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Abstract 20	  

A coupled hydrogeophysical forward and inverse modeling approach is developed to 21	  

illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to 22	  

characterize subsurface physical properties associated with sublacustrine permafrost thaw 23	  

during lake talik formation.  Numerical modeling scenarios are evaluated that consider 24	  

non-isothermal hydrologic responses to variable forcing from different lake depths and 25	  

for different hydrologic gradients.  A novel physical property relationship connects the 26	  

dynamic distribution of electrical resistivity to ice-saturation and temperature outputs 27	  

from the SUTRA groundwater simulator with freeze/thaw physics.  The influence of 28	  

lithology on electrical resistivity is controlled by a surface conduction term in the 29	  

physical property relationship.  Resistivity models, which reflect changes in subsurface 30	  

conditions, are used as inputs to simulate AEM data in order to explore the sensitivity of 31	  

geophysical observations to permafrost thaw.  Simulations of sublacustrine talik 32	  

formation over a 1,000-year period are modeled after conditions found in the Yukon 33	  

Flats, Alaska.  Synthetic AEM data are analyzed with a Bayesian Markov chain Monte 34	  

Carlo algorithm that quantifies geophysical parameter uncertainty and resolution.  Major 35	  

lithological and permafrost features are well resolved by AEM data in the examples 36	  

considered.  The subtle geometry of partial ice-saturation beneath lakes during talik 37	  

formation cannot be resolved using AEM data, but the gross characteristics of sub-lake 38	  

resistivity models reflect bulk changes in ice content and can identify the presence of a 39	  

talik. A final synthetic example compares AEM and ground-based electromagnetic 40	  

responses for their ability to resolve shallow permafrost and thaw features in the upper 1-41	  

2 m below ground outside the lake margin. 42	  

	   	  43	  
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1 Introduction 44	  

Permafrost thaw can have important consequences for the distribution of surface water 45	  

(Roach et al., 2011; Rover et al., 2012), stream discharge and chemistry (O’Donnell et 46	  

al., 2012; Petrone et al., 2007; Striegl et al., 2005; Walvoord and Striegl, 2007), and 47	  

exchange between groundwater and surface water systems (Bense et al., 2009; Callegary 48	  

et al., 2013; Walvoord et al., 2012).  Likewise, hydrologic changes that alter the thermal 49	  

forcing supplied by surface water or groundwater systems can modify the distribution of 50	  

permafrost, illustrating the strong feedbacks between permafrost and hydrology.  In 51	  

addition to hydrologic processes, permafrost is affected by climate warming in Arctic and 52	  

sub-Arctic regions (Hinzman et al., 2005; Jorgenson et al., 2001), as well as disturbance 53	  

by fire (Yoshikawa et al., 2002).  Climate feedbacks associated with permafrost thaw 54	  

include changes in the amount of organic carbon stored in soils that is vulnerable to 55	  

decomposition (Koven et al., 2011; O’Donnell et al., 2011) and subsequent methane and 56	  

carbon dioxide released from soils by the degradation of organic material previously 57	  

sequestered in frozen ground (Anthony et al., 2012).  Permafrost thaw also has significant 58	  

implications for land management and infrastructure, including the potential to damage 59	  

buildings, roadways, or pipelines due to ground settling, and thermal erosion that can 60	  

alter coastlines and landscape stability (Larsen et al., 2008; Nelson et al., 2002).   61	  

Several investigations have shown the significance of climate and advective heat 62	  

transport in controlling the distribution of permafrost in hydrologic systems (Bense et al., 63	  

2009; Rowland et al., 2011; Wellman et al., 2013).  These results yield important insight 64	  

into the mechanistic behavior of coupled thermal-hydrologic systems, and are a means 65	  

for predicting the impact on permafrost from a wide range of climate and hydrologic 66	  

conditions.  However, few techniques are capable of assessing the distribution of 67	  

permafrost, and most approaches only capture a single snapshot in time.   68	  

Satellite remote-sensing techniques have proven useful in detecting the distribution and 69	  

changes in shallow permafrost, vegetation, and active layer thickness over large areas 70	  

(Liu et al., 2012; Panda et al., 2010; Pastick et al., 2014), but are only sensitive to very 71	  

near-surface properties.  Borehole cores and downhole temperature or geophysical logs 72	  

provide direct information about permafrost and geologic structures, but tend to be 73	  
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sparsely located and are not always feasible in remote areas.  Geophysical methods are 74	  

necessary for investigating subsurface physical properties over large and/or remote areas.  75	  

Recent examples of geophysical surveys aimed at characterizing permafrost in Alaska 76	  

include: an airborne electromagnetic (AEM) survey used to delineate geologic and 77	  

permafrost distributions in an area of discontinuous permafrost (Minsley et al., 2012a), 78	  

ground-based electrical measurements used to assess shallow permafrost aggradation 79	  

near recently receded lakes (Briggs et al., 2014), electrical and electromagnetic surveys 80	  

used to characterize shallow active layer thickness and subsurface salinity (Hubbard et 81	  

al., 2013), and surface nuclear magnetic resonance (sNMR) soundings used to infer the 82	  

thickness of unfrozen sediments beneath lakes (Parsekian et al., 2013).  A challenge with 83	  

geophysical methods, however, is that geophysical properties (e.g. electrical resistivity) 84	  

are only indirectly sensitive to physical properties of interest (e.g. lithology, water 85	  

content, thermal state).  In addition, various physical properties can produce similar 86	  

electrical resistivity values.  Therefore, it is critically important to understand the 87	  

relationship between geophysical properties and the ultimate physical properties and 88	  

processes of interest (Minsley et al., 2011; Rinaldi et al., 2011).   89	  

The non-isothermal hydrologic simulations of Wellman et al. (2013) predict the evolution 90	  

of lake taliks (unfrozen sub-lacustrine areas in permafrost regions) in a two-dimensional 91	  

axis-symmetric model under different environmental scenarios (e.g. lake size, climate, 92	  

groundwater flow regime).  Here, we investigate the ability of geophysical measurements 93	  

to recover information about the underlying spatial distribution of permafrost and 94	  

hydrologic properties.  This is accomplished in three steps: (1) development of a physical 95	  

property relation that connects permafrost and hydrologic properties to geophysical 96	  

properties; (2) generation of synthetic geophysical data that would be expected for 97	  

various permafrost hydrologic conditions that occur during simulated lake talik 98	  

formation; and (3) inversion of the synthetic geophysical data using realistic levels of 99	  

noise to investigate the ability to resolve specific physical features of interest.  Our focus 100	  

is on electromagnetic geophysical methods as these types of data have previously been 101	  

acquired near Twelvemile Lake in the Yukon Flats, Alaska (Ball et al., 2011; Minsley et 102	  

al., 2012a); a lake that is also the basis for the lake simulations discussed by Wellman et 103	  

al. (2013).   104	  
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2 Methods 105	  

2.1 Coupled Thermal-hydrologic Simulations 106	  

Wellman et al. (2013) describe numerical simulations of lake-talik formation in 107	  

watersheds modeled after those found in the lake-rich Yukon Flats of interior Alaska.  108	  

Modeling experiments used the SUTRA groundwater modeling code (Voss and Provost, 109	  

2002) enhanced with capabilities to simulate freeze-thaw processes (McKenzie and Voss, 110	  

2013).  The phase change between ice and liquid water occurs over a specified 111	  

temperature range, and accounts for latent heat of fusion as well as changes in thermal 112	  

conductivity and heat capacity for ice-water mixtures.  Ice content also changes the 113	  

effective permeability, thereby altering subsurface flowpaths and enforcing a strong 114	  

coupling between hydraulic and thermal processes.  The modeling domain, which is 115	  

adapted for this study, is axis-symmetric with a central lake and upwards-sloping ground 116	  

surface that rises from an elevation of 500 m at r = 0 m to 520 m at the outer extent of the 117	  

model, r = 1800 m (Figure 1).  The model uses a layered-geology consistent with the 118	  

Yukon Flats (Minsley et al., 2012a; Williams, 1962), with defined hydrologic and 119	  

geophysical parameters for each layer summarized in Table 1. Initial permafrost 120	  

conditions prior to lake formation were established by running the model to steady state 121	  

under hydrostatic conditions with a constant temperature of −2.25 °C applied to the land 122	  

surface, which produces a laterally continuous permafrost layer extending to a depth of 123	  

about 90 m.  124	  

Subsequent hydrologic simulations assume fully saturated conditions, and are performed 125	  

over a 1,000-year period under 36 different scenarios of climate (warmer than, colder 126	  

than, and similar-to present conditions); hydrologic gradient (hydrostatic, gaining, and 127	  

losing lake conditions); and lake depth/extent (3- , 6- , 9- , and 12-m-deep lakes that 128	  

intersect the ground surface at increasing distance, as shown in Figure 1).  Complete 129	  

details and results of the hydrologic simulations can be found in Wellman et al. (2013).  130	  

At each simulation time step, the SUTRA model outputs temperature, pressure, and ice 131	  

saturation.  Conversion of these hydrologic variables to electrical resistivity- the 132	  

geophysical property needed to simulate electromagnetic data considered here- is 133	  

described below. 134	  
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2.2 A physical property relationship 135	  

Electrical resistivity is the primary geophysical property of interest for the 136	  

electromagnetic geophysical methods used in this study.  It is well-established that 137	  

resistivity is sensitive to basic physical properties such as unfrozen water content, soil or 138	  

rock texture, and salinity (Palacky, 1987).  Here, we build on earlier efforts to simulate 139	  

the electrical properties of ice-saturated media (Hauck et al., 2011) by using a modified 140	  

form of Archie’s Law (Archie, 1942) that also incorporates surface conduction effects 141	  

(Revil, 2012) to predict the dynamic electrical resistivity structure for the evolving state 142	  

of temperature and ice saturation (Si) in the talik simulations.  Bulk electrical 143	  

conductivity is described by Revil (2012) as 144	  

	   σ = Sw
n

F
σ f +m Sw

−nF −1( )σ s⎡⎣ ⎤⎦ 	  ,	   (1)	  145	  

where σ is the bulk electrical conductivity [S/m]; Sw is the fractional water saturation [-] 146	  

in the pore space, where Sw = 1- Si; σf is the conductivity of the saturating pore fluid 147	  

[S/m]; m is the Archie cementation exponent [-]; n is the Archie saturation exponent [-]; 148	  

F is the formation factor [-], where F = φ−m  and ϕ is the matrix porosity [-]; and σs is the 149	  

conductivity [S/m] associated with grain surfaces.  The Archie exponents m and n are 150	  

known to vary as a function of pore geometry; here, we use m = n = 1.5, which is 151	  

appropriate for unconsolidated sediments (Sen et al., 1981).  Simulation results are 152	  

presented as electrical resistivity [ohm-m], which is the inverse of the conductivity, i.e. ρ 153	  

= 1/σ. 154	  

The first term in Eq. (1) describes electrical conduction within the pore fluid, where fluid 155	  

conductivity is defined as 156	  

	   σ f = Fc βi zi Ci
i
∑ 	  .	   (2)	  157	  

The summation in Eq. (2) is over all dissolved ionic species (Na+ and Cl- are assumed to 158	  

be the primary constituents in this study), where Fc is Faraday’s constant [C/mol] and Ci, 159	  

βi, and zi are the concentration [mol/L], ionic mobility [m2/Vs], and valence of the ith 160	  

species, respectively.   161	  



	   7	  

Surface conduction effects, described by the second term in Eq. (1), are related to the 162	  

chemistry at the pore-water interface, and can be important in fresh water (low 163	  

conductivity) systems at low porosity (high ice saturation).  Additionally, the surface 164	  

conduction term provides a means for describing the conductivity behavior for different 165	  

lithologies, as will be described below.  The surface conductivity is given by 166	  

	   σ s =
2
3

φ
1−φ

⎛
⎝⎜

⎞
⎠⎟
βsQv 	  ,	   (3)	  167	  

where βs is the cation mobility [m2/Vs] for counterions in the electrical double layer at the 168	  

grain-water interface (Revil et al., 1998) and Qv is the excess electrical charge density 169	  

[C/m3] in the pore volume,  170	  

	   Qv = Sw
−1ρg

1−φ
φ

⎛
⎝⎜

⎞
⎠⎟
χ 	  ,	   (4)	  171	  

where ρg is the mass density of the grains [kg/m3] and χ is the cation exchange capacity 172	  

[C/kg].  Changes in χ, representative of bulk differences in clay mineral content, are used 173	  

to differentiate the electrical signatures of the lithologic units in this study (Table 1).   174	  

The temperature, T [C], dependence of ionic mobility affects both the fluid conductivity 175	  

(Eq. (2)) and surface conductivity (Eq. (3)), where mobility is approximated as a linear 176	  

function of temperature (Keller and Frischknecht, 1966; Sen and Goode, 1992) as 177	  

	   β T( ) = βT =25C 1+ 0.019 T − 25( )⎡⎣ ⎤⎦ .	   (5)	  178	  

Finally, we consider the effect of increasing ice saturation on salinity.  Because salts are 179	  

generally excluded as freezing occurs, salinity of the remaining unfrozen pore water is 180	  

expected to increase with increasing ice content (Marion, 1995), leading to a 181	  

corresponding increase in fluid conductivity according to Eq. (2).   To describe this 182	  

dependence of salinity on ice saturation, C(Si), we use the expression  183	  

	   C Si( ) = CSi=0
Sw
−α

,	   (6)	  184	  

where  α  0.8  accounts for loss of solute from the pore space  due to diffusion or other 185	  

transport processes, and Si = 1− Sw . 186	  
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Information about the different lithologic units described by Wellman et al. (2013) that 187	  

are also summarized in Table 1 are used to define static model properties such as 188	  

porosity, grain mass density, cation exchange capacity, and Archie’s exponents.  189	  

Dynamic outputs from the SUTRA simulations, including temperature and ice saturation, 190	  

are combined with the static variables in Eqs. (1) -  (6) to predict the evolving electrical 191	  

resistivity structure.    192	  

2.3 Geophysical Forward Simulations 193	  

Synthetic airborne electromagnetic (AEM) data are simulated for each snapshot of 194	  

predicted bulk resistivity values using nominal system parameters based on the Fugro 195	  

RESOLVE1 frequency-domain AEM system that was used in the Yukon Flats survey 196	  

(Minsley et al., 2012a).  The RESOLVE system consists of five horizontal coplanar 197	  

(HCP) transmitter-receiver coil pairs separated by approximately 7.9 m that operate at 198	  

frequencies 0.378 kHz, 1.843 kHz, 8.180 kHz, 40.650 kHz, and 128.510 kHz; and one 199	  

vertical coaxial (VCX) coil pair with 9-m separation that operates at 3.260 kHz. 200	  

Oscillating currents and associated magnetic fields created by the transmitter coils induce 201	  

electrical currents in the subsurface that, in turn, generate secondary magnetic fields that 202	  

are recorded by the receiver coils (Siemon, 2006; Ward and Hohmann, 1988).  Data are 203	  

reported as in-phase and quadrature components of the secondary field in parts-per-204	  

million (ppm) of the primary field, and responses as a function of frequency can be 205	  

converted through mathematical inversion to estimates of electrical resistivity as a 206	  

function of depth (e.g., Farquharson et al., 2003).  Data are simulated at the nominal 207	  

survey elevation of 30 m above ground surface using the one-dimensional modeling 208	  

algorithm described in Minsley (2011), which follows the standard electromagnetic 209	  

theory presented by Ward and Hohmann (1988). 210	  

The vertical profile of resistivity as a function of depth is extracted at each survey 211	  

location and is used to simulate forward geophysical responses.  There are 181 sounding 212	  

locations for each axis-symmetric model, starting at the center of the lake (r = 0 m) to the 213	  

edge of the model domain (r = 1,800 m) in 10-m increments.  Each vertical resistivity 214	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Any	  use	  of	  trade,	  product,	  or	  firm	  names	  is	  for	  descriptive	  purposes	  only	  and	  does	  not	  imply	  
endorsement	  by	  the	  U.S.	  Government	  
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profile extends to 200 m depth, which is well beyond the depth to which we expect to 215	  

recover parameters in the geophysical inversion step. A center-weighted 5-point filter 216	  

with weights equal to [0.0625, 0.25, 0.375, 0.25, 0.0625] is used to average neighboring 217	  

bulk resistivity values at each depth before modeling in order to partly account for the 218	  

lateral sensitivity of AEM systems (Beamish, 2003).  Forward simulations are repeated 219	  

for each of the 50 simulation times between 0 and 1,000 years output from SUTRA, 220	  

resulting in 9,050 data locations per modeling scenario. 221	  

Synthetic ground-based electromagnetic data presented in Section 3.3 are simulated using 222	  

nominal system parameters based on the GEM-2 instrument (Huang and Won, 2003).  223	  

The GEM-2 has a single HCP transmitter-receiver pair separated by 1.66 m, and data are 224	  

simulated at six frequencies: 1.5 kHz, 3.5 kHz, 8.1 kHz, 19 kHz, 43 kHz, and 100 kHz.  225	  

A system elevation of 1 m above ground is assumed, which is typical for this hand-226	  

carried instrument.   227	  

2.4 Parameter Estimation and Uncertainty Quantification 228	  

The inverse problem involves estimating subsurface resistivity values given the simulated 229	  

forward responses and realistic assumptions about data errors.  Geophysical inversion is 230	  

inherently uncertain; there are many plausible resistivity models that are consistent with 231	  

the measured data.  In addition, the ability to resolve true resistivity values is limited both 232	  

by the physics of the AEM method and the level of noise in the data.  Here, we use a 233	  

Bayesian Markov chain Monte Carlo (McMC) algorithm developed for frequency-234	  

domain EM data (Minsley, 2011) to explore the ability of simulated AEM data to recover 235	  

the true distribution of subsurface resistivity values at 20-year intervals within the 1,000-236	  

year lake talik simulations.  This McMC approach is an alternative to traditional 237	  

inversion methods that find a single ‘optimal’ model that minimizes a combined measure 238	  

of data fit and model regularization (Aster et al., 2005). Although computationally more 239	  

demanding, McMC methods allow for comprehensive model appraisal and uncertainty 240	  

quantification.  AEM-derived resistivity estimates for the simulations considered here 241	  

will help guide interpretations of future field datasets, identifying the characteristics of 242	  

relatively young versus established thaw under different hydrologic conditions.  243	  
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The McMC algorithm provides comprehensive model assessment and uncertainty 244	  

analysis, and is useful in diagnosing the ability to resolve various features of interest.  At 245	  

every data location along the survey profile, an ensemble of 100,000 resistivity models is 246	  

generated according to the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et 247	  

al., 1953).  According to Bayes’ theorem, each model is assigned a posterior probability 248	  

that is a measure of (1) its prior probability which, in this case, is used to penalize models 249	  

with unrealistically large contrasts in resistivity over thin layers; and (2) its data 250	  

likelihood, which is a measure of how well the predicted data for a given resistivity 251	  

model match the observed data within data errors.  A unique aspect of this algorithm is 252	  

that it does not presuppose the number of layers needed to fit the observed data, which 253	  

helps avoid biases due to assumptions about model parameterization.  Instead, trans-254	  

dimensional sampling rules (Green, 1995; Sambridge et al., 2013) are used to allow the 255	  

number of unknown layers to be one of the unknowns.  That is, the unknown parameters 256	  

for each model include the number of layers, layer interface depths, and resistivity values 257	  

for each layer.   258	  

Numerous measures and statistics are generated from the ensemble of plausible resistivity 259	  

models, such as: the single most-probable model, the probability distribution of resistivity 260	  

values at any depth, the probability distribution of where layer interfaces occur as a 261	  

function of depth, and the probability distribution of the number of layers (model 262	  

complexity) needed to fit the measured data.  A detailed description of the McMC 263	  

algorithm can be found in Minsley (2011).  Finally, probability distributions of resistivity 264	  

are combined with assumptions about the distribution of resistivity values for any 265	  

lithology and/or ice content in order to make a probabilistic assessment of lithology or ice 266	  

content, as illustrated below. 267	  

3 Results 268	  

3.1 Electrical resistivity model development 269	  

Information about the different lithologic units described by Wellman et al. (2013) that 270	  

are also summarized in Table 1 are used to define static model properties such as 271	  

porosity, grain mass density, cation exchange capacity, and Archie’s exponents.  272	  

Dynamic outputs from the SUTRA simulations, including temperature and ice saturation, 273	  
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are combined with the static variables in Eqs. (1) -  (6) to predict the evolving electrical 274	  

resistivity structure.  The behavior of bulk resistivity as a function of ice saturation is 275	  

shown in Figure 2.  Separate curves are shown for a range of χ (cation exchange capacity) 276	  

values, which are the primary control in defining offset resistivity curves for different 277	  

lithologies, where increasing χ is generally associated with more fine-grained material 278	  

such as silt or clay. 279	  

For each of the 1,000-year simulations, the static variables summarized in Table 1 are 280	  

combined with the spatially and temporally variable state variables T and Si output by 281	  

SUTRA to predict the distribution of bulk resistivity at each time step using Eqs. (1) - (6).  282	  

An example of SUTRA output variables for the 6 m-deep gaining lake scenario at 240 283	  

years (the approximate sub-lake talik breakthrough time for that scenario) is shown in 284	  

Figure 3A-B, and the predicted resistivity for this simulation step is shown in Figure 3C.  285	  

The influence of different lithologic units is clearly manifested in the predicted resistivity 286	  

values, whereas lithology is not overly evident in the SUTRA state variables.  For a 287	  

single unit, there is a clear difference in resistivity for frozen versus unfrozen conditions.  288	  

Across different units, there is a contrast in resistivity when both units are frozen or 289	  

unfrozen.  Resistivity can therefore be a valuable indicator of both geologic and ice 290	  

content variability.  However, there is also ambiguity in resistivity values as both 291	  

unfrozen Unit 2 and frozen Unit 3 appear to have intermediate resistivity values of 292	  

approximately 100-300 ohm-m (Figure 3C) and cannot be characterized by their 293	  

resistivity values alone.  This ambiguity in resistivity can only be overcome by additional 294	  

information such as borehole data or prior knowledge of geologic structure.  Synthetic 295	  

bulk resistivity values according to Eq. (1) are shown in Figure 4 for the four different 296	  

lake depths (3, 6, 9, and 12 m) at three different simulation times (100, 240, and 1,000 297	  

years) output from the hydrostatic/current climate condition simulations.   298	  

Lithology and ice saturation are the primary factors that control simulated resistivity 299	  

values (Figure 2), though ice saturation is a function of temperature.  The empirical 300	  

relation between temperature and bulk resistivity is shown in Figure 3D by cross-plotting 301	  

values from Figure 3B-C.  Within each lithology resistivity is relatively constant above 302	  

zero degrees, with a rapid increase in resistivity for temperatures below zero degrees.  303	  

This result is very similar to the temperature-resistivity relationships illustrated by 304	  
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Hoekstra (1975, Fig. 1), lending confidence to our physical property definitions described 305	  

earlier.  Above zero degrees, the slight decrease in resistivity is due to the temperature-306	  

dependence of fluid resistivity.  The rapid increase in resistivity below zero degrees is 307	  

primarily caused by reductions in effective porosity due to increasing ice saturation, 308	  

though changes in surface conductivity and salinity at increasing ice saturation are also 309	  

contributing factors.  Below -1C, the change in resistivity values as a function of 310	  

temperature rapidly decreases. This is an artifact caused by the imposed temperature-ice 311	  

saturation relationship defined in SUTRA that, for these examples, enforces 99% ice 312	  

saturation at -1C.  It is more likely that ice saturation continues to increase asymptotically 313	  

over a larger range of temperatures below zero degrees, with corresponding increases in 314	  

electrical resistivity.  However, because AEM methods are limited in their ability to 315	  

discern differences among very high resistivity values, as discussed later, this artifact 316	  

does not significantly impact the results presented here. 317	  

3.2 Parameter Estimation and Uncertainty Quantification 318	  

AEM data (not shown) are simulated for each of the electrical resistivity models (e.g. 319	  

Figure 4) using the methods described in Section 2.3.  The simulated data are then used to 320	  

recover estimates of the original resistivity values according to the approach outlined in 321	  

Section 2.4, assuming 4% data error with an absolute error floor of 5 ppm.  Resistivity 322	  

parameter estimation results for the 6 m-deep hydrostatic lake scenario (Figure 4, D-F) 323	  

are shown in Figure 5.  At each location along the profile, the average resistivity model as 324	  

a function of depth is calculated from the McMC ensemble of 100,000 plausible models.  325	  

The overall pattern of different lithologic units and frozen/unfrozen regions is accurately 326	  

depicted in Figure 5, with two exceptions that will be discussed in greater detail: (1) the 327	  

specific distribution of partial ice saturation beneath the lake before thaw has equilibrated 328	  

(Figure 5A-B); and (2) the shallow sand layer (Unit 1) that is generally too thin to be 329	  

resolved using AEM data.   330	  

A point-by-point comparison of true (Figure 4F) versus predicted (Figure 5C) resistivity 331	  

values for the hydrostatic 6 m-deep lake scenario at the simulation time 1,000 years is 332	  

shown in Figure 6A.  The cross-plot of true versus estimated resistivity values generally 333	  

fall along the 1:1 line, providing a more quantitative indication of the ability to estimate 334	  
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the subsurface resistivity structure.  Estimates of the true resistivity values for each 335	  

lithology and freeze/thaw state (Figure 6B) tend to be indistinct; appearing as a vertical 336	  

range of possible values in Figure 6A due to the inherent resolution limitations of inverse 337	  

methods and parameter tradeoffs (Day-Lewis, F. D. et al., 2005; Oldenborger and Routh, 338	  

2009).  Although the greatest point density for both frozen and unfrozen silts (Unit 3) 339	  

falls along the 1:1 line, resistivity values for these components of the model are also often 340	  

overestimated; this is likely due to uncertainties in the location of the interface between 341	  

the silt and gravel units.  This is in contrast with the systematic underestimation of frozen 342	  

gravel resistivity values due to the inability to discriminate very high resistivity values 343	  

using EM methods (Ward and Hohmann, 1988).  Frozen sands (true log resistivity ~2.8 344	  

in Figure 6B) are also systematically overestimated in Figure 6A; in this case, due to the 345	  

inability to resolve this relatively thin resistive layer. 346	  

While useful, single ‘best’ estimates of resistivity values at any location (Figure 6) are 347	  

not fully representative of the information contained in the AEM data and associated 348	  

model uncertainty.  From the McMC analysis of 100,000 models at each data location, 349	  

estimates of the posterior probability density function (pdf) of resistivity are generated for 350	  

each point in the model.  Probability distributions are extracted from a depth of 15 m, 351	  

within the gravel layer (Unit 2), at one location where unfrozen conditions exist (r = 0 352	  

m), and a second location outside the lake extent (r = 750 m) where the ground remains 353	  

frozen (Figure 7A).  Results from a depth of 50 m, within the silt layer (Unit 3), are 354	  

shown in Figure 7B.  With the exception of the frozen gravels, whose resistivity tends to 355	  

be underestimated, the peak of each pdf is a good estimate of the true resistivity value at 356	  

that location.  357	  

Resistivity values are translated to estimates of ice saturation, which is displayed on the 358	  

upper axis of each panel in Figure 7, using the appropriate lithology curve from Figure 2. 359	  

Using the ice saturation-transformed pdfs, quantitative inferences can be made about the 360	  

probability of the presence or absence of permafrost. For example, the probability of ice 361	  

content being less than 50% is estimated by calculating the fractional area under each 362	  

distribution for ice-content values less than 0.5.  Probability estimates of ice content less 363	  

than 50% and greater than 95% for the four distributions shown in Figure 7 are 364	  

summarized in Table 2.  High probabilities of ice content exceeding 95% are associated 365	  
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with the r = 750 m location outside the lake extent, whereas high probability of ice 366	  

content below the 50% threshold are observed at r = 0 beneath the center of the lake.  The 367	  

pdfs for each lithology shown in Figure 7 are end-member examples of frozen and 368	  

unfrozen conditions.  Within a given lithology, a smooth transition from the frozen-state 369	  

pdf to the unfrozen-state pdf is observed as thaw occurs, with corresponding transitions in 370	  

the calculated ice threshold probabilities. 371	  

Further illustration of the spatial and temporal changes in resistivity pdfs are shown in 372	  

Figure 8.  The resistivity pdf is displayed as a function of distance from the lake center at 373	  

the same depths (15 m and 50 m) shown in Figure 7, corresponding to gravel (Figure 374	  

8A,C, and E) and silt (Figure 8B, D, and F) locations.  High probabilities, i.e. the peaks in 375	  

Figure 7, correspond to dark-shaded areas in Figure 8.  Images are shown for three 376	  

different time steps in the SUTRA simulation for the hydrostatic 6 m-deep lake scenario: 377	  

100 years (Figure 8A-B), 240 years (Figure 8C-D), and 1,000 years (Figure 8E-F).  378	  

Approximate ice-saturation values, translated from the ice versus resistivity relationships 379	  

for each lithology shown in Figure 2, are displayed on the right axis of each panel in 380	  

Figure 8, and true resistivity values are plotted as a dashed line.  Observations from 381	  

Figure 8 include: 382	  

(1) Outside the lake boundary, pdfs are significantly more sharply peaked (darker 383	  

shading) for the gravel unit than the silt unit, suggesting better resolution of shallower 384	  

resistivity values within the gravel layer.  It should be noted however, that this improved 385	  

resolution does not imply improved model accuracy; in fact, the highest probability 386	  

region slightly underestimates the true resistivity value.  (2) Probability distributions for 387	  

the silt layer track the true values, but with greater uncertainty.  (3) Inside the lake 388	  

boundary, gravel resistivity values are not as well resolved compared with locations 389	  

outside the lake boundary due to the loss of signal associated with the relatively 390	  

conductive lake water.  (4) Increasing trends in resistivity/ice saturation towards the outer 391	  

extents of the lake are captured in the pdfs, but are subtle.  (5) Within the silt layer at 392	  

early times before the talik is fully through-going (Figure 8B, D), the AEM data are 393	  

insensitive to which layer is present, hence the bi-modal resistivity distribution with 394	  

peaks associated with characteristic silt and gravel values.  This ambiguity disappears at 395	  
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later times when the low-resistivity unfrozen silt layer extends to the base of the unfrozen 396	  

gravels, which is a more resolvable target (Figure 8F). 397	  

A more detailed analysis of the changes in resistivity and ice-saturation as a function of 398	  

time, and for the differences between hydrostatic and gaining lake conditions, is 399	  

presented in Figure 9.  Average values of resistivity/ice-saturation within 100 m of the 400	  

lake center are shown within the gravel layer at a depth of 15 m (Figure 9A) and a depth 401	  

of 50 m within the silt layer (Figure 9B) at 20 year time intervals.  Outputs are displayed 402	  

for both 6 m-deep hydrostatic and gaining lake scenarios. Thawing due to conduction 403	  

occurs over the first ~200 years within the gravel layer (Figure 9A), with similar trends 404	  

for both the hydrostatic and gaining lake conditions and no clear relationship to the talik 405	  

formation times indicated as vertical lines.  Conduction-dominated thaw is observed for 406	  

the gravel layer in the gaining lake scenario because significant advection does not occur 407	  

until after the thaw bulb has extended beneath the gravel layer.  In the deeper silt layer 408	  

(Figure 9B), however, very different trends are observed for the hydrostatic and gaining 409	  

lake conditions.  Ice content decreases gradually as thawing occurs in the hydrostatic 410	  

scenario, consistent with conduction-dominated thaw, reaching a minimum near the time 411	  

of talik formation at 687 years (Wellman et al., 2013, Table 3).  In contrast, there is a 412	  

rapid loss in ice content in the gaining lake scenario resulting from the influence of 413	  

advective heat transport as groundwater is able to move upwards through the evolving 414	  

talik beneath the lake. This rapid loss in ice content begins after the gravel layer thaws, 415	  

and reaches a minimum near the 258-year time of talik formation for this scenario.  These 416	  

trends, captured by the AEM-derived resistivity models, are consistent with the plots of 417	  

change in ice volume output from the SUTRA simulations reported by Wellman et al. 418	  

(2013, Figure 3). 419	  

3.3 Near-Surface Resolution 420	  

Finally, we focus on the upper sand layer (Unit 1), which is generally too thin (2 m) and 421	  

resistive (> 600 ohm-m) to be resolved using AEM data; though may be imaged using 422	  

other ground-based electrical or electromagnetic geophysical methods.  Seasonal thaw 423	  

and surface runoff causes locally reduced resistivity values in the upper 1 m, which is still 424	  

too shallow to resolve adequately using AEM data.  In practice, shallow thaw and 425	  

sporadic permafrost trends are observed to greater depths in many locations, including 426	  
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inactive or abandoned channels (Jepsen et al., 2013b).  To simulate these types of 427	  

features, the shallow resistivity structure of the 6 m-deep hydrostatic lake scenario at 428	  

1,000 years is manually modified to include three synthetic ‘channels’.  These channels 429	  

are not intended to represent realistic pathways relative to the lake and the hydrologic 430	  

simulations; they are solely for the purpose of illustrating the ability to resolve shallow 431	  

resistivity features. 432	  

Figure 10A shows the three channels in a zoomed-in view of the uppermost portion of the 433	  

model outside the lake extent.  Each channel is 100 m wide, but with different depths: 1 434	  

m (half the Unit 1 thickness), 2 m (full Unit 1 thickness) and 3 m (extending into the top 435	  

of Unit 2).  Analysis of AEM data simulated for this model, presented as the McMC 436	  

average model, are shown in Figure 10B.  All three channels are clearly identified, but 437	  

their thicknesses and resistivity values are overestimated and cannot be distinguished 438	  

from one another.  To explore the possibility of better resolving these shallow features, 439	  

synthetic EM data are simulated using the characteristics of a ground-based multi-440	  

frequency EM tool (the GEM-2 instrument) that can be hand carried or towed behind a 441	  

vehicle, and is commonly used for shallow investigations.  The McMC average model 442	  

result for the simulated shallow EM data is shown in Figure 10C.  An error model with 443	  

4% relative data errors and an absolute error floor of 75 ppm was used for the GEM-2 444	  

data.  Channel thicknesses and resistivity values are better resolved compared with the 445	  

AEM result, though the 1 m-deep channel near r = 800 m appears both too thick and too 446	  

resistive.  In addition, the shallow EM data show some sensitivity to the interface at 2-m 447	  

depth between frozen silty sands and frozen gravels, though the depth of this interface is 448	  

over-estimated due to the limited sensitivity to these very resistive features.   449	  

4 Discussion 450	  

Understanding the hydrogeophysical responses to permafrost dynamics under different 451	  

hydrologic and climatic conditions, and in different geological settings, is important for 452	  

guiding the interpretation of existing geophysical datasets and also for planning future 453	  

surveys.  Geophysical models are inherently uncertain and ambiguous because of (1) the 454	  

resolution limitations of any geophysical method and (2) the weak or non-unique 455	  

relationship between hydrologic properties and geophysical properties.  We have 456	  

presented a general framework for coupling airborne and ground-based electromagnetic 457	  
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predictions to hydrologic simulations of permafrost evolution, including a novel physical 458	  

property relationship that accounts for the electrical response to changes in lithology, 459	  

temperature, and ice content, as well as a rigorous analysis of geophysical parameter 460	  

uncertainty.  Although the focus here is on AEM data, other types of electrical or 461	  

electromagnetic measurements could be readily simulated using the same resistivity 462	  

model.  Future efforts will focus on the simulation of other types of geophysical data (e.g. 463	  

nuclear magnetic resonance or ground penetrating radar) using the same basic modeling 464	  

approach. 465	  

In the specific examples of lake talik evolution presented here, which are modeled after 466	  

the physical setting of the Yukon Flats, Alaska (Minsley et al., 2012b), AEM data are 467	  

shown to be generally capable of resolving large-scale permafrost and geological features 468	  

(Figure 5), as well as thermally and hydrologically induced changes in permafrost (Figure 469	  

8, Figure 9).  The Bayesian McMC analysis provides useful details about model 470	  

resolution and uncertainty that cannot be assessed using traditional inversion methods 471	  

that produce a single ‘best’ model.  A fortuitous aspect of the Yukon Flats model is the 472	  

fact that the silt layer (Unit 3) is relatively conductive compared with the overlying 473	  

gravels (Unit 2), making it a good target for electromagnetic methods.  If the order of 474	  

these layers were reversed, if the base of permafrost were hosted in a relatively resistive 475	  

lithology, or if the base of permafrost was significantly deeper, AEM data would not 476	  

likely resolve the overall structure with such good fidelity.  In addition, knowledge of the 477	  

stratigraphy helps to remove the ambiguity between unfrozen gravels and frozen silts, 478	  

which have similar intermediate resistivity values (Figure 4, Figure 5).  The methods 479	  

developed here that use a physical property model to link hydrologic and geophysical 480	  

properties provide the necessary framework to test other more challenging 481	  

hydrogeological scenarios. 482	  

Two key challenges for the lake talik scenarios were identified: (1) resolving the details 483	  

of partial ice saturation beneath the lake during talik formation, and (2) resolving near-484	  

surface details associated with shallow thaw.  The first challenge is confirmed by Figure 485	  

5 and Figure 8, which show that AEM data cannot resolve the details of partial ice 486	  

saturation beneath a forming talik.  However, there is clearly a change in the overall 487	  

characteristics of the sub-lake resistivity structure as thaw increases (Figure 9).  One 488	  
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notable feature is the steadily decreasing depth to the top of the low-resistivity unfrozen 489	  

silt (red) beneath the lake (Figure 5A-B) as thaw increases, ultimately terminating at the 490	  

depth of the gravel-silt interface when fully unfrozen conditions exist (Figure 5C).  491	  

Measurements of the difference in elevation between the interpreted top of unfrozen silt 492	  

and the base of nearby frozen gravels were used by Jepsen et al. (2013a) to classify 493	  

whether or not fully thawed conditions existed beneath lakes in the Yukon Flats AEM 494	  

survey described by Minsley et al. (2012a).  The simulations presented here support use 495	  

of this metric to distinguish full versus partial thaw beneath lakes.  However, without the 496	  

presence of a lithological boundary, the shallowing base of permafrost associated with 497	  

talik development beneath lakes would be much more difficult to distinguish.  Finally, it 498	  

is important to note that resistivity is sensitive primarily to unfrozen water content, and 499	  

that significant unfrozen water can remain in relatively warm permafrost that is near 0 C, 500	  

particularly in fine-grained sediments.  Resistivity-derived estimates of talik boundaries 501	  

defined by water content may therefore differ from the thermal boundary defined at 0 C. 502	  

The second challenge, to resolve near-surface details associated with supra-permafrost 503	  

thaw, is addressed in Figure 10.  For the scenarios considered here, AEM data can 504	  

identify shallow thaw features, but have difficulty in discriminating their specific details.  505	  

There are many combinations of resistivity and thickness that produce the same EM 506	  

response; therefore, without additional information it is not possible to uniquely 507	  

characterize both thaw depth and resistivity.  Ground-based EM data show improved 508	  

sensitivity to the shallow channels, and also limited sensitivity to the interface between 509	  

resistive frozen gravels and frozen silty sands (Figure 5).  By restricting the possible 510	  

values of resistivity and/or thickness for one or more layers based on prior assumptions, 511	  

Dafflon et al. (2013) showed that improved estimates of active layer and permafrost 512	  

properties can be obtained.    The quality of these estimates, of course, depends on the 513	  

accuracy of prior constraints used.  In many instances, it may be possible to auger into 514	  

this shallow layer to provide direct observations that can be used as constraints.  This 515	  

approach could be readily applied to the ensemble of McMC models.  For example, if the 516	  

resistivity of the channels in Figure 10A were known, the thickness of the channels could 517	  

be estimated more accurately by selecting only the set of McMC models with channel 518	  
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resistivity close to the true value, thereby removing some of the ambiguity due to 519	  

equivalences between layer resistivity and thickness. 520	  

AEM data are most likely to be useful for baseline characterization of subsurface 521	  

properties as opposed to monitoring changes in permafrost.  Although there are some 522	  

cases of rapid change associated with near-surface freeze/thaw processes (Koch et al., 523	  

2013) or in the case of catastrophic loss of ice in the gaining lake scenario (Figure 9B) 524	  

that may be of interest, large-scale changes in permafrost generally occur over much 525	  

longer time periods than is practical for repeat AEM surveys.  One exception could be 526	  

related to infrastructure projects such as water reservoirs or mine tailing impoundments 527	  

behind dams, where AEM could be useful for baseline characterization and repeat 528	  

monitoring of the impact caused by human-induced permafrost change.  Geophysical 529	  

modeling, thermophysical hydrologic modeling, and field observations create a synergy 530	  

that provides greater insight than any individual approach, and can be useful for future 531	  

characterization of coupled permafrost and hydrologic processes.  532	  

5 Summary 533	  

Analysis of AEM surveys provide a means for remotely detecting subsurface electrical 534	  

resistivity associated with the co-evolution of permafrost and hydrologic systems over 535	  

areas relevant to catchment-scale and larger processes.  Coupled hydrogeophysical 536	  

simulations using a novel physical property relationship that accounts for the effects of 537	  

lithology, ice saturation, and temperature on electrical resistivity provide a systematic 538	  

framework for exploring the geophysical response to various scenarios of permafrost 539	  

evolution under different hydrological forcing.  This modeling approach provides a 540	  

means of robustly testing the interpretation of AEM data given the paucity of deep 541	  

boreholes and other ground truth data that are needed to characterize subsurface 542	  

permafrost.  A robust uncertainty analysis of the geophysical simulations provides 543	  

important new quantitative information about the types of features that can be resolved 544	  

using AEM data given the inherent resolution limitations of geophysical measurements 545	  

and ambiguities in the physical property relationships. In the scenarios considered here, 546	  

we have shown that large-scale geologic and permafrost structure is accurately estimated.  547	  

Sublacustrine thaw can also be identified, but the specific geometry of partial ice 548	  
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saturation beneath lakes can be poorly resolved by AEM data.  Understanding the 549	  

geophysical response to known simulations is helpful both for guiding the interpretation 550	  

of existing AEM data, and also to plan future surveys and other ground-based data 551	  

acquisition efforts.   552	  
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Tables 762	  

Table 1.  Description of geologic units and physical properties used in numerical 763	  

simulations.  Entries separated by commas represent parameters with different values for 764	  

each of the lithologic units. 765	  

Geologic unit properties 

Lithology:  

Unit 1 Sediment (silty sand) 

Unit 2 Sediment (gravelly sand) 

Unit 3 Lacustrine silt 

Unit depth range [m] 0-2, 2-30, 30-250 

Porosity [-] 0.25, 0.25, 0.20 

Geophysical parameters 

Archie cementation exponent (m) [-] 1.5 

Archie saturation exponent (n) [-] 1.5 

Water salinity (C) [ppm] 250 (Si  = 0) 

Na+ ionic mobility (β) [m2/Vs] 5.8 x 10-8 (25°C) 

Cl- ionic mobility (β) [m2/Vs] 7.9 x 10-8 (25°C) 

Na+ surface ionic mobility (βs) [m2/Vs] 0.51 x 10-8 (25°C) 

Grain mass density (ρg) [kg/m3] 2650 

Cation exchange capacity (χ) [C/kg] 200, 10, 500 

Salinity exponent (a) [-] 0.8 

	  766	  

	   	  767	  
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Table 2.  Probability of ice saturation falling above or below specified thresholds based 768	  

on the McMC-derived resistivity probability distributions shown in Figure 7. 769	  

 p(ice < 0.5) p(ice > 0.95) 

Unit 2 (gravel), r = 0 m 0.76 0.05 

Unit 2 (gravel), r = 750 m 0.00 0.88 

Unit 3 (silt), r = 0 m 0.76 0.05 

Unit 3 (silt), r = 750 m 0.00 0.98 

	   	  770	  
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	  771	  

	  772	  

Figure 1. Axis-symmetric model geometry indicating different lithologic units and 773	  

simulated lake depths/extents. 774	  

  775	  
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 776	  

Figure 2. Bulk resistivity as a function of ice saturation using the physical properties 777	  

defined for each of the lithologic units described in Table 1.   778	  

 779	  

  780	  
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 781	  

 782	  

Figure 3.  SUTRA model outputs and geophysical transformations from the 6-m gaining 783	  

lake simulation at 240 years.  Ice saturation (A) and temperature (B) are converted to 784	  

predictions of bulk resistivity (C).  Variability in resistivity as a function of temperature 785	  

is indicated in (D) for lithologic units 1-3. 786	  

  787	  
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 788	  

Figure 4.  Synthetic bulk resistivity images under hydrostatic flow and current climate 789	  

conditions.  Lake depths of 3 m (A-C), 6 m (D-F), 9 m (G-I), and 12 m (J-L) are 790	  

illustrated at simulation times 100, 240, and 1,000 years.   791	  

  792	  
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 793	  

Figure 5.  Mean resistivity model extracted from McMC ensembles.  Results are shown 794	  

for the 6-m-deep hydrostatic lake scenario outputs at (A) 100 years, (B) 240 years, and 795	  

(C) 1,000 years. 796	  

  797	  
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 798	  

Figure 6.  Performance of geophysical parameter estimation in recovering true parameter 799	  

values. (A) True versus McMC-estimated resistivity values for the hydrostatic 6-m-deep 800	  

lake scenario at simulation time 1,000 years, compared with the frequency distribution of 801	  

true resistivity values (B).  Estimated resistivity values generally fall along the dashed 1:1 802	  

line in (A), with exceptions being under-prediction of the resistive frozen gravels, over-803	  

prediction of the thin surficial frozen sand, and some over-prediction of the frozen silt 804	  

where it is in contact with frozen gravel. 805	  

  806	  
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 807	  

Figure 7.  McMC-estimated resistivity posterior distributions within frozen and unfrozen 808	  

unit #2 gravels (A) and frozen and unfrozen unit #3 silts (B) for the hydrostatic 6-m-deep 809	  

lake scenario at 1,000 years.  Unfrozen resistivity distributions are extracted beneath the 810	  

center of the lake (r = 0) at depths of 15 m and 50 m for the gravels and silts, 811	  

respectively.  Frozen distributions are extracted at the same depths, but at r = 750 m.  The 812	  

upper x-axes labels indicate approximate ice saturation based on the lithology-dependent 813	  

ice saturation versus resistivity curves shown in Figure 2.   814	  

  815	  
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 816	  

Figure 8.  Resistivity probability distributions for the hydrostatic 6-m-deep lake scenario 817	  

at simulation times 100 years (A-B), 240 years (C-D), and 1,000 years (E-F).  Shading in 818	  

each image represents the probability distribution at depths of 15 m (A, C, E) and 50 m 819	  

(B, D, F) from the lake center (r = 0 m) to the edge of the model (r = 1800 m).  Dashed 820	  

lines indicate the true resistivity values.  Ice saturation is displayed on the right axis of 821	  

each image, and is defined empirically for each lithology using the relationships in Figure 822	  

2. 823	  

  824	  
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 825	  

Figure 9.  Change in ice saturation and resistivity as a function of time.  Results are 826	  

shown for the 6-m-deep lake hydrostatic and gaining lake scenarios within (A) the gravel 827	  

layer, unit #2, at a depth of 15 m and (B) the silt layer, unit #3, at a depth of 50 m. 828	  

  829	  
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 830	  

Figure 10. Comparison of airborne and ground-based measurements for recovering 831	  

shallow thaw features.  (A) True shallow resistivity structure extracted from the 832	  

hydrostatic 6-m-deep lake scenario at a simulation time of 1,000 years, shown outside of 833	  

the lake extent (distance > 500 m).  Three shallow low-resistivity channels with 834	  

thicknesses 1 m, 2 m, and 3 m were added to the resistivity model to provide added 835	  

contrast.  McMC-derived results using simulated AEM data (B) and ground-based EM 836	  

data (C) illustrate the capability of these systems to image shallow features. 837	  

	  838	  


