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Abstract.

Studies of glaciers generally require precise glacier outlines. Where these are not available, exten-

sive manual digitization in a Geographic Information System (GIS) must be performed, as current

algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles.

Although several approaches have improved upon spectral band ratio delineation of glacier areas,

none have entered wide use due to complexity or computational intensity.

In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates

both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique

velocity and topographic characteristics of glaciers, and further leverages spectral and spatial rela-

tionship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as

compared to a ∼750 glacier control dataset, and can reliably classify a given Landsat scene in 3-5

minutes.

The algorithm does not completely solve the difficulties inherent in classifying glacier areas from

remotely sensed imagery, but does represent a significant improvement over purely spectral-based

classification schemes, such as the band ratio of Landsat 7 bands three and five or the Normalized

Difference Snow Index. The main caveats of the algorithm are (1) classification errors at an indi-

vidual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3)

dependence on fidelity of the input Landsat data.
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1 Introduction

This study focuses on mapping glaciers over a large spatial scale using publicly available remotely

sensed data. Several high-resolution glacier outline databases have been produced, most notably the

Global Land Ice Measurements from Space (GLIMS) project (Armstrong et al., 2005; Raup et al.,

2007, 2014), and the recently produced supplemental GLIMS dataset known as the Randolph Glacier5

Inventory (RGI) v4.0 (Arendt et al., 2012; Pfeffer et al., 2014). Smaller-scale glacier databases are

also available, such as the Chinese Glacier Inventory (CGI) v2 (Guo et al., 2015). A coherent,

complete, and accurate global glacier database is important for several reasons, including monitor-

ing global glacier changes driven by climate change, natural hazard detection and assessment, and

analysis of the role of glaciers in natural and built environments, including glacier contributions to10

regional water budgets and hydrologic cycles (Racoviteanu et al., 2009; Vaughan et al., 2013). Pre-

cision in glacier outlines is of utmost importance for monitoring changes in glaciers, which may

change less than 15-30 m/yr (∼1-2 pixels of Landsat Enhanced Thematic Mapper (ETM+) Panchro-

matic band/yr).

Several methods have been developed to delineate clean glacier ice (i.e. Hall et al., 1987; Paul,15

2002; Paul et al., 2002; Racoviteanu et al., 2008a,b; Hanshaw and Bookhagen, 2014), relying primar-

ily on multi-spectral data from satellites such as Landsat and Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER). Although significant progress has been made towards

automated glacier outline retrieval using satellite imagery, these methods struggle to accurately map

debris-covered glaciers, or other glaciers with irregular spectral profiles (Paul et al., 2004; Bolch20

et al., 2007; Racoviteanu et al., 2008b; Scherler et al., 2011a; Bhambri et al., 2011). Much of this

difficulty stems from the similarities in spectral profiles of debris located on top of a glacier tongue

and the surrounding landscape. The majority of studies examining debris-covered glaciers employ

extensive manual digitization in a Geographic Information System (GIS), which is very time con-

suming, and can introduce significant user-generated errors (Paul et al., 2013; Pfeffer et al., 2014;25

Raup et al., 2014). Building on the multi-spectral, topographic, and spatially-weighted methods

developed by Paul et al. (2004), we present a refined rules-based classification algorithm based on

spectral, topographic, velocity, and spatial relationships between glacier areas and the surrounding

environment. The algorithm has been designed to be user-friendly, globally applicable, and built

upon open-source tools.30
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2 Study Area and Data Sources

2.1 Study Area

In this study we analyze the results of our classification algorithm using a suite of 40 Landsat The-

matic Mapper (TM), Enhanced Thematic Mapper+ (ETM+) and Optical Land Imager (OLI) images

(1998-2013) across a spatially and topographically diverse set of study sites comprising eight Land-35

sat footprints (Path/Row combinations: 144/30, 145/30, 147/31, 148/31, 149/31, 151/33, 152/32,

153/33) along a ∼1,500 km profile from the Central Pamir to the Central and Central-Eastern Tien

Shan (Figure 1, Table 1).

The study area contains a wide range of glacier types and elevations, with both small and clean-

ice dominated glaciers, as well as large, low-slope, and debris-covered glaciers. The diversity in40

glacier types in the region provides an ideal test area – particularly in mapping glaciers with long

and irregular debris tongues, such as the Inylchek and Tomur glaciers in the Central Tien Shan

(Shangguan et al., 2015).

The wintertime climate of the study area is controlled by both the Winter Westerly Disturbances

and the Siberian High, which dominate regional circulation and create strong precipitation gradients45

throughout the range, which extends from Uzbekistan in the west through China in the east (Figure

1) (Lioubimtseva and Henebry, 2009; Narama et al., 2010; Bolch et al., 2011; Sorg et al., 2012;

Cannon et al., 2014). The western edges of the region tend to receive more winter precipitation in

the form of snow, with precipitation concentrated in the spring and summer in the central and eastern

reaches of the range (Narama et al., 2010).50

2.2 Data Sources

Our glacier mapping algorithm is based on several datasets. The Landsat 5 (TM), 7 (ETM+), and

8 (OLI) platforms were chosen as the primary spectral data sources, as they provide spatially and

temporally extensive coverage of the study area (Table 1). ASTER can also be used as a source of

spectral information, but here we chose to focus on the larger footprint and longer timeseries avail-55

able through the Landsat archive. In addition to spectral data, the 2000 Shuttle Radar Topography

Mission V4.1 (SRTM) Digital Elevation Model (DEM) (∼90 m, void-filled) was leveraged to pro-

vide elevation and slope information (Jarvis et al., 2008). The SRTM data and its derivatives were

downsampled to 30 m to match the resolution of the Landsat images using bilinear resampling. The
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USGS Hydrosheds river network (15 second resolution, ∼500 m) was also used as an input dataset60

(Lehner et al., 2008).

3 Methods

Our glacier classification algorithm uses several sequential thresholding steps to delineate glacier

outlines. The scripts used in this study are available in the Data Repository, with updates posted to

http://github.com/ttsmith89/GlacierExtraction/. It is noted if the step requires manual processing or65

is part of a script.

1. Data Pre-processing

(a) Velocity fields are calculated with Normalized Image Cross Correlation (Manual, can be

automatized)

(b) The Hydrosheds river network is rasterized (Manual, can be automatized)70

(c) Optional manual debris points are created (Manual, optional)

(d) SRTM data is used to create a hillslope image (Python Script)

(e) All input datasets are matched to a single extent and spatial resolution (30 m) (Python

Script)

2. Glacier Classification Steps75

(a) Clean-ice glacier outlines are created using Landsat Bands 1,3, and 5 (Matlab Script)

(b) ‘Potential debris areas’ are generated from low-slope areas (Matlab Script)

(c) Low-elevation areas are removed (Matlab Script)

(d) Low-velocity areas are removed (Matlab Script)

(e) Distance-weighting metrics are used to remove areas distant from river networks or clean80

glacier ice (Matlab Script)

(f) Distance-weighting metrics are used to remove areas very distant from clean glacier ice

and manual seed points (Matlab Script)

(g) The resulting glacier outlines are cleaned with statistical filtering (Matlab Script)

3. Post-processing85

(a) Glacier outlines are exported to ESRI shapefile format for use in a GIS (Python Script)
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3.1 Data Preparation

For accurate glacier delineation, we primarily used Landsat images which were free of new snow,

and had less than 10% cloud cover. However, we have also included scenes with limited snow- and

cloud-cover in our analysis to understand their impacts on our classification algorithm. We find that90

the presence of fresh snow in images tends to overclassify glacier areas and classify non-permanent

snow as glaciers. Additionally, cloud covered glaciers cannot be correctly mapped by the algorithm

(Paul et al., 2004; Hanshaw and Bookhagen, 2014). We use the USGS Level 1T orthorectified Land-

sat scenes to ensure that the derived glacier outlines are consistent in space (Hansen and Loveland,

2012; Nuimura et al., 2014).95

The algorithm uses Landsat imagery, a void-filled DEM, a velocity surface derived from image

cross-correlation, and the Hydrosheds 15s river network (buffered by 200 m and converted to a

raster) as the primary inputs (Steps 1(a) and 1(b)). The algorithm generates a slope image from

the DEM and rectifies additional input datasets described below for processing by resampling and

reprojecting each dataset to the same spatial extent and resolution (30 m to match the Landsat data)100

(Steps 1(d) and 1(e)). Although the current algorithm leverages a few proprietary Matlab commands,

we will continue to update the code with the goal of using only open-source tools and libraries in the

future.

3.2 Clean Ice Delineation

Calculations are performed on rasterized versions of each input dataset, which have been standard-105

ized to the same matrix size. The first step in the classification process leverages Landsat 7 Bands

1, 3, and 5 (Step 2(a)). For Landsat 8 OLI images, a slightly different set of bands is used to con-

form to OLI’s modified spectral range. For simplicity, bands referenced in this publication refer

to Landsat 7 ETM+ spectral ranges. The ratio of TM3/TM5 (value ≥2), with additional spectral

information from TM1 (value >25) has been used in previous research as an effective means of110

delineating glacier areas (e.g., Hall et al., 1987; Paul and Kääb, 2005; Hanshaw and Bookhagen,

2014), but is not effective in delineating debris-covered glacier areas (Figure 2A). In our algorithm,

we use a threshold of TM3/TM5 ≥ 2 and TM1 >60 to map clean glacier ice. While these thresholds

perform well over many scenes, using thresholds which are not tuned to specific scene conditions

can generate large errors, particularly in shadowed areas (Paul et al., 2015). Here we choose fairly115

conservative threshold values to ensure that we do not remove clean glacier ice. We find that in-
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creasing the TM1 threshold results in tighter classification of debris-covered glacier tongues, but

also removes some areas properly classified as glacier, particularly in steep areas of the accumula-

tion zone. Thus, we err on the side of overclassification with our delineation of clean glacier ice. The

end result of this step is the spectrally-derived (clean-ice) glacier outlines, which are later integrated120

back into the workflow before statistical filtering (Figure 2A).

3.3 Debris-covered Ice Delineation

3.3.1 Topographic Filtering

Building on the work of Paul et al. (2004), low slope areas (between 1 and 24◦) are isolated as areas

where debris-covered glaciers are likely to exist (Step 2(b)). We choose the relatively high threshold125

of 24◦, as opposed to the 12◦ suggested for the Himalaya (Bolch et al., 2007), the 15◦ suggested

for the Himachal Himalaya (Shukla et al., 2010), or the 18◦ suggested for the Garhwal Himalaya

(Bhambri et al., 2011) to ensure that we do not prematurely remove debris-covered areas. As we use

the low-slope areas as our initial maximum likely debris extent, a conservative slope threshold helps

reduce errors of underclassification. Low-elevation areas (automatically defined on a scene-by-scene130

basis based on the average elevation of clean-ice areas minus 1750, generally below 2500-3000 m in

the study area) are then masked out to decrease processing time (Step 2(c)). These thresholding steps

identify areas where there is the potential for a debris-covered glacier to exist, and are performed

independently of the previous, psectrally delineated, glacier outlines. Additional thresholding is then

performed on this ‘potential debris area’ subset to identify debris-covered glacier areas (Figure 2B).135

As can be seen in Figure 2B, extensive areas that are not glacier or debris-covered glacier tongue

are identified in this step. However, this step greatly reduces the processing time of subsequent steps

by removing pixels outside of the main glacierized areas of any scene and allowing the algorithm to

work on a subset of the image from this point forward.

3.3.2 Velocity Filtering140

The Correlation Image Analysis Software (CIAS) (Kääb, 2002) tool, which uses a method of statis-

tical image cross-correlation, is used to derive glacier velocities from Landsat Band 8 panchromatic

images. This method functions by tracking individual pixels across space and time, and provides

a velocity surface at the same resolution as the input datasets (15m) (Step 1(a)). The velocity sur-

face is then upsampled using bilinear resampling to provide a consistent velocity estimate across the145
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entire Landsat scene. We then standardized the velocity measurements to m/yr using the capture

dates of the two Landsat images. As glacier velocity can change significantly throughout the year,

and clean images were not available at exactly the same intervals for each Path-Row combination,

there is some error in our velocity fields. However, as the velocity surface is used to remove stable

ground, which is generally well-defined despite changes in glacier velocities, errors in the velocity150

surface do not contribute significantly to glacier classification errors, excepting on slower-moving

parts of debris-covered glacier tongues. It is important to note that images must be cloud-free over

glaciers and snow-free off glaciers for this step, as the presence of snow or cloud cover can disrupt

the correlation process, resulting in anomalous velocity measurements. An example velocity surface

is shown in Figure 2C (Step 2(d)). Red areas are removed from the ‘potential debris areas’, as they155

fall outside of the expected range of debris-tongue velocities.

We only used one multi-year velocity measurement for each Path-Row combination to derive gen-

eral areas of movement/stability for glacier classification, as using stepped velocity measurements

over smaller time increments did not show a noticeable improvement in glacier classification. This

also improved our classification of slow-moving glaciers, which may not change significantly over160

only a single year. These velocities ranged generally from 4.5-30 m/yr across the different scenes.

A single velocity threshold of 5 m/yr was used across all scenes to remove stable ground. A method

of frequential cross-correlation using the co-registration of optically sensed images and correlation

(COSI-Corr) tool (Leprince et al., 2007; Scherler et al., 2011b) was tested and did not show any

appreciable improvement in velocity measurements (Heid and Kääb, 2012).165

The velocity step is most important for removing hard-to-classify pixels along the edges of glaciers,

and wet sands in riverbeds. These regions are often spectrally indistinguishable from debris tongues,

but have very different velocity profiles. It is important to note, however, that this step also removes

some glacier area, as not all parts of a glacier are moving at the same speed. This can result in small

holes in the delineated glaciers, which the algorithm attempts to rectify using statistical filtering.170

Generating a velocity field is the most computationally expensive step of the algorithm.

3.3.3 Spatial Weighting

After topographic and velocity filtering, a set of spatially-weighted filters was constructed. The first

filtering step uses the Hydrosheds river network to remove ‘potential debris areas’ which are distant

from the center of a given glacier valley (Figure 2D, Step 2(e)). As glaciers occur along the flowlines175
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of rivers, and the Hydrosheds river network generally delineates flowlines nearly to the peaks of

mountains, the river network provides an ideal set of seed points with which to remove misclassified

pixels outside of river valleys. A second distance weighting is then performed using the clean-ice

outlines generated in Step 2(a), as well as any manual seed points provided (Step 2(f)). As debris

tongues must occur in proximity to either glacier areas or the centerlines of valleys, these two steps180

are effective in removing overclassified areas (Figure 2D). The spatial weighting performed here

differs from that proposed by Paul et al. (2004) in that it uses a measure of geodesic distance from

given seed points, as opposed to maintaining entire polygons which are connected to clean-ice areas.

This difference helps remove non-glacier areas that are distant from clean ice, but still connected

by at least a single pixel to clean-ice areas. At this step, it is possible to add manual seed points,185

which may be necessary for some longer debris tongues. We note that these are optional, and the

majority of glaciers do not need the addition of manual seed points. However, for certain irregular or

cirque glaciers, the addition of manual seed points has been observed to increase the efficacy of the

algorithm. In processing the Landsat imagery presented here, we have not used additional manual

seed points.190

The spatial weighting step is essential for removing pixels spatially distant from any clean-ice

area. In many cases, large numbers of river pixels, and in some cases, dry sand pixels, have similar

spectral and topographic profiles to debris covered glaciers. This step effectively removes the ma-

jority of pixels outside the general glacierized area(s) of a Landsat scene, as can be seen in Figure

2E.195

3.3.4 Statistical Filtering

Once the spatial weighting steps are completed, a set of three filters are then applied, in order to

remove isolated pixels, bridge gaps between isolated glacier areas, and fill holes in large contiguous

areas (Step 2(g)). First, a 3x3 median filter is applied, followed by an ‘area opening’ filter, which fills

holes in contiguous glacier areas. Finally, an ‘image bridging’ filter is applied to connect disjointed200

areas, and fill holes missed by the area opening filter.

This step is necessary for filling holes and reconnecting separated glacier areas that result from

the initial threshold-based filtering steps. For example, slow-moving pixels in the middle of a debris-

covered glacier tongue that were removed based on velocity filtering are often restored by the statis-

tical filtering (Figure 3). The improved classification of debris areas between the clean-ice and final205
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algorithm outputs can clearly be seen in Figure 3.

3.4 Creation of Manual Control Datasets

Manual control datasets encompassing ∼750 glaciers (∼11,000 km2) were created to test the effi-

cacy of the glacier mapping algorithm. These datasets were digitized from Landsat imagery in a

GIS, and then corrected with higher resolution imagery in Google Earth. The datasets are coherent210

in space, but cover two different times (∼2000 and ∼2011, depending on the dates of the available

Landsat scenes). The bulk of the manually digitized glaciers fall within the boundary of Landsat

Path-Row combination 147/031, as this is the most heavily glacierized sub-region of our study area.

However, we have digitized glaciers throughout the eight Path-Row combinations to avoid biasing

our statistics and algorithm to one specific scene extent. We have also considered a wide range of215

size classes in our manual dataset (<0.5 km2 to 500+ km2), as well as both clean-ice and debris-

covered glaciers. We note that although the manual datasets here are considered ‘perfect’, there is

inherent error in any manual digitization in a GIS (e.g., Paul et al., 2013). Due to the lack of ground

truth information, we have estimated the overall uncertainty of the manual dataset to be 2% based

on previous experiments (Paul et al., 2002, 2013). Figure 4 shows the size-class distribution of the220

manual control dataset, with logarithmic area scaling.

Before any comparisons between glaciers can be performed, glacier complexes must be split into

component parts. A set of manually edited watershed boundaries, derived from the SRTM DEM,

were used to split both the manual and algorithm datasets into individual glacier areas for analysis.

In this way, the diverse datasets and classified glacier areas can be split into the same subset areas225

for statistical comparison.

4 Results

Over the eight Landsat footprints used in this study, we map ∼44,000 km2 of glaciers over two

distinct time slices. Several additional time periods were mapped, but not included in the statistical

analysis presented in this manuscript.230

4.1 Statistical Analysis of Algorithm Errors

A subset of 215 glaciers from the manual control datasets of varying size and topographic setting

was chosen for more detailed analysis. The unedited, algorithm-generated, glacier outlines were
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compared against spectral outlines, which only classify the glacier areas via commonly used spectral

subsetting (using TM1, TM3, and TM5, produced in Step 2(b)), the manual control datasets, and the235

CGI v2. Figure 5A shows the bulk elevation distributions across 215 glaciers for each dataset in 10

m elevation bins.

There is some apparent bias in our algorithm towards low-elevation areas, which represent the

debris-covered portions of glaciers and are the most difficult areas to classify. This bias also stems

from misclassified areas in shadows, particularly in north-facing glaciers. There is also a bias in our240

control dataset towards underclassifying the high-elevation areas, which we attribute to user bias in

removing isolated rock outcrops within glaciers, as opposed to simply defining accumulation areas

as a single polygon. In general, the algorithm and the control dataset are well-matched below 4000

meters; above this, the spectral dataset and the algorithm dataset begin to align closely and generally

follow the manually digitized data. This threshold represents the general transition from debris-245

covered glaciers to clean glacier ice in the study area. Our algorithm output is also well-matched

with the CGI v2, except at very high elevations where it overclassifies some areas as compared to

the CGI v2.

In order to examine inherent bias throughout the algorithm classification, under- and over-classified

areas were examined for a subset of the control dataset. To determine areas of overclassification (un-250

derclassification), the manually (algorithm) generated dataset was subtracted from the algorithm

(manual) dataset, leaving only pixels that were overclassified (underclassified). Figure 5B shows the

elevation distributions of under and over classified areas. The algorithm tends to consistently over-

classify areas across the range of glacier elevations, which we attribute here to differences in manual

and algorithm treatment of steep and de-glacierized areas within glacier accumulation zones. Im-255

portantly, the algorithm underclassifies a much smaller number of pixels, generally corresponding to

areas below 4000 m, where debris tongues are dominant. The majority of these pixels are along the

edges of debris-covered glacier tongues, which are removed by the algorithm due to their low relative

velocity. It is also possible that some of these pixels are ‘dead ice’, which is difficult to differentiate

from debris tongues by visual inspection. The total misclassification of algorithm-derived outlines260

against two independent manual control datasets is 2% and 10% respectively, which represents a

significant improvement from a pure spectral delineation approach.

To investigate sampling bias in our analysis, we used 465 GLIMS glacier identification numbers

(centroids, point features) that overlapped with the manual control datasets. A random subset of 100
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of these points was chosen for this analysis. As can be seen in Figure 5C, similar patterns emerge265

between the randomly sampled glaciers and the sampling used in other sections of this manuscript.

There is evidence of more noise in the random sample, as some glaciers which we avoided due

to closeness to wet sand/or other hard-to-classify areas were chosen during the random sampling.

However, the relationship between the algorithm and the manual datasets remains significant (Kol-

mogorov–Smirnov test passes at 99% confidence interval).270

4.2 Vertex Distance Matching

To capture changes in the shape of the glacier outlines between the initial spectral classification and

the final algorithm output, we computed the distance between pairs of glacier vertices. We first

reduced our manual control dataset to a set of X/Y pairs for each component vertex, which were

then matched to the closest vertex in the spectral and final algorithm result’s polygons, respectively275

(Figure 6).

The distance distribution for the algorithm dataset shows generally close agreement between the

algorithm and manual control datasets. The spectral dataset also contains a large percentage of

vertices close to a 1:1 agreement with the manual control dataset, which are primarily those vertices

at the upper edges of glaciers, or vertices from small, debris-free glaciers. The difference in these two280

distributions is attributed to the increased precision with which the algorithm maps debris-covered

glacier outlines. Both datasets were normalized by their whole-dataset maximum distances.

5 Discussion

5.1 Comparison with Previous Glacier Mapping Algorithms

Several authors have presented alternative debris-covered glacier classification methods and schemes285

using thermal and spectral data (Taschner and Ranzi, 2002), topographic and neighborhood analysis

(Paul et al., 2004), clustering of optical and thermal data (Bolch et al., 2007), maximum likeli-

hood classification (Shukla et al., 2010), slope and curvature clustering combined with thermal data

(Bhambri et al., 2011), decision tree classification and texture analysis, (Racoviteanu and Williams,

2012) and object-based classifications (Rastner et al., 2014). While all of these methods present290

improvements over basic clean-ice delineation as proposed by Hall et al. (1987), they each have

shortcomings that limit their range of use. Table 2 shows a comparison of these different methods
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alongside the algorithm presented in this study.

Our study improves on previous work in three main ways: (1) reduced computational intensity,

(2) greater diversity of study area, and (3) increased temporal range of our dataset. The methods295

proposed in this study, excepting the generation of a velocity field, require very little processing

power. Once initial input datasets (velocity surface, rasterized river network) have been created, a

Landsat scene can be processed in 3-5 minutes (Ubuntu 14.04, 8 cores (3.6GhZ), 16 GB RAM).

When this is compared with the training dataset creation, computationally expensive classification

schemes, and neighborhood analyses employed by other studies, there is a clear improvement in300

efficiency. Secondly, we analyze a significantly larger glacier area than any of the previous stud-

ies, which has helped us generalize our algorithm and methods to a wide range of topographic and

landcover settings. Finally, we process a multi-year dataset, encompassing 40 Landsat scenes with

varying landcover and meteorological settings. This has allowed us to further generalize our algo-

rithm to be effective beyond a single scene or small set of scenes, and to remain effective across a305

wide spatial and temporal range. The time-dynamic aspect of our algorithm can also complement

time-static wide-area datasets, such as the RGI v4.0, the CGI v2, and the forthcoming GAMDAM

datasets (Arendt et al., 2012; Guo et al., 2015; Nuimura et al., 2014). While these datasets may

provide higher-quality manually digitized outlines for specific glaciers, they only provide a single

snapshot in time, and are limited to a specific area of coverage.310

5.2 Additional Tested Filtering Steps

Two additional topographic indices – spatial Fast Fourier Transforms (FFTs), also known as 2D

FFTs, and ASTER surface roughness measurements – were tested during the development of the

algorithm, although neither provided significant improvement. We attempted to derive frequential

information from several Landsat and ASTER bands, with limited success. Some glaciers exhibit a315

unique frequency signature when analyzed using spatial FFTs, although these were not consistent

across multiple debris-covered glaciers with differing surface characteristics. Additionally, the FFT

approach was tested against a principal component analysis (PCA) image derived from all Landsat

bands, without significant improvement to the algorithm.

We also attempted to integrate surface roughness measurements using the ASTER satellite, which320

contains both forward looking (3N - nadir) and backwards looking (3B - backwards) images, primar-

ily intended for the generation of stereoscopic DEMs. The difference in imaging angle provides the
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opportunity to examine surface roughness by examining changes in shadowed areas (Mushkin et al.,

2006; Mushkin and Gillespie, 2011). We found that there are slight surface roughness differences

between terrain on and off glaciers, but that these differences are not significant enough to use as325

a thresholding metric. Furthermore, the nature of the steep topography limits the efficacy of this

method, as valleys which lie parallel the satellite flight path and those which lie perpendicular to the

flight path show different results. Thus, the algorithm relies on the velocity and slope thresholds to

characterize the topography of the glacier areas.

5.3 Algorithm Use Cases and Caveats330

The glacier outlines provided by the algorithm are a useful first-pass analysis of glacier area. It is

often more efficient to digitize only misclassified areas, as opposed to digitizing entire glacier areas

by hand (Paul et al., 2013). Paul et al. (2013) also note that for clean ice, automatically derived

glacier outlines tend to be more accurate, and it is only in the more difficult debris-covered and

shadowed areas that manual digitization becomes preferable. In the algorithm presented here, clean335

ice thresholding was implemented using TM1, TM3, and TM5. However, because the algorithm

operates primarily on ‘potential debris areas’, any clean ice classification scheme could be used. For

example, in other study regions, or for different satellite sensors, other schemes, such as the Normal-

ized Difference Snow Index (Dozier, 1989), may outperform clean ice classification as implemented

in this study.340

The algorithm moves a step further than spectral-only classification and attempts to classify glacier

areas as accurately as possible, including debris-covered areas. As can be seen in Figure 7, the

algorithm compares well with both the control dataset and the CGI v2 – a high-fidelity, manually

edited, dataset – across a range of glacier types (Step 2(a)) (Guo et al., 2015). However, the algorithm

outlines do not perfectly align with either dataset. In Figure 7, a tendency to remove pixels along the345

edge of debris-covered glacier tongues can be observed, which we attribute to the fact that the center

of debris tongues often move faster than the edges. Furthermore, both the algorithm results and the

manual control dataset underestimate glacier area as compared to the CGI v2, due to the removal

of non-clean ice pixels at high altitudes or high slopes, which are generally within the accumulation

area of a glacier but are not always covered by permanent ice. These two types of classification bias350

are easily rectified with minimal manual intervention. Some bias between the manual or algorithm

datasets and the CGI v2 can also be attributed to the difference in time; while the manual and
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algorithm datasets share an image date, the CGI v2 was digitized on top of multiple images that may

not match up perfectly in time with our datasets. Despite these misclassified areas, the raw algorithm

output effectively identifies the furthest reaches of the glacier tongues in most cases, as can be seen355

in three long debris tongues shown in Figure 7.

Without post-processing, these raw glacier outlines can be used to analyze regional glacier char-

acteristics, such as slope, aspect, and hypsometry. Even if glacier outlines are not perfectly rectified

in space, at the scale of watersheds, satellite image footprints, or mountain ranges, errors of under-

and over-classification even out, yielding valuable regional statistics (Figure 5A). As the method can360

be easily modified to fit the topographic and glacier setting of any region, it is a powerful tool for

analysing glacier changes over large scales for the period of Landsat TM, ETM+ and OLI coverage.

While the algorithm has yet to be applied to large and slow-moving debris-covered glaciers in the

Himalaya, a wide range of glacier size classes, speeds, and topographic settings are well classified

by the algorithm. For example, even small glacier changes are captured by the algorithm, as can be365

seen in Figure 8.

Figure 8 also illustrates some potential errors in the algorithm where river sand is sometimes

delineated as glacier area. In many cases, the same areas are captured across different timestamps,

as the topographic and velocity data used to define ‘potential debris areas’ is mostly static in time,

excepting the distance weighting steps. However, these areas are easily removed during manual370

inspection of results.

The second use case for the algorithm is as a substitute for simple spectral ratios. Manual digiti-

zation of glacier tongues is time consuming, particularly in regions with numerous debris-covered

glaciers. Our algorithm provides a robust baseline set of glacier outlines that can be corrected man-

ually, with minimal extra processing time. As generating the input velocity surfaces can take longer375

than processing glacier outlines from dozens of Landsat scenes, efficiencies are gained when Landsat

scenes are processed in bulk. The algorithm as presented in this manuscript takes ∼3-5 minutes of

actual processing time once the base datasets have been created. For a single Path-Row combination,

the time to set up the input datasets (velocity surface, manual debris points) is ∼4 hours. Once the

initial setup has been completed for a given Path-Row combination, any number of Landsat scenes380

can be processed very quickly.

Although the algorithm represents a step forward in semi-automated glacier classification, there

are several important caveats to keep in mind: (1) Lack of data density and temporal range limits the
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efficacy of individual glacier analysis; the algorithm presented in this paper was not designed with

individual glacier studies in mind, and in many cases, such as in mass balance studies, more accurate385

manual glacier outlines are necessary. Furthermore, (2) the algorithm relies on manual intervention

to separate individual glaciers which are connected through overlapping classified areas, or which

are part of glacier complexes. Finally, (3) the algorithm relies heavily on the fidelity of the Landsat

images provided, in that glacier outlines on images with cloud- or snow-cover are less likely to be

well defined. This creates a data limitation, as many glacierized areas are subject to frequent cloud-390

and snow-cover, and thus have a limited number of potentially useful Landsat images for the purpose

of this algorithm.

6 Conclusions

This study presents an enhanced glacier classification methodology based on the spectral, topo-

graphic, and spatial characteristics of glaciers. We present a new method of (semi-) automated395

glacier classification, which is built upon, but unique from, the work of previous authors. Although

it does not completely solve the difficulties associated with debris-covered glaciers, it can effectively

and rapidly characterize glaciers over a wide area. Following an initial delineation of clean glacier

ice, a set of velocity, spatial, and statistical filters are applied to accurately delineate glacier outlines,

including their debris-covered areas.400

When compared visually and statistically against a manually digitized control dataset and the

high-fidelity CGI v2, our algorithm remains robust across the wide range of glacier sizes and types

found in Central Asia. The algorithm developed here is applicable to a wide range of glacierized re-

gions, particularly in those regions where debris-covered glaciers are dominant, and extensive man-

ual digitization of glacier areas has previously been required. The raw algorithm output is usable for405

rough statistical queries on glacier area, hypsometry, slope, and aspect; however, manual inspection

of algorithm output is necessary before using the generated glacier outlines for more in-depth area

change or mass balance studies.
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Table 1. Data table listing Landsat acquisition dates used in this study. Organized by WRS2 Path/Row combi-
nations. Bold dates indicate images used for velocity profiles.

144/030 145/030 147/031
Number of Images 5 4 12
Date Range of Images 2002-2013 1998-2013 2000-2013
LT5 Acquisition Dates Sep 27, 1998 Sep 2, 1998 Aug 19, 2011

Sep 6, 2011 Oct 2, 1998
Aug 10, 2007 Sep 6, 2006

Aug 24, 2007
Oct 3, 2010
Aug 3, 2011

LE7 Acquisition Dates Sep 14, 2002 Sep 14, 2000
Aug 7, 2000 Oct 5, 2002

Aug 18, 2002

LC8 Acquisition Dates Oct 22, 2013 Sep 27, 2013 Sep 25, 2013
Sep 4, 2013 Sep 9, 2013

May 7, 2014
Projection WGS 1984 45N WGS 1984 44N
Comments Eastern Edge of Study Area Vicinity of Inylchek Glacier

148/031 149/031 150/032
Number of Images 5 3 4
Date Range of Images 2002-2013 1999-2013 1998-2013
LT5 Acquisition Dates Aug 22, 1998 Sep 7, 2007 Oct 23, 1998

Sep 11, 2011
LE7 Acquisition Dates Jul 24, 2002 Sep 9, 1999 Aug 20, 2001

Sep 18, 1999
LC8 Acquisition Dates Jul 30, 2013 Oct 9, 2013 Jun 10, 2013
Projection WGS 1984 44N WGS 1984 43N WGS 1984 43N
Comments

151/033 153/033
Number of Images 4 3
Date Range of Images 1998-2013 1998-2013
LT5 Acquisition Dates Sep 28, 1998 Sep 26, 1998
LE7 Capture Dates Aug 24, 2000 Sep 29, 2002

Sep 28, 2001
LC8 Acquisition Dates Oct 7, 2013 Oct 5, 2013
Projection WGS 1984 43N WGS 1984 42N
Comments Towards Pamir Knot



Table 2. Comparison of methods between previous debris-covered glacier mapping studies.

Method Short Description Data
Inputs

Processing Intensive
Steps

Area Covered
in Study

Reported
Accuracy

Taschner and
Ranzi (2002)

Clean-ice detection using Landsat,
coupled with ASTER thermal data

Landsat,
ASTER

Data resampling,
pixel clustering

5.58 km2,
Italian Alps

Not Reported

Paul et al.
(2004)

Clean-ice detection using Landsat,
coupled topographic analysis and
neighborhood analysis

Landsat,
ASTER-
DEM

Image Polygon
Growing neighbor-
hood analysis

23 km2,
Swiss Alps

21% of debris
misclassified

Bolch et al.
(2007)

A set of training areas based on
spectral and topographic informa-
tion is used to determine classifica-
tion thresholds

ASTER,
ASTER-
DEM

Creation and tuning
of training dataset

Not reported,
Mt. Everest
Region

5% total area
misclassified

Shukla et al.
(2010)

Multiple landcover types mapped
using spectral and thermal imagery
combined with a DEM

ASTER,
AWiFS,
DEM

Data conversion and
registration, solar
illumination analy-
sis, training dataset
creation, Maximum
Likelihood Classifier

200 km2,
Samudra
Tapu glacier,
Himachal
Pradesh,
India

8-14% debris
misclassified

Bhambri et al.
(2011)

Combination of slope and curvature
data analyzed with a clustering al-
gorithm coupled with thermal band
thresholding

ASTER,
DEM,
Landsat,
IRS PAN

Manual decisions on
glacier slope and cur-
vature clusters

232 km2,
Gongotri
Glacier,
Garhwal
Himalaya,
India

0.5-11%
debris mis-
classified

Racoviteanu
and Williams
(2012)

(1) Decision tree classification with
ASTER and topographic data, and
(2) texture analysis exploiting sur-
face roughness

ASTER,
DEM,
Quick-
bird,
World-
view2

Training dataset
creation, decision
tree set-up, principal
component analysis

576.4 km2,
Sikkim Hi-
malaya, NE
India

(1) 25%, (2)
31% debris
misclassified

Rastner et al.
(2014)

Comparison of object- and pixel-
based methods of glacier mapping.
Both methods use spectral and to-
pographic information as inputs

ASTER,
Landsat,
DEM

Manual threshold
definitions, segmen-
tation processing,
iterative thresholding

Not reported,
three distinct
test regions

11.5%
(object-
based) and
23.4% (pixel-
based) mis-
classified
areas for
Himalaya
region

This Study Clean-ice detection coupled with
topographic, velocity, and distance
weighting thresholds

Landsat,
SRTM
DEM,
River
Network

Velocity field calcu-
lation, optional de-
bris seed point selec-
tion

∼44,000
km2, Pamir-
Tien Shan

2-10% total
area misclas-
sified
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Fig. 1. Greater study area of the Tien Shan, showing SRTM v4.1 topography (Jarvis et al., 2008) and location
of eight Landsat image footprints (grayscale) used in the study, along with their Path/Row combinations. Blue
box delineates Figures 2-3 and 7, yellow box delineates Figure 8. Winter Westerly Disturbances and Siberian
High highlighted in orange.
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Fig. 2. (A) Characteristic example of a debris-covered glacier tongue (Inylchek Glacier). Spectrally-delineated
glacier outlines (black), over Landsat bands B7/B5/B3 (R/G/B), from image LC81470312013268LGN00, with
poorly mapped debris-covered tongues (red arrows). (B) Blue areas show ‘Potential Debris Areas’, as delineated
by slopes between 1-24 degrees, with elevations below ∼2500 m removed, SRTM hillshade underneath, clean-
ice outlines overlain in black. (C) Example of a glacier velocity surface, generated using Normalized Image
Cross Correlation (NICC). Areas in red are slow-moving areas and represent stable ground, clean-ice outlines
overlain in black. (D) Example of distance-weighting seed areas used to remove pixels from the ‘potential
debris areas’ which are distant from either a river valley or classified glacier ice. Rivers in blue, clean-ice
outlines overlain in black. (E) Areas removed by second distance weighting step (yellow). (F) Impacts of
statistical filtering on glacier outlines, with areas in black removed during the filtering process. East and West
Qong Terang Glaciers.
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Fig. 3. Final algorithm outlines (black) with areas classified in addition to the clean-ice delineation in red.
Landsat OLI image captured Sept 25, 2013 as background.
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Fig. 4. Glacier size class distribution (n=750) for the manual control dataset. Note the logarithmic x-axis to
account for a wide range of glacier sizes.
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C

B

A

Fig. 5. (A) Bulk elevation distributions of sampled glaciers, with manual delineation (reference dataset, n=215,
4,500 km2) in blue, algorithm-derived delineation in red, spectral delineation in green, and CGI v2 in black.
Values have been normalized to maximum probability. (B) Elevation distributions of over- and under-classified
glacier areas, as compared to a manual control dataset (n=75, 330 km2). 5.5% is overclassified, and 0.8%
is underclassified. (C) Averaged elevation differences for a random sample of glaciers overlapping a manual
control dataset (n=100, 100 km2).
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Fig. 6. Vertex distance distributions for algorithm (blue) and spectral (red) vertices, as compared to a manual
control dataset, normalized to the maximum distance.
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Fig. 7. Algorithm outlines (yellow) compared to the control dataset (black) and the CGI v2 (red). Illustrates
high fidelity in overall debris-tongue length between the three datasets, although the algorithm outlines exhibit
noise along the edges of debris tongues.
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Fig. 8. Algorithm outlines for July 2013 (black) and algorithm outlines for August 2002 (yellow), showing
small retreats in glacier areas, particularly at the debris tongues. Vicinity of the Akshiirak glacierized massif,
central Tien Shan.

28


