error for the line integral that increases as the 
number of points decreases. The RGPS data set uses four-point cells to compute the 
deformation. The method proposed here starts with just three points, the minimum 
possible and the configuration with the maximum error. Thorndike 1986) discusses 
how the number of nodes determines the accuracy of the deformation estimates.  
Three nodes are worse than four by a factor of 2 or 3 (his Figure 23b).” 
 
Thorndike, A. S. (1986), Kinematics of Sea Ice, in The Geophysics of Sea Ice, NATO 
ASI Series, edited by N. Untersteiner, Plenum Press, New York, pp 489-549. 
 
Response: 
This comment helped us to better characterize the accuracy of the unfiltered deformation 
obtained when using three or four nodes. We can now state that the error due to spurious 
opening/closing when using triangles is about 10% higher than the error obtained when using 
quadrangles. This new analysis is presented hereafter and in the paper.  
 
We also discuss hereafter why the analysis of Thorndike (1986) and the statement: “Three 
nodes are worse than four by a factor of 2 or 3” do not apply to our problem.  
 
Lindsay and Stern (2003) specifically studied the relationship between the number of points 
taken to compute deformation and the error due to spurious opening/closing. They found that 
the error drops by almost 50% when using 8 points instead of 4 points. When using 4 points 
(quadrangles), Lindsay and Stern (2003) found an error of 15% of the sliding distance. In the 
original manuscript, we presented the same kind of analysis with a simple test case 
considering one single crack. We found an error equal to 20% of the sliding distance when 
using 3 points (triangles). 
 
We have now also analyzed the single crack test case when using quadrangles and we found 
that the opening/closing error is about 18% of the sliding distance. The opening/closing error 
when using triangles (3 points) is then only about 10% higher than the error obtained with 
quadrangles (4 points).  
 
The factor of 10% found for the opening/closing errors is actually not in contradiction with the 
factor 2 or 3 derived from the analysis of Thorndike (1986) as the analyzed problems are 
actually not the same. The analysis of Thorndike (1986) estimates the “boundary definition” 
error over a circular region as a function of the number measurements on the circumference 
of this region. The error is then only estimated on the mean deformation over this region and 
does not take into account the spurious opening and closing that could occurs within this 
region. In our analysis, we also define a region (here a square domain) but we do not only 
consider the measurements at the circumference but all the measurements available at a 
given resolution within this region. In our case, the error is not estimated on the mean 
deformation over the region but as the accumulation of error for each cell.  
 
For more details on the single crack test case with quadrangles, see our answer to the remark 
on Figure1.  
 



We also add more justification on the choice of using triangles (See response to the remark of 
reviewer#2 related to Page 5113 lines 18-19). 
 
Changes: 
We add this paragraph:  
“When repeating the same test case with quadrangles instead of triangles, we found a rms 
error of about 18% of the sliding distance u_p. For comparison, Lindsay (2003) found an error 
per unit crack of about 15 % of the sliding distance, for a similar test case on a mesh made of 
square cells. This analysis shows that using triangles only generates an increase of about 10 
% of the opening (and closing) error compare to using quadrangles. This increase of the error 
is minor compared to the advantages of using triangles. Triangulation methods are more 
flexible. It roughly doubles the number of deformation estimates and it increases the 
resolution at which deformation is defined. For the rest of this paper, we then only present 
results on triangular meshes but the method could also be applied to other type of meshes.” 
  



General comment 2: 
“1) The spatial scale of the filtered data is ambiguous because the deformation is 
smoothed with between 1 to 10 or more triangles, so what is the spatial scale of each 
observation in the smoothed data? 2) How is the spatial scale determined for the 
scaling analysis? 3) The smoothing procedure has reduced the noise at the expense 
of spatial scale, as must always be the case with discreet points for the velocity. 4) 
Can the authors please more fully explore these ideas in the introduction?” 
 
Response: 
1) We agree that with a classical smoother the spatial scale of the smoothed deformation field 
does not have the same spatial scale as the unfiltered deformation field. For example, we 
found in the case of a unique crack that the value of the filtered shear along the crack is 
inversely proportional to n. This indicates that classical smoothers modify the spatial scale at 
which the deformation is defined. However, our method is different than classical smoothers. 
As explained in the manuscript, our method is ” based on the fact that the deformation is by 
nature constant along a linear kinematic feature. Averaging motion derivatives along these 
features could then filter out the noise without spoiling the information on the real 
deformation.” We verified this hypothesis with the single crack test case and we found that 
with our method the shear along the crack does not vary as a function of n, meaning that with 
our method the spatial scale of each observation in the smoothed data is the same as in the 
unfiltered data.  
 
2) The spatial scale is the square root of the sum of the areas of the cells selected by the 
coarse graining procedure. See also our response to remark 5116-21. 
 
3) We do not agree. In the case of the single crack, deformation should be constant along the 
crack but is polluted by the artificial noise. Averaging the deformation over the elements 
crossed by the crack should then not change the mean value of the deformation but only 
reduces the noise. In other words, whatever is the number of triangles used for the average, 
the spatial scale remains the same.   
 
4) We now discuss these ideas and the difference between classical smoothers and our 
method in the presentation of the method. 
 
Changes: 
1) We add the following sentences in the paragraph presenting the classical smoother: “It also 
modifies the spatial scale at which the deformation is defined, resulting in a modification of the 
value of the shear along the crack. With the single crack case, the area-weighted average of 
the shear for the cells cut by the crack is found to be inversely proportional to n”.  

We add the following sentences when presenting our method: “Contrary to the smoother 
presented here above, the scale at which the deformation is defined remains constant with 
the second method. In other words, the mean value of the shear along the crack obtained with 
the second method does not vary as a function of n. We also verified that in the case of a 
regular mesh and a single crack aligned with the x-axis, the area-weighted average of the 
shear along the crack is strictly constant whatever the value of n.” 

2) More explanation on the scaling analysis has been added in the text. See our response to 
remark 5116-21. 
 
3) No changes.  
 
4) We now discuss the difference between classical smoothers and our method in the 
presentation of the method (see changes 1) here above). 
  



Specific comments: 
 
5106-2: Your method is far from nearly noise free. 
Response: We agree that this statement is not very clear as we haven’t quantified the 
remaining noise.  
Changes: new sentence: “We propose a method to reduce the error generated when 
computing sea ice deformation fields from SAR-derived sea ice motion.” 
 
5106-17: Please give the original references for the cross-correlation techniques 
applied to SAR images. 
Response: We added the references proposed by Referee #2: Fily and Rothrock (JGR-
Oceans 1990) and Kwok et al (IEEE J. Ocean Engr 1990). 
Changes: References added 
 
5106-20: Also maybe reference GlobeICE here. 
Response: This is a good suggestion but as far as we know, there is no peer-reviewed 
publication that we could use to make reference to the GlobICE dataset. Any suggestion 
would be welcome if we have missed a reference. For now, we therefore do not to add any 
reference to GlobICE in the introduction section. 
Changes: No change 
 
5107-27: What fraction of the RGPS deformation estimates is afflicted with this 
problem? Does it change the scaling analysis? How big a problem is this and can 
unrealistic values be easily filtered out? This seems to be one of your main 
motivations, but you have not really shown it to be a big problem. 
Response: A very small fraction of the dataset is polluted by these unrealistic values, however 
it has a high impact on the scaling but also on the total opening and closing when integrated 
over the Arctic basin. The multifractal scaling analysis is very sensitive to extreme values, 
particularly when looking at the highest moment orders of the distributions. This is why in 
some studies based on RGPS deformation dataset the extreme values were simply 
eliminated with a threshold on the total deformation. However using such a threshold may 
also eliminate real extreme values. In other studies, the presence and impacts of these 
extreme values are simply not discussed. From the RGPS deformation dataset, it is not 
possible to know exactly what is the current shape of the quadrangles used to compute the 
deformation, it is then not possible to eliminate all the badly shaped element. Our approach 
based on the definition of a new mesh from the actual position of the RGPS data eliminates 
this problem.  
Changes: 
We modified the discussion on the presence of extremes values to answer these questions. 
 
“For the period 2--10~February 2007, the composite picture made from RGPS has maximum 
opening, closing and shear rates equal to 1.73, -6.73 and 66.47 per day, respectively. These 
extreme values arise from highly distorted cells. A very small fraction of the dataset is polluted 
by these unrealistic values, however it has a high impact on the multifractal scaling analysis, 
particularly when looking at the highest moment orders of the distributions. In Marsan (2004) 
and Stern (2009), additional constraints on the initial and current size of the cells were applied 
and the cells with total deformation higher than 1 per day were not taken into account. In 
many other studies based on the RGPS deformation dataset, the presence and impacts of 
these unrealistic extreme values are simply not discussed.  
       
The simple fact of redefining a new mesh from the actual position of the RGPS nodes allows 
us to avoid badly shaped cells and then to significantly reduce the number and magnitude of 
extreme values. For the same period, the composite picture obtained from the unfiltered 
version of our RGPS Image Pair dataset has maximum opening, closing and shear rates 
equal to 0.63, -1.17 and 1.97 per day, respectively. The smoother also logically decreases the 
extreme values. For this example, the filtered composite picture has maximum opening, 
closing and shear rates equal to 0.13, -0.20 and 0.73 per day, respectively.” 
 



 
5108-1: It would be useful here to elaborate on the difficulty in determining the line 
integral of the velocity for a material element (a cell) using a finite number of points. 
This might be a good place to have a complete discussion of the ideas presented by 
Thorndike (1986) about the error of deformation estimates due to the boundary 
definition and the number of points used. 
Response: As explained in the answer to the general comment 1, the analysis made in 
Thorndike (1986) does not correspond to the problem we are trying to solve.  
Changes: No change 
 
5110-14: experience –> experiment 
Response: Thank you for the correction. 
Changes: This change has been applied at 3 different locations in the text. 
 
5110-20: What is “normalized resolution”? 
Response: It is the mean distance between the points used for the “simple” test-cases. It is 
called normalized resolution as it is defined for a normalized area equal to 1 and should not 
be confounded with the resolution of the meshes generated to treat the actual observations.  
Changes: We have now added this sentence to the first paragraph of section 2.1: “d is 
hereafter called the normalized resolution.”. 
 
5110-8: What becomes of the cells below the threshold? Is the filtering applied to 
these? 
Response: The filtering does not apply to the cells whose deformation is below the threshold. 
Changes: We add the following sentence for clarification: “No filtering is applied on the cells 
where deformation is below the threshold.” 
 
5111-4: 1) What is the equation for performing the smoothing? 2) Are the tensor 
components smoothed or just the invariants? 3) Exactly how are the kernel triangles 
selected? For example, are triangles included if there are no others above the 
threshold between a kernel triangle and the target triangle? (e.g. if there is a gap in the 
total deformation). 4) Are all target triangles smoothed, even if the are below the 
threshold? 5) For example if a triangle is near but not part of an LKF, is the smoother 
applied to it is well? 6) Or if it is part of the LKF, but below the threshold, is the 
smoother applied? 7) How would the two cases be distinguished? 
Response:  
1) The equation is now given in the text.  
2) As explained in the original text (page 6, lines 25-26), the tensor components are 
smoothed. We agree with the reviewer that the equation makes it now clearer.  
3) The kernel around a given reference cell is built as the subset of cells that fulfill the 
threshold criterion on the total deformation rate, and that can be reached from that reference 
cell by crossing a maximum of n successive edges.  
4-5-6-7 The triangles below the threshold are not smoothed. 
Changes:  
We changed two paragraphs to answer these questions and to clarify the smoothing 
methods:  
“We here denoted C the list of all the cells and for each cell c\in C, we define the kernel 
K_c\subset C as the subset of cells that can be reached by crossing a maximum of n edges. 
An example of kernel with n=7 is shown in Fig1c and d. The size of the kernel is noted |K_c|. 
For the example shown in Fig1c and d, |K_c| is equal to 87. The components of the filtered 
deformation are then defined by averaging over the cells of the kernel. For example, the 
filtered value for u_x on the cell c is defined as \tilde{u}^c_x=1/|K_c|\sum_{k\in K_c} u^k_x.” 
 
“We denoted S the list of all the selected cells. For each cell s in S, we define the kernel K_s 
\subset S as the subset of cells that can be reached by crossing only selected cells and a 
maximum of n edges. No filtering is applied on the cells where deformation is below the 
threshold.Our method preserves the localization of the deformation by avoiding mixing the 
deformation between LKFs (i.e., cells where the deformation is intense) and the surrounding 



rigid plates (i.e., cells where deformation is almost zero). Moreover, the way the smoothing 
kernels are built ensures that deformation between LKFs that are not connected will not be 
averaged together.”  
 
5111-11: Can you show that your smoother is unbiased? The mean divergence along 
the crack should be zero for both the unfiltered and the smoothed data and the mean 
shear should be the same for both. Does the thresholding method introduce a bias? 
You may need to use a much longer crack. 
Response: On average the smoothing method does not introduce any bias. It was already 
shown in the conclusion of the paper when we said that the cumulative opening and closing 
are both reduced by the same value of about 60% when comparing the filtered data to the 
unfiltered one for the whole winter 2006-2007.   
For one particular crack, the mean divergence and shear are not exactly the same in the 
unfiltered and smoothed data. For example, in the case of a single crack aligned with the x-
axis, the mean divergence over the square domain in the unfiltered data is exactly zero when 
the mean divergence in the smoothed data only tends to zero for large n. However this error 
in the mean divergence of the smoothed data is always about one order of magnitude smaller 
than the error on the total opening/closing error of the unfiltered data. Moreover, when looking 
at a large number of single crack experiments, we verified that this error equally corresponds 
to negative or positive mean divergence, meaning that the mean divergence over a large 
number of cracks will not be influenced by this error. Concerning the threshold, it cannot 
introduce a bias as the threshold is on the total deformation, which is independent of the sign 
of the divergence.    
Changes: No changes have been made to the text. 
 
 
 
5111-19: The line with the disks in Fig.2 seems to go down to 5 or 6%, not 10%. What 
is the “residual error”?  
Response: You are right. This was a mistake in the text, the residual error is about 5%, not 
10%. The residual error is defined as the error remaining for large value of n. 
Changes: We correct the value given in the text and we add this clarification for the residual 
error: 
“For a resolution of 0.1, the residual error (i.e., the error remaining for n>d^-1) is about 5% as 
shown in Fig. 2.” 
 
5113-1: RGPS updates a cell only when all four points are simultaneously updated. 
There is no asynchronous error. 
Response:  We acknowledge our mistake due to a wrong interpretation regarding the 
synchronicity of the data in the RGPS deformation dataset.  
Changes: We removed the statements related to asynchronous error. 
 
5113-5: The cell update time is in fact the same as the update times for all the nodes. 
I can’t find the exact reference that states this, but it is implied in the RGPS user 
documentation. If you actually find the node times from the Lagrangian product and 
compare them to the deformation update times you will find this to be true. This is a 
bit tricky because the nodes for each cell are not identified, but it can be done. As you 
indicate, it would make no sense for it to be otherwise. 
Response:  Same answer as for the previous question. 
Changes: We removed the statements related to asynchronous error. 
 
5114-13: How are isolated deformation features treated? Is there a minimum kernel 
size? 
Response: All the selected deformation features are treated the same way. The smoother is 
applied by averaging the deformation over the cells contained in the kernel only. In the 
extreme case where the kernel size is 1, the deformation remains then unchanged. There is 
no minimum kernel size.  
Changes: We add this sentence to the paragraph:  



“Indeed if a kernel only contains one cell, the smoother does not modify the value of the 
deformation over that cell.” 
 
5114-18: Why n=3? 
Response: We acknowledge that this choice was not clearly explained in the first version of 
our paper. From the analysis of the simple test cases, n=3 is chosen as the reference value 
as it is the only value for which the initial error is at least divided by a factor 3.  
Changes:  
The choice of the reference value for n is now explained in the text at the end of section 2.1: 
“From this analysis, we identify n=3 as an optimal value as it is the only value for which the  
median error is reduced by at least a factor of 3 in any of the test-cases presented here.  
In real cases, to define an optimal value for n is more difficult as it would depend on the 
number of intersecting cracks and on the local ratio between divergence and shear. For this 
study, we chose to use a constant parameter n and its reference value is fixed at n=3. 
To validate the choice of the method’s parameters (i.e., n and the threshold on the total 
deformation), we present in Sect. 3 another metric based on a multifractal scaling analysis of 
the deformation fields.” We add in Section 2.2 a reference to Section 2.1: “with the parameter 
n equal to 3, which is the reference value defined in Sect 2.1” 
 
5114-21: For the threshold of 0.02, what is the range of the quality index for different 
dates in 2006-2007? 
Response: To quantify the range of the quality index, we look at the percentage of pairs of 
images for the entire winter 2006-2007 for which the quality index is lower than 50% and we 
found that only 14% of the pairs of images have a quality index lower than 50%.  
Changes: We add this information in the text: “To quantify the range of the quality index, we 
look at the percentage of pairs of images for the entire winter 2006-2007 for which the quality 
index is lower than 50% and we found that only 14% of the pairs of images have a quality 
index lower than 50%. To further validate the choice of the model parameters, a consistency 
check based on a multifractal scaling analysis of the deformation fields is proposed in Sect. 
3.” 
 
 
5115-25: A shear crack that is not straight may exhibit both opening and closing. 
Response: We agree. A change of orientation of the crack will generate the same problems 
as the intersections between different cracks. See also our answer to the main comment of 
reviewer #2. 
Changes: We change the word “which” by “where” in the following sentence: “Some features 
are so polluted by a succession of highly negative and positive values that it is very difficult to 
identify where cracks are opening, closing or sliding.” 
 
5116-21: Please give more information about how the scaling was computed. How 
are the scales determined given that the smoothing introduces a highly variable 
spatial scale for the individual triangles? Is the area associated with each smoothed 
triangle retained? How are the strain tensors computed? 
Response: We added more information about the scaling. We do not agree that our 
smoothing method introduces highly variable spatial scale. The smoothing does not affect the 
scale at which deformation is defined. This point has been explained in the answer to the 
second main comment. The area associated with each triangle is the area of the triangle itself 
even when the deformation has been filtered. As explained in the answer to the remark on 
line 5111-4, each component of the strain tensor (i.e., the spatial derivatives of the 
displacement) is averaged.  
Changes: 
We add this description of the method used for the scaling. The rest of the changes are 
already described in our answer to the main comment 2 and to the question on line 5111-4: 
“Sea ice shear and absolute divergence rates are computed at different spatial scales ranging 
from 7 to 700 km. For the lowest scale, which is also the scale of the triangular cells, all the 
cells are taken into account. For the other scales, the coarse graining procedure covers the 
domain with boxes of different sizes (14, 28, 56, 112, 224, 448 and 896 km). The boxes 



actually overlap each other since a distance equal to half the box size separates their 
respective centers. For each box, we select the cells that have their center in the box. When 
the sum of the area of those cells is greater than half the box area, the deformation over the 
box is defined by averaging the spatial derivatives of the displacement weighted by the 
surface of each cell. The spatial scale for this new estimate of the deformation is the square 
root of sum of the cells area. The values of deformation obtained for each box size are then 
reported as a function of the spatial scale on a log-log plot (see Fig. 10 for the absolute 
divergence rate).” 
 
5117-10: Please show the results for the RGPS deformation product as well. The 
unfiltered version of course has very large errors at small scales, as you indicate, so it 
is of less interest. 
Response: It seems that we do not agree with the reviewer on that point. The error (evaluated 
as the opening/closing error) when using triangles is only about 10% higher than when using 
quadrangles as in the RGPS deformation dataset (see our answer to the main comment 1). 
Moreover the RGPS suffers from the distortion of the cells, as the grid is deformed 
progressively during the season. As explained in the answer to the comment on line 5107-27, 
these extreme values are difficult to filter and highly influence the multifractal scaling analysis. 
The presence of these unrealistic deformation values actually necessitates to add extra 
constraints on the data when performing a scaling analysis. Redefining a new mesh allows us 
to eliminate most of these erroneous values. Comparing the filtered version to the unfiltered 
version is then much more interesting because it allows us to clearly identify the impact of the 
noise on the scaling and the total opening and closing. Moreover, the unfiltered dataset 
covers exactly the same spatial and temporal domain, and is defined on the same mesh than 
the filtered dataset. This is not the case for the RGPS deformation dataset, which is even not 
defined at the same spatial scale (10 km for the RGPS deformation instead of 7 km for our 
filtered and unfiltered dataset). We then think that it was more interesting to compare the 
unfiltered and filtered dataset.  
 
However, as asked by the reviewer, we give here the results of the scaling analysis 
performed on the RGPS deformation dataset. We apply the same constraints on the RGPS 
deformation data as in Stern (2009), meaning that we add constraints on the size of the cells 
and we reject the cell whose total deformation is higher than 1% per day. We perform the 
scaling analysis on the RGPS deformation dataset and we find the same problems as for the 
unfiltered version of our dataset (i.e., a strong deviation from the power law scaling, see 
figures 1,2 and 3). 
 

	  
Figure	  1:	  values of divergence (small dots) computed for spatial scales ranging from 10 to 1000 km. The 
mean values for each scale is shown by a black circle. The dashed line is the best power law fit of the 
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means. As in the unfiltered deformation obtained on the triangular mesh, a strong deviation from the 
power-law model is observed for the smallest spatial scales.  
 

 
 
 
 

	  
Figure	  2:	  Results of the multifractal analysis applied to the RGPS deformation dataset for the same 
example as in the paper. As in the unfiltered deformation obtained on the triangular mesh, the strong 
deviation from the power-law scaling is stronger for the highest moment orders (see the bottom dashed 
lines). 
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Figure	  3:	  Structure function obtained with the RGPS deformation dataset. The min-max errors are of the 
same order as the ones of the unfiltered deformation fields presented in the paper. 
 

We think that it is not necessary to include these plots in the paper and that it could bring 
some confusion among the readers.  We think that the comparison of the unfiltered and 
filtered version of the deformation dataset is cleaner and more robust because we can control 
all the aspects of the calculation and clearly identify the effect of treating or not the artificial 
noise. If we restrict the analysis to the comparison with the RGPS deformation dataset, we 
think it is impossible to correctly assess the effect of the smoother for four main reasons: 1) 
the domains are not exactly the same, 2) the RGPS deformation suffers from distortion of the 
cells 3) the initial spatial scales are not the same 4) the RGPS dataset is made using 
quadrangles instead of triangles, which induces a different error in the unfiltered fields.   
 
Changes: We have added the following statements to explain that we have applied the 
multifractal analysis to the RGPS deformation dataset and found the same problems as in the 
unfiltered deformation fields, meaning a strong deviation from the power-law scaling: 
“We also performed the multifractal scaling analysis on the original RGPS deformation 
dataset with the same constraints on the data as in Stern (2009) and we found that the 
departure from the power-law is similar to the one observed for the unfiltered deformation 
data set.”  
 
 
5117-18: What are the min-max errors for some other (n, threshold) pairs? How 
specific is this optimal solution? And what is it for the RGPS 4-point cell data? 
Response: Figure 4 shows the min-max errors for a threshold parameters ranging from 0 to 
0.03 per day. Each curve corresponds to a different moment order (from 3 for the upper curve 
to 0.5 to the bottom curve). This analysis is done with n=3. For the threshold parameter, the 
minimum min-max error for scaling exponent of the third order moment is obtained with 0.02 
per day. We acknowledge that the text was not correct, as we said “this combination gives the 
lowest min--max errors.” but this is not the case for all the moment orders. This mistake is 
now corrected and we now more clearly indicate the limitations of this analysis and in 
particular the fact that it is based on a single example. The entire section has been recast as 
a consistency check rather than a full validation and the statement on the optimality of the 
value of the parameters have been toned down. See also our answer to main comment 2 of 
reviewer #2. 
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Figure	  4 

 
Figure 5 shows the min-max errors for a n parameters ranging from 0 to 6. Each curve 
corresponds to a different moment order (from 3 for the upper curve to 0.5 to the bottom 
curve). This analysis is done with a threshold=0.02 per day. When varying n, the lowest min-
max error for the highest order is obtained with n=2. The min-max error for order 2.5 is 
minimum for n=3. As for the threshold parameter, the value chosen as reference value does 
not give the minimum min-max errors for all the moment orders. This is now clearly stated in 
the text.  
 

	  
Figure	  5 

 
For the RGPS 4-point cell data, the min-max errors are given here above. For the highest 
order moments (2, 2.5 and 3), the min-max errors with the RGPS deformation dataset are 
closer to the error obtained with the unfiltered case (i.e., with n=0 on the plot here above) than 
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with the case filtered with the reference parameters n=3 and threshold=0.02 per day.  
Order moment:  0.5 1 1.5 2 2.5 3     
Min-max errors: 0.08 0.30 0.66 1.16 1.77 2.45 
 
Changes: 
We adapted accordingly the paragraph on the metric: 
“Applied to the composite fields used as example here, we find that using a threshold for the 
total deformation of 0.02 per day gives the lowest min-max error for the highest order. For the 
parameter n, the lowest min-max error for the highest moment order is obtained with n=2, but 
n=3 is better for the other moment orders. The application of our metric to this single example 
tends to indicate that the reference values are well chosen. However, this metric should be 
applied to a larger number of examples to really identify the best values for the parameters.” 
 
We also add this sentence in the discussion: 
“We also performed the multifractal scaling analysis on the original RGPS deformation 
dataset with the same constraints on the data as in Stern (2009) and we found that the 
departure from the power-law is similar to the one observed for the unfiltered deformation 
data set.”  
 
5118-14: Again, the unfiltered data are of less interest because the 3-point 
deformations rates are very poorly determined. What are the values for the RGPS 
data? The whole point of your paper is to improve on the RGPS deformation values, 
not the unfiltered data set. 
Response: As in the main comment 1 and the comments on 5117-10 and 5107-27, the 
reviewer argues that the unfiltered deformation field is much worse than the RGPS 
deformation fields but this is not the case, as explained in our answer to main comment 1 and 
to the comments on 5117-10 and 5107-27.  
 
The whole point of the paper is to propose a method to reduce the opening/closing error 
generated by the derivation of the deformation from any motion dataset. The impact of using 
triangles or quadrangles on the opening/closing error is quite small (10%) compared to the 
effect of our filtering method, which reduces this error by a factor 8. Moreover the problem of 
cell distortion present in RGPS data generates ill-defined deformation with unrealistic values 
that are much higher than in our unfiltered deformation fields. For all these reasons and for 
those explained in our answer to 5117-10, we decided to not include the scaling analysis of 
the RGPS deformation dataset in the paper. 
 
We here give the values requested by the reviewer, but we do not include this value in the 
paper for the reason explained here above. For the snapshot from the RGPS deformation 
dataset analyzed here, the slope (power law exponent) for q=1 is  -0.16 for shear and -0.24 
for divergence. The curvature of the structure function is 0.11 for shear and 0.14 for 
divergence.  
 
Changes: No changes in the text. 
 
 
 
5120-6: You have not shown how the scaling from the RGPS deformation product 
differs from that of the new smoothed data set. 
Response: No, we did not because these values may differ for different reasons: the spatial 
and temporal domain is not exactly the same, the spatial scales are not the same, the 
criterion to select the data for the scaling analysis are not the same (additional criterion 
needed for the RGPS deformation to avoid extreme values). See also answer to the 
comments on 5117-10 and 5118-14. 
 
Changes: We now explain in the text that the RGPS deformation fields present a departure to 
the power-law scaling similar to our unfiltered fields (see remark on 5117-10). 
 



 
 
Fig. 1: Clearly the classical smoother you use has a much larger spatial scale than the 
new method. More interesting would be to show what the results would look like for a 
square grid of nodes, similar to the RGPS cells. Maybe replace the classical smoother, 
which doesn’t make much sense anyway, with a 4-node version. Just define a square 
grid of nodes and show the deformation for the 4-point cells, for the unfiltered 
triangles from the same grid, and for the new smoothed version. 
 
Response: We think showing results with the classical smoother makes sense, as it illustrates 
the classical approach of just taking more points to compute the deformation. The example in 
Figure 1 has 29 points on the circumference of the region and then corresponds to compute 
the deformation with a large cell defined by these 29 points. Computing the deformation with 
4-points is just another application of the same idea and it has the same drawback: it changes 
the spatial scale at which the deformation is defined and does not significantly reduce the 
noise. 
 
We prefer to keep our example with the classical smoother as it clearly shows that our 
approach is different than the classical approach of just defining larger cells. It also allows us 
to introduce the smoothing method. We do not think that comparing the results on triangular 
and quadrangular meshes, as in the following figures, would be useful. As we already 
explained, the total opening/closing error obtained with the triangles is just 10% higher than 
with quadrangles.  
 
 

 
 
 
Changes: 
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We now specifically explain how our filtering method does not induce a change in the spatial 
scale at which deformation is defined. See also our answer to main comment 2 
 
Fig 3: What is normalized resolution? 
Response: It is the mean distance between the points used for the simple test cases. It is 
called normalized resolution as it is defined for a normalized area equal to 1 and should not 
be confounded with the resolution of the meshes build for real cases.  
Changes: We have now added this sentence to the first paragraph of section 2.1: “d is 
hereafter called the normalized resolution.” We do not change the caption of this figure. 
 
 
Fig.6: Please add the black triangles here too so we can see which are smoothed. 
Response: To keep the same visual aspect as the for unfiltered divergence fields we prefer 
not to add black triangles on figure 6. 
Changes: We add in the caption of figure 6:  
“The triangles that have been treated by the smoother are those in black in Fig. 5. For the 
other triangles, the value of the deformation remains the same as in Fig. 4”. 
 
Figs 10-12: What are the scaling relationships for the RGPS deformation data? The 
unfiltered data is not very interesting, since you have added a lot of noise by using 
just three points at the smallest scale. The more interesting question is how the RGPS 
data compares. 
Response: Same answer as for the question 5117-10.  
Changes: No change has been made for these figures. 


