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Abstract

Ice temperature profiles from the Greenland Ice Sheet contain information on the deforma-
tion history, past climates and recent warming. We present full-depth temperature profiles
from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical
modeling reveals that ice temperatures are considerably higher than would be expected
from heat diffusion and dissipation alone. The possible causes for this excess

::::
extra

:
heat

are evaluated using a Lagrangian heat flow model. The model results reveal that the obser-
vations can be explained with a combination of different processes: enhanced dissipation
(strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep
crevasses.

1 Introduction

Vertical ice temperature profiles of the Greenland Ice Sheet (GrIS) carry information on
past upstream surface temperature and accumulation rates. This information is modified by
vertical and horizontal stretching of the ice during flow, smoothed by diffusion, and altered
by subglacial and englacial heat sources.

Characteristic ideal profiles at different locations in the ice sheet have been obtained
with numerical advection-diffusion models (e.g. Budd et al., 1982; Letreguilly et al., 1991;
Funk et al., 1994; Greve, 1997). Full-depth ice temperature profiles from the ablation zone
of the GrIS have been published for only 9 drill sites: five along an approximate flow line

::
in

:::
the

::::::::
ablation

:::::
zone

:::
of

::::
the

:::::::::
Paakitsoq

::::::
area,

:
downstream of Swiss Camp (Thomsen et al.,

1991) and four in Jakobshavn Isbræ (Iken et al., 1993; Lüthi et al., 2002). Despite the
limited spatial extent of these observations, comparison between modeled and observed
temperature profiles allow us to explore the complexity of heat sources in the ablation zone.

Previous work from Jakobshavn Isbrae demonstrates that comparison of modeled and
measured ice temperature profiles provides a means to infer ice-dynamical characteristics
such as vertical stretching of basal ice as it enters Jakobshavn Isbræ (Iken et al., 1993; Funk
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et al., 1994). In this case, the validity of the assumed initial and boundary conditions was
assessed by an almost perfect match of measured and modeled ice temperatures at drill
site DUCK at the margins of Jakobshavn Isbræ (Fig. 1) (Lüthi et al., 2002). It is noteworthy
that the temperature profile at 500 km from Funk et al. (1994) agrees well with

:
is

:::::::
similar

::
to

the profile at Swiss Camp (Thomsen et al., 1991) whereas all other temperature profiles
from the Paakitsoq area (Thomsen et al., 1991) are considerably warmer. These warmer
temperatures must be caused by heat sources not accounted for in the model. Such heat
sources are likely flowing water in moulins and englacial pathways, or freezing water in
crevasses, processes recently referred to as “cryo-hydrologic warming” (Phillips et al., 2010,
2013). Future increases in melt area extent might therefore lead to more cryo-hydrologic
warming, a mechanism considered to cause rapid future warming of the ice sheet (Phillips
et al., 2013).

In this study we present full-thickness temperature profiles from four new boreholesat drill
sites FOXX and GULL, located on a flow line downstream of Swiss Camp with temperature
profile TD5. Using a numerical heat flow model we calculate expected ice temperature pro-
files for our study sites. Comparison of modeled profiles with measurements shows excess
heat

:::::::
warmer

:::::::::::::
temperatures of the ice in the ablation area. Possible sources of this excess

:::::
extra heat are investigated and discussed.

2 Data and methods

2.1 Drill sites

The location of the three drill sites in the Western ablation zone of the GrIS is indicated on
the map in Fig. 1. Sites FOXX and GULL were instrumented in summer 2011 with sensors
for ice deformation, subglacial pressure, and ice temperature (Ryser et al., 2014a, b; An-
drews et al., 2014). Deep drilling at Swiss Camp and installation of thermistor string TD5
in 1990 was performed by Danish Technological University (DTU; Thomsen and Thorning,
1992; Ahlstrom, 2007).

3



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2.2 Temperature measurements

At sites FOXX and GULL temperature was measured with the custom-built digital borehole
sensor system DIBOSS (described in Ryser et al., 2014b) at depths below 300 m. These
deep sensors are complemented with analog thermistors closer to the surface. In each
DIBOSS sensing unit an IST TSic-716 semiconductor temperature sensor with integrated
14 Bit AD-converter (resolution 4 mK, ±70 mK absolute) was mounted in direct contact with
the enclosing aluminum housing. These sensors were logged in 10 min intervals for two
years with a Campbell CR-1000 data logger.

::::::::::
Depending

:::
on

:::::::::
ambient

:::
ice

::::::::::::
temperature,

::::
the

::::::::
readings

::
of

::::::::::::
temperature

:::::::::::
equilibrated

:::
to

::::
their

::::::::::::
undisturbed

::::::
values

:::::
after

::::
one

::
to

::::::
three

::::::::
months.

For measurements close to the surface, sets of two thermistor strings were deployed in
two boreholes at site FOXX, and in one borehole at site GULL. Each string consisted of
a 18-core cable with nine NTC thermistors (Fenwal 135-103FAG-J01) that were shielded
from pressure and moisture, and for which individual calibration curves were determined in
a calibration bath at six to eight reference temperatures in the range of −17.5 to 10 ◦C with
a digital multi-meter. Reference thermistors, calibrated to an absolute accuracy of 20 mK by
the Swiss Federal Office of Metrology, were used to determine the bath temperature. The
maximum difference between reference temperatures and the calibration curve was 40 mK.
In the field, resistances were measured with a full bridge circuit logged by a Campbell CR-
1000 data logger, and occasional readings with a digital multi-meter over the course of two
years. With the setup described above, the absolute accuracy of all measured temperatures
is estimated to be better than 70 mK.

Figure 2 shows ice temperature measured at sites FOXX, GULL and TD5 (Swiss Camp;
Thomsen and Thorning, 1992). Ice temperature increases from the highest site towards the
margin. A notable exception is profile FOXX2 which was recorded in 86 m distance from
FOXX1, and which is even colder than GULL.
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2.3 Heat sources

Heat sources within the ice are due to dissipation (strain heating), or related to flowing or
freezing water. Here we calculate order of magnitude estimates of these effects. For this
purpose we assume ice with a density of ρi = 900 kg m−3

:
,
:
heat capacity Ci = 2093 J kg−1

and latent heat of freezing L= 333.5kJ kg−1.

2.3.1 Freezing water

The heat energy from freezing water needed to raise the temperature of 1 m3 of ice by
∆T = 1 K is

W = ρiCi∆T = 1.88MJ m−3 . (1)

To produce this amount of heat by freezing, 5.6 kg of water are required. Such water is
readily available at the glacier surface during the ablation season, and also in the lower
reaches of the accumulation area where permanent storage of water within the firn was
recently discovered, although 250 km south of our sites (e.g. Harper et al., 2012; Forster
et al., 2013). Water seeping through cracks can freeze and provide an extensive heat source
down to the bottom of such cracks.

2.3.2 Strain heating

The volumetric heat production rate P due to dissipation (strain heating) under shear de-
formation is calculated under the assumption of the shallow ice approximation

:::
and

::::::
n= 3

as

P = ε̇ijσij ∼ 2ε̇xzσxz = 2A(T )σ4xz , (2)

where the shear stress σxz = ρigh tanα is calculated from the density ρi, gravity g, surface
slope α and depth h below the surface. The value of P therefore varies with current surface
slope, and depends on depth and current temperature. The temperature dependent flow
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rate factor A(T ) is taken from Cuffey and Paterson (2010) which agrees well with measure-
ments of ice deformation at sites FOXX and GULL (Ryser et al., 2014b). At a shear stress of
0.1MPa and with A(−5◦C) = 29.3MPa−3 a−1 the heating power is P = 0.006MJ m−3 a−1,
equivalent to a heating rate of 0.31 K per century.

2.4 Heat flow model

The heat flow model is adapted to model the lower accumulation and upper ablation ar-
eas in our region of study. The model tracks a flowline with origin at the ice sheet center
(0 km; Fig. 7b in Funk et al., 1994). Figure 3 shows our area of interest, located on this
flowline between coordinate 450 and 530 km. In this coordinate system, the 1990 drill site
TD5 (Thomsen et al., 1991) at Swiss Camp is located at coordinate 498 km at the equilib-
rium line. The two 2011 drill sites FOXX and GULL are located at coordinates 520 km and
530 km.

Heat flow is modeled with the Finite Element method in two dimensions. The model
implements a block of ice in Lagrangian description. The Finite Element library Libmesh
(Kirk et al., 2006) was used to solve the transient heat diffusion equation in a Lagrangian
reference frame (i.e. the mesh nodes follow the deforming material; e.g. Hutter and Jöhnk,
2004)

ρiCi
∂T

∂t
=∇(k∇T ) +P , (3)

with temperature T , density ρi, specific heat capacity Ci, heat conductivity k and volumet-
ric heat production rate P . The model domain consists of a block discretized with rect-
angular Quad4 elements with Galerkin weighting (linear approximation of temperature).
Dirichlet boundary conditions (prescribed temperature) were applied at the upper and lower
boundary. Implicit time stepping was implemented with a standard Crank-Nicolson scheme.

Each model run consisted of the deformation of the block of ice (the model domain) during
horizontal motion over the distance of 100 km (from 450 to 550 km; Fig. 3). The horizontal
velocity was taken from Funk et al. (1994), resulting in a travel time from Swiss Camp to
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FOXX of ∼ 900 years. During motion along the flow line the model domain (the block) is
horizontally and vertically stretched or compressed to comply with the local ice thickness.
Vertical shearing was neglected (i.e. ε̇xz = 0) so that the block moved in plug-like flow,

::::::::
whereas

::::::::::
dissipative

:::::
heat

:::::::::::
production

::::::::::
according

:::
to

:::::::::
Equation

:::
(2)

:::::
was

::::::::
included. Stretching

was applied homogeneously throughout the ice body honoring mass continuity with ε̇zz =
−ε̇xx and ε̇yy = 0 (with coordinates x in flow direction, y across, z vertical). Nodes were
moved according to their position with respect to the origin of the coordinate system of the
Lagrangian model domain. Heat (i.e. temperature at the model nodes as the solution from
an earlier time step) is therefore advected with the mesh in horizontal and vertical direction.

Mass accumulation at the upper surface was simulated by adding new elements on top of
the domain, in which temperature was set to the surface temperature. Surface temperature
and mass balance are taken from Fig. 4 in Funk et al. (1994)

:
,
::::::
which

::::
are

:::::::
similar

::
to

::::
the

::::::::::
1900-2000

:::::::
values

::
of

::
a
::::::
more

::::::
recent

::::::::::::::
reconstruction

::::::::::::
(Box, 2013) . Similarly, mass removal

by surface melt was implemented by removing elements from the top of the domain. In
the Libmesh implementation this was achieved in a simple manner by solving the heat
flow equation in a subdomain of a larger mesh with constant topology. With this approach,
only the extent of the active subdomain was adjusted in every time step. To obtain a high
resolution of the grid close to the surface the mesh was refined to a coarseness

:::::::::
resolution

of 0.5 m in the top 150 m of the active subdomain, using the adaptive mesh refinement
with hanging nodes implemented in Libmesh, as illustrated in Fig. 4.

::::
The

:::::::::
unrefined

::::::
mesh

:::::::::
consisted

::
of

::::
100

:::::::::
elements

:::
in

:::
the

::::::::
vertical,

::::::::::::::
corresponding

::
to

::
a
:::::::
vertical

::::::
mesh

:::::
size

::
of

:::
20

::
to

::
7

::::
mm,

::::::::::
depending

::::
on

::::
total

::::
ice

:::::::
column

:::::::
height.

:
A constant time step size of 1 year was used,

which together with the vertical mesh size of 0.5 m at the surface gives a numerically stable
solution. This model setup closely reproduced analytical solutions for two setups: Sinusoidal
forcing of the surface temperature, and a moving boundary solution for constant surface
ablation (Vorkauf, 2014).

The initial dimensions of the model domain were 1000 m length and 2000 m thickness.
The mesh was refined around the vertical coordinate 1670 m corresponding to the vertical
position of the initial surface. Elements above the current surface were flagged to belong
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to the inactive subdomain. The heat flow Eq. (3) was solved in the active subdomain be-
low the surface, with Dirichlet boundary conditions (prescribed temperature) at the upper-
most active element, and melting point temperature at the bottom.

:::
On

:::
the

::::::::::
upstream

::::
and

:::::::::::
downstream

::::::
faces

::
a

::::::::
zero-flux

::::::::::
boundary

:::::::::
condition

::::
was

:::::::::::
prescribed.

:
Figure 4 illustrates the

progressive deformation of the mesh, the refinement of elements around the surface, and
the varying number and extent of active elements. In all model runs the mesh was con-
siderably finer than shown in Fig. 4; 200 elements in the vertical, 20 in the horizontal, and
the mesh was refined around the surface in 5 steps instead of the 3 steps displayed in the
figure for illustration.

The initial temperature profile F450, located 450 km along the flow line, is taken from
(Funk et al., 1994, Fig. 8b). This profile was obtained by solving the advection-diffusion
equation with a discrete phase-change boundary along the flowline from the ice sheet cen-
ter, with prescribed surface and basal velocity. In our model, the block is assumed to move
at prescribed horizontal velocities, also taken from Fig. 4 in Funk et al. (1994). These ve-
locities are similar to those from recent satellite imagery feature tracking (Joughin et al.,
2008).

3 Model results

In the following we compare model runs of the heat flow model with borehole data. The
model runs are driven with different internal heat sources, and a modified surface bound-
ary condition. These assumptions are independent from each other, and are combined to
investigate the origin of measured temperatures profiles. Designations of model runs im-
plementing these assumptions are given in Table 1. The relative importance of these con-
tributions is evaluated by comparison of modeled to measured vertical temperature profiles
from Swiss Camp (TD5), GULL and FOXX (both profiles).

Figures 5–7 show comparisons of measured temperature profiles to model results from
the reference run mD, and for runs with additional heat sources. The reference model run
mD (dissipation only) reveals that measured ice temperatures are considerably higher than
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modeled throughout the ice column (Fig. 5). The maximum excess
::::
extra

:
heat energy of

27 MJ m−3 corresponds to a temperature difference of up to 14 K. Following Eq. (1), cor-
recting the temperature difference between the modeled (mD) and observed temperature
profiles in the upper part of the model domain would require additional heat from refreezing
water equivalent to 9 % by mass.

Adding enhanced dissipation through enhanced shearing ice deformation in the Wiscon-
sin ice (model run mE; Fig. 5) explains the observed excess

::::
extra

:
heat between 500 and

700 m depth. The vertical extent of Wisconsin ice was taken from Ryser et al. (2014b) but
the enhancement factor had to be set to 5 instead of the measured (and commonly as-
sumed) value of 3. Since the whole model domain moves at the same velocity, the basal
ice moves faster than in reality, and therefore has less time to warm. A model run with half
surface velocity (not displayed) shows that enough heat is produced at an enhancement
factor of 3 to explain measured temperature in the lowest 200 m.

The effect of accumulation of temperate firn (run mF) is shown in Fig. 6. In this model
run the surface temperature between 460–475 km was set to 0 ◦C, which corresponds to the
160 years time span 1570–1730 C.E. This seemingly arbitrary horizontal extent of temperate
firn conditions coincides with reconstructed warm temperatures at the deep drill sites GRIP
and Dye3 (Dahl-Jensen et al., 1998) (see Sect. 4).

4 Discussion

Any shape of temperature profile within the ice can be obtained by carefully positioning
heat sources during certain time spans within the ice body. The aim of this study is not to
perfectly match the observed ice temperature distribution but to investigate how several sim-
ple source mechanisms might contribute to the observed temperature profiles. The lower
panels of Figs. 5–7 indicate the amount of extra heat per volume needed to match the mea-
sured temperatures. This heat is likely provided by several heat sources: dissipation (strain
heating), temperate paleo-firn, and cryo-hydrologic warming.
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For the ice near the base, strain heating is a crucial process to provide the re-
quired 10MJ m−3 of heat (Fig. 5). Calculations with Eq. (2) show that for the considered
∼900 years of ice flow the warming is of the order 3 K which is sufficient to explain the
measured temperature of the lowest 200 m.

The relatively warm ice between 100 and 300 m depth at site Swiss Camp (profile TD5;
Fig. 5) can be explained by temperate firn conditions in the past. Setting the surface tem-
perature of the accumulated firn between horizontal coordinate 460 and 475 km to melting
temperature (Fig. 3) yields the temperature profile shown in Fig. 6. This time span coin-
cides with reconstructed warm temperatures in 1570–1730 (Dahl-Jensen et al., 1998). We
assume that during this warm period surface melt events were frequent in the accumula-
tion zone, and therefore the firn was considerably warmed, or even at melting temperature
throughout the year. Such conditions with perennial water within the firn have recently been
found in the accumulation area in southern Greenland (Humphrey et al., 2012; Harper et al.,
2012). Currently, firn temperatures are again warming in the accumulation zone upstream of
the study area (Polashenski et al., 2014), and will leave their imprint in the thermal state of
the ice sheet. Warm paleo-firn only affects the upper ablation area, and explains only mea-
sured temperatures of borehole TD5, but is not sufficient to reproduce warm temperatures
at depth at sites GULL and FOXX.

The temperate paleo-firn and ice accumulated in the lower accumulation area is presently
emerging as relatively warm ice in the upper ablation area. Further downstream, ice ac-
cumulated under cold conditions in the dry-snow accumulation area emerges at the sur-
face. Both thermal regimes are clearly visible at our drill sites: At GULL a flat, dirty and
sluggish

::::::
slushy

:
ice surface is reminiscent of temperate Alpine glaciers. At FOXX the sur-

face is bright white with many deep cryoconite holes, which is usually found when cold
ice emerges in the ablation area (e.g. Ryser et al., 2013). Our near-surface tempera-
ture profiles (Fig. 2a) support this notion, with temperatures above −1

:::
−2 ◦C at GULL,

but colder near-surface temperatures at downstream drill site FOXX. It is likely this differ-
ence in surface temperature, and therefore the distribution of dust (dirty ice vs. cryoconite
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holes) that leads to the dark band visible in the upper ablation zone of the western GrIS
(?)

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Wientjes and Oerlemans, 2010; Wientjes et al., 2012) .

For the central ice body an important heat source is needed to provide the 25MJ m−3

heat, corresponding to the observed 12–14 K temperature difference at GULL and FOXX
(Fig. 5). Strain heating due to horizontal stress gradient

:::::::::
gradients

:
is one possible heat

source. Caterpillar-like horizontal extension and compression on diurnal and longer time
scales has been observed in the study area (Ryser et al., 2014a). This heat source is,
however, not strong enough: A quick calculation with Eq. (2), A(−10◦C) and a continuous,
very high horizontal longitudinal stress gradient of 0.1 MPa yields a heat production of only
0.0011MJ m−3 a−1 which is one order of magnitude lower than the shear strain-induced
heating of basal ice discussed above.

To explain the high temperature at GULL and FOXX, the only conceivable heat source at
depth is advection of heat through flowing, or ponding and freezing water between Swiss
Camp and GULL. A major crevasse zone halfway between the sites, and moulins draining
water from the surface have been mapped (Thomsen et al., 1988; Phillips et al., 2011).
The extent and amount of such heat sources was investigated with several model runs with
simple source geometries and durations. Assuming a single crevasse advected to the drill
site, its depth has to be of the order of 400 m, and it needs to be provide 0 ◦C temperature
for 100 years. Figure 7 shows results from a model run assuming a series of crevasses of
400 m depth and 100 m spacing which provide 0 ◦C temperature for 50 years.

Very deep crevasses (300–400 m) with tens of years of activity are only possible if they
are water-filled (Van der Veen, 1998), but do not penetrate to the bottom. While there is
hydrofracturing as a mechanism to create a

::::
deep

:
crevasse, there must be a mechanism

to stop their depth penetration. Limited water supply for hydrofracturing is one possible
cause, which is very likely within the small upstream surface area within a crevasse field.
Another possible limiting factor for crevasse penetration to the bed is tougher ice at the
bottom. Fracture toughness

:::
The

:::::::
critical

::::::::
crack-tip

::::::::
loading

::::
rate at −20 ◦C is orders of magni-

tude lower than at temperatures approaching the melting point (Schulson and Duval, 2009,
Table 9.1). We therefore suggest that water-driven crevasses stop their downwards growth
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once they reach warmer ice. If such very deep, water-filled crevasses indeed exist is un-
known, although some observational evidence of strong englacial reflectors was detected in
the study area (Catania et al., 2008; Catania and Neumann, 2010). These strong reflectors
are likely due to water stored within the glacier ice.

An alternative explanation to crevasses are moulins, vertical shaft systems draining water
from the surface. Moulins are stationary drainage features on an undulating surface, and
are only active for a few years until they move out of surface depressions (Catania and
Neumann, 2010). Their spacing along a flow line amounts to the duration of their activity
times the flow velocity, and thus hundreds of meters in the area of our drill sites (Thomsen
et al., 1988; Phillips et al., 2011). A series of model runs was performed that implement
moulins as vertical shafts at melting temperature during their activity (Vorkauf, 2014). As line
sources they provide little warming to the surrounding ice. Modeled temperature difference
at the site of a moulin is below 1 K after 10 years of inactivity (Vorkauf, 2014). Furthermore,
modeled vertical patterns of ice temperature around moulins do not agree with the observed
temperature profiles. Therefore we conclude that very deep water-filled crevasses, rather
than moulins, are the main heat sources in the ablation area.

:::
An

::::::::
earlier

:::::::::::
modeling

::::::::
study

:::::
of

:::::::::
thermal

::::::::::::
properties

:::::
in

:::::
the

::::::::
same

:::::::
area

:::::::::::::::::::::::::::::
(Phillips et al., 2013) concluded

:::::
that

::::
ice

:::::::::
warmed

:::
by

::::::::::::::::
cryo-hydrologic

:::::::::
features

::::
has

::::
an

:::::::::
important

:::::::::
influence

:::
on

:::
ice

::::::::::::
deformation

::::::
rates,

::::
and

::
is

::::::::
causing

:::
the

:::::::::::
increasing

::::
flow

:::::::::
velocities

:::::::::
observed

::
at

::::
the

::::::::
surface.

::::
The

:::::
main

::::::::::
difference

::
in

:::::::::
modeling

::::::::::::
approaches

::
is

:::::
their

:::::::::::
assumption

::
of

::::::::::
continuous

:::::
heat

::::::::
sources

:::::::
spread

:::::
over

::::
the

::::::
entire

:::
ice

::::::::::
thickness.

:::::::
Neither

::::
our

:::::
data

:::
nor

::::
the

::::::::::::
interpretation

:::::
with

::::
the

:::::
heat

::::
flow

:::::::
model

::::::::
support

::::
this

:::::::::::::
assumption.

::::
The

::::
ice

::
in

::::
the

:::::::
lowest

:::
200 m

::
of

::::
the

:::
ice

:::::::
column

:::::::
shows

:::
no

::::::
signs

::
of

:::::::::
warming

::::::::
through

::::::::::::::
cryo-hydrologic

:::::::::
features,

:::
as

:::
the

:::::::::::::
temperatures

:::::
there

:::::
can

:::
be

:::::::::
explained

:::
by

:::::::::
diffusion

::::
and

:::::::::::
dissipation

::::::
alone,

:::
as

:::::::
shown

::
in

::::::
Figure

:::
5.

::::::
Since

:::::::
vertical

:::::::
shear

::::::::::::
deformation

::
is

::::::::
highest

:::
at

::::::
depth

:::::::::::::::::::::::
(Ryser et al., 2014a, b) ,

:::::::::::
temperature

:::::::::
changes

::
in

:::
the

:::::::
central

:::
ice

:::::
body

::::
will

:::::
have

::
a

:::::
minor

:::::::::
influence

:::
on

::::
ice

:::::::::::
deformation

:::::
rates,

::::
and

:::::::::
therefore

:::::::
surface

::::::::::
velocities.

:

::
A

::::::::::
noteworthy

:::::::
feature

:::
of

:::
the

::::::::::
presented

:::
ice

::::::::::::
temperature

:::::::
profiles

::
is
::::
the

::::::::::
difference

::::::::
between

:::
the

::::
two

:::::::
profiles

::
at

::::
site

::::::
FOXX

::::
(Fig.

:::
2).

::::
The

::::::::::::
temperature

:::::::::
difference

:::::::::
between

:::
the

::::
two

:::::::::
boreholes

12
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:::::
which

::::
are

:::
86 m

:::::
apart

:::::::::
amounts

::
to

:
4K

::
in

::::::::
200-300 m

::::::
depth.

::::::::::::
Furthermore,

::::
the

:::::::
profiles

::::::::
intersect

:::::
below

:::::
300 m

::::::
depth.

:::::
Only

:::
a

::::::::::::
combination

:::
of

:::::
very

:::::::::
localized

:::::
heat

:::::::::
sources

::::
can

:::::::::
produce

:::::
these

::::::::
different

::::::::
shapes

:::
of

:::
the

::::::::::::
temperature

::::::::
profiles

::
in

::::::
such

:::::
close

::::::::
vicinity.

:::
No

:::::::
simple

:::::
heat

::::::
source

:::::::::
patterns,

::::
nor

:::
the

:::::::::
influence

::
of

::::::
active

::::::::
vertical

:::::::
moulins

:::
or

::::::::::
horizontal

::::::::
conduits

::::::::
produce

::::::
similar

::::::::::::
temperature

:::::::
profiles

::::::::::::::::
(Vorkauf, 2014) .

::::
The

:::::::::::
observation

:::
of

::::
very

::::::::
different

::::::::::::
temperature

::::::::
patterns

::
in

::::::::::::
neighboring

::::::::::
boreholes

:::::::::
cautions

:::::::
against

:::::::::::::
interpretation

:::
of

::::::
single

:::::::::::
boreholes

::
in

:::::
areas

::::::
where

:::::::::
englacial

:::::
heat

::::::::
sources

::::::::
strongly

:::::
affect

::::
the

:::::::
thermal

:::::::::
structure

::
of

::::
the

:::
ice.

:

5 Conclusions

We showed that the thermal structure of the ice in the ablation area of the GrIS is dominated
by strong heat sources leading to excess

::::::::
providing

:::::
extra

:
heat, as compared to modeled

heat diffusion alone. Three types of heat sources were identified with a modeling study:
dissipation, temperate paleo-firn, and cryo-hydrologic features, represented by very deep
water-filled crevasses.

An important conclusion of the modeling study is that temperate firn was accumu-
lated in the now cold accumulation area during a warm period of about 160 years,
during 1570–1730 C.E. (Dahl-Jensen et al., 1998). This temperate paleo-firn is
presently emerging as relatively warm ice in the upper ablation area, and is likely
the cause for the observed dark band in the ablation area of the western GrIS
(?)

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Wientjes and Oerlemans, 2010; Wientjes et al., 2012) .

Future warming of the firn areas of the GrIS by extreme melt events, such as in Summer
2012 (McGrath et al., 2013), are likely in a warming Arctic. Extended areas of surface melt
might lead to increasing firn temperatures, affecting large parts of the ice sheet. Such recent
warming has already been detected in the study area (Polashenski et al., 2014).

The central ice body at our study sites is 10–15 K warmer than modeled with heat diffu-
sion alone. To heat this ice to observed temperatures, a continuous heat source with melting
point temperature is required which penetrates down to 300–400 m below the surface. The
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most likely sources are very deep, water-filled crevasses which persist for decades as they
move through the extensional stress regime of a crevasse zone.

All of these heat sources were inferred from comparison of models with measurements.
How important localized sources, such as crevasses and moulins, are for the thermal
regime of the ice is still a matter of debate. Sampling ice temperature at sites suited for
drilling (uncrevassed depressions with surface streams) yields a skewed picture of the full
variability encountered in nature. Without a systematic sampling of ice temperatures to great
depth, the information content extracted from individual holes is to be taken with care. This
argument is impressively illustrated by the two temperature profiles from site FOXX which
are 86 m apart, but show large differences in the upper 300 m(up to 5in 200depth)

:
,
::::
and

::::
even

::::::
cross

::::::
below.
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Table 1. Designation of model runs with different heat sources. These sources are combined in
different model runs, e.g. run mEC.

mC refreezing of water-filled crevasses
mD dissipation from strain heating/reference run
mE dissipation from strain heating with enhancement
mF temperate firn above equilibrium line
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TD1
TD2

TD3

TD4
TD5

Jakobshavn Isbrae

Ilulissat

10km

FOXX
GULL

Swiss Camp

10 km

Figure 1. The study site indicated with red area within Greenland outline is illustrated with a MODIS
satellite image (NASA/GSFC, 2010). The drill sites FOXX and GULL are located on a flowline down-
stream of Swiss Camp, and North of Jakovshavn Isbræ. Site DUCK is from 1995 (Lüthi et al., 2002).

:::
Drill

:::::
sites

::
by

::::::::
Thomsen

::::
are

::::::
marked

::::
with

::::::
yellow

:::::::
triangles

::::
and

::::::::
indicated

::
by

:::::::
TD1-5. The inset shows bed

and surface topographies along the flowline at five-fold vertical exaggeration (data from DTU Space
and Remote Sensing, 2005; Gogineni, 2012).

19



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

5 4 3 2 1 0
Temperature ( ◦ C)

100

80

60

40

20

0

D
e
p
th

 (
m

)

GULL
FOXX1
FOXX2

20 15 10 5 0
Temperature ( ◦ C)

700

600

500

400

300

200

100

0

D
e
p
th

 (
m

)

TD5

GULL

FOXX1

FOXX2

Figure 2. Measured ice temperatures. (a) shows near-surface temperatures at sites GULL and
FOXX. Holes FOXX1 and FOXX2 are 86 m apart. (b) shows measured ice temperatures in four
boreholes at the drill sites TD5 (Swiss Camp; data from Thomsen et al., 1991), GULL and FOXX.
The dashed line indicates the pressure melting temperature.

20



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

400 420 440 460 480 500 520 540 560
Distance along flowline (km)

0.0

0.5

1.0

1.5

2.0

E
le

v
a
ti

o
n
 (

km
)

Funk (1994)
F450

Swiss Camp
TD5

GULL
FOXX

Figure 3. The locations and depths of temperature profiles at sites TD5, GULL and FOXX are
shown as colored vertical lines on a background plot of the modeled temperature field from
Fig. 7b in Funk et al. (1994). The temperature profile F450 at horizontal coordinate 450 km is
used as model input. Bedrock (black) and surface (blue) was obtained from detailed radar data
(DTU Space and Remote Sensing, 2005)

:::::::::::::::
(Gogineni, 2012) . Smoothed versions, indicated with pur-

ple lines, were used as model input. The light-blue area indicates cold firn conditions,
::::
and the

dark blue area between 460 and 475 km the area of
:::::
within

:::::
which

:::
the

:
temperate firn conditions

:::
that

:::::::
emerges

:::
at

::::
TD5

:::
was

::::::::::::
accumulated

:::::::
between

::::::::::
1570-1730.
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Figure 4. The gradual deformation of the computing mesh along the flow line to accommodate for
the varying ice thickness. The ice surface is marked with blue lines between meshes, and inactive
elements are indicated with gray bars (red elements on top). The precise position of the surface with
respect to the mesh is tracked with adaptive mesh refinement. Modeled ice temperatures are indi-
cated with colors. The greenish elements close to the surface are accumulated during flow (thickest
at Swiss Camp at the equilibrium line) and slowly removed from the top due to ablation (sites GULL
and FOXX). Note that computational mesh shown is for illustration only, actual model runs were
performed on considerably finer meshes.
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Figure 5. Measured and modeled temperatures at the three sites Swiss Camp (TD5), GULL and
FOXX. Dots

:::::::
Symbols

:
connected

::
by

:
dotted lines indicate measurements. Dashed lines refer to the

reference model run mD (dissipation only). Solid lines refer to run mE (additional heat sources from
enhanced shear straining in ice-age ice). The scale on top of the lower panel shows the

::::
extra heat

per volume with respect to model run mD (dissipation only).
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Figure 6. Same as Fig. 5 but for model run mEF (
::::::::
enhanced

:::::
shear

::::::::
straining

::::
and

:
temperate paleo-

firn).
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Figure 7. Same as Fig. 5 but for model run mCEF
::::::::::
(crevasses,

:::::::::
enhanced

::::::
shear

::::::::
straining,

::::
and

:::::::::
temperate

:::::::::
paleo-firn).
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