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Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes includ-

ing failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation

within the weak layer (WL) and tensile fracture through the slab. During past decades, theoreti-

cal and experimental work has gradually increased our knowledge of the fracture process in snow.

However, our limited understanding of crack propagation and fracture arrest propensity prevents the5

evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab

tensile failure propensity is examined using a mechanically–based statistical model of the slab–WL

system based on the finite element method. This model accounts for WL heterogeneity, stress redis-

tribution by elasticity of the slab and the slab possible tensile failure. Two types of avalanche release

are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop10

crack propagation and to trigger a tensile failure within the slab; (2) partial-slope release if fracture

arrest and slab tensile failure occurs due to the WL heterogeneity. The probability of these two re-

lease types is presented as a function of the characteristics of WL heterogeneity and of the slab. One

of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is

mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide–scale crack15

propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is

mainly influenced by topographical and morphological features such as rocks, trees, slope curvature

and the spatial variability of the snow depth as it is often claimed in the literature.
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1 Introduction

Dry-snow slab avalanches are generally caused by a sequence of fracture processes including: (1)20

failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within

the weak layer (WL) and (3) tensile fracture through the slab which leads to its detachment (Mc-

Clung, 1979; Schweizer et al., 2003). During the past decades, theoretical and experimental studies

have gradually enhanced the knowledge of the fracture process in snow allowing a better estimation

of snowpack stability (McClung, 1979; Jamieson and Johnston, 1990; Föhn et al., 1998; Jamieson25

and Johnston, 1998, 2001; Schweizer et al., 2006; Sigrist and Schweizer, 2007). Despite these ad-

vances, the limited understanding of crack propagation and fracture arrest propensity still limits the

evaluation of the avalanche size and thus impedes avalanche forecasting and hazard mapping. This

limitation is inter alia due to the multi-scale spatial variability of the snowpack and to the complex

microstructure of snow.30

Avalanche hazard mapping procedures have recently seen growing popularity of coupled statistical–

deterministic models in order to evaluate the run-out distance distribution and the probability of ex-

ceedence of a threshold pressure at any location of the run-out zone (Barbolini et al., 2000; Naaim

et al., 2003; Ancey et al., 2004; Eckert et al., 2007, 2008, 2010). These coupled models require the

evaluation of the release volume, combination between the release depth and area. For the evalu-35

ation of the release depth, empirical techniques already exist (Swiss guidelines, Salm et al., 1990)

and more recently, a coupled statistical–mechanical model was proposed by Gaume et al. (2012) and

Gaume et al. (2013) taking into account both mechanical and meteorological factors in a probabilis-

tic framework. On the other hand, the precise position of the release area and the evaluation of its

spatial extent have been less investigated. Maggioni et al. (2002) and Maggioni and Gruber (2003)40

analyzed a database of well-documented avalanche events with respect to several topographic char-

acteristics and showed that the mean slope angle, the curvature and the distance to the ridge are the

most important parameters influencing avalanche release area distribution. Failletaz et al. (2006);

Fyffe and Zaiser (2004, 2007) used cellular-automata approaches to compute avalanche release area

distributions. These models include a source of stochastic variability such as the heterogeneity of45

weak layer mechanical properties. Interestingly, these models are able, under certain conditions, to

reproduce the power-law area distributions observed from field measurements (McClung, 2003; Fail-

letaz et al., 2004). Finally, Simenhois and Birkeland (2014) recently suggested different mechanisms

that may control fracture arrest propensity.

In this paper, we extend a mechanically-based probabilistic model developed in a previous study50

(Gaume et al., 2012, 2013) to analyze which snowpack parameters are influencing slab tensile failure

propensity and, hence, the extent of the release area. In a first section, we recall the main charac-

teristics of the model and present the changes made compared to its previous version. Then, in the

second section, two release types are distinguished and presented. In the third section, we quantify

the influence of the characteristics of weak layer heterogeneity and of slab properties on the position55
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of slab tensile failure. Finally, in the last section, the results are applied to dry-snow slab avalanche

release.

2 Formulation of the model

In this paper, the mechanical model proposed by Gaume et al. (2012) and described in detail in

Gaume et al. (2013) is used and extended. We recall here its main characteristics.60

The simulated system is a uniform slope composed of a slab and a weak layer (WL) of length L =

50 m. The numerical simulations are carried out using the finite element code Cast3m in 2D (plane

stress condition). Gravity is the only applied external force and the system is loaded by progressively

increasing the slope angle θ until failure. The main change compared to the model of Gaume et al.

(2013) concerns the constitutive law of the slab. We use here an elastic–brittle law, characterized by65

the existence of a tensile strength σt, in order to take into account the possible tensile failure of the

slab. The density of the slab is denoted ρ. The elasticity of the slab is characterized by its Young’s

modulus E and its Poisson ratio ν. The weak layer is modeled as a quasi-brittle (strain-softening)

interface with a Mohr-Coulomb failure criterion characterized by a cohesion c and a friction coeffi-

cient µ. Spatial heterogeneity of the weak layer is accounted for by a stochastic Gaussian distribution70

of the cohesion c with a spherical covariance function of correlation length ε. The average cohesion

is denoted 〈c〉, its standard deviation σc and the coefficient of variation CV = σc/〈c〉. The range of

parameter values used in the model, compared to realistic values for snow coming from field and

laboratory experiments, are summarized in Tab. 1.

Besides the evaluation of avalanche release depth distributions, this model formerly enabled us to75

evidence a heterogeneity smoothing effect caused by stress redistributions due to slab elasticity. This

elastic smoothing effect is characterized by a typical length scale of the system Λ (see Chiaia et al.,

2008; Gaume et al., 2013, 2014a, for more details).

3 Preliminary description of the results: two release types

Two types of avalanche release were obtained in the simulations: (1) full-slope release, if the entire80

simulated slope becomes unstable without tensile failure within the slab (Fig. 1a); (2) partial-slope

release, if tensile failure occurs within the slab so that only a part of the slope is released (Fig. 1b).

Importantly, however, for both release types, the primary failure process observed is always the shear

failure of the weak layer. Slab tensile failure, when existent, systematically constitutes a secondary

process.85

In the case of a full-slope release, the heterogeneity magnitude is not sufficient to trigger a tensile

failure within the slab. The basal crack in the weak layer thus propagates until reaching the top

boundary condition which can be seen as an anchor point (Fig. 1a). In the context of a real avalanche
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starting zone, this boundary condition can represent a strong geomorphological feature susceptible

to trigger the tensile failure (ridges, rocks, trees, local convex zone, etc.).90

In contrast, for partial-slope releases, the cohesion variability in the weak layer is sufficient to

generate the tensile failure of the slab within the simulated system. Local strong zones can effectively

stop the propagation of the crack and the excess of stress is redistributed in the slab and induces slab

tensile opening.

For a constant slab failure strength and a constant average cohesion of the WL, the occurrence95

of full or partial-slope release is intimately linked to the heterogeneity of WL cohesion as well as

smoothing effects due to the elasticity of the slab. These combined mechanisms lead to shear stress

heterogeneities in the WL which modulate the shear stress differences ∆τ existing between adjacent

elements of the WL. This shear stress difference ∆τ ultimately induces generation of normal stresses

in the down-slope direction σxx (σxx is positive in tension and negative in compression). If σxx100

exceeds locally the tensile strength of the slab σt, then the brittle failure of the slab occurs. This

process is illustrated in Fig. 1 for both release types. A full-slope release corresponds to σxx < σt

everywhere in the slab whereas a partial-slope release means that σxx can be locally larger than σt.

Note that the position of the tensile failure in the slab, if existent, also depends on the position of

the initial basal failure in the weak layer. This is due to the fact that the stress concentration at the105

crack tip increases naturally with the crack size. Hence, the shear stress difference ∆τ and tensile

stresses in the slab σxx depend not only on WL heterogeneity, but also on the size of the basal crack.

4 Quantitative results

For each set of the model parameters, 100 FE simulations were performed for different realizations

of the WL heterogeneity with a constant average cohesion 〈c〉. As explained, each simulation led to110

either a full-slope or a partial-slope release. Note that due to the WL heterogeneity, the release occurs

for different values of the slope angle θ (see Gaume et al., 2013, for more details). Besides, we only

considered cases in which the load was sufficient to trigger the WL failure. Hence, the slab thickness

D was chosen higher than the critical thicknessDc = 〈c〉/(ρg) to ensure this assumption. The results

are presented in terms of partial-slope release probability also called tensile failure probability Pt.115

This probability represents the probability that σxx exceeds locally (i.e. at the crack tip) the tensile

strength of the slab σt and is thus Pt = P (σxx > σt). As the variability of the tensile stress σxx is

due to the WL Gaussian heterogeneity, σxx also follows a Gaussian distribution of average 〈σxx〉
and standard deviation σσxx . Hence, the exceedence probability P (σxx > σt) can be analytically

expressed and is given by:120

Pt = P (σxx > σt) =

∞∫
σt

p(σxx)dσxx = 1− 1

2

[
1 + erf

(
σt−〈σxx〉√

2σ
σxx

)]
(1)

with p(σxx) the probability density function.
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In the first part of this section (parametric analysis), the influence of the characteristics of WL

heterogeneity (cohesion standard deviation σc and correlation length ε) and of the slab’s properties

(slab thickness D, tensile strength σt and Young’s modulus E) on Pt = P (σxx > σt), 〈σxx〉 and125

σσxx is shown. The influence of each parameter is studied while the other parameters are kept con-

stant. Then in the second part of this section (application to slab avalanche release), the relations

existing between the different mechanical properties of snow are taken into account.

4.1 Parametric analysis

4.1.1 Tensile strength σt130

Figs. 2, 3a, 4a represent the probability of tensile failure Pt within the system as a function of

the tensile strength σt for different values of the correlation length ε (Fig. 2), of the coefficient of

variation CV (Fig. 3a) and of slab thicknessD (Fig. 4a). Tensile strength varies between 0 and 1 kPa.

As expected, this probability systematically decreases from 1 to 0 with increasing tensile strength σt.

The data points obtained with the FE simulations have been fitted using Eq. (1) allowing to compute135

the average tensile stress 〈σxx〉 and its standard deviation σ
σxx

(which are the two parameters of

the fit). The good agreement between the modeled exceedence probability Pt [Eq. (1)] and the FE

simulation results confirm that σxx follows a Normal distribution resulting from the Gaussian WL

heterogeneity.

4.1.2 Correlation length ε of WL cohesion140

The influence of correlation length ε is shown in Fig. 2a. The tensile failure probability Pt decreases

in general with increasing correlation length ε. The average tensile stress 〈σxx〉 decreases with ε

while its standard deviation σσxx increases. The influence of ε is thus more pronounced for small

values of the tensile strength σt. Hence, the higher the correlation length, the farther a crack propa-

gates leading to more full-slope releases and thus potentially larger avalanches.145

The correlation length ε characterizes the spatial structure of the cohesion heterogeneity. A nil

correlation length corresponds to a completely random signal whereas a large correlation length

indicates the existence of spatial structures in the signal with similar values (see Gaume et al., 2013,

for some examples). Hence, an increase of the correlation length smooths the WL heterogeneity and

reduces the shear stress difference ∆τ between two elements, resulting in a lower fracture arrest150

propensity. On the contrary, a very low value of the correlation length implies a WL heterogeneity

without spatial structure and thus large local variations that can stop the propagation of the crack.

This observation qualitatively explains the observed trend of the results.
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4.1.3 Standard deviation σc of WL cohesion

The influence of the standard deviation σc is then investigated and represented in Fig. 3. For a con-155

stant slab thickness D = 1 m and correlation length ε= 0.5 m, Fig. 3a shows, as would be expected,

the increase of the tensile failure probability with increasing coefficient of variation CV = σc/〈c〉.
This dependence is even clearer in Fig. 3b for which Pt is represented as a function of CV for

σt = 150 Pa and different slab thickness values. Inset of Fig. 3a also shows that the average tensile

stress 〈σxx〉 as well as its standard deviation σσxx linearly increase with the coefficient of varia-160

tion explaining why the curves in Fig. 3a are progressively shifted to the right with a lower rate of

decrease with σt as the coefficient of variation increases.

Indeed, a large value of the coefficient of variation induces large local variations of the WL shear

stress resulting in high tensile stresses within the slab and ultimately favors fracture arrest. As a

consequence, the tensile failure probability increases with increasing variability.165

4.1.4 Slab thicknessD

As shown in Fig. 4a, the tensile failure probability Pt in general decreases with increasing slab

thicknessD. Furthermore, the higher isD, the faster the probability decreases with σt. The values of

σt for Pt = 1 are almost unaffected by the slab thickness D while the value for Pt = 0 is decreasing

with increasing D. These characteristics correspond to the relations of 〈σxx〉 and σσxx with the170

slab thickness D, which both decrease with increasing thickness. Note, that as mentioned before,

simulations were carried out for D >Dc = c/(ρg) = 0.41 m in this case, to ensure that a WL shear

failure can be initiated. Indeed, if no failure is initiated in the WL, no slab tensile failure can occur.

In more detail, Fig. 4b reports the tensile failure probability Pt directly as a function of D for

different tensile strength values. For σt < 150 Pa, Pt is approximately equal to 1, whereas it is ap-175

proximately equal to 0 for σT > 900 Pa. For intermediate values of σt, the tensile failure probability

generally decreases from D = 0.5 m to D = 2 m.

It has previously been shown (Gaume et al., 2013, 2014a) that the slab thickness D, together

with the slab elastic modulus E, has an important smoothing effect on WL spatial variability due

to stress redistribution. Consequently, a large value of the slab thickness D smooths the cohesion180

heterogeneity by reducing the apparent standard deviation of the WL heterogeneity, in contrast to

the case of a completely rigid slab in which the stresses would follow exactly the heterogeneity

variations. As shown before, a reduction of the standard deviation leads to a decrease of the tensile

failure probability, which explains the results described above. This result is also clearly illustrated

in Fig. 3b. The rate of increase of the tensile failure probability Pt decreases with the slab thickness.185

Hence, as the slab thickness increases, the WL heterogeneity is smoothed and thus a larger value of

CV is required to obtain Pt = 1, i.e. only partial-slope releases. As shown in the inset, the smoothing
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effect by the slab thickness can be accounted for simply through a scaling of the standard deviation

with a linear function of the slab thickness ρgfc(D) with fc(D) = 0.64D− 0.17 (in meters).

4.1.5 Slab Young’s modulus E190

Fig. 5 represents the influence of slab Young’s modulus on the tensile failure probability Pt for a

correlation length ε= 2 m, a slab thickness D = 1 m and a slab tensile strength σt = 600 Pa. The

tensile failure probability increases with the slab Young’s modulus E. Indeed, the slab being brittle-

elastic, the tensile stress σxx increases linearly with the deformation in the down-slope direction εxx

according to σxx = E′εxx until σxx reaches the tensile strength σt (with E′ = E/(1− ν2)). Hence,195

for a constant deformation εxx which is imposed by the displacement gradient in the WL interface

and thus by the WL stresses variations, the tensile stress is lower in the case of a low Young’s

modulus than for a high one (see insets in Fig. 5). As a consequence the slab failure criterion, namely

σxx = σt is met easily in the limiting case of a rigid slab.

Moreover, as shown in Gaume et al. (2013, 2014a), slab elasticity also induces an important200

smoothing effect on WL heterogeneity. This effect leads to a reduction of the apparent standard

deviation which, together with the previous explanation, explains the decrease of the tensile failure

propensity with increasing elasticity (decreasing Young’s modulus E).

4.2 Application to slab avalanche release

The results of the previous parametric analysis should be interpreted with care and one should keep205

in mind that, for snow, several of the previous parameters are linked which may lead to more complex

interactions. For instance, the result about the influence of Young’s modulus on the tensile failure

probability might seem contradictory to avalanche observations. Indeed, taken as it is, this result

would imply that it is easier to trigger a tensile failure in stiff and strong snow than in softer snow.

If this line of reasoning is pursued, hard snow slabs would result in smaller avalanche size than soft210

slabs which is clearly in contradiction with avalanche observations. Hence, even if the result behind

Fig. 5 is consistent, from a mechanical point of view, it cannot be directly applied to dry-snow slab

avalanche release. To do so, one needs to take into account the relation between the density of the

slab ρ, its Young’s modulus E and its tensile strength σt.

New simulations were therefore performed, for which the dependence between ρ, E and σt was215

taken into account using the relation proposed by Sigrist (2006):

E(ρ) = 9.68× 108
(

ρ

ρice

)2.94

, (2)

and

σt(ρ) = 2.4× 105
(

ρ

ρice

)2.44

, (3)
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with ρice = 917 kg/m3. The density of the slab was varied between 80 and 250 kg/m3 leading to val-220

ues of the Young’s modulus between 0.7 and 20 MPa and tensile strength between 0.5 and 10 kPa.

Two types of simulations were performed: (1) simulations with a constant slab thickness and there-

fore a different slab mass for the different densities; (2) simulations with a slab thickness which was

varied in order to keep a constant load on the WL for the different densities.

In both cases, the slab tensile failure probability Pt decreases as a function of slab density if225

considering the above mentioned inter-dependencies (Fig. 6). Besides, it appears that for densities

larger than about 150 kg/m3, the tensile failure probability becomes very small, meaning that all the

releases are full-slope. Thus, for large enough densities, the WL layer heterogeneity has no influence

on the position and the extent of the avalanche release area. In this case, this result would suggest

that topographical and geomorphological features control the size of the release area. This result is230

illustrated below the graphic with two cases of avalanches: (left) a soft and shallow slab for which

the release area is quite small compared to the maximum potential extent of this starting zone; (right)

a hard and thick slab for which the release area is very extensive and controlled by terrain features.

In the latter case, the tensile failure generally occurs at the transition between slope angles larger and

smaller than 30◦ due to the basal friction (the crack face friction angle of snow being around 30◦,235

van Herwijnen and Heierli, 2009).

5 Discussion

The proposed approach allows us to compute the slab tensile failure probability from WL spatial

variability characteristics and slab properties using the finite element method. First, a parametric

analysis showed the influence of each model parameter on the tensile failure probability. Then, more240

realistic simulations were performed taking into account the link between the mechanical properties

of the slab. These simulations explained why hard and thick snow slabs are more prone to wide-scale

crack propagation than soft slabs. However, one might also argue that the density is generally linked

to the thickness, the higher the thickness: the higher the density due to settlement. Nevertheless, even

if this link was taken into account, the main finding of Fig. 6, namely that the WL heterogeneity245

influences fracture arrest propensity only for soft slabs, would still remain relevant since the tensile

failure probability would be even lower. Indeed, as shown in Fig. 4, an increase in slab thickness

decreases the tensile failure probability, and thick slabs thus lead to larger release areas by smoothing

the WL heterogeneity. Furthermore, since the WL was modeled as an interface, the bending of

the slab observed in field propagation saw tests (van Herwijnen et al., 2010), which can increase250

the tensile stress (Gaume et al., 2014b; Schweizer et al., 2014), was not taken into account. This

bending effect would probably induce a higher transition density, since more partial-slope releases

would occur.
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From the presented approach, a rough estimate of the avalanche release area can also be proposed.

For a tensile failure probability equal to zero, the avalanche release area would be equal to the255

maximum area Amax allowed by the terrain or the snow cover distribution. On the contrary, for a

tensile failure probability equal to 1, the avalanche release area would be close to zero. Hence, the

release area A can be approximated in a first approach by:

A= (1−P (σxx > σt))Amax. (4)

The avalanche release area would thus be different from Amax only for very soft slabs in which case260

it would also be a function of the characteristics of WL heterogeneity and slab properties. The form

of the proposed estimate of the release area is in good quantitative agreement with the result of Fyffe

and Zaiser (2007) who studied also the influence of WL heterogeneity parameters on the size of the

release zone using a cellular automaton model. These authors showed that the release area increases

with the tensile strength of the slab and then tends to a limit given by the maximum size of the system265

for a tensile strength σt ≈ 4000 Pa (calculated using the dimensionless analysis proposed by Fyffe

and Zaiser, 2007, and the parameters of our model) corresponding to a density ρ≈ 170 kg/m3.

Fig. 7 reports the exceedence probability of the width L of 369 natural and 5323 artificially-

triggered slab avalanches that were observed during the winters 1998 to 2010 in La Plagne (France).

These data were presented in detail in Gaume et al. (2012), in which the focus was on the avalanche270

release thickness rather than the width. The inset shows that the avalanche width L is not very well

correlated with the release thickness D despite a relatively slight apparent increasing trend which

is statistically not significant (R2 = 0.15 for a linear regression). Our numerical results suggest that

L should not be correlated with D at all, except for very low densities and thus small avalanches.

However, as mentioned before, bending effects induced by WL failure (which were not accounted275

for) would tend to increase the tensile failure probability and consequently the dependency of L

with D. Furthermore, the roughness of the terrain is progressively smoothed during the season as

the slab thickness increases. Hence, the avalanche maximum extent Amax also potentially increases

with increasing slab thickness D (Veitinger et al., 2014). Besides, we remark that, the exceedence

probability P (≥ L) does not appear to depend on the avalanche triggering mode, natural or artifi-280

cial. Hence, the width of the release area is essentially uninfluenced by the triggering mode. On the

contrary, Gaume et al. (2012) showed an important difference between natural and artificial trigger-

ing on the release depth distribution, natural avalanches being influenced not only by terrain and

mechanical aspects, but also by recent snowfall distributions. This similarity between the width dis-

tributions of naturally and artificially triggered avalanches confirms that the release area is mainly285

influenced by terrain characteristics (possibly smoothed by the snow cover distribution, Veitinger

et al., 2014) and slab properties (density and thickness).

Finally, the results of the presented model suggest that the majority of the releases would be full-

slope, i.e. not influenced by WL heterogeneity, especially for high densities. Hence, the potential

extent of slab avalanche release areas will be controlled by topographical and geomorphological290
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features of the path such as rocks, trees, ridges or local curvatures induced by the terrain and the

snow cover distribution. As a consequence, GIS methods based on terrain characteristics such as

those developed by Maggioni and Gruber (2003) might be adequate to compute the potential ex-

tent of extreme avalanches. For more frequent avalanches, similar and recent methods taking also

into account the spatial distribution of the snow depth and the induced terrain smoothing would be295

relevant (Veitinger et al., 2014).

6 Conclusions

We used a coupled mechanical-statistical approach to study the probability of occurrence of slab

tensile failure of a slab-WL system using the finite element method. Two different release types

were observed in the simulations: (1) Full-slope release if the WL heterogeneity is not sufficient300

to arrest crack propagation and trigger a tensile failure within the slab. Hence the crack propagates

across the whole system. (2) Partial-slope release when the local variations of WL cohesion are

substantial and can stop crack propagation and trigger the slab tensile failure. Importantly, for both

release types, the primary failure process observed is always the basal shear failure of the weak layer.

Hence slab fracture systematically constitutes a secondary process.305

We have shown that the slab tensile failure propensity strongly depends on the model parameters

such as the tensile strength σt, the slab thickness D, the correlation length ε, the standard deviation

of the weak layer cohesion σc and probably other parameters that have not been varied in this study

such as the average cohesion 〈c〉. In addition, we presented a simple statistical model capable of

reproducing the tensile failure probability as a function of the model parameters. Two illustrations310

of this simple model are represented in Fig. 1. In the first case (Fig. 1a), the slab tensile stress σxx is

always lower than the tensile strength σt. The basal failure thus propagates across the entire system

until the top boundary condition which can be seen as a ridge, a rock, a tree or a local curvature. In

the second case (Fig. 1b), a local zone of substantial tensile stress σxx due to strong variation of the

WL cohesion generates a local tensile failure within the slab since σxx > σt.315

For realistic values of the parameters and taking the link between the mechanical properties of the

slab into account, the model results suggest that the releases are partial-slope only for low slab densi-

ties and rather full-slope for densities higher than about 150 kg/m3. Hence in most cases, one would

expect that the extent of the release area is mainly controlled by the topography and the morphology

of the path. this finding corroborates the results found by Maggioni and Gruber (2003) who analyzed320

the influence of morphological features of the path on the extent of the release area using a purely

data-driven statistical approach, and brings some mechanical justification to the predominance of

local terrain geometry in the position and extent of real avalanches. This result shows in particular

that the release area will be extremely dependent on slope topography (local curvature, ridge...), on
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the presence of rocks and trees for instance and also by the snow cover distribution which can induce325

terrain smoothing and thus help wide-scale crack propagation.
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Figure 1: Schematic representing the two types of failure observed in the simulations. (a) full-slope

release: the crack in the WL propagates across the whole slope. The position of the slab tensile

failure would then depend on morphological features (rocks, trees, ridges, curvature...). (b) partial-

slope release: the local heterogeneity is sufficient to stop the propagation of the crack in the WL and

thus trigger the tensile failure within the slab. The red-coloured part of the weak layer represents a

local zone of large shear strength.

Figure 2: Probability of slab tensile failure Pt within the simulated system (partial-slope release) as

a function of the tensile strength σt for different values of the correlation length ε, a coefficient of

variation CV = 0.3, a constant slab thickness D = 1 m, slab density ρ= 250 kg/m3 and Young’s

modulus E = 1 MPa. In the inset, the average tensile stress 〈σxx〉 (solid line) and its standard devi-

ation σ
σxx

(dashed line) are represented as a function of ε.
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Figure 3: (a) Probability of slab tensile failure Pt within the simulated system (partial-slope release)

as a function of the tensile strength σt for different values of the coefficient of variation CV and for a

constant correlation length ε= 2 m, a constant slab thickness D = 1 m, slab density ρ= 250 kg/m3

and a Young’s modulus E = 1 MPa. In the inset, the average tensile stress 〈σxx〉 and its standard

deviation σ
σxx

are represented as a function of CV. (b) Pt is represented as a function of CV for

different slab thickness values, a tensile strength σt = 100 Pa and the same value of the other pa-

rameters as in (a). In the inset, the tensile failure probability Pt is represented versus the standard

deviation scaled by ρgfc(D) with fc(D) = 0.64D− 0.17 (in meters).
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Figure 4: (a) Probability of slab tensile failure Pt within the simulated system (partial-slope release)

as a function of the tensile strength σt for different slab thickness values and a constant correlation

length ε= 0.5 m, slab density ρ= 250 kg/m3 and Young’s modulus E = 1 MPa. In the inset, the

average tensile stress 〈σxx〉 and its standard deviation σ
σxx

are represented as a function of D. (b)

Pt is represented as a function of D for different tensile strength values and the same value of the

other parameters as in (a).

Figure 5: Slab tensile failure probability Pt versus Young’s modulus of the slab for a correlation

length ε= 2 m, a slab thickness D = 1 m, a slab density ρ= 250 kg/m3 and tensile strength σt =

400 Pa. The insets show illustrations of the tensile stress σxx vs down-slope deformation εxx for a

low (left) and a high Young’s modulus (right).
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Figure 6: Slab tensile failure probability Pt versus slab density for ε= 2 m and taking into account

the relation between slab density ρ, its Young’s modulus E and its tensile strength σt according to

Eqs. (2) and (3). The red curve represents the results of simulations for a constant load and thus a

slab thickness which decreases with slab density (ρD = 100 kg/m2). The blue curve is for a constant

slab thickness D = 0.5 m and thus a varying load. Below are two avalanche pictures illustrating the

result: (left) soft and shallow slab of small size ©Anchorage Avalanche Center; (right) hard and thick

slab with a very large extent ©Grant Gunderson.
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Figure 7: Cumulative exceedence probability of the width L of 369 natural and 5323 artificially-

triggered slab avalanches observed during winters 1998 to 2010 in La Plagne (France). The inset

shows the width L versus the release thickness D.
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