
Improving Semi-Automated Glacial Mapping with a
Multi-Method Approach: Applications in Central Asia

Taylor Smith1, Bodo Bookhagen1, and Forest Cannon2
1Institute for Earth and Environmental Sciences, Universität Potsdam, Germany

2Geography Department, University of California, Santa Barbara, USA

Corresponding authors:
Taylor Smith and Bodo Bookhagen
Institute for Earth and Environmental Sciences
Universität Potsdam
Potsdam-Golm 14476, Germany
Email: tsmith@uni-potsdam.de, bodo@geo.uni-potsdam.de



Abstract.

Studies of glaciers often require extensive manual digitization in a Geographic Information Sys-

tem (GIS), as current algorithms struggle to delineate glacier areas with debris cover or other irreg-

ular spectral profiles. Although several approaches have improved upon spectral band ratio delin-

eation of glacier areas, none have entered wide use due to complexity or computational intensity.

In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates

both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique

velocity and topographic characteristics of glaciers, and further leverages spectral and spatial rela-

tionship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as

compared to a ∼750 glacier control dataset, and can reliably classify a given Landsat scene in 3-5

minutes.

The algorithm does not completely solve the difficulties inherent in classifying glacier areas from

remotely sensed imagery, but does represent a significant improvement over purely spectral-based

classification schemes, such as the band ratio of Landsat 7 bands three and five or the Normalized

Difference Snow Index. The main caveats of the algorithm are (1) classification errors at an indi-

vidual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3)

dependence on fidelity of the input Landsat data.
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1 Introduction

This study focuses on mapping glaciers over a large spatial scale using publicly available remotely

sensed data. Several high-resolution glacier outline databases have been produced, most notably the

Global Land Ice Measurements from Space (GLIMS) project (Armstrong et al., 2005; Raup et al.,

2007, 2014), and the recently produced supplemental GLIMS dataset known as the Randolph Glacial5

Inventory (RGI) v4.0 (Arendt et al., 2012; Pfeffer et al., 2014). Smaller-scale glacier databases are

also available, such as the Chinese Glacier Inventory (CGI) v2 (Guo et al., 2014). A coherent,

complete, and accurate global glacier database is important for several reasons, including monitor-

ing global glacier changes driven by climate change, natural hazard detection and assessment, and

analysis of the role of glaciers in natural and built environments, including glacier contributions to10

regional water budgets and hydrologic cycles (Racoviteanu et al., 2009; Stocker, 2013). Precision in

glacier outlines is of utmost importance for monitoring changes in glaciers, which may change less

than 15-30 m/yr (∼1-2 pixels of Landsat Enhanced Thematic Mapper (ETM+)/yr). Thus, spatially

accurate glacier outlines are imperative for precise glacier change detection (Paul et al., 2004, 2013).

Several methods have been developed to delineate clean glacier ice (i.e. Hall et al., 1987; Paul,15

2002; Paul et al., 2002; Racoviteanu et al., 2008a,b; Hanshaw and Bookhagen, 2014), relying primar-

ily on spectral data available on satellites such as Landsat and Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER). Although significant progress has been made towards

automated glacier outline retrieval using satellite imagery, these methods struggle to accurately map

debris-covered glaciers, or other glaciers with irregular spectral profiles (Paul et al., 2004; Bolch20

et al., 2007; Racoviteanu et al., 2008b; Scherler et al., 2011a). Much of this difficulty stems from

the similarities in spectral profiles of debris located on top of a glacier tongue and the surrounding

landscape. The majority of studies examining debris-covered glaciers employ extensive manual digi-

tization in a Geographic Information System (GIS), which is very time consuming, and can introduce

significant user-generated errors (Paul et al., 2013; Pfeffer et al., 2014; Raup et al., 2014). Building25

on the multi-spectral, topographic, and spatially-weighted methods developed by Paul et al. (2004),

we present a refined rules-based classification algorithm based on spectral, topographic, velocity,

and spatial relationships between glacier areas and the surrounding environment. The algorithm has

been designed to be user-friendly, globally applicable, and built upon open-source tools.
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2 Study Area and Data Sources30

2.1 Study Area

In this study we use a suite of 62 Landsat Thematic Mapper (TM), Enhanced Thematic Mapper+

(ETM+) and Optical Land Imager (OLI) images (1998-2013) across a spatially and topographically

diverse set of study sites comprising eight Landsat footprints (Path/Row combinations: 144/30,

145/30, 147/31, 148/31, 149/31, 151/33, 152/32, 153/33) along a ∼1,500 km profile from the Central35

Pamir to the Central and Central-Eastern Tien Shan (Figure 1, Table 1) to analyze the results of our

classification algorithm.

The study area contains a wide range of glacier types and elevations, with both small and clean-ice

dominated glaciers, as well as large, low-slope, and debris-covered glaciers. The diversity in glacier

types in the region provides an ideal test area, particularly in mapping glaciers with long and irregular40

debris tongues, such as the Inylchek and Tomur glaciers in the Central Tien Shan (Shangguan et al.,

2015).

The wintertime climate of the study area is controlled by both the Winter Westerly Disturbances

(WWDs) and the Siberian High, which dominate regional circulation and create strong precipitation

gradients throughout the range, which extends from Uzbekistan in the west through China in the45

east (Figure 1) (Lioubimtseva and Henebry, 2009; Narama et al., 2010; Bolch et al., 2011; Sorg

et al., 2012; Cannon et al., 2014). The western edges of the region tend to receive more winter

precipitation in the form of snow, with precipitation concentrated in the spring and summer in the

central and eastern reaches of the range (Narama et al., 2010).

2.2 Data Sources50

Our glacier mapping algorithm is based on several datasets. The Landsat 5 (TM), 7 (ETM+), and

8 (OLI) platforms were chosen as the primary spectral data sources, as they provide spatially and

temporally extensive coverage of the study area (Table 1). ASTER can also be used as a source of

spectral information, but here we chose to focus on the larger footprint and longer timeseries avail-

able through the Landsat archive. In addition to spectral data, the 2000 Shuttle Radar Topography55

Mission V4.1 (SRTM) Digital Elevation Model (DEM) (∼90m, void-filled) was leveraged to pro-

vide elevation and slope information (Jarvis et al., 2008). The SRTM data and its derivatives were

downsampled to 30m to match the resolution of the Landsat images using bilinear resampling. The
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USGS Hydrosheds river network (15 second resolution, ∼500m) was also used as an input dataset

(Lehner et al., 2008).60

3 Methods

Our glacier classification algorithm uses several sequential thresholding steps to delineate glacier

outlines. The scripts used in this study are available in the Data Repository, with updates posted to

http://github.com/ttsmith89/GlacierExtraction/. It is noted if the step requires manual processing or

is part of a script.65

1. Data Pre-processing

(a) Velocity fields are calculated with Normalized Image Cross Correlation (Manual, can be

automatized)

(b) The Hydrosheds river network is rasterized (Manual, can be automatized)

(c) Optional manual debris points are created (Manual, optional)70

(d) SRTM data is used to create a hillslope image (Python Script)

(e) All input datasets are matched to a single extent and spatial resolution (30m) (Python

Script)

2. Glacier Classification Steps

(a) Clean-ice glacier outlines are created using Landsat Bands 1,3, and 5 (Matlab Script)75

(b) ‘Potential debris areas’ are generated from low-slope areas (Matlab Script)

(c) Low-elevation areas are removed (Matlab Script)

(d) Low-velocity areas are removed (Matlab Script)

(e) Distance-weighting metrics are used to remove areas distant from river networks or clean

glacier ice (Matlab Script)80

(f) Distance-weighting metrics are used to remove areas very distant from clean glacier ice

and manual seed points (Matlab Script)

(g) The resulting glacier outlines are cleaned with statistical filtering (Matlab Script)

3. Post-processing

(a) Glacier outlines are exported to ESRI shapefile format for use in a GIS (Python Script)85
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3.1 Data Preparation

For accurate glacier delineation, we primarily used Landsat images which were free of new snow,

and had less than 10% cloud cover. However, we have also included scenes with limited snow- and

cloud-cover in our analysis to understand their impacts on our classification algorithm. We find that

the presence of fresh snow in images tends to overclassify glacier areas and classify non-permanent90

snow as glaciers. Additionally, cloud covered glaciers cannot be correctly mapped by the algorithm

(Paul et al., 2004; Hanshaw and Bookhagen, 2014). We use the USGS Level 1T orthorectified Land-

sat scenes to ensure that the derived glacier outlines are consistent in space (Hansen and Loveland,

2012; Nuimura et al., 2014).

The algorithm uses Landsat imagery, a void-filled DEM, a velocity surface derived from image95

cross-correlation, and the Hydrosheds 15s river network (buffered by 200m and converted to a raster)

as the primary inputs (Steps 1(a) and 1(b)). The algorithm generates a slope image from the DEM

and rectifies additional input datasets described below for processing by resampling and reprojecting

each dataset to the same spatial extent and resolution (30m to match the Landsat data) (Steps 1(d)

and 1(e)). Although the current algorithm leverages a few proprietary Matlab commands, we will100

continue to update the code with the goal of using only open-source tools and libraries in the future.

3.2 Clean Ice Delineation

Calculations are performed on rasterized versions of each input dataset, which have been standard-

ized to the same matrix size. The first step in the classification process leverages Landsat 7 Bands 1,

3, and 5 (Step 2(a)). For Landsat 8 OLI images, a slightly different set of bands is used to conform to105

OLI’s modified spectral range. For simplicity, bands referenced in this publication refer to Landsat 7

ETM+ spectral ranges. The ratio of TM3/TM5 (value ≥2), with additional spectral information from

TM1 (value >25) has been used in previous research as an effective means of delineating glacier

areas (e.g., Hall et al., 1987; Hanshaw and Bookhagen, 2014), but is not effective in delineating

debris-covered glacier areas (Figure 2). In our algorithm, we use a threshold of TM3/TM5 ≥ 2 and110

TM1 >60 to map clean glacier ice. The end result of this step is the spectrally-derived glacier out-

lines, which are later integrated back into the workflow before statistical filtering (Figure 2). Here

we choose fairly conservative threshold values to ensure that we do not remove clean glacier ice.

We find that increasing the TM1 threshold results in tighter classification of debris-covered glacier

tongues, but also removes some areas properly classified as glacier, particularly in steep areas of115
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the accumulation zone. Thus, we err on the side of overclassification with our delineation of clean

glacier ice.

3.3 Debris-covered Ice Delineation

3.3.1 Topographic Filtering

Building on the work of Paul et al. (2004), low slope areas (between 1 and 24◦) are isolated as areas120

where debris-covered glaciers are likely to exist (Step 2(b)). Low elevation areas (automatically

defined on a scene-by-scene basis based on the average elevation of clean-ice areas, generally below

2500-3000m in the study area) are then masked out to decrease processing time (Step 2(c)). These

thresholding steps are performed independent of the previous, spectrally delineated, glacier outlines.

In essence, this step identifies areas where there is the potential for a debris-covered glacier to exist.125

Additional thresholding is then performed on this ‘potential debris area’ subset to identify debris-

covered glacier areas (Figure 3).

As can be seen in Figure 3, extensive areas which are not glacier or glacier debris tongue are

identified in this step. However, this step generally removes all pixels outside of the main glacier-

ized areas of any scene, and allows the algorithm to work on a subset of the image, thus reducing130

processing time. The next step uses a generalized velocity surface to subset the ‘potential debris

area’.

3.3.2 Velocity Filtering

The Correlation Image Analysis Software (CIAS) (Kääb, 2002) tool, which uses a method of statis-

tical image cross-correlation, is used to derive glacier velocities from Landsat Band 8 panchromatic135

images. This method functions by tracking individual pixels across space and time, and provides a

velocity surface at the same resolution as the input datasets (15m) (Step 1(a)). The velocity surface

is then upsampled using bilinear resampling to provide a consistent velocity estimate across the en-

tire Landsat scene. We then standardized the velocity measurements to m/yr using the capture dates

of the two Landsat images. As glacier velocity can change significantly throughout the year, and140

clean images were not available at exactly the same intervals for each Path/Row combination, there

is some error in our velocity fields. However, as the velocity surface is used to remove stable ground,

which is generally well-defined despite changes in glacier velocities, errors in the velocity surface

do not contribute significantly to glacier classification errors, excepting on slower-moving parts of
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debris-covered glacier tongues. It is important to note that cloud- and snow-free images are essential145

for this step, as the presence of snow or cloud cover can disrupt the correlation process, resulting in

anomalous velocity measurements. An example velocity surface is shown in Figure 4 (Step 2(d)).

Red areas are removed from the ‘potential debris areas’, as they fall outside of the expected range of

debris-tongue velocities.

We only used one multi-year velocity measurement for each path/row combination to derive gen-150

eral areas of movement/stability for glacier classification, as using stepped velocity measurements

over smaller time increments did not show a noticeable improvement in glacier classification. This

also improved our classification of slow-moving glaciers, which may not change significantly over

only a single year. These velocities ranged generally from 4.5-30 m/yr across the different scenes.

A single velocity threshold of 5 m/yr was used across all scenes to remove stable ground. A method155

of frequential cross-correlation using the co-registration of optically sensed images and correlation

(COSI-Corr) tool (Leprince et al., 2007; Scherler et al., 2011b) was tested and did not show any

appreciable improvement in velocity measurements (Heid and Kääb, 2012).

The velocity step is most important for removing hard-to-classify pixels along the edges of glaciers,

and wet sands in riverbeds. These regions are often spectrally indistinguishable from debris tongues,160

but have very different velocity profiles. It is important to note, however, that this step also removes

some glacier area, as not all parts of a glacier are moving at the same speed. This can result in small

holes in the delineated glaciers, which the algorithm attempts to rectify using statistical filtering.

Generating a velocity field is the most computationally expensive step of the algorithm.

3.3.3 Spatial Weighting165

After topographic and velocity filtering, a set of spatially-weighted filters was constructed. The

first filtering step uses the Hydrosheds river network to remove ‘potential debris areas’ which are

distant from the center of a given glacier valley (Figure 5, Step 2(e)). As glaciers occur along the

flowlines of rivers, and the Hydrosheds river network generally delineates flowlines nearly to the

peaks of mountains, the river network provides an ideal set of seed points with which to remove170

misclassified pixels outside of river valleys. A second distance weighting is then performed using

the clean-ice outlines generated in Step 2(a), as well as any manual seed points provided (Step 2(f)).

As debris tongues must occur in proximity to either glacier areas or the centerlines of valleys, these

two steps are effective in removing overclassified areas (Figure 6). At this step, it is possible to add
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manual seed points, which may be necessary for some longer debris tongues. We note that these are175

optional, and the majority of glaciers do not need the addition of manual seed points. However, for

certain irregular or cirque glaciers, the addition of manual seed points has been observed to increase

the efficacy of the algorithm. In processing the Landsat imagery presented here, we have not used

additional manual seed points.

The spatial weighting step is essential for removing pixels spatially distant from any clean-ice180

area. In many cases, large numbers of river pixels, and in some cases dry sand pixels, have sim-

ilar spectral and topographic profiles to debris covered glaciers. This step effectively removes the

majority of pixels outside the general glaciated area(s) of a Landsat scene, as can be seen in Figure

6.

3.3.4 Statistical Filtering185

Once the spatial weighting steps are completed, a set of three filters are then applied, in order to

remove isolated pixels, bridge gaps between isolated glacier areas, and fill holes in large contiguous

areas (Step 2(g)). First, a 3x3 median filter is applied, followed by an ‘area opening’ filter, which fills

holes in contiguous glacier areas. Finally an ‘image bridging’ filter is applied to connect disjointed

areas, and fill holes missed by the area opening filter.190

This step is essential for filling holes and reconnecting separated glacier areas. As our initial

filtering methods are based on a fixed set of threshold values, there are often glacier pixels which are

removed. For example, some pixels in the middle of a debris tongue may be moving more slowly

than the provided velocity threshold, and are thus removed. This problem is somewhat, but not

completely, mitigated by the statistical filtering (Figure 7).195

The improved classification of debris areas between the clean-ice and final algorithm outputs can

clearly be seen in Figure 8.

3.4 Creation of Manual Control Datasets

Manual control datasets encompassing ∼750 glaciers (∼11,000 km2) were created to test the effi-

cacy of the glacier mapping algorithm. These datasets were digitized off of Landsat imagery in a200

GIS, and then corrected with higher resolution imagery in Google Earth. The datasets are coherent

in space, but cover two different times (∼2000 and ∼2011, depending on the dates of the available

Landsat scenes). The bulk of the manually digitized glaciers fall within the boundary of Landsat
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Path/Row combination 147/031, as this is the most heavily glacierized sub-region of our study area.

However, we have digitized glaciers throughout the eight Path/Row combinations to avoid biasing205

our statistics and algorithm to one specific scene extent. We have also considered a wide range of

size classes in our manual dataset (<0.5 km2 to 500+ km2), as well as both clean and debris-covered

glaciers. We note that although the manual datasets here are considered ‘perfect’, there is inherent

error in any manual digitization in a GIS (e.g., Paul et al., 2013). Due to the lack of ground truth

information, we have estimated the overall uncertainty of the manual dataset to be 2% based on pre-210

vious experiments (Paul et al., 2002, 2013). Figure 9 shows the size class distribution of the manual

control dataset, with logarithmic area scaling.

Before any comparisons between glaciers can be performed, glacier complexes must be split into

component parts. A set of manually edited watershed boundaries, derived from the SRTM DEM,

were used to split both the manual and algorithm datasets into individual glacier areas for analysis.215

In this way, the diverse datasets and classified glacier areas can be split into the same subset areas

for statistical comparison.

4 Results

Over the eight Landsat footprints used in this study, we map ∼44,000 km2 of glaciers over a two

distinct time slices. Several additional time periods were mapped, but not included in the statistical220

analysis presented in this manuscript.

4.1 Statistical Analysis of Algorithm Errors

A subset of 215 glaciers from the manual control datasets of varying size and topographic setting

was chosen for more detailed analysis. The unedited, algorithm-generated, glacier outlines were

compared against spectral outlines, which only classify the glacier areas via commonly used spectral225

subsetting (using TM1, TM3, and TM5, produced in Step 2(b)), the manual control datasets, and the

CGI v2. Figure 10 shows the bulk elevation distributions across 215 glaciers for each dataset in 10m

elevation bins.

There is some apparent bias in our algorithm towards low elevation areas, which represent the

debris-covered portions of glaciers and are the most difficult areas to classify. There is also a bias in230

our control dataset towards underclassifying the high elevation areas, which we attribute to user bias

in removing isolated rock outcrops within glaciers, as opposed to simply defining accumulation areas
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as a single polygon. In general, the algorithm and the control dataset are well matched below 4000

meters; above this the spectral dataset and the algorithm dataset begin to align closely and generally

follow the manually digitized data. This threshold represents the general transition from debris-235

covered glaciers to clean glacier ice in the study area. Our algorithm output is also well-matched

with the CGI v2, except at very high elevations where it overclassifies some areas as compared to

the CGI v2.

In order to examine inherent bias throughout the algorithm classification, under- and over-classified

areas for a subset of the control dataset were examined. To determine areas of overclassification (un-240

derclassification), the manually (algorithm) generated dataset was subtracted from the algorithm

(manual) dataset, leaving only pixels which are overclassified (underclassified). Figure 11 shows

the elevation distributions of under and over classified areas. The algorithm tends to consistently

overclassify areas across the range of glacier elevations, which we attribute here to differences in

manual and algorithm treatment of steep and de-glaciated areas within glacier accumulation zones.245

Importantly, the algorithm underclassifies a much smaller number of pixels, generally corresponding

to areas below 4000m, where debris tongues are dominant. The majority of these pixels are along

the edges of glacier debris tongues, which are removed by the algorithm due to their low relative

velocity. It is also possible that some of these pixels are ‘dead ice’, which is difficult to differentiate

from debris tongues by visual inspection. The total misclassification of algorithm-derived outlines250

against two independent manual control datasets are 2% and 10% respectively, which represents a

significant improvement from a pure spectral delineation approach.

To investigate sampling bias in our analysis, we used 465 GLIMS glacier identification numbers

(centroids, point features) which overlapped with the manual control datasets. A random subset of

100 of these points was chosen for this analysis. As can be seen in Figure 12, similar patterns emerge255

between the randomly sampled glaciers and the sampling used in other sections of this manuscript.

There is evidence of more noise in the random sample, as some glaciers which we avoided due

to closeness to wet sand/or other hard-to-classify areas were chosen during the random sampling.

However, the relationship between the algorithm and the manual datasets remains significant (Kol-

mogorov–Smirnov test passes at 99% confidence interval).260
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4.2 Vertex Distance Matching

To capture changes in the shape of the glacier outlines between the initial spectral classification and

the final algorithm output, we computed the distance between pairs of glacier vertices. We first

reduced our manual control dataset to component vertices, which were then matched to the closest

vertex in the spectral and final algorithm results polygons, respectively. The results of this distance265

matching can be seen in Figure 13.

The distance distribution for the algorithm dataset shows generally close agreement between the

algorithm and manual control datasets. The spectral dataset also contains a large percentage of

vertices close to a 1:1 agreement with the manual control dataset, which are primarily those vertices

at the upper edges of glaciers, or vertices from small, debris-free glaciers. The difference in these two270

distributions is attributed to the increased precision with which the algorithm maps debris-covered

glacier outlines.

5 Discussion

5.1 Comparison with Previous Glacier Mapping Algorithms

Several authors have presented alternative debris-covered glacier classification methods and schemes275

(e.g., Taschner and Ranzi, 2002; Paul et al., 2004; Bolch et al., 2007; Shukla et al., 2010; Racoviteanu

and Williams, 2012; Rastner et al., 2014). While all of these methods present improvements over ba-

sic clean-ice delineation as proposed by Hall et al. (1987), they each have shortcomings which limit

their range of use. Table 2 shows a comparison of these different methods alongside the algorithm

presented in this study.280

Our study improves on previous work in three main ways: (1) computational intensity, (2) di-

versity of study area, and (3) temporal range of our dataset. The methods proposed in this study,

excepting the generation of a velocity field, require very little processing power. Once initial input

datasets (velocity surface, rasterized river network) have been created, a Landsat scene can be pro-

cessed in 3-5 minutes. When this is compared with the training dataset creation, computationally285

expensive classification schemes, and neighborhood analyses employed by other studies, there is a

clear improvement in efficiency. Secondly, we analyze a significantly larger glacier area than any

of the previous studies, which has helped us generalize our algorithm and methods to a wide range

of topographic and landcover settings. Finally, we process a multi-year dataset, encompassing 62
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Landsat scenes with varying landcover and weather settings. This has allowed us to further gen-290

eralize our algorithm to be effective beyond a single scene or small set of scenes, and to remain

effective across a wide spatial and temporal range. The time-dynamic aspect of our algorithm can

also provide a complement to time-static wide-area datasets, such as the RGI v4.0, the CGI v2, and

the forthcoming GAMDAM datasets (Arendt et al., 2012; Guo et al., 2014; Nuimura et al., 2014).

While these datasets may provide higher-quality manually digitized outlines for specific glaciers,295

they only provide a single snapshot in time, and are limited to a specific area of coverage.

5.2 Unused Filtering Steps

Two additional topographic indices – spatial Fast Fourier Transforms (FFTs), also known as 2D

FFTs, and ASTER surface roughness measurements – were tested during the development of the

algorithm, although neither provided significant improvement. We attempted to derive frequential300

information from several Landsat and ASTER bands, with limited success. Some glaciers exhibit a

unique frequency signature when analyzed using spatial FFTs, although these were not consistent

across multiple debris-covered glaciers with differing surface characteristics. Additionally, the FFT

approach was tested against a principal component analysis (PCA) image derived from all Landsat

bands, without significant improvement to the algorithm.305

We also attempted to integrate surface roughness measurements using the ASTER satellite, which

contains both forward looking (3N - nadir) and backwards looking (3B - backwards) images, primar-

ily intended for the generation of stereoscopic DEMs. The difference in imaging angle provides the

opportunity to examine surface roughness by examining changes in shadowed areas (Mushkin et al.,

2006; Mushkin and Gillespie, 2011). We found that there are slight surface roughness differences310

between glaciated and non-glaciated areas on some debris tongues, but that these differences are not

significant enough to use as a thresholding metric. Furthermore, the nature of the steep topography

limits the efficacy of this method, as valleys which lie parallel the satellite flight path and those

which lie perpendicular to the flight path show different results. Thus, the algorithm relies on the

velocity and slope thresholds to characterize the topography of the glacier areas.315

5.3 Algorithm Use Cases and Caveats

The glacier outlines provided by the algorithm are a useful first pass analysis of glacier area. It is

often more efficient to digitize only misclassified areas, as opposed to digitizing entire glacier areas

13



by hand (Paul et al., 2013). Paul et al. (2013) also note that for clean ice, automatically derived

glacier outlines tend to be more accurate, and it is only in the more difficult debris-covered and320

shadowed areas that manual digitization becomes preferable. In the algorithm presented here, clean

ice thresholding was implemented using TM1, TM3, and TM5. However, because the algorithm

operates primarily on ‘potential debris areas’, any clean ice classification scheme could be used.

For example, in other study regions, or for different satellite sensors, other schemes, such as the

Normalized Difference Snow Index, may outperform clean ice classification as implemented in this325

study.

The algorithm moves a step further than spectral-only classification and attempts to classify glacier

areas as accurately as possible, including debris-covered areas. As can be seen in Figure 14, the

algorithm compares well with both the control dataset and the CGI v2 – a high-fidelity, manually

edited, dataset – across a range of glacier types (Step 2(a)) (Guo et al., 2014). However, the algorithm330

outlines do not perfectly align with either dataset. In Figure 14, a tendency to remove pixels along the

edge of glacier debris tongues can be observed, which we attribute to the fact that the center of debris

tongues often move faster than the edges. Furthermore, both the algorithm results and the manual

control dataset underestimate glacier area as compared to the CGI, due to the removal of non-clean

ice pixels at high altitudes or high slopes, which are generally within the accumulation area of a335

glacier but are not always covered by permanent ice. These two types of classification bias are easily

rectified with minimal manual intervention. Some bias between the manual or algorithm datasets

and the CGI v2 can also be attributed to the difference in time; while the manual and algorithm

datasets share an image date, the CGI v2 was digitized on top of multiple images that may not match

up perfectly in time with our datasets. Despite these misclassified areas, the raw algorithm output340

identifies the furthest reaches of the glacier tongues effectively in most cases, as can be seen in three

long debris tongues shown in Figure 14.

Without post-processing, these raw glacier outlines can be used to analyze regional glacier char-

acteristics, such as slope, aspect, and hypsometry. Even if glacier outlines are not perfectly rectified

in space, at the scale of watersheds, satellite image footprints, or mountain ranges, errors of under-345

and over-classification even out, yielding valuable regional statistics (Figure 10). As the method can

be easily modified to fit the topographic and glacier setting of any region, it is a powerful tool for an-

alyzing glacier changes over large scales over the period of Landsat TM, ETM+ and OLI coverage.

Small glacier changes are also captured by the algorithm, as can be seen in Figure 15.
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Figure 15 also illustrates some potential errors with the algorithm where river sand is sometimes350

delineated as glacier area. In many cases, the same areas are captured across different timestamps,

as the topographic and velocity data used to define ‘potential debris areas’ is mostly static in time,

excepting the distance weighting steps. However, these areas are easily removed during manual

inspection of results.

The second use case for the algorithm is as a substitute for simple spectral ratios. Particularly355

in regions with numerous debris-covered glaciers, manual digitization of glacier tongues is time

consuming. Our algorithm provides a robust baseline set of glacier outlines which can be corrected

manually, with minimal extra processing time. As generating the input velocity surfaces can take

longer than processing glacier outlines from dozens of Landsat scenes, efficiencies are gained when

a large number of Landsat scenes are processed. The algorithm as published takes ∼3-5 minutes of360

actual processing time once the base datasets have been created. For a single Path/Row combination,

the time to set up the input datasets (velocity surface, manual debris points) is ∼4 hours. Once the

initial setup has been completed for a given Path/Row combination, an arbitrary number of Landsat

scenes can be processed very quickly.

Although the algorithm represents a step forward in semi-automated glacier classification, there365

are several important caveats to keep in mind: (1) Lack of data density and temporal range limits the

efficacy of individual glacier analysis; the algorithm presented in this paper was not designed with

individual glacier studies in mind, and in many cases, such as in mass balance studies, more accurate

manual glacier outlines are necessary. Furthermore, (2) the algorithm relies on manual intervention

to separate individual glaciers which are connected through overlapping classified areas, or which370

are part of glacier complexes. Finally, (3) the algorithm relies heavily on the fidelity of the Landsat

images provided, in that glacier outlines on images with cloud- or snow-cover are less likely to be

well defined. This creates a data limitation, as many glacierized areas are subject to frequent cloud-

and snow-cover, and thus have a limited number of potentially useful Landsat images for the purpose

of this algorithm.375

6 Conclusions

This study presents an enhanced glacier classification methodology based on the spectral, topo-

graphic, and spatial characteristics of glaciers. We present a new method of (semi-) automated

glacier classification, which is built upon, but unique from, the work of previous authors. Although
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it does not completely solve the difficulties associated with debris-covered glaciers, it can effectively380

and rapidly characterize glaciers over a wide area. Following an initial delineation of clean glacier

ice, a set of velocity, spatial, and statistical filters are applied to accurately delineate glacier outlines,

including their debris-covered areas.

When compared visually and statistically against a manually digitized control dataset and the

high-fidelity CGI v2, our algorithm remains robust across the wide range of glacier sizes and types385

found in Northern and Central Asia. The algorithm developed here will be applicable to a wide range

of glacierized regions, particularly in those regions where debris-covered glaciers are dominant, and

extensive manual digitization of glacier areas has previously been required. The raw algorithm

output is usable for rough statistical queries on glacier area, hypsometry, slope, and aspect; however,

manual inspection of algorithm output is necessary before using algorithm glacier outlines for more390

in-depth area change or mass balance studies.
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Table 1. Data table listing Landsat capture dates used in this study. Organized by WRS2 Path/Row combina-
tions. Starred dates denote ‘Master’ images to which others were rectified. Bold dates indicate images used for
velocity profiles.

144/030 145/030 147/031
Number of Images 11 10 12
Date Range of Images 2002-2013 1998-2013 2000-2013
LT5 Capture Dates Jul 31, 2006 Sep 2, 1998* Aug 19, 2011

Aug 8, 2009 Oct 4, 1998 Oct 2, 1998
Sep 27, 1998 Jul 22, 2006 Sep 6, 2006
Jul 13, 2011 Aug 10, 2007 Aug 24, 2007

Sep 11, 2007 Oct 3, 2010
Oct 2, 2009 Aug 3, 2011
Aug 2, 2010
Jul 4, 2011
Sep 6, 2011

LE7 Capture Dates Sep 14, 2002* Sep 14, 2000*
Jul 7, 2000 Oct 5, 2002
Aug 8, 2000 Aug 18, 2002
Jun 7, 2001

LC8 Capture Dates Oct 22, 2013 Sep 27, 2013 Sep 25, 2013
Aug 19, 2013 Sep 9, 2013
Sep 4, 2013 May 7, 2014

Projection WGS 1984 45N WGS 1984 44N
Comments Eastern Edge of Study Area Vicinity of Inylchek Glacier

148/031 149/031 150/032
Number of Images 13 3 5
Date Range of Images 2002-2013 1999-2013 1998-2013
LT5 Capture Dates Sep 16, 2007 Sep 7, 2007 Oct 23, 1998

Sep 11, 2011 Jul 1, 2009
Aug 22, 1998
Aug 12, 2006
Sep 13, 2006
Jul 30, 2007

LE7 Capture Dates Jul 24, 2002* Sep 9, 1999* Aug 20, 2001*
Jul 16, 1999 Sep 24, 2002
Sep 18, 1999
Aug 25, 2002

LC8 Capture Dates Jul 30, 2013 Oct 9, 2013 Jun 10, 2013
Oct 2, 2013
May 14, 2014

Projection WGS 1984 44N WGS 1984 43N WGS 1984 43N
Comments

151/033 153/033
Number of Images 5 3
Date Range of Images 1998-2013 1998-2013
LT5 Capture Dates Sep 28, 1998 Sep 26, 1998

Sep 10, 2009
LE7 Capture Dates Aug 24, 2000* Sep 29, 2002*

Sep 28, 2001
LC8 Capture Dates Oct 7, 2013 Oct 5, 2013
Projection WGS 1984 43N WGS 1984 42N
Comments Towards Pamir Knot



Table 2. Comparison of methods between previous debris-covered glacier mapping studies.

Method Short Description Data
Inputs

Processing Intensive
Steps

Area Covered
in Study

Reported
Accuracy

Taschner and
Ranzi (2002)

Clean-ice detection using Landsat,
coupled with ASTER thermal data

Landsat,
ASTER

Data resampling,
pixel clustering

5.58 km2,
Italian Alps

Not Reported

Paul et al.
(2004)

Clean-ice detection using Landsat,
coupled topographic analysis and
neighborhood analysis

Landsat,
ASTER-
DEM

Image Polygon
Growing neighbor-
hood analysis

23 km2,
Swiss Alps

21% of debris
misclassified

Bolch et al.
(2007)

A set of training areas based on
spectral and topographic informa-
tion is used to determine classifica-
tion thresholds

ASTER,
ASTER-
DEM

Creation and tuning
of training dataset

Not reported,
Mt. Everest
Region

5% total area
misclassified

Shukla et al.
(2010)

Multiple landcover types mapped
using spectral and thermal imagery
combined with a DEM

ASTER,
AWiFS,
DEM

Data conversion and
registration, solar
illumination analy-
sis, training dataset
creation, Maximum
Likelihood Classifier

200 km2,
Samudra
Tapu glacier,
Himachal
Pradesh,
India

8-14% debris
misclassified

Racoviteanu
and Williams
(2012)

(1) Decision tree classification with
ASTER and topographic data, and
(2) texture analysis exploiting sur-
face roughness

ASTER,
DEM,
Quick-
bird,
World-
view2

Training dataset
creation, decision
tree set-up, principal
component analysis

576.4 km2,
Sikkim Hi-
malaya, NE
India

(1) 25%, (2)
31% debris
misclassified

Rastner et al.
(2014)

Comparison of object- and pixel-
based methods of glacier mapping.
Both methods use spectral and to-
pographic information as inputs

ASTER,
Landsat,
DEM

Manual threshold
definitions, segmen-
tation processing,
iterative thresholding

Not reported,
three distinct
test regions

11.5%
(object-
based) and
23.4% (pixel-
based) mis-
classified
areas for
Himalaya
region

This Study Clean-ice detection coupled with
topographic, velocity, and distance
weighting thresholds

Landsat,
SRTM
DEM,
River
Network

Velocity field calcu-
lation, optional de-
bris seed point selec-
tion

∼44,000
km2, Pamir-
Tien Shan

2-10% total
area misclas-
sified

20



86°E84°E82°E80°E78°E76°E74°E72°E70°E68°E

46°N

44°N

42°N

40°N

38°N

36°N

34°N

144/30145/30

147/31

148/31

149/31

150/32

151/33153/33

Fig. 1. Greater study area of the Tien Shan, showing SRTM v4.1 topography (Jarvis et al., 2008) and location
of eight Landsat image footprints (grayscale) used in the study, along with their Path/Row combinations.
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Fig. 2. Characteristic example of a debris-covered glacier tongue (Inylchek Glacier). Spectrally-delineated
glacier outlines (black), over Landsat bands B7/B5/B3 (R/G/B), from image LC81470312013268LGN00. This
shows generally well-mapped clean ice, but poor treatment of debris-covered tongues.
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Fig. 3. Blue areas show ‘Potential Debris Areas’, as delineated by slopes between 1-24 degrees, with eleva-
tions below 2500m removed. Only these areas are examined in the subsequent thresholding steps, to reduce
processing time and misclassification errors. SRTM hillshade underneath.
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Fig. 4. Example of an annual glacial velocity surface, generated using Normalized Image Cross Correlation
(NICC). Areas in red are slow-moving areas and represent stable ground. They are removed from the ‘potential
debris areas.’
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41°50'N

River Seed Points

Spectral Outlines

Fig. 5. Example of distance-weighting seed areas used to remove pixels from the ‘potential debris areas’ which
are distant from either a river valley or classified glacier ice. Rivers in blue, spectrally-delineated glaciers
are outlines in black. The blue lines illustrate the presence of river networks along debris-covered tongues of
glaciers where there is little clean glacier ice.
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Areas Distant from Clean Ice

Fig. 6. Areas removed by second distance weighting step (red). The geodesic distance algorithm removes
isolated areas near glaciers as well as areas distant from any glacier.
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Fig. 7. Impacts of statistical filtering on glacier outlines, with areas in black removed during the filtering
process. Primarily small holes in large debris-tongues are removed, while the glacier outlines remain intact
during this step. East and West Qong Terang Glaciers.
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Fig. 8. Final algorithm outlines (black) with areas classified after the clean-ice delineation in red. Illustrates the
improved classification by the algorithm across several large debris tongues. Landsat OLI image captured Sept
25, 2013 as background.
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Fig. 9. Glacier size class distribution (n=750) for the manual control dataset. Note the logarithmic x-axis to
account for a wide range of glacial sizes.
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Fig. 10. Bulk elevation distributions of sampled glaciers, with manual delineation (reference dataset, n=215,
4,500 km2) in blue, algorithm-derived delineation in red, spectral delineation in green, and CGI v2 in black.
Values have been normalized to maximum probability.
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Fig. 11. Elevation distributions of over- and under-classified glacier areas, as compared to a manual control
dataset (n=75, 330 km2). Overclassified areas show that the algorithm does not remove large portions of the
accumulation area, but instead adds additional area as compared to the control dataset. Underclassified areas
indicate that the algorithm identifies less area than the manually-digitized dataset in low-elevation regions. 5.5%
is overclassified, and 0.8% is underclassified.
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Fig. 12. Averaged elevation differences for a random sample of glaciers overlapping a manual control dataset
(n=100, 100 km2). Shows generally close agreement between the manual glacier dataset and the algorithm
dataset below 4000m, with closer agreement between the spectral and algorithm datasets above 4000m. This
indicates improved mapping of debris-tongues by the algorithm, and similar treatment of clean ice by both the
algorithm and the spectrally-delineated glaciers.
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Fig. 13. Vertex distance distributions for algorithm (blue) and spectral (red) vertices, as compared to a manual
control dataset, normalized to the maximum distance. This indicates generally closer agreement between the
algorithm and manual datasets than between the spectral and manual datasets.
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Fig. 14. Algorithm outlines (purple) compared to the control dataset (black) and the CGI v2 (red). Illustrates
high fidelity in overall debris-tongue length between the three datasets, although the algorithm outlines exhibit
noise along the edges of debris tongues.
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Fig. 15. Algorithm outlines for July 2013 (black) and algorithm outlines for August 2002 (red), showing small
retreats in glacier areas, particularly at the debris tongues. Vicinity of the Akshiirak glacierized massif, central
Tien Shan.
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