Reply to Reviewer Comments — T Smith et al.

W. Guo - General Comments

1. The authors provide some comparisons with previous studies on the classification of debris covered glaciers.
Although it seems enough for describe the improvements made by the algorithm presented in this manuscript,
it would be better to give some direct comparisons on which kinds of area were committed or omitted by the
authors’” method or by other methods, because the descriptions of those methods can mostly be easily
followed and applied in the study region or even in a small region. This kind work can show more details on
the improvements made by this paper, and further promote the scientific significance of this paper. However,
this is totally depending on the authors’ choice.

It was outside the scope of this study to re-code previous algorithms for direct comparison. During the
development of our algorithm, we tested methods from several previously published algorithms before
developing our final product. However, without the original proprietary software packages, ground control
points, and spectral thresholds tuned to specific scenes which were used in several of the methods, we did
not feel it was appropriate to make a direct comparison between the results of our algorithm and the results
of previous work. We have aimed with this manuscript to rely as much as possible on open-source tools and
to develop an algorithm which is not specifically tuned to a single Landsat scene footprint or set of spectral
thresholds.

In light of the comments of both reviewers, however, we have attempted to recreate the algorithm used by
Paul et al. (2004) in a simple Matlab implementation. We have found that the neighborhood analysis, as
performed with a neighborhood filter, is very computationally expensive. It is likely that the Image Polygon
Growing algorithm included with the software package PCl is a more efficient implementation of a similar
analysis, but the authors could not find a fast implementation of this analysis. Despite computational issues,
the approach did not show strong improvements over the methods proposed in our algorithm. An overlay of
our final outlines and the outlines created using the TM4/5 >2, HIS > 126, and Slope > 24, along with the
neighborhood analysis is included in this reply as Figure 1.

& .
S Final Algorithm Outiines t'.
[ | TM, HSV, and Slope Threshold nu PR al‘&

A . o R 5 et - u .

80°0E 80°10°€E

Figure 1: Final algorithm outlines (black) as compared to TM, HSV, and Slope threshold (red).



In our study area, we find that most debris-covered glacier tongues are connected to long trails of debris,
misclassified river sand, and glaciers, and the neighborhood analysis has difficultly removing these areas. In
Figure 1 we see our algorithm outlines overlain with the results of the TM, HSV, and Slope thresholding in
red. Despite the promising approach of neighborhood analysis, we did not see significant improvement in our
study region, so we did not include this method in our algorithm.

2. From my view, too many figures were used in the new version manuscript (totally 15). Some of them, which
belong to same groups (like Figure 2-8 that describe the processing steps, and Figure 10-12 that illustrate the
elevation distribution of glaciers and their comparison to other glacier outlines), can be merged into one
figure (mark as a, b, c, etc). Some of the figure captions can also be simplified and shortened, leave the
descriptive words in main text. Besides, the acquisition date for Landsat images shown as background in
Figure 2, 5-8, 14, 15 should better to be explicitly marked on the figure, or described in the caption, for the
conveniences of reader’s check.

We have modified the figures as-per the comments of both reviewers to minimize the number of figures.

3. Although the authors have done very hard works and processed large number of Landsat scenes (totally
62), it is difficult to find the related results in the Results and Discussion section (they only describe some
comparisons with existing glacier inventories, and the manual control dataset created by authors that around
2000 and 2011) for most scenes. From my view, the number of Landsat scenes processed is not important
comparing to the efficiency and accuracy of the algorithm. So | suggest that the author revise the data source
section and shorten the Table 1, only keep the Landsat scenes whose results were introduced in the Results
and Discussion section.

We have updated the table to only include those scenes explicitly used in the manuscript. This includes
scenes used as ‘master’ references, those used for velocity profile generation, and those used for the glacier

statistics. We have also included all scenes for path-row combination 147/31, as these were all used in the
discussion of factors that degrade algorithm outputs (snow, clouds, etc).

W. Guo - Specific Comments

Line 7: The citations for the data and following paper are both needed for the second Chinese glacier
inventory (for here and also other places).

Guo, W, Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao W., Yu, P., Liu, Q., and

Jiang, Z.: The second Chiniese glacier inventory: data, methods and results, J. Glaciol.,

226, 957-969, doi: 10.3189/2015J0G14J209, 2015.

This has been updated.

Line 13: “~1-2 pixels of Landsat Enhanced Thematic Mapper ...”, it is necessary to mention the panchromatic
band of Landsat ETM+;

This has been updated
Line 17: “multispectral” is better here.
This has been updated.

Line 43-46: there’s no nation name in Figure 1, so it is inconvenient to readers with less knowledges on Central
Asia. The WWD and Siberian High also with same situations. See comment on Figure 1.



This has been updated.

Line 111: “spectrally-derived”, maybe a further description should better to be presented here (I mean clean-
ice, maybe in parenthesis).

This has been updated.

Line 120-123: how the elevation threshold of low elevation area was determined? Is it determined by subtract
certain value from the average value of clean-ice areas? It should also to be clarified here.

To find the low elevation threshold, we subtract 1750 from the average elevation of clean-ice areas. This has
been clarified in the manuscript.

Line 207: “as well as both clean and debris-covered”, “clean-ice” is better here.
This has been updated.

Line 262-272: Although the normalized distances can show the general distribution of the bias along the
glacier outline, it should be better to give some summaries on the common statistics of the vertex biases, like
the maximum and mean distance of all validated vertex pairs. Besides, how the distances were normalized
also need more details, e.g., were all distances normalized to one maximum distance? Or different glaciers
have different maximum distances? If the first case, what is the maximum distance of all vertex pairs?
Without such details, the normalized distances have very less sense on describe the vertex distance
distribution. Also see comments on Figure 13.

The distances were normalized by the spread of the min and max values of the vertices, with the formula
(Distance - min(Distance)) / (max(Distance) - min(Distance)), with the y axis plotted as a percentage of the
maximum normalized distance, as the spread of values between algorithm and clean-ice results is quite
different. The minimum distance for both datasets is 15, with the maximum for the algorithm at 46,000 and
clean-ice at 23,000. These distant points represent outliers, and comprise points very far removed from the
actual glacier outline. This discussion has been added to the manuscript.

Line 285: Generally the configuration of the computer (e.g., CPU, physical memory, operating system) need to
be provided if you give a processing time.

The data was processed on Ubuntu 14.04, 8 cores (3.6GhZ), 16 GB RAM. This has been added to the
manuscript.

Table 1: The data source should better to be simplified and shortened, leaves only the images whose results
were shown in the Results and Discussion section.

We have shortened and simplified this data table.
Figure 1: From common sense, it is better to show the nation names on the map, maybe by showing the
national boundaries and names in the main map. Besides, the Winter Westerly Disturbances (WWD) and the

Siberian High are also need to be shown on the map, maybe by labelled arrows.

This has been updated.



Figure 2-8: these figures can be merged into one figure and marked as a), b), c), d), etc, corresponding to the
processing step. The figure captions should also be shortened and simplified.

We have modified the figures and captions.

Figure 10-12: these three figures can also be merged into on figure which shows the elevation distribution of
the algorithm extracted glaciers and their comparisons to other source of glacier outlines (spectral, manual
and CGI V2).

We have combined these figures.

Figure 13: It is suggested to give more details on the distances of all validated vertex pairs, like the maximum
and mean distances of all validated vertex pairs if all distances were normalized to one maximum distance, or
maximum and mean distances of each glacier if different glaciers have different maximum distances.

This has been updated in the manuscript. See as well a more detailed reply above.

F. Paul — General Comments

The revised study by Smith et al. is now much more focused and provides a thorough description of the
developed algorithm and its performance compared to other datasets. Considering earlier versions of the ms,
I think this reduction had really been beneficial. The authors have also further modified the computational
part towards a more automated processing line, thus facilitating its application to other regions. Although
they used constant thresholds for the band ratio result in a reduced accuracy of the outlines in the
accumulation region (e.g. missed ice in shadow), the improved mapping of debris-covered glacier tongues
seems worth applying the method. My only larger recommendation is to also include a comparison of the
results of the method presented here to results from other simple approaches (e.g. Nr. 2 and 5 in Table 2).
This would help to see whether the calculation of velocity fields beforehand is worth the effort or not. As now
clearly stated, it has also to be considered that the results of the algorithm require improvement when
working at the scale of individual glaciers, but might satisfy the needs for regional scale applications. Apart
from the comparison mentioned above, | have only some smaller comments that are detailed in the next
section. Once these are addressed | am happy to recommend acceptance of the ms.

It was outside the scope of this study to re-code previous algorithms for direct comparison. During the
development of our algorithm, we tested methods from several previously published algorithms before
developing our final product. However, without the original proprietary software packages, ground control
points, and spectral thresholds tuned to specific scenes which were used in several of the methods, we did
not feel it was appropriate to make a direct comparison between the results of our algorithm and the results
of previous work. We have re-coded in our development parts of previous algorithms, which were used in the
development of our final product (see above).

F. Paul - Specific Comments
Title and overall remark
Please use glacier / glacierized instead of glacial/glaciated when reference is made to contemporary glaciers.

The title should thus be “Improving semi-automated glacier mapping ...”

This has been updated.



Abstract first sentence

| suggest rewriting the first sentence a little bit: “Studies of glaciers generally require precise glacier outlines.
Where these are not available, extensive manual ... (GIS) must be performed, as current ...”

This has been updated.

L5 The dataset is “known as the Randolph Glacier Inventory”

This has been updated.

L11: Please cite here the Cryosphere Chapter (Vaughan et al. 2013) instead of the full report (Stocker 2013).

This has been updated.

L43: | would recommend to not introducing here a further abbreviation (WWD), also because it is not used
any further.

This has been updated.

L58: Please add the method used for downsampling (bilinear interpolation?).

This was already found in the manuscript at L59: “The SRTM data and its derivatives were

downsampled to 30 m to match the resolution of the Landsat images using bilinear resampling.” We have
maintained this as-is.

L58: Here and elsewhere (e.g. L59, L96, L99): Please insert a space between the value and the unit (30 m).
This has been modified throughout the manuscript.

L74ff: As Matlab is proprietary software, it would be most useful to establish also for the glacier classification
steps scripts written in Python or other free software (see L100/1). Maybe this can already be achieved for the
final version of the ms?

We have attempted to move all of our processing to Python, but still rely on a distance weighting algorithm
built in Matlab which does not have a good implementation in Python. Once a suitable alternative to the

current distance weighting metric is developed, we will shift all of our code to Python.

L92: Hanshaw and Bookhagen, here and elsewhere (e.g. L109): Please cite this study only when it is accepted
for TC.

This study has been published. We have updated the citation to reflect this.

L109: Hall et al. (1987) applied the TM4/TMS5 band ratio for glacier mapping first. The TM3/TMJ5 ratio
combined with a TM1 threshold was introduced by Paul and Kédéb (2005).

This citation has been added.

L111: 1 suggest inserting here a comment on its general use: For normal the two thresholds are adjusted
manually to the image conditions of each individual scene to obtain the best results. When the automated



processing line is based on constant thresholds, large errors can occur in regions of cast shadow (see also
example in Paul et al. 2015).

We have added this comment and citation.
L128, 248 and elsewhere: Instead of ‘glacier debris tongue’ | would write ‘debris-covered glacier tongue’.
This has been modified throughout the manuscript.

L145: As there is always snow on-glaciers and clouds off-glaciers do not matter, | would write here more
precisely: “It is important to note that images must be cloud free over glaciers and snow free off-glaciers for
this step.”

This has been updated.

L182: I can imagine that this step is as efficient as the neighbourhood analysis used by Paul et al. (2004):
Everything that is not connected to a glacier is removed. | suggest to shortly explaining what the differences in
performance are.

The two methods are similarly efficient over small areas, but start to diverge in processing time as the
number of individual ‘seed’ areas increases. For example, the geodesic distance algorithm we use operates
on a whole-matrix basis, and is quite fast regardless of the number of seed points. The neighborhood
analysis, which treats individual areas as separate objects to check connectivity with, requires more intense
processing as the number of areas increases. The geodesic time algorithm also imposes a limit on the size of
the areas connected to a glacier, so if a long trail of river sand, for example, is connected to a glacier the
entirety of this area is not included as a connected component. Rather, only the pixels which are ‘close’ to
the glacier are kept as debris areas. We have added a note in this section of the manuscript regarding the
differences.

L195: What about using neighbourhood analysis instead? A gap that is completely surrounded by debris is
assigned to the debris class given its slope is below a certain threshold. This would likely fill gaps of any size
within the debris.

A neighborhood analysis was tested for this step and found to be processor-intensive, especially when there
are often tens of thousands of small ‘holes’ in glacier areas which must be checked and filled. We find that
the bridging and void-filling tools work well without applying a neighborhood analysis, but future iterations of
the algorithm could include this step as an option.

L205 & 363: path-row combinations
This has been updated.

L214: The void-filled SRTM DEM is in some mountain ranges with steep topography of very poor quality
(where the voids had been filled). Has this not caused any trouble in the regions analysed here?

We are aware of the issues surrounding the SRTM DEM at high elevations. However, for this analysis, we use
watersheds as convenient polygons to divide glaciers into individually comparable areas. Thus, if there is a
small error in the watershed boundary, that error is the same throughout the analysis and statistical
comparison, and should not impact our statistics. We also manually checked and updated our watershed
boundaries for any major errors.



L218: If possible | suggest adding a section for a glacier-by-glacier comparison of glacier area. The elevation
related statistics are fine (please consider showing elevation on the yaxis for Figs. 10 to 12), but the standard
deviation of the area differences would be most useful when it comes to using the algorithm for regional-scale
change assessment.
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Figure 2: Glacier Area vs Area misclassification, as compared to both a subset of the manual control dataset and
the CGI

From our reply to the previous round of reviews: “We have included in this reply a plot illustrating the
differences in classification across different size classes, which can be seen in Figure 2. We emphasize,
however, that the algorithm was not designed around mapping individual glacier areas, and such a
comparison was removed from the original version of the manuscript. As a slight change in which areas are
‘connected’ by snow, misclassified pixels, or other classification issues can drastically change the reported
glacier area, we do not present this data in the updated manuscript. If, for example, a glacier with an area of
10 sq km was connected by a small strip of misclassified area to a glacier of 50 sq km, the reported area
would be 60 sq km, which matches poorly if it is compared to either the 10 sq km or 50 sq km glacier area. As
this creates a large number of outliers for individual glacier comparisons, we have elected not to present
individual-level glacier statistics in the revised manuscript.”

We maintain that our algorithm is most useful for large-scale analyses, and the analysis of individual glaciers
is better completed using manually digitized outlines, or a manual correction of our final algorithm output.

L219: over two distinct
This has been updated.

L224-226: | suggest numbering these three comparisons (e.qg. (a), (b), (c)) for a more easy reference and
recognition later on.

We have opted to leave this section as-is, as we have combined the three figures which use these
comparisons into a single figure, simplifying this discussion.

L232: When | look at the primary (spectral) classification in Figs. 2 and 8, | would argue that the difference is
due to the not-mapped ice in shadow for many of the north-facing small glaciers. A lower TM1 threshold
would have helped to include these regions. Please rewrite if this is agreeable.



Shadows are certainly part of the issue, both at high- and low-elevations. However, as you have pointed out,
there are some major exclusions at mid- to low-elevations due to shadows. We have added a sentence
reflecting this.

L237: It could also be well the case that the CGIv2 under-classifies these regions.

Yes, this is possible as well. We have chosen to leave the text as-is, as we only analyze relative differences.
The distinction between underclassification/overclassifcation is only a matter of which dataset is chosen as
the ‘master’ dataset.

L252: Though correct, | think it is rather obvious that a method that also maps the debris covered part will be
better than a pure spectral classification. A more interesting comparison would be against one of the other
methods summarized in Table 2. Can this be done for a sub-region? After all, it is still not clear whether the
higher workload required for this method is worth the effort compared to more simple approaches (e.g. Nr.
2or5in Table 2).

We have included in this reply an implementation and discussion of the Paul et al. (2004) algorithm, which
can be seen in Figure 1.

L264: What are ‘component vertices’? Can the method be described in somewhat more detail?

Component vertices are simply the set of every vertex of our glacier polygons. We then use the set of X/Y
pairs for each vertex to compare to the X/Y pairs of the vertices of the clean-ice and final algorithm polygons.
We have expanded our description in the manuscript.

L287: Here | disagree a little bit, the neighbourhood analysis is an implemented routine and very quick. The
entire processing line described in Paul et al. (2004) also only takes a couple of minutes. This is also the reason
why | have suggested above a comparison of results to other ‘more simple’ methods.

The neighborhood analysis, as implemented in Matlab, is significantly slower than our algorithm. In tests on
our desktop computer, the single step of neighborhood filtering takes more time than the entire algorithm
run-through, including the conversion of the end result geotiff to a complex vector file. It is likely that a more
efficient implementation of this neighborhood analysis could be performed using a combination of
proprietary software and FORTRAN, as proposed by Paul et al. (2004), but this was outside the scope of this
study. An efficient neighborhood analysis could be included in subsequent versions of the algorithm, if a
Matlab or open-source version could be implemented.

L311: between terrain on and off glaciers

This has been updated.

L332: debris-covered glacier tongues ... centre

This has been updated.

L347: analysing?

This has been changed.



L347: “powerful tool”: | well see the potential of the method, but think that its real test comes when applying
it to the often slow moving or even stagnant debris-covered tongues in the Himalaya. | suggest adding this
information here.

We have added this caveat to the manuscript.

L446: Kaab should be Kddb; L450: Bris, R. L. should be Le Bris, R.
L487: Stocker, D.Q. should be Stocker, T. (but please replace with Vaughan, D.G.)

These have been updated.

Tables
Table 1: | suggest writing “Landsat acquisition dates” (in the caption and the left column)

This has been updated.

Table 2: The Paul et al. (2004) method was actually applied to a Landsat full scene (33,000 km2), but results
were only presented for a sub-region to see something.

In this table we present the total mapped glacier area of each study, as opposed to the area of the entire
study site. As the classification/misclassification statistics presented in Paul et al. (2004) refer to the subset
glacier area, we will maintain the table as-is. If there are more accurate statistics on the total mapped glacier

area and misclassification percentages, we would be happy to include these values in the manuscript.

Figures
Fig. 1: Please add location of sub-regions in Fig. 1.

This has been updated.

Fig. 2: Please indicate where the debris-covered tongues are (arrow, circle)

This has been updated.

Fig. 3: Has the slope map already been median filtered? If not, maybe do it.

We have added this step to the algorithm, but do not see significant changes to our classification.
Fig. 3 & 4: | suggest adding the outlines from Fig. 2 on top to see the differences.

We have updated these figures.

Fig. 6: For better visibility | suggest using yellow instead of red.

We have changed this color scheme.

Figs. 11 to 13: The caption already includes a substantial amount of interpretation (last sentence). | suggest
removing this here and provide the information in the main text.

We have updated our figure captions.



Figs. 14 and 15: Please use different colours for the lines. | suggest the red one could be yellow and the purple
one white. Maybe add arrows to highlight discussed features.

We have changed the colors to be more visible. Bright yellow and white are difficult to see on many of the
bright, high-elevation glacier areas, but we have attempted to make the outlines more visible.

T. Bolch — Specific Comments

L. 120: I agree that slope is one key morphometric parameter for delineating the debris-covered areas.
However, the suggested threshold values differ depending on glacier type from the 24° suggested by for
Oberaletschgletscher/Swiss Alps (Paul et al. 2004), for example, it is 12° for Khumbu Glacier/Himalayas (Bolch
et al. 2007), less than 15° for Samudra Tapu Glacier/Himachal Himalayas (Shukla et al. 2010) and 18- for
Gangotri Glacier/Garhwal Himalayas (Bhambri et al. 2011). Maybe you could check your chosen threshold
(just a suggestion), but please provide some info about the different suggested thresholds here or in the
discussion.

This is a very good point. We choose a conservative slope threshold to ensure that we do not remove debris-
covered areas in this initial step, and instead rely on subsequent steps to remove overclassified areas. We
have added a discussion of these citations and our reasoning behind using the 24 degree threshold suggested
by Paul et al. (2004).

L. 275: Be a bit more specific about the 6 cited references. You may (but not must) include Bhambri et al.
(2011), IJRS who also clearly mention the limitations of their approach.

We have opted to include the Bhambri et al. (2011) study in Table 2. We have also clarified the references on
L290.
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Abstract.

Studies of glaciers often—require—generally require precise glacier outlines, Where these are
not available, extensive manual digitization in a Geographic Information System (GIS) must be
performed, as current algorithms struggle to delineate glacier areas with debris cover or other irreg-
ular spectral profiles. Although several approaches have improved upon spectral band ratio delin-
eation of glacier areas, none have entered wide use due to complexity or computational intensity.

In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates
both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique
velocity and topographic characteristics of glaciers, and further leverages spectral and spatial rela-
tionship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as
compared to a ~750 glacier control dataset, and can reliably classify a given Landsat scene in 3-5
minutes.

The algorithm does not completely solve the difficulties inherent in classifying glacier areas from
remotely sensed imagery, but does represent a significant improvement over purely spectral-based
classification schemes, such as the band ratio of Landsat 7 bands three and five or the Normalized
Difference Snow Index. The main caveats of the algorithm are (1) classification errors at an indi-
vidual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3)

dependence on fidelity of the input Landsat data.
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1 Introduction

This study focuses on mapping glaciers over a large spatial scale using publicly available remotely
sensed data. Several high-resolution glacier outline databases have been produced, most notably
the Global Land Ice Measurements from Space (GLIMS) project (Armstrong et al., 2005; Raup
et al., 2007, 2014), and the recently produced supplemental GLIMS dataset known as the Ran-
dolph Glaetal-Glacier Inventory (RGI) v4.0 (Arendt et al., 2012; Pfeffer et al., 2014). Smaller-scale
glacier databases are also available, such as the Chinese Glacier Inventory (CGI) v2 (Guo et al.,
2015). A coherent, complete, and accurate global glacier database is important for several rea-
sons, including monitoring global glacier changes driven by climate change, natural hazard detec-
tion and assessment, and analysis of the role of glaciers in natural and built environments, including
glacier contributions to regional water budgets and hydrologic cycles (Racoviteanu et al., 2009;
Vaughan et al., 2013). Precision in glacier outlines is of utmost importance for monitoring changes
in glaciers, which may change less than 15-30 m/yr (~1-2 pixels of Landsat Enhanced Thematic

Mapper (ETM+) Panchromatic band/yr).

g
Several methods have been developed to delineate clean glacier ice (i.e. Hall et al., 1987; Paul,
2002; Paul et al., 2002; Racoviteanu et al., 2008a,b; Hanshaw and Bookhagen, 2014), relying pri-
marily on speetrat-data-avaitable-on-multi-spectral data from satellites such as Landsat and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Although significant progress
has been made towards automated glacier outline retrieval using satellite imagery, these methods

struggle to accurately map debris-covered glaciers, or other glaciers with irregular spectral profiles

Much of this difficulty stems from the similarities in spectral profiles of debris located on top of a
glacier tongue and the surrounding landscape. The majority of studies examining debris-covered
glaciers employ extensive manual digitization in a Geographic Information System (GIS), which is
very time consuming, and can introduce significant user-generated errors (Paul et al., 2013; Pfeffer
et al., 2014; Raup et al., 2014). Building on the multi-spectral, topographic, and spatially-weighted
methods developed by Paul et al. (2004), we present a refined rules-based classification algorithm
based on spectral, topographic, velocity, and spatial relationships between glacier areas and the sur-
rounding environment. The algorithm has been designed to be user-friendly, globally applicable,

and built upon open-source tools.

Paul et al., 2004; Bolch et al., 2007; Racovit
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2 Study Area and Data Sources

2.1 Study Area

In this study we use-analyze the results of our classification algorithm using a suite of 62-40 Landsat
Thematic Mapper (TM), Enhanced Thematic Mapper+ (ETM+) and Optical Land Imager (OLI)

images (1998-2013) across a spatially and topographically diverse set of study sites comprising
eight Landsat footprints (Path/Row combinations: 144/30, 145/30, 147/31, 148/31, 149/31, 151/33,
152/32, 153/33) along a ~1,500 km profile from the Central Pamir to the Central and Central-Eastern
Tien Shan (Figure 1, Table 1)

The study area contains a wide range of glacier types and elevations, with both small and clean-
ice dominated glaciers, as well as large, low-slope, and debris-covered glaciers. The diversity in
glacier types in the region provides an ideal test area ;— particularly in mapping glaciers with long
and irregular debris tongues, such as the Inylchek and Tomur glaciers in the Central Tien Shan
(Shangguan et al., 2015).

The wintertime climate of the study area is controlled by both the Winter Westerly Disturbances
W WDs)and the Siberian High, which dominate regional circulation and create strong precipitation
gradients throughout the range, which extends from Uzbekistan in the west through China in the
east (Figure 1) (Lioubimtseva and Henebry, 2009; Narama et al., 2010; Bolch et al., 2011; Sorg
et al., 2012; Cannon et al., 2014). The western edges of the region tend to receive more winter
precipitation in the form of snow, with precipitation concentrated in the spring and summer in the

central and eastern reaches of the range (Narama et al., 2010).

2.2 Data Sources

Our glacier mapping algorithm is based on several datasets. The Landsat 5 (TM), 7 (ETM+), and
8 (OLI) platforms were chosen as the primary spectral data sources, as they provide spatially and
temporally extensive coverage of the study area (Table 1). ASTER can also be used as a source of
spectral information, but here we chose to focus on the larger footprint and longer timeseries avail-
able through the Landsat archive. In addition to spectral data, the 2000 Shuttle Radar Topography
Mission V4.1 (SRTM) Digital Elevation Model (DEM) (~96m90 m, void-filled) was leveraged to
provide elevation and slope information (Jarvis et al., 2008). The SRTM data and its derivatives

were downsampled to 36m-30 m to match the resolution of the Landsat images using bilinear resam-



pling. The USGS Hydrosheds river network (15 second resolution, ~500m500 m) was also used as

an input dataset (Lehner et al., 2008).

3 Methods

Our glacier classification algorithm uses several sequential thresholding steps to delineate glacier
outlines. The scripts used in this study are available in the Data Repository, with updates posted to
http://github.com/ttsmith89/GlacierExtraction/. It is noted if the step requires manual processing or

is part of a script.
1. Data Pre-processing

(a) Velocity fields are calculated with Normalized Image Cross Correlation (Manual, can be
automatized)

(b) The Hydrosheds river network is rasterized (Manual, can be automatized)

(c) Optional manual debris points are created (Manual, optional)

(d) SRTM data is used to create a hillslope image (Python Script)

(e) All input datasets are matched to a single extent and spatial resolution (30m30 m)

(Python Script)

2. Glacier Classification Steps

(a) Clean-ice glacier outlines are created using Landsat Bands 1,3, and 5 (Matlab Script)

(b) ‘Potential debris areas’ are generated from low-slope areas (Matlab Script)

(c) Low-elevation areas are removed (Matlab Script)

(d) Low-velocity areas are removed (Matlab Script)

(e) Distance-weighting metrics are used to remove areas distant from river networks or clean
glacier ice (Matlab Script)

(f) Distance-weighting metrics are used to remove areas very distant from clean glacier ice
and manual seed points (Matlab Script)

(g) The resulting glacier outlines are cleaned with statistical filtering (Matlab Script)

3. Post-processing

(a) Glacier outlines are exported to ESRI shapefile format for use in a GIS (Python Script)



3.1 Data Preparation

For accurate glacier delineation, we primarily used Landsat images which were free of new snow,

90 and had less than 10% cloud cover. However, we have also included scenes with limited snow- and

cloud-cover in our analysis to understand their impacts on our classification algorithm. We find that

the presence of fresh snow in images tends to overclassify glacier areas and classify non-permanent

snow as glaciers. Additionally, cloud covered glaciers cannot be correctly mapped by the algorithm

(Paul et al., 2004; Hanshaw and Bookhagen, 2014). We use the USGS Level 1T orthorectified Land-

95 sat scenes to ensure that the derived glacier outlines are consistent in space (Hansen and Loveland,
2012; Nuimura et al., 2014).

The algorithm uses Landsat imagery, a void-filled DEM, a velocity surface derived from image

cross-correlation, and the Hydrosheds 15s river network (buffered by 266m-200 m and converted to

a raster) as the primary inputs (Steps 1(a) and 1(b)). The algorithm generates a slope image from

100 the DEM and rectifies additional input datasets described below for processing by resampling and

reprojecting each dataset to the same spatial extent and resolution (36m-30 m to match the Landsat

data) (Steps 1(d) and 1(e)). Although the current algorithm leverages a few proprietary Matlab

commands, we will continue to update the code with the goal of using only open-source tools and

libraries in the future.

105 3.2 Clean Ice Delineation

Calculations are performed on rasterized versions of each input dataset, which have been standard-
ized to the same matrix size. The first step in the classification process leverages Landsat 7 Bands 1,
3, and 5 (Step 2(a)). For Landsat 8 OLI images, a slightly different set of bands is used to conform to
OLI’s modified spectral range. For simplicity, bands referenced in this publication refer to Landsat 7
110 ETM-+ spectral ranges. The ratio of TM3/TMS5 (value >2), with additional spectral information from
TMI (value >25) has been used in previous research as an effective means of delineating glacier ar-
eas 0., Hall et al.

1987; Paul and Ké&ib, 2005; Hanshaw and Bookhagen,

3

but is not effective in delineating debris-covered glacier areas (Figure 2?2A). In our algorithm, we

use a threshold of TM3/TMS5 > 2 and TM1 >60 to map clean glacier ice. The-end-result-of-this

before-statistieal-filtering(Figure-22)While these thresholds perform well over many scenes, usin

thresholds which are not tuned to specific scene conditions can generate large errors, particularl
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in shadowed areas (Paul et al., 2015) . Here we choose fairly conservative threshold values to en-
sure that we do not remove clean glacier ice. We find that increasing the TM1 threshold results
in tighter classification of debris-covered glacier tongues, but also removes some areas properly
classified as glacier, particularly in steep areas of the accumulation zone. Thus, we err on the side

of overclassification with our delineation of clean glacier ice. The end result of this step is the

spectrally-derived (clean-ice) glacier outlines, which are later integrated back into the workflow
before statistical filtering (Figure 2A).

3.3 Debris-covered Ice Delineation
3.3.1 Topographic Filtering

Building on the work of Paul et al. (2004), low slope areas (between 1 and 24°) are isolated as areas

where debris-covered glaciers are likely to exist (Step 2(b)). Low-elevation-We choose the relativel

high threshold of 24°, as opposed to the 12° suggested for the Himalaya (Bolch et al., 2007) , the 15°.
suggested for the Himachal Himalaya (Shukla et al., 2010) ., or the 18° suggested for the Garhwal
Himalaya (Bhambri et al., 2011) to ensure that we do not prematurely remove debris-covered areas.
As we use the low-slope areas as our initial maximum likely debris extent, a conservative slope
threshold helps reduce errors of underclassification. Low-elevation areas (automatically defined

on a scene-by-scene basis based on the average elevation of clean-ice areas minus 1750, generally
below 2506-3066m1-2500-3000 m in the study area) are then masked out to decrease processing
time (Step 2(c)). These thresholding steps are-performed-independent-of-theprevious;—spectrally

ek S -thiss iies-identify areas where there is the potential

for a debris-covered glacier to exist, and are performed independently of the previous, psectrall
delineated, glacier outlines. Additional thresholding is then performed on this ‘potential debris area’

subset to identify debris-covered glacier areas (Figure 222B).

As can be seen in Figure ??2B, extensive areas which—that are not glacier or glacier—debris
debris-covered glacier tongue arc identified in this step. However, this step generally-removes-alt

reatly reduces the processing time of subsequent steps by removing pixels outside of the main
glacierized areas of any scene ;and-alews-and allowing the algorithm to work on a subset of the
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the—potential-debris-area’from this point forward.

3.3.2 Velocity Filtering

The Correlation Image Analysis Software (CIAS) (Kéaib, 2002) tool, which uses a method of statis-
tical image cross-correlation, is used to derive glacier velocities from Landsat Band 8 panchromatic
images. This method functions by tracking individual pixels across space and time, and provides a
velocity surface at the same resolution as the input datasets (15m) (Step 1(a)). The velocity surface is
then upsampled using bilinear resampling to provide a consistent velocity estimate across the entire
Landsat scene. We then standardized the velocity measurements to m/yr using the capture dates of
the two Landsat images. As glacier velocity can change significantly throughout the year, and clean
images were not available at exactly the same intervals for each Path/Rew-Path-Row combination,
there is some error in our velocity fields. However, as the velocity surface is used to remove stable
ground, which is generally well-defined despite changes in glacier velocities, errors in the velocity
surface do not contribute significantly to glacier classification errors, excepting on slower-moving
parts of debris-covered glacier tongues. It is important to note that eleud—-images must be cloud-free
over glaciers and snow-free images-are-essenttal-off glaciers for this step, as the presence of snow
or cloud cover can disrupt the correlation process, resulting in anomalous velocity measurements.
An example velocity surface is shown in Figure 22-2C (Step 2(d)). Red areas are removed from the

‘potential debris areas’, as they fall outside of the expected range of debris-tongue velocities.

We only used one multi-year velocity measurement for each path/row-Path-Row combination

to derive general areas of movement/stability for glacier classification, as using stepped velocity
measurements over smaller time increments did not show a noticeable improvement in glacier clas-
sification. This also improved our classification of slow-moving glaciers, which may not change
significantly over only a single year. These velocities ranged generally from 4.5-30 m/yr across the
different scenes. A single velocity threshold of 5 m/yr was used across all scenes to remove stable
ground. A method of frequential cross-correlation using the co-registration of optically sensed im-

ages and correlation (COSI-Corr) tool (Leprince et al., 2007; Scherler et al., 2011b) was tested and
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did not show any appreciable improvement in velocity measurements (Heid and Kéib, 2012).

The velocity step is most important for removing hard-to-classify pixels along the edges of glaciers,
and wet sands in riverbeds. These regions are often spectrally indistinguishable from debris tongues,
but have very different velocity profiles. It is important to note, however, that this step also removes
some glacier area, as not all parts of a glacier are moving at the same speed. This can result in small
holes in the delineated glaciers, which the algorithm attempts to rectify using statistical filtering.

Generating a velocity field is the most computationally expensive step of the algorithm.

3.3.3 Spatial Weighting

After topographic and velocity filtering, a set of spatially-weighted filters was constructed. The

first filtering step uses the Hydrosheds river network to remove ‘potential debris areas’ which are
distant from the center of a given glacier valley (Figure 222D, Step 2(e)). As glaciers occur along
the flowlines of rivers, and the Hydrosheds river network generally delincates flowlines nearly to
the peaks of mountains, the river network provides an ideal set of seed points with which to remove
misclassified pixels outside of river valleys. A second distance weighting is then performed using
the clean-ice outlines generated in Step 2(a), as well as any manual seed points provided (Step 2(f)).
As debris tongues must occur in proximity to either glacier areas or the centerlines of valleys, these
two steps are effective in removing overclassified areas (Figure 2?)—2D). The spatial weighting
performed here differs from that proposed by Paul et al. (2004) in that it uses a measure of geodesic
distance from given seed points, as opposed to maintaining entire polygons which are connected
to clean-ice areas. This difference helps remove non-glacier areas that are distant from clean ice.
but still connected by at least a single pixel to clean-ice areas. At this step, it is possible to add

manual seed points, which may be necessary for some longer debris tongues. We note that these are
optional, and the majority of glaciers do not need the addition of manual seed points. However, for
certain irregular or cirque glaciers, the addition of manual seed points has been observed to increase
the efficacy of the algorithm. In processing the Landsat imagery presented here, we have not used

additional manual seed points.
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The spatial weighting step is essential for removing pixels spatially distant from any clean-ice

area. In many cases, large numbers of river pixels, and in some cases, dry sand pixels, have similar
spectral and topographic profiles to debris covered glaciers. This step effectively removes the ma-
jority of pixels outside the general glactated-glacierized area(s) of a Landsat scene, as can be seen in
Figure 222E.

3.3.4 Statistical Filtering

Once the spatial weighting steps are completed, a set of three filters are then applied, in order to
remove isolated pixels, bridge gaps between isolated glacier areas, and fill holes in large contiguous
areas (Step 2(g)). First, a 3x3 median filter is applied, followed by an ‘area opening’ filter, which fills
holes in contiguous glacier areas. Finally, an ‘image bridging’ filter is applied to connect disjointed

areas, and fill holes missed by the area opening filter.

This step is essential-necessary for filling holes and reconnecting separated glacier areas —As-our

which-are-removedthat result from the initial threshold-based filtering steps. For example, some
slow-moving pixels in the middle of a

debris-covered glacier tongue that were removed based on velocity filtering are often restored by the
statistical filtering (Figure 22)—

3). The improved classification of debris areas between the clean-ice and final algorithm outputs

can clearly be seen in Figure 2?3.
3.4 Creation of Manual Control Datasets

Manual control datasets encompassing ~750 glaciers (~11,000 km?) were created to test the effi-
cacy of the glacier mapping algorithm. These datasets were digitized eff-of-from Landsat imagery in

a GIS, and then corrected with higher resolution imagery in Google Earth. The datasets are coherent

10
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in space, but cover two different times (~2000 and ~2011, depending on the dates of the available
Landsat scenes). The bulk of the manually digitized glaciers fall within the boundary of Landsat
Path/Rew-Path-Row combination 147/031, as this is the most heavily glacierized sub-region of our
study area. However, we have digitized glaciers throughout the eight Path/Rew-Path-Row com-
binations to avoid biasing our statistics and algorithm to one specific scene extent. We have also
considered a wide range of size classes in our manual dataset (<0.5 km? to 500+ km?), as well as
both elean-clean-ice and debris-covered glaciers. We note that although the manual datasets here
are considered ‘perfect’, there is inherent error in any manual digitization in a GIS (e.g., Paul et al.,
2013). Due to the lack of ground truth information, we have estimated the overall uncertainty of the
manual dataset to be 2% based on previous experiments (Paul et al., 2002, 2013). Figure 4 shows
the size-elass-size-class distribution of the manual control dataset, with logarithmic area scaling.
Before any comparisons between glaciers can be performed, glacier complexes must be split into
component parts. A set of manually edited watershed boundaries, derived from the SRTM DEM,
were used to split both the manual and algorithm datasets into individual glacier areas for analysis.
In this way, the diverse datasets and classified glacier areas can be split into the same subset areas

for statistical comparison.

4 Results

Over the eight Landsat footprints used in this study, we map ~44,000 km? of glaciers over atwo
distinct time slices. Several additional time periods were mapped, but not included in the statistical

analysis presented in this manuscript.
4.1 Statistical Analysis of Algorithm Errors

A subset of 215 glaciers from the manual control datasets of varying size and topographic setting
was chosen for more detailed analysis. The unedited, algorithm-generated, glacier outlines were
compared against spectral outlines, which only classify the glacier areas via commonly used spectral
subsetting (using TM1, TM3, and TMS5, produced in Step 2(b)), the manual control datasets, and the
CGI v2. Figure 22-5A shows the bulk elevation distributions across 215 glaciers for each dataset in
+0m-10 m elevation bins.

There is some apparent bias in our algorithm towards tew-elevation-low-elevation areas, which

represent the debris-covered portions of glaciers and are the most difficult areas to classify. This

11
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bias also stems from misclassified areas in shadows, particularly in north-facing glaciers. There is
also a bias in our control dataset towards underclassifying the high-elevation-high-elevation areas,

which we attribute to user bias in removing isolated rock outcrops within glaciers, as opposed to
simply defining accumulation areas as a single polygon. In general, the algorithm and the control
dataset are wel-matehed-well-matched below 4000 meters; above this, the spectral dataset and the
algorithm dataset begin to align closely and generally follow the manually digitized data. This
threshold represents the general transition from debris-covered glaciers to clean glacier ice in the
study area. Our algorithm output is also well-matched with the CGI v2, except at very high elevations

where it overclassifies some areas as compared to the CGI v2.

In order to examine inherent bias throughout the algorithm classification, under- and over-classified
areas were examined for a subset of the control datasetwere-examined. To determine areas of over-
classification (underclassification), the manually (algorithm) generated dataset was subtracted from
the algorithm (manual) dataset, leaving only pixels whieh-are-that were overclassified (underclas-
sified). Figure 22-5B shows the elevation distributions of under and over classified areas. The
algorithm tends to consistently overclassify areas across the range of glacier elevations, which we at-
tribute here to differences in manual and algorithm treatment of steep and de-gtactated-de-glacierized
areas within glacier accumulation zones. Importantly, the algorithm underclassifies a much smaller
number of pixels, generally corresponding to areas below 4660m4000 m, where debris tongues are
dominant. The majority of these pixels are along the edges of glacier-debris-debris-covered glacier
tongues, which are removed by the algorithm due to their low relative velocity. It is also possible
that some of these pixels are ‘dead ice’, which is difficult to differentiate from debris tongues by
visual inspection. The total misclassification of algorithm-derived outlines against two independent
manual control datasets are-is 2% and 10% respectively, which represents a significant improvement
from a pure spectral delineation approach.

To investigate sampling bias in our analysis, we used 465 GLIMS glacier identification numbers

(centroids, point features) which-that overlapped with the manual control datasets. A random sub-
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set of 100 of these points was chosen for this analysis. As can be seen in Figure 22?5C, similar
patterns emerge between the randomly sampled glaciers and the sampling used in other sections of
this manuscript. There is evidence of more noise in the random sample, as some glaciers which
we avoided due to closeness to wet sand/or other hard-to-classify areas were chosen during the ran-

dom sampling. However, the relationship between the algorithm and the manual datasets remains

significant (Kolmogorov—Smirnov test passes at 99% confidence interval).

4.2 Vertex Distance Matching

To capture changes in the shape of the glacier outlines between the initial spectral classification and
the final algorithm output, we computed the distance between pairs of glacier vertices. We first
reduced our manual control dataset to compenent-verticesa set of X/Y pairs for each component
vertex, which were then matched to the closest vertex in the spectral and final algorithm restlts
result’s polygons, respectively —Fherestlts-of this-distance-matchingean-beseeninFigure-6(Figure
06).

The distance distribution for the algorithm dataset shows generally close agreement between the
algorithm and manual control datasets. The spectral dataset also contains a large percentage of
vertices close to a 1:1 agreement with the manual control dataset, which are primarily those vertices
at the upper edges of glaciers, or vertices from small, debris-free glaciers. The difference in these two

distributions is attributed to the increased precision with which the algorithm maps debris-covered

glacier outlines. Both datasets were normalized by their whole-dataset maximum distances.

5 Discussion

5.1 Comparison with Previous Glacier Mapping Algorithms

Several authors have presented alternative debris-covered glacier classification methods and schemes

13



325 thermal and spectral data (Taschner and Ranzi, 2002) , topographic and neighborhood analysis (Paul et al., 2004) ,

clustering of optical and thermal data (Bolch et al., 2007) , maximum likelihood classification (Shukla et al., 2010

slope and curvature clustering combined with thermal data (Bhambri et al., 2011) , decision tree

classification and texture analysis, (Racoviteanu and Williams, 2012) and object-based classifications

(Rastner et al., 2014) . While all of these methods present improvements over basic clean-ice delin-
330 eation as proposed by Hall et al. (1987), they each have shortcomings whieh-that limit their range
of use. Table 2 shows a comparison of these different methods alongside the algorithm presented in

this study.
Our study improves on previous work in three main ways: (1) reduced computational intensity,
(2) greater diversity of study area, and (3) increased temporal range of our dataset. The methods
335 proposed in this study, excepting the generation of a velocity field, require very little processing
power. Once initial input datasets (velocity surface, rasterized river network) have been created, a
Landsat scene can be processed in 3-5 minutes (Ubuntu 14.04, 8 cores (3.6GhZ), 16 GB RAM).
When this is compared with the training dataset creation, computationally expensive classification
schemes, and neighborhood analyses employed by other studies, there is a clear improvement in
340 cfficiency. Secondly, we analyze a significantly larger glacier area than any of the previous studies,
which has helped us generalize our algorithm and methods to a wide range of topographic and land-
cover settings. Finally, we process a multi-year dataset, encompassing 62-40 Landsat scenes with
varying landcover and weather-meteorological settings. This has allowed us to further generalize our
algorithm to be effective beyond a single scene or small set of scenes, and to remain effective across
345 a wide spatial and temporal range. The time-dynamic aspect of our algorithm can also previde-a
complement-to-complement time-static wide-area datasets, such as the RGI v4.0, the CGI v2, and
the forthcoming GAMDAM datasets (Arendt et al., 2012; Guo et al., 2015; Nuimura et al., 2014).
While these datasets may provide higher-quality manually digitized outlines for specific glaciers,

they only provide a single snapshot in time, and are limited to a specific area of coverage.

350 5.2 Unused-Additional Tested Filtering Steps

Two additional topographic indices — spatial Fast Fourier Transforms (FFTs), also known as 2D
FFTs, and ASTER surface roughness measurements — were tested during the development of the
algorithm, although neither provided significant improvement. We attempted to derive frequential

information from several Landsat and ASTER bands, with limited success. Some glaciers exhibit a
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unique frequency signature when analyzed using spatial FFTs, although these were not consistent
across multiple debris-covered glaciers with differing surface characteristics. Additionally, the FFT
approach was tested against a principal component analysis (PCA) image derived from all Landsat
bands, without significant improvement to the algorithm.

We also attempted to integrate surface roughness measurements using the ASTER satellite, which
contains both forward looking (3N - nadir) and backwards looking (3B - backwards) images, primar-
ily intended for the generation of stereoscopic DEMs. The difference in imaging angle provides the
opportunity to examine surface roughness by examining changes in shadowed areas (Mushkin et al.,

2006; Mushkin and Gillespie, 2011). We found that there are slight surface roughness differences

between glaeit

sterrain on and off glaciers, but

that these differences are not significant enough to use as a thresholding metric. Furthermore, the

o o

nature of the steep topography limits the efficacy of this method, as valleys which lie parallel the
satellite flight path and those which lie perpendicular to the flight path show different results. Thus,
the algorithm relies on the velocity and slope thresholds to characterize the topography of the glacier

areas.

5.3 Algorithm Use Cases and Caveats

The glacier outlines provided by the algorithm are a useful first-pass-first-pass analysis of glacier
area. It is often more efficient to digitize only misclassified areas, as opposed to digitizing entire
glacier areas by hand (Paul et al., 2013). Paul et al. (2013) also note that for clean ice, automatically
derived glacier outlines tend to be more accurate, and it is only in the more difficult debris-covered
and shadowed areas that manual digitization becomes preferable. In the algorithm presented here,
clean ice thresholding was implemented using TM1, TM3, and TMS. However, because the algo-
rithm operates primarily on ‘potential debris areas’, any clean ice classification scheme could be
used. For example, in other study regions, or for different satellite sensors, other schemes, such as
the Normalized Difference Snow Index (Dozier, 1989) , may outperform clean ice classification as
implemented in this study.

The algorithm moves a step further than spectral-only classification and attempts to classify glacier
areas as accurately as possible, including debris-covered areas. As can be seen in Figure 7, the
algorithm compares well with both the control dataset and the CGI v2 — a high-fidelity, manually

edited, dataset — across a range of glacier types (Step 2(a)) (Guo et al., 2015). However, the algorithm
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outlines do not perfectly align with either dataset. In Figure 7, a tendency to remove pixels along the
edge of glacierdebris-debris-covered glacier tongues can be observed, which we attribute to the fact
that the center of debris tongues often move faster than the edges. Furthermore, both the algorithm
results and the manual control dataset underestimate glacier area as compared to the CGI v2, due
to the removal of non-clean ice pixels at high altitudes or high slopes, which are generally within
the accumulation area of a glacier but are not always covered by permanent ice. These two types
of classification bias are easily rectified with minimal manual intervention. Some bias between the
manual or algorithm datasets and the CGI v2 can also be attributed to the difference in time; while
the manual and algorithm datasets share an image date, the CGI v2 was digitized on top of multiple
images that may not match up perfectly in time with our datasets. Despite these misclassified areas,
the raw algorithm output effectively identifies the furthest reaches of the glacier tongues effeetively
in most cases, as can be seen in three long debris tongues shown in Figure 7.

Without post-processing, these raw glacier outlines can be used to analyze regional glacier char-
acteristics, such as slope, aspect, and hypsometry. Even if glacier outlines are not perfectly recti-
fied in space, at the scale of watersheds, satellite image footprints, or mountain ranges, errors of
under- and over-classification even out, yielding valuable regional statistics (Figure 2?5A). As the
method can be easily modified to fit the topographic and glacier setting of any region, it is a power-

ful tool for analyzing-analysing glacier changes over large scales ever-for the period of Landsat TM,

ETM+ and OLI coverage. Smatt-While the algorithm has yet to be applied to large and slow-movin
debris-covered glaciers in the Himalaya, a wide range of glacier size classes, speeds, and topographic
settings are well classified by the algorithm. For example, even small glacier changes are alsoe-cap-

tured by the algorithm, as can be seen in Figure 8.

Figure 8 also illustrates some potential errors with-in the algorithm where river sand is sometimes
delineated as glacier area. In many cases, the same areas are captured across different timestamps,
as the topographic and velocity data used to define ‘potential debris areas’ is mostly static in time,
excepting the distance weighting steps. However, these areas are easily removed during manual
inspection of results.

The second use case for the algorithm is as a substitute for simple spectral ratios. Partienlarly

g -Manual digitization of glacier tongues

is time consuming, particularly in regions with numerous debris-covered glaciers. Our algorithm

provides a robust baseline set of glacier outlines which-that can be corrected manually, with mini-
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mal extra processing time. As generating the input velocity surfaces can take longer than processing
glacier outlines from dozens of Landsat scenes, efficiencies are gained when a-targe-number-of-Land-
sat scenes are processed in bulk. The algorithm as published-presented in this manuscript takes ~3-5
minutes of actual processing time once the base datasets have been created. For a single Path/Rew
Path-Row combination, the time to set up the input datasets (velocity surface, manual debris points)
is ~4 hours. Once the initial setup has been completed for a given Path/Rew—combination,—an
arbitrary-Path-Row combination, any number of Landsat scenes can be processed very quickly.
Although the algorithm represents a step forward in semi-automated glacier classification, there
are several important caveats to keep in mind: (1) Lack of data density and temporal range limits the
efficacy of individual glacier analysis; the algorithm presented in this paper was not designed with
individual glacier studies in mind, and in many cases, such as in mass balance studies, more accurate
manual glacier outlines are necessary. Furthermore, (2) the algorithm relies on manual intervention
to separate individual glaciers which are connected through overlapping classified areas, or which
are part of glacier complexes. Finally, (3) the algorithm relies heavily on the fidelity of the Landsat
images provided, in that glacier outlines on images with cloud- or snow-cover are less likely to be
well defined. This creates a data limitation, as many glacierized areas are subject to frequent cloud-
and snow-cover, and thus have a limited number of potentially useful Landsat images for the purpose

of this algorithm.

6 Conclusions

This study presents an enhanced glacier classification methodology based on the spectral, topo-
graphic, and spatial characteristics of glaciers. We present a new method of (semi-) automated
glacier classification, which is built upon, but unique from, the work of previous authors. Although
it does not completely solve the difficulties associated with debris-covered glaciers, it can effectively
and rapidly characterize glaciers over a wide area. Following an initial delineation of clean glacier
ice, a set of velocity, spatial, and statistical filters are applied to accurately delineate glacier outlines,
including their debris-covered areas.

When compared visually and statistically against a manually digitized control dataset and the
high-fidelity CGI v2, our algorithm remains robust across the wide range of glacier sizes and types
found in Nerthern-and-Central Asia. The algorithm developed here wil-be-is applicable to a wide

range of glacierized regions, particularly in those regions where debris-covered glaciers are domi-
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nant, and extensive manual digitization of glacier areas has previously been required. The raw al-
gorithm output is usable for rough statistical queries on glacier area, hypsometry, slope, and aspect;
however, manual inspection of algorithm output is necessary before using algorithm-the generated

glacier outlines for more in-depth area change or mass balance studies.

450 Acknowledgements. Fhis-Part of this work was supported through the Earth Research Institute (UCSB) through
a Natural Hazards Research Fellowship, as well as the NSF grant AGS-1116105. We would like to thank Frank
Paul, Wanqin Guo, and one anonymous reviewer for their detailed and helpful reviews, as well as Tobias Bolch

for his contribution to the development of the manuscript.

18



455

460

465

470

475

480

485

490

495

500

505

References

Arendt, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J., Hock, R., Kaser, G., Pfeffer, W., Moholdt, G.,
Paul, F, et al.: Randolph Glacier Inventory [v2. 0]: A Dataset of Global Glacier Outlines. Global Land Ice
Measurements from Space, Boulder Colorado, USA, Digital Media, 2012.

Armstrong, R., Raup, B., Khalsa, S., Barry, R., Kargel, J., Helm, C., and Kieffer, H.: GLIMS glacier database,
National Snow and Ice Data Center, Boulder, Colorado, USA, 2005.

Bhambri, R., Bolch, T., and Chaujar, R.: Mapping of debris-covered glaciers in the Garhwal Himalayas using
ASTER DEMs and thermal data, International Journal of Remote Sensing, 32, 8095-8119, 2011.

Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U.: Automated delineation of debris-covered glaciers
based on ASTER data, in: Geoinformation in Europe (Proc. of 27th EARSel Symposium, 04-07 June 2007),
Bozen, Italy, pp. 403—410, 2007.

Bolch, T., Peters, J., Yegorov, A., Pradhan, B., Buchroithner, M., and Blagoveshchensky, V.: Identification of
potentially dangerous glacial lakes in the northern Tien Shan, Natural Hazards, 59, 1691-1714, 2011.

Cannon, E,, Carvalho, L., Jones, C., and Bookhagen, B.: Multi-annual variations in winter westerly disturbance
activity affecting the Himalaya, Climate Dynamics, pp. 1-15, 2014.

Dozier, J.: Spectral signature of alpine snow cover from the Landsat Thematic Mapper, Remote sensing of
Environment, 28, 9-22, 1989.

Guo, W., Xu, J., Liu, S., Shangguan, D., Yao, X., Wei, J., Bao, W., Yu, P, Liu, Q., and Jiang, Z.: The
second Chinese glacier inventory: data, methods and results, Journal of Glaciology, 226, 957-969, doi:
10.3189/2015J0G14J209, 2015.

Hall, D., Ormsby, J., Bindschadler, R., and Siddalingaiah, H.: Characterization of snow and ice reflectance
zones on glaciers using Landsat Thematic Mapper data, Ann. Glaciol, 9, 1-5, 1987.

Hansen, M. C. and Loveland, T. R.: A review of large area monitoring of land cover change using Landsat data,
Remote sensing of Environment, 122, 66-74, 2012.

Hanshaw, M. and Bookhagen, B.: Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the
Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru, The Cryosphere, 8,
359,2014.

Heid, T. and Kiib, A.: Evaluation of existing image matching methods for deriving glacier surface displace-
ments globally from optical satellite imagery, Remote Sensing of Environment, 118, 339-355, 2012.

Jarvis, A., Reuter, H. 1., Nelson, A., Guevara, E., et al.: Hole-filled SRTM for the globe Version 4, available
from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org), 2008.

Kaiib, A.: Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: exam-
ples using digital aerial imagery and ASTER data, ISPRS Journal of Photogrammetry and remote sensing,
57, 39-52, 2002.

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, EOS,
Transactions American Geophysical Union, 89, 93-94, 2008.

Leprince, S., Ayoub, F., Klingert, Y., and Avouac, J.-P.: Co-registration of optically sensed images and correla-
tion (COSI-Corr): An operational methodology for ground deformation measurements, in: Geoscience and
Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pp. 1943-1946, IEEE, 2007.

Lioubimtseva, E. and Henebry, G. M.: Climate and environmental change in arid Central Asia: Impacts, vul-
nerability, and adaptations, Journal of Arid Environments, 73, 963-977, 2009.

Mushkin, A. and Gillespie, A.: Using ASTER Stereo Images to Quantify Surface Roughness, in: Land Remote
Sensing and Global Environmental Change, pp. 463—481, Springer, 2011.

Mushkin, A., Gillespie, A., Danilina, I., O’Neal, M., Pietro, L., Abbott, E., and Balick, L.: Using sub-pixel
roughness estimates from ASTER stereo images to compensate for roughness effects in the thermal infrared,
in: RAQRS II: 2nd International Symposium on Recent Advances in Quantitative Remote Sensing, 2006.

Narama, C., Kdib, A., Duishonakunov, M., and Abdrakhmatov, K.: Spatial variability of recent glacier area
changes in the Tien Shan Mountains, Central Asia, using Corona (* 1970), Landsat (* 2000), and ALOS (*
2007) satellite data, Global and Planetary Change, 71, 42-54, 2010.

Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka,
S., Omiya, S., et al.: The GAMDAM Glacier Inventory: a quality controlled inventory of Asian glaciers, The
Cryosphere Discussions, 8, 2799-2829, 2014.

Paul, F.: Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic
Mapper and Austrian Glacier Inventory data, International Journal of Remote Sensing, 23, 787-799, 2002.

Paul, F. and Kb, A.: Perspectives on the production of a glacier inventory from multispectral satellite data in
Arctic Canada: Cumberland Peninsula, Baffin Island, Annals of Glaciology, 42, 5966, 2005.

19



510

515

520

525

530

535

540

545

550

555

560

Paul, F., Kiib, A., Maisch, M., Kellenberger, T., and Haeberli, W.: The new remote-sensing-derived Swiss
glacier inventory: I. Methods, Annals of Glaciology, 34, 355-361, 2002.

Paul, F., Huggel, C., and Kiib, A.: Combining satellite multispectral image data and a digital elevation model
for mapping debris-covered glaciers, Remote Sensing of Environment, 89, 510-518, 2004.

Paul, F,, Barrand, N., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S., Konovalov, V., Le Bris,
R., et al.: On the accuracy of glacier outlines derived from remote-sensing data, Annals of Glaciology, 54,
171-182, 2013.

Paul, F, Bolch, T., Kééb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T., Ticconi, F., Bhambri,
R., et al.: The glaciers climate change initiative: Methods for creating glacier area, elevation change and
velocity products, Remote Sensing of Environment, 162, 408426, 2015.

Pfeffer, W. T., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J., Hock, R., Kaser, G., Kien-
holz, C., Miles, E., Moholdt, G., Molg, Paul, F., Radié, V., Rastner, P., Raup, B., Rich, J., Sharp, M., and
Consortium, T. R.: The Randolph Glacier Inventory: a globally complete inventory of glaciers, Journal of
Glaciology, 60, 537-552, 2014.

Racoviteanu, A. and Williams, M. W.: Decision tree and texture analysis for mapping debris-covered glaciers
in the Kangchenjunga area, Eastern Himalaya, Remote Sensing, 4, 3078-3109, 2012.

Racoviteanu, A. E., Arnaud, Y., Williams, M. W., and Ordonez, J.: Decadal changes in glacier parameters in
the Cordillera Blanca, Peru, derived from remote sensing, Journal of Glaciology, 54, 499-510, 2008a.

Racoviteanu, A. E., Williams, M. W., and Barry, R. G.: Optical remote sensing of glacier characteristics: a
review with focus on the Himalaya, Sensors, 8, 3355-3383, 2008b.

Racoviteanu, A. E., Paul, F,, Raup, B., Khalsa, S. J. S., and Armstrong, R.: Challenges and recommendations
in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space
(GLIMS) workshop, Boulder, Colorado, USA, Annals of Glaciology, 50, 53-69, 2009.

Rastner, P., Bolch, T., Notarnicola, C., and Paul, F.: A comparison of pixel-and object-based glacier classi-
fication with optical satellite images, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 7, 853-862, 2014.

Raup, B., Kiib, A., Kargel, J. S., Bishop, M. P,, Hamilton, G., Lee, E., Paul, F.,, Rau, F., Soltesz, D., Khalsa, S.
J. S., et al.: Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS)
project, Computers & Geosciences, 33, 104-125, 2007.

Raup, B. H., Khalsa, S. J. S., Armstrong, R. L., Sneed, W. A., Hamilton, G. S., Paul, F., Cawkwell, F., Beedle,
M. J., Menounos, B. P, Wheate, R. D., et al.: Quality in the GLIMS Glacier Database, in: Global Land Ice
Measurements from Space, pp. 163—182, Springer, 2014.

Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response of Himalayan glaciers to climate
change affected by debris cover, Nature Geoscience, 4, 156-159, 2011a.

Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier coupling: The interplay of topography and
glacial dynamics in High Asia, Journal of Geophysical Research: Earth Surface, 116, 2011b.

Shangguan, D., Bolch, T., Ding, Y., Krohnert, M., Pieczonka, T., Wetzel, H., and Liu, S.: Mass changes of
Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during 1975 and 2007 derived
from remote sensing data, The Cryosphere, 9, 703-717, 2015.

Shukla, A., Arora, M., and Gupta, R.: Synergistic approach for mapping debris-covered glaciers using optical—
thermal remote sensing data with inputs from geomorphometric parameters, Remote Sensing of Environ-
ment, 114, 1378-1387, 2010.

Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate change impacts on glaciers and runoff
in Tien Shan (Central Asia), Nature Climate Change, 2, 725-731, 2012.

Taschner, S. and Ranzi, R.: Comparing the opportunities of Landsat-TM and Aster data for monitoring a
debris covered glacier in the Italian Alps within the GLIMS project, in: Geoscience and Remote Sensing
Symposium, 2002. IGARSS’02. 2002 IEEE International, vol. 2, pp. 1044-1046, IEEE, 2002.

Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J.,
Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere. In: Climate Change 2013:
The Physical Science Basis., Contribution of Working Group I to the Fifth Assessment Report of the IPCC.,
2013.

20



Table 1. Data table hstmg Landsat %&Wa&s used in this study Orgamzed by WRS2 Path/Row
combinations. St : ages S —Bold dates indicate images
used for velocity profiles.

144/030 145/030
Number of Images H-5 104
Date Range of Images 2002-2013 1998-2013
LTS5 €apture-Acquisition Dates Ful-3+-2006-Sep 27, 1998 Sep 2, +998%-1998
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Aung-8;2000-
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Table 2. Comparison of methods between previous debris-covered glacier mapping studies.

Method Short Description Data Processing Intensive Area Covered Reported
Inputs Steps in Study Accuracy
Taschner and Clean-ice detection using Landsat, Landsat, Data resampling, 5.58 km?, Not Reported
Ranzi (2002)  coupled with ASTER thermal data ~ ASTER pixel clustering Italian Alps
Paul et al. Clean-ice detection using Landsat, Landsat, Image Polygon 23 km?, 21% of debris
(2004) coupled topographic analysis and ASTER- Growing neighbor- Swiss Alps misclassified
neighborhood analysis DEM hood analysis
Bolch et al. A set of training areas based on ASTER, Creation and tuning Not reported, 5% total area
(2007) spectral and topographic informa- ASTER- of training dataset Mt. Everest misclassified
tion is used to determine classifica- DEM Region
tion thresholds
Shukla et al. Multiple landcover types mapped ASTER, Data conversion and 200 km?, 8-14% debris
(2010) using spectral and thermal imagery =~ AWiFS, registration, solar Samudra misclassified
combined with a DEM DEM illumination analy- Tapu glacier,
sis, training dataset Himachal
creation, Maximum Pradesh,
Likelihood Classifier — India
ASTER,  Manual _ decisions 232 km? 0.5:11%
algorithm coupled with thermal —Landsat,  curvature clusters Glacier, misclassified
Himalaya,
Racoviteanu (1) Decision tree classification with  ASTER, Training dataset 5764 km2, (1) 25%, (2)
and Williams ASTER and topographic data, and DEM, creation, decision Sikkim Hi- 31%  debris
(2012) (2) texture analysis exploiting sur-  Quick- tree set-up, principal malaya, NE misclassified
face roughness bird, component analysis India
World-
view?2
Rastner et al. Comparison of object- and pixel- ASTER, Manual  threshold Not reported, 11.5%
(2014) based methods of glacier mapping. Landsat, definitions, segmen- three distinct (object-
Both methods use spectral and to- DEM tation  processing, test regions based) and
pographic information as inputs iterative thresholding 23.4% (pixel-
based) mis-
classified
areas for
Himalaya
region
This Study Clean-ice detection coupled with Landsat, Velocity field calcu- ~44,000 2-10% total
topographic, velocity, and distance SRTM lation, optional de- km?2, Pamir- area misclas-
weighting thresholds DEM, bris seed point selec- Tien Shan sified
River tion
Network
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Fig. 1. Greater study area of the Tien Shan, showing SRTM v4.1 topography (Jarvis et al., 2008) and location
of eight Landsat image footprints (grayscale) used in the study, along with their Path/Row combinations. Blue
box delineates Figures 2-3 and 7, yellow box delineates Figure 8. Winter Westerly Disturbances and Siberian
High highlighted in orange.
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Fig. 2. (A) Characteristic example of a debris-covered glacier tongue (Inylchek Glacier). Spectrally-delineated
glacier outlines (black), over Landsat bands B7/B5/B3 (R/G/B), from image LC81470312013268LGNO00, with.
poorly mapped debris-covered tongues (red arrows). Fhis-shows-g {B) Blue areas
show ‘Potential Debris Areas’, as delineated by slopes between 1-24 degrees, with elevations below ~2500 m
removed, SRTM hillshade underneath, clean-ice outlines overlain in black. (C) Example of a glacier velocit
surface, generated using Normalized Image Cross Correlation (NICC). Areas in red are slow-moving areas and
represent stable ground, clean-ice outlines overlain in black. (D) Example of distance-weighting seed areas
used to remove pixels from the ‘potential debris areas’ which are distant from either a river valley or classified
glacier ice. Rivers in blye, but-poer-treatmentclean-ice outlines overlain in black. (E) Areas removed by second
with areas in black removed during the filtering process. East and West Qong Terang Glaciers.
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Fig. 4. Glacier size class distribution (n=750) for the manual control dataset. Note the logarithmic x-axis to
account for a wide range of gtaeial-glacier sizes.
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Fig. 5. (A) Bulk elevation distributions of sampled glaciers, with manual delineation (reference dataset, n=215,
4,500 km2) in blue, algorithm-derived delineation in red, spectral delineation in green, and CGI v2 in black.
Values have been normalized to maximum probability. (B) Elevation distributions of over- and under-classified
glacier areas, as compared to a manual control dataset (n=75, 330 km?). 5.5% is overclassified, and 0.8%
is underclassified. (C) Averaged elevation differences for a random sample of glaciers overlapping a manual
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Fig. 6. Vertex distance distributions for algorithm (blue) and spectral (red) vertices, as compared to a manual
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Fig. 7. Algorithm outlines (purpteyellow) compared to the control dataset (black) and the CGI v2 (red). Illus-
trates high fidelity in overall debris-tongue length between the three datasets, although the algorithm outlines
exhibit noise along the edges of debris tongues.
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Fig. 8. Algorithm outlines for July 2013 (black) and algorithm outlines for August 2002 (redyellow), showing
small retreats in glacier areas, particularly at the debris tongues. Vicinity of the Akshiirak glacierized massif,
central Tien Shan.

30



