
Response to the editor 
 
We would like to sincerely thank the editor for his encouraging remarks. 
 
Editor Decision: Publish subject to minor revisions (Editor review) (03 
Mar 2015) by Prof. Daniel Feltham 
Comments to the Author: 
You have done a thorough job of responding to the reviewers' comments. 
 
Please see the reports by the reviewers. There are a number of minor 
typos and minor changes to the text to improve clarity. These should be 
implemented. 
Change: We took all the remarks into account (see our answer to reviewer 1 and 
2). 
 
One of the reviewers has a fundamental issue in that he believes the 
kernel operator should affect the spatial resolution of the data. Please 
think carefully about this. If you believe this issue cannot be resolved in 
your manuscript or you disagree with the reviewer then I would accept 
the addition of a sentence or two to highlight this concern in your revised 
manuscript. 
The fact that our method does not affect the spatial scale has been verified in the 
case of a single crack. We add the term “isotropic” and “anisotropic” and we 
slightly adapt this paragraph to more clearly distinguish the two kinds of 
smoothers: 

“We propose a better method based on the fact that the deformation is by nature 
constant along a linear kinematic feature. Averaging motion derivatives along 
these features could then filter out the noise without spoiling the information on 
the real deformation. Contrary to the isotropic smoother presented here above, 
the mean value of the shear obtained with the second method in the single crack 
case does not vary as a function of n.      In other words, the scale at which the 
deformation is defined remains constant with the second method, which can be 
seen as an anisotropic smoother. In the case of a regular mesh and a single crack 
aligned with the x-axis, we verified that the area-weighted average of the shear 
along the crack is strictly constant whatever the value of n.” 

We also add these sentences to the paragraph to clarify the assumption made on 
the deformation length scale: 

“For the rest of this study, we consider that our method does not modify the spatial 
scale at which the deformation is defined. In some cases this assumption may not be 
verified, for example, when two cracks intersect or when the treated cells do not 
belong to a linear kinematic feature. Two metrics will be used to analyze the error 
caused by intersecting cracks and to evaluate the proportion of treated cells that can 
actually be considered as cracks.” 

 
I also suggest you briefly describe the work in the cited paper by 
Thorndike (1978) in the introduction. 
Change: We have now added to the introduction: 
“The error in estimating deformation has also been studied by Thorndike (1978) 
for large spatial scales (from 100 to 500 km) but such an analysis is only valid for 
homogeneous and isotropic fields and does not apply to small-scale deformation 
as explained in Lindsay et al. (2003).”  

! !



Response to reviewer #1 
 
We would like to sincerely thank the reviewer for his comments, which have contributed to 
improve the quality of the manuscript. 
 
The manuscript is much improved over the initial submission and the 
authors have made detailed and well thought out responses to our many 
comments.!
 
 
However I still do not accept that the spatial scale of the measurement is 
unchanged using your kernel smoother. The fact that the shear does not 
change with n in your artificial example doesn’t change the fact that you 
use a larger area to estimate the deformation for all cells that are 
smoothed equal to the total area of the triangles used in the smoothing.  
 
Answer:  
In the case of a single crack, the shear is directly related to the ratio between the 
displacement jump and the length scale used to compute the displacement 
derivatives. The fact that our method does not affect the shear means that it 
does not affect the deformation length scale. This property is not observed for the 
isotropic smoother. 

Change: We add the term “isotropic” and “anisotropic” and we slightly adapt this 
paragraph to more clearly distinguish the two kinds of smoothers: 

“We propose a better method based on the fact that the deformation is by nature 
constant along a linear kinematic feature. Averaging motion derivatives along 
these features could then filter out the noise without spoiling the information on 
the real deformation. Contrary to the isotropic smoother presented here above, 
the mean value of the shear obtained with the second method in the single crack 
case does not vary as a function of n. In other words, the scale at which the 
deformation is defined remains constant with the second method, which can be 
seen as an anisotropic smoother. In the case of a regular mesh and a single crack 
aligned with the x-axis, we verified that the area-weighted average of the shear 
along the crack is strictly constant whatever the value of n.” 

 
The deformation patterns seen in Figures 7-9 have many features that do 
not appear to be LKF’s and even the LKF’s that are apparent may not be 
as linear as you assume (see the comments from reviewer 2). There are 
some areas with generalized deformation and with nothing linear about 
them so that the area used must play an important roll in the 
deformation estimates in these areas.  
 
Answer:  
Based on the single crack case, we assume that our method has no impact on the 
deformation length scale. We now more clearly stated that this assumption may 
not be verified everywhere and that is why we introduce metrics to evaluate the 
error due to intersecting cracks and the proportion of treated cells that can be 
considered as being part of a linear kinematics feature.  
 

Change: We add these sentences to the paragraph to clarify this point: 

“For the rest of this study, we consider that our method does not modify the spatial 
scale at which the deformation is defined. In some cases this assumption may not be 



verified, for example, when two cracks intersect or when the treated cells do not 
belong to a linear kinematic feature. Two metrics will be used to analyze the error 
caused by intersecting cracks and to evaluate the proportion of treated cells that can 
actually be considered as cracks.” 

This means you need to keep track of the actual area used for each 
filtered deformation estimate and also account for the fact that the 
deformation from adjacent triangles are not at all independent. Estimates 
from overlapping kernels should be discarded for the purposes of the 
scaling analysis. This may or may not change some of your conclusions 
about the scaling relationships. 
 

Answer:  

We do not agree on this point with the reviewer. To define the deformation length 
scale as a function of the actual area used for each filtered deformation is not 
correct for all the cases where the linear kinematics features are well defined. 
Using the metric used to quantify the quality of the selection, we showed that, for 
the entire winter, 78% of the treated cells could be considered as belonging to 
linear kinematics features. This percentage takes also into account the 
intersecting cracks for which our assumption has not been verified. As stated in 
the conclusion, we think that the method could be improved to better treat the 
intersections and to adapt the method parameters as a function of the local 
conditions. These improvements may lead to a method that has no impact on the 
deformation length scale in any conditions. 

Change: No change has been made. 

 
Thorndike (1978) is in the list of references but is never cited. Please 
discuss this landmark work in the introduction. What did he do and how 
is his discussion of errors different from yours? 
 
Answer:  
As explained in the review and in the following paragraph coming from Lindsay et 
al. (2003), the analysis of Thorndike (1978) does not apply to the estimation of 
the small-scale deformation  
“His results are based on the large-scale velocity correlation functions for a 
homogeneous and isotropic field. He shows that there is not much additional 
improvement (reduction in error) in using more than six measurement points 
around the circle when the radius varies from 100 to 500 km. But because the 
correlation functions are not well known for separations less than 100 km, his 
analysis and methods do not apply in the present case of estimating the error in 
small-scale deformation.” 
 
Change: We have now added this sentence to the introduction: 
“The error in estimating deformation has also been studied by Thorndike (1978) 
for large spatial scales (from 100 to 500 km) but such an analysis is only valid for 
homogeneous and isotropic fields and does not apply to small-scale deformation 
as explained in Lindsay et al. (2003).” 

Line 2-13: …widely used “4-point deformation” RGPS data set. (to 
emphasize what is different in RGPS) 
Change: It is added. 
 
Line 4-4: 10-km “square” cell (since you are suggesting using a 



triangular cell) 
Change: It is added. 
 
Line 7-25: See above my comments above. 
Change: See above our answers and changes. 
 
Line 8-5: Maybe add …selected “contiguous” cells… to make it clear the 
crack must be continuous. And in Line 11: …built using “contiguous cells” 
ensures… 
Change: It is added. 
 
Line 8-17: Remind us just how the error is computed. Over what cells? 
Change: We have added this sentence to clearly define the opening (and closing) 
error. As said in the text, the total error is just the sum of the opening and 
closing error. 
 
“In our test cases, the opening (and closing) error is defined as the absolute 
difference between the total opening (and closing) computed from the geometry 
of the problem and the total opening (and closing) computed from the integration 
of the positive (and negative) divergence given by the method.”!
! !



Response to reviewer #2 
 
We would like to sincerely thank the reviewer for his comments, which have all been taken 
into account. 
 
I reviewed the original manuscript as referee #2. 
I have read the revised manuscript and the authors' 
responses to my comments. The authors have done  
a very thorough job at responding to all my points. 
I recommend publication of the revised manuscript 
(see a handful of technical corrections below). 
 
Page 8, line 3. After "linear kinematic feature", 
insert "(LKF)" because the abbreviation LKF is used later. 
Change: It is added. 
 
Page 9, line 4. "experience" is correct -- 
do NOT change it to "experiment". 
Change: It is corrected. 
 
Figure 3 caption, line 3. "experience" is correct -- 
do NOT change it to "experiment". 
Change: It is corrected. 
 
(On page 6, the change from "experience" to "experiment" 
IS correct -- it should indeed be "experiment") 
Change: No change needed. 
!
!
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Abstract

We propose a method to reduce the error generated when computing sea ice deformation
fields from SAR-derived sea ice motion. The method is based on two steps. The first step
consists of using a triangulation of the positions taken from the sea ice trajectories to define
a mesh on which a first estimate of sea ice deformation is computed. The second step5

consists of applying a specific smoother to the deformation field to reduce the artificial noise
that arises along discontinuities in the sea ice motion field. This method is here applied
to RGPS sea ice trajectories having a temporal and spatial resolution of about 3 days and
10 km, respectively. From the comparison between unfiltered and filtered fields, we estimate
that the artificial noise causes an overestimation of about 60 % of opening and closing. The10

artificial noise also has a strong impact on the statistical distribution of the deformation and
on the scaling exponents estimated with multifractal analysis. We also show that a similar
noise is present in the deformation fields provided in the widely used

::::::
4-point

::::::::::::
deformation

RGPS dataset. These findings may have serious implications for previous studies as the
constant overestimation of the opening and closing could lead to a large overestimation of15

freezing in leads, salt rejection and sea ice ridging.

1 Introduction

Sea ice motion can be retrieved from satellite SAR images using cross correlation tech-
niques and feature tracking algorithms (Kwok et al., 1990; Fily et al., 1990; Hollands and
Dierking, 2011). Sea ice deformation is then estimated by computing the spatial derivatives20

of the sea ice motion. The most popular dataset providing both sea ice motion and defor-
mation is the RADARSAT Geophysical Processor System (RGPS) dataset (Kwok, 1998). It
covers the Western Arctic for the period 1996–2008 at temporal and spatial resolution of
about 3 days and 10 km, respectively.

As deformation determines sea ice opening (i.e. positive divergence) and closing25

(i.e. negative divergence), it may be used to estimate important global quantities, such

2
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as the ice production in leads, with some assumptions on sea ice growth and redistribution
(Kwok et al., 1995). Using the RGPS dataset, Kwok (2006) estimated that deformation-
related ice production is about 25–40% of the winter ice production in both the perennial
and seasonal ice zone. Kwok et al. (2008) also showed that the deformation-related ice
production derived from the RGPS dataset is up to two times higher than the one estimated5

by numerical models, implying a potential underestimate of the associated sea ice–ocean
feedbacks.

In addition to essential information about sea ice opening and closing, the analysis of
sea ice motion and deformation also gives a particular insight to the underlying physics
controlling the sea ice dynamics and provides precious information with which to validate10

sea ice models. Marsan et al. (2004) described how the statistics of sea ice deformation
vary as a function of spatial scale, while Rampal et al. (2008) generalized these scaling
properties to both the spatial and temporal domains. Stern and Lindsay (2009) and Herman
and Glowacki (2012) documented the seasonal and inter-annual variability of the spatial
scaling exponents. Girard et al. (2009, 2011) showed that classical sea ice models do not15

capture these statistical properties.
The estimation of these global quantities (e.g. total opening/closing) and statistical prop-

erties (e.g. spatial scaling exponents) may be impacted by errors in sea ice deformation
data. Uncertainty on deformation is usually seen as a consequence of motion tracking
errors that depend on the algorithm and parameters used. Lindsay and Stern (2003) es-20

timated the standard deviation of the error in area change to be about 1.4 km2 for a 10
by 10 km cell when the tracking error (i.e. tie point) is about 100m. This error estimate is
equivalent to the level of significance of 0.005 per day for 3 day intervals estimated by Kwok
and Cunningham (2002), and used to determine the error on ice production as being less
than 1% of the total.25

However, two other sources of error can be identified. Both are linked to the definition of
the boundary of the cell (usually quadrangle) over which deformation is computed. Lindsay
and Stern (2003) showed that unrealistic deformation is often obtained when this boundary
is too irregular. Also, spurious openings and closings (that we will refer to as artificial noise

3
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hereafter) are caused by unfavorable orientation of the cell boundary relative to the discon-
tinuities in the sea ice motion field, also called dynamic discontinuities, slip lines or linear
kinematic features

::::::
(LKFs). Lindsay and Stern (2003) evaluated the standard deviation of the

error in area change due to the boundary definition to be about 3.2 km2 for a 10 by 10 km

::::::
square

:
cell, which is more than twice the error from tracking mentioned above. Kwok (2006)5

stated that this artificial noise would lead to an overestimation of the ice volume production,
although no precise number was given. Lindsay et al. (2003) proposed to reduce this error
by combining cells together, but this solution reduces the benefits of having high resolution
data and reduces the spatial range over which one could perform scaling analysis.

:::
The

:::::
error

::
in

::::::::::
estimating

:::::::::::
deformation

::::
has

::::
also

:::::
been

:::::::
studied

:::
by

:::::::::::::::::::
Thorndike (1978) for

:::::
large

:::::::
spatial

::::::
scales10

:::::
(from

::::
100

::
to

::::
500 km)

::::
but

::::
such

:::
an

::::::::
analysis

::
is

::::
only

:::::
valid

:::
for

::::::::::::::
homogeneous

::::
and

::::::::
isotropic

:::::
fields

:::
and

::::::
does

:::
not

::::::
apply

::
to

:::::::::::
small–scale

::::::::::::
deformation

:::
as

:::::::::
explained

::
in

:::::::::::::::::::::
Lindsay et al. (2003) .

This paper proposes a method to avoid unrealistic values and to significantly reduce the
noise obtained when computing sea ice deformation from SAR-derived motion and presents
an example of its application to sea ice trajectories coming from the RGPS dataset. The15

complete method is described in Sect. 2. In Sect. 3, we discuss the quality of the obtained
deformation fields and we analyze the impacts of removing the artificial noise on the es-
timated global opening/closing and on the spatial scaling of the deformation. Section 4
concludes the paper with a discussion on potential improvements of the method and on
implications of our findings for the existing literature.20

2 Method

The method we developed is based on two steps. The first step consists of defining a mesh
by doing a triangulation of a set of tracked points. For each individual triangular cell, the
deformation is calculated using the motion of its three nodes estimated from the tracking
procedure. The second step consists of applying a specific smoother to the obtained defor-25

mation fields to reduce the artificial noise.

4
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2.1 Application to simple test cases

In order to present the method, we first define a simple setup on a square domain having
a normalized area equal to 1. In this domain, tracked points are distributed uniformly with
a mean distance d between them (see for example Fig. 1 with d= 0.1). d is hereafter called
the normalized resolution.5

In the first test case, a single crack is defined (black line on Fig. 1). This crack passes
by the center of the domain and makes an angle ✓ with the horizontal x axis. We want to
simulate a discontinuous displacement field that is induced by the presence of that crack.
To do so, we keep the points located below the crack (lower part of the domain in Fig. 1)
as fixed, and we require the points above the crack (upper part of the domain in Fig. 1) to10

move with the same displacement. The two components of the imposed displacement, up
and un, correspond to the displacement parallel and normal to the crack, respectively.

The first step of the method is to perform a Delaunay triangulation of these points to gen-
erate a mesh on which deformation is computed. The spatial derivatives of the displacement
are obtained by calculating the following contour integrals as in Kwok et al. (2008) around15

the boundary of each triangle:

u

x

=
1

A

I
udy (1)

u

y

=� 1

A

I
udx (2)

v

x

=
1

A

I
vdy (3)

v

y

=� 1

A

I
vdx, (4)20

where A is the cell area. For example, u
x

is approximated by:

5
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u

x

=
1

A

mX

i=1

1

2
(u

i+1+u

i

)(y
i+1� y

i

), (5)

where m= 3 and subscript m+1 = 1. The shear ✏shear, and divergence ✏div deformations
are computed as:

✏shear =
q
(u

x

� v

y

)2+(u
y

+ v

x

)2, (6)

✏div = u

x

+ v

y

. (7)5

In the case of a slip line, un is set to zero. No opening or closing should occur and shear
should have the same value along the crack. Figure 1a and b show the divergence and
shear computed for such a case, with up = 0.01 and un = 0. The divergence field exhibits
spurious positive (opening) and negative (closing) values along the slip line. The shear field
also exhibits some noise, but that is hardly visible on the figure.10

This artificial noise generates an overestimation of the total opening (and closing).
::
In

:::
our

:::
test

:::::::
cases,

::::
the

::::::::
opening

:::::
(and

::::::::
closing)

:::::
error

::
is

::::::::
defined

::
as

::::
the

:::::::::
absolute

::::::::::
difference

::::::::
between

:::
the

:::::
total

::::::::
opening

::::::
(and

::::::::
closing)

::::::::::
computed

:::::
from

::::
the

::::::::::
geometry

:::
of

::::
the

:::::::::
problem

::::
and

::::
the

::::
total

::::::::
opening

:::::
(and

::::::::
closing)

::::::::::
computed

:::::
from

::::
the

:::::::::::
integration

::
of

::::
the

::::::::
positive

:::::
(and

:::::::::
negative)

::::::::::
divergence

::::::
given

::
by

::::
the

::::::::
method. Repeating the slip line experiment 100 times, with ✓ vary-15

ing from �arctan(0.2) to +arctan(0.2) and with different meshes, we find that the root mean
square (rms) error per unit crack is about 20% of the sliding distance up for both the open-
ing and closing. In other words, with a 100 km long crack and a sliding distance of 1 km, the
artificial opening (and closing) would be about 20 km2. It is particularly interesting to note
that this error does not depend on the normalized resolution d (we tested with d equal to20

0.1, 0.01 and 0.001).
When repeating the same test case with quadrangles instead of triangles, we found a rms

error of about 18% of the sliding distance up. For comparison, Lindsay and Stern (2003)
found an error per unit crack of about 15% of the sliding distance, for a similar test case on

6
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a mesh made of square cells. This analysis shows that using triangles only generates an
increase of about 10% of the opening (and closing) error compared to using quadrangles.
This increase of the error is minor compared to the advantages of using triangles. Triangu-
lation methods are more flexible. It roughly doubles the number of deformation estimates
and it increases the resolution at which deformation is defined. For the rest of this paper,5

we then only present results on triangular meshes but the method could also be applied to
other type of meshes.

In order to remove the artificial noise in the deformation fields one could apply a
::
an

::::::::
isotropic smoother over all the cells of the mesh. We here denote C the list of all the cells
and for each cell c 2 C, we define the kernel K

c

⇢ C as the subset of cells that can be10

reached by crossing a maximum of n edges. An example of kernel with n= 7 is shown in
Fig. 1c and d. The size of the kernel is noted |K

c

|. For the example shown in Fig. 1c and
d, |K

c

| is equal to 87. The components of the filtered deformation are then defined as an
area-weighted average over the cells of the kernel. For example, the filtered value for u

x

on
the cell c is defined as15

ũ

c

x

=

P
k2Kc

A

k

u

k

xP
k2Kc

A

k

. (8)

This method reduces part of the artificial noise but is not appropriate since it ruins the lo-
calization of the shear and adds unreal deformation to non-deforming cells. It also modifies
the spatial scale at which the deformation is defined, resulting in a modification of the value
of the shear along the crack. With the single crack case, the area-weighted average of the20

shear for the cells cut by the crack is found to be inversely proportional to n.
We propose a better method based on the fact that the deformation is by nature constant

along a linear kinematic feature. Averaging motion derivatives along these features could
then filter out the noise without spoiling the information on the real deformation. Contrary to
the

::::::::
isotropic

:
smoother presented here above, the scale at which the deformation is defined25

remains constant with the second method. In other words, the mean value of the shear
along the crack obtained with the second method

:
in

::::
the

::::::
single

:::::
crack

:::::
case

:
does not vary as

7
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a function of n. We also verified that in the
::
In

:::::
other

:::::::
words,

:::
the

:::::
scale

:::
at

:::::
which

::::
the

:::::::::::
deformation

::
is

:::::::
defined

::::::::
remains

::::::::
constant

:::::
with

:::
the

::::::::
second

::::::::
method,

::::::
which

::::
can

:::
be

:::::
seen

::
as

:::
an

:::::::::::
anisotropic

:::::::::
smoother.

:::
In

:::
the

:
case of a regular mesh and a single crack aligned with the x-axis,

:::
we

:::::::
verified

::::
that

:
the area-weighted average of the shear along the crack is strictly constant

whatever the value of n.
:::
For

::::
the

::::
rest

:::
of

::::
this

::::::
study,

:::
we

:::::::::
consider

::::
that

::::
our

:::::::
method

:::::
does

::::
not5

::::::
modify

::::
the

::::::
spatial

:::::
scale

:::
at

::::::
which

:::
the

:::::::::::
deformation

::
is
::::::::
defined.

:::
In

:::::
some

::::::
cases

::::
this

:::::::::::
assumption

::::
may

:::
not

:::
be

::::::::
verified,

:::
for

:::::::::
example,

:::::
when

::::
two

::::::
cracks

:::::::::
intersect

::
or

::::::
when

:::
the

:::::::
treated

:::::
cells

:::
do

:::
not

::::::
belong

:::
to

:
a
::::::

linear
::::::::::
kinematic

:::::::
feature.

:::::
Two

:::::::
metrics

::::
will

:::
be

:::::
used

::
to

::::::::
analyze

::::
the

:::::
error

:::::::
caused

::
by

::::::::::::
intersecting

::::::
cracks

::::
and

:::
to

::::::::
evaluate

::::
the

::::::::::
proportion

:::
of

:::::::
treated

:::::
cells

::::
that

::::
can

::::::::
actually

:::
be

::::::::::
considered

:::
as

:::::::
cracks.

:
10

To detect the cells that are involved in the mapping of each linear kinematic feature, we
define a threshold for total deformation (

q
✏

2
div + ✏

2
shear). Only the cells whose total deforma-

tion is above the threshold are selected to build the smoothing kernels (see Fig. 1e and f
for an example with n= 7). No filtering is applied on the cells where deformation is below
the threshold. We denote S the list of all the selected cells. For each cell s 2 S, we define15

the kernel K
s

⇢ S as the subset of cells that can be reached by crossing only selected

::::::::::
contiguous

:
cells and a maximum of n edges. |K

s

| is the size of the kernel. In the case of
the single crack the size of the kernel is alway equal to 2n+1, except for the kernels whose
center is close to the boundary of the domain. The kernel size may then be as low as n+1.
Our method preserves the localization of the deformation by avoiding mixing the deforma-20

tion between LKFs (i.e., cells where the deformation is intense) and the surrounding rigid
plates (i.e., cells where deformation is almost zero). Moreover, the way the smoothing ker-
nels are built

:::::
using

:::::::::::
contiguous

::::
cells

:
ensures that deformation between LKFs that are not

connected will not be averaged together.
The proposed method relies on two parameters: the deformation threshold that deter-25

mines which cells are selected and parameter n that determines how far we extend the
kernel. In our test cases, the threshold value is chosen to be small enough to select all the
deforming cells. For application to real data, the choice of this parameter is critical and is
detailed in Section 2.2. The impact of parameter n on the total error, defined as the sum of

8
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the opening and closing errors, is shown in Fig. 2 (line with disk symbols). This error, when
normalized by the sliding distance up, decreases from about 40% to a residual error that
depends on the normalized resolution. For a resolution of 0.1, the residual error (i.e., the er-
ror remaining for n > d

�1) is about 5% as shown in Fig. 2. Simple analytical developments
(not shown here) and numerical experiments with d ranging [0.1–0.001] show that the resid-5

ual error for the single slip case is proportional to the normalized resolution, whereas the
initial error does not depend on the normalized resolution.

The two other curves in Fig. 2 (with square and triangle symbols) correspond to the
normalized errors found for experiments considering a secondary crack as shown in Fig. 3.
The domain is now divided in 3 blocks. Points below the principal crack are still fixed. Points10

above the principal crack experiment
::::::::::
experience

:
the same displacement un, perpendicular

to the principal crack, but have distinct tangent components up for the block on the left or
u

0
p for the block on the right of the secondary crack.
To get one crack opening while the other is closing, u0p is defined as up�un. The ex-

ample in Fig. 3 is given for up = 0.01 and un =�0.0025, so that the principal crack should15

be closing whereas the secondary crack should be opening. Before filtering, the computed
divergence field is highly polluted by the noise. Once the deformation is filtered (here with
n= 3), the divergence field better matches the expected opening and closing. At the inter-
section of the two cracks though, the solution may be incorrect, as the method does not
distinguish cracks when they intersect and thus averages deformation over cells belonging20

to different cracks. It should be also noted that at the intersections of two cracks the size
of the kernel |K

s

| may be as high as 3n+1 (for three-branch intersections as in Fig. 3) or
4n+1 (for four-branch intersections).

This mixing of intersecting cracks explains why the normalized error (triangle and square
symbols on Fig. 2), after having rapidly decreased for small n as in the single crack case,25

starts to increase for larger n. This simple test case shows that the shape of this function
depends on the ratio un

up
and that the optimal value for n would be 4 for un

up
= 1

8 and 2 for
un
up

= 1
4 . From this analysis, we identify n= 3 as an optimal value as it is the only value for

which the median error is reduced by at least a factor of 3 in any of the test-cases presented

9
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here. In real cases, to define an optimal value for n is more difficult as it would depend on
the number of intersecting cracks and on the local ratio between divergence and shear. For
this study, we chose to use a constant parameter n and its reference value is fixed at n= 3.
To validate the choice of the method’s parameters (i.e., n and the threshold on the total
deformation), we present in Sect. 3 another metric based on a multifractal scaling analysis5

of the deformation fields.

2.2 Application to RGPS sea ice trajectories

The RGPS Lagrangian displacement product provides trajectories of sea ice “points” ini-
tially located on a 10 km regular grid (http://rkwok.jpl.nasa.gov/radarsat/lagrangian.html).
The positions of these points are updated when two successive images are available and10

treated by the tracking algorithm. The time interval between two updates is typically 3 days.
Spatial coordinates are given in the SSM/I polar stereographic projection, with the origin of
the Cartesian grid located on the North Pole and the negative y axis aligned to the 45�W
meridian.

The RGPS Lagrangian deformation product provides the deformation of each cell (which15

is quadrangle) of the original grid. The deformation of a cell is updated each time the posi-
tion of all its nodes are updated. This method has a serious problem because cells may be-
come so distorted that spatial derivatives are ill-defined. As the RGPS deformation dataset
does not provide for each cell the position of its node, it is not possible to filter the data to
avoid this problem. This problem is specific to the RGPS deformation product and would20

not appear if each pair of images was treated separately with its own grid as in the GlobICE
Image Pair product (http://www.globice.info) and in the ENVISAT Geophysical Processor
System (EGPS) (http://rkwok.jpl.nasa.gov/envisat/).

To tackle these problems, we reprocessed the RGPS Lagrangian displacement product
to build a new deformation dataset called the RGPS Image Pair Product. We first identify25

the tracked points corresponding to each pair of images (i.e. the set of points whose position
has been updated at the exact same date and with the same time interval). We generate
a Delaunay triangulation of these points. Then we compute the deformation over what we

10
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consider as being well-shaped cells, i.e. only for triangles having an area between 5 and
400 km2, their angles higher than 5� or all their edges shorter than 25 km. We also only
keep meshes if they have at least 200 nodes, and we discard single and pairs of triangles
that are not connected to other cells. Figure 4 shows an example of a mesh and a sea
ice divergence field after the processing of the data corresponding to one pair of images.5

Artificial noise, characterized by a succession of highly negative and positive values, is
clearly visible and, as expected, is mainly located along lines.

Using triangles instead of quadrangles roughly doubles the number of deformation es-
timates, and increases the resolution of the deformation product up to 7 km. Another ad-
vantage is that triangulations can be made on any set of points (if they are not all aligned),10

which is not the case with quadrangulation (Bremner et al., 2001). If the tracked points are
given on a regular grid, quadrangulation could be easily performed and could be preferred.
However for most of the available datasets (for example GlobICE and EGPS), the data are
not given on a grid but as a list of points. The method presented here based on triangles is
then very flexible and can be applied to many different sources of data. In the next section,15

the unfiltered and filtered deformation fields obtained on triangular meshes are compared
to the RGPS deformation fields. The smoothing procedure is not applied to the RGPS de-
formation fields because it requires to know the neighbors of each cell and this information
is not present in the RGPS Lagrangian deformation dataset.

To apply the smoother, we first need to detect the cells that are suspected to map the20

location of linear kinematic features. Thomas et al. (2008) proposed to use a shear thresh-
old based on the level of noise resulting from the motion tracking error. Instead, here we
use a fixed threshold based on the total deformation (as in the simple test case presented
above) to give more weight to the cracks suffering from artificial divergence. Cells showing
total deformation greater than the threshold are thus selected and others simply not taken25

into account for the filtering procedure. Figure 5 shows the unfiltered total deformation rate
and the selected cells (those with their edges in black) for a threshold equal to 0.02 per day.

Decreasing the threshold increases the number of selected cells and finally leads to
excessive smoothing. Increasing the threshold reduces the number of selected cells and

11
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finally splits linear features into disconnected pieces for which the smoother is not efficient
anymore. Indeed if a kernel only contains one cell, the smoother does not modify the value
of the deformation over that cell.

To quantify the effect of this threshold on the quality of the selection, we define an index
based on the size of the smoothing kernels |K

s

| (i.e. the number of cells that can be reached5

by crossing only selected cells and a maximum of n edges). As explained in Sect. 2.1, the
size of the kernel |K

s

| could be as low as n+1 for single cracks when the center of the
kernel is at the boundary of the mesh and as high as 4n+1 for two intersecting cracks. We
then define the quality index as the percentage of treated cells having a kernel size between
n+1 and 4n+1. For the example of Fig. 5, the quality index is equal to 89%.10

We explored the sensitivity of this quality index to the threshold value for the entire winter
season 2006–2007 and with the parameter n equal to 3, which is the reference value de-
fined in Sect. 2.1. For deformation thresholds equal to 0, 0.01, 0.02, 0.03, 0.04 and 0.05 per
day, median quality indices are equal to 33, 78, 78, 76, 74 and 72%, respectively. Based
on this quality index, the threshold values 0.01 and 0.02 per days are the best. The value15

of 0.02 per day is chosen as the reference value for the deformation threshold. To quantify
the range of the quality index obtained with this reference value, we look at the percentage
of pairs of images for the entire winter 2006-2007 for which the quality index is lower than
50% and we found that only 14% of the pairs of images have a quality index lower than
50%. To further validate the choice of the model parameters, a consistency check based20

on a multifractal scaling analysis of the deformation fields is proposed in Sect. 3.
Figure 6 shows the sea ice divergence field after the application of the smoother with the

parameter n equal to 3. Compared to the unfiltered divergence field shown in Fig. 4, the
filtered field exhibits much less artificial noise and its interpretation is now much easier.

3 Results and discussion25

In this section, we compare the original RGPS deformation data to the unfiltered and filtered
versions of our RGPS Image Pair dataset. A consistency check based on spatial scaling

12
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analysis is proposed and the differences between the three datasets in terms of spatial
scaling and total opening/closing are discussed.

To compare the original RGPS deformation data with the unfiltered and filtered deforma-
tion data produced by our method, we generate composite pictures of the deformation rates
for specific periods. The periods have to be long enough to ensure a good spatial coverage,5

but not too long to avoid mixing incoherent information. For this study, we select the data
for which the time of the first and second images, noted t

k�1 and t

k

respectively, are within
a period of 8 days centered on a target date, and for which the time interval, �t= t

k

� t

k�1,
is between 1 and 6 days. For the RGPS dataset, we add a criterion to reject cells larger than
400 km2.10

Selected cells may cover the same area but correspond to different dates and time inter-
vals. This redundancy may impact statistical distribution and scaling analysis, so we apply
a second selection step. We first define a regular grid at a resolution of 20 km. For each
box of this grid, we find the cells whose center is in the box and we keep only those whose
date, defined as (t

k

+ t

k�1)/2, is the closest to the target date. This selection step creates15

some gaps in the coverage but is necessary to ensure a minimum consistency of the com-
posite fields. Note that no averaging or interpolation is done during the generation of the
composite deformation fields.

Figure 7 shows the divergence rate for the period 2–10 February 2007 given by the
RGPS Lagrangian deformation dataset. Some features are so polluted by a succession20

of highly negative and positive values that it is very difficult to identify where cracks are
opening, closing or sliding. Figure 8 shows the unfiltered divergence rate for the same
period obtained after the first step of our method. As in the RGPS dataset, the artificial
noise is important and mainly located along linear kinematic features. Figure 9 shows the
filtered divergence rate obtained with a deformation threshold of 0.02 per day and n= 3.25

The reduction of the noise makes much easier the identification of the opening and closing
cracks.

13
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3.1 Consistency check

To evaluate our method in a more quantitative way, we propose a metric based on a spatial
scaling analysis. Scaling analysis is a powerful tool to characterize sea ice dynamical be-
havior, and has been successfully used in previous studies to reveal the power-law scaling
of sea ice deformations (Marsan et al., 2004; Rampal et al., 2008).5

The spurious noise in the deformation fields corresponds to high values of deformation
and is potentially present for any active linear kinematic features. This noise may then im-
pact the distributions of shear and absolute divergence and modify their mean (1st-order
moment) but even more their standard deviation (2nd-order moment) and skewness (3rd-
order moment). Moreover this noise is the highest at the resolution of the data but rapidly10

decreases for larger spatial scales. We then expect that the presence of noise in the defor-
mation fields will have a strong impact on the result of the scaling analysis, especially for
the smallest scales and the highest-order moments of the distribution. Indeed, we assume
that the power-law model for the spatial scaling of sea ice deformations has no physical
reason to not hold over several orders of magnitude. This assumption is based on Weiss15

and Marsan (2004) who showed that the power-law model for the spatial scaling of the
open water density, which can be directly related to sea ice divergence, is valid down to
0.2 km. Therefore, any significant departure from the power-law model when approaching
the spatial resolution of the data could be seen as an indicator of the remaining noise in the
deformation field.20

To perform the scaling analysis of sea ice deformation, we implemented a coarse graining
method similar to the one proposed by Marsan et al. (2004) and applied it to the unfiltered
and filtered versions of our RGPS Image Pair dataset. Sea ice shear and absolute diver-
gence rates are computed at different spatial scales ranging from 7 to 700 km. For the
lowest scale, which is also the scale of the triangular cells, all the cells are taken into ac-25

count. For the other scales, the coarse graining procedure covers the domain with boxes
of different sizes (14, 28, 56, 112, 224, 448 and 896 km). The boxes actually overlap each
other since a distance equal to half the box size separates their respective centers. For

14
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each box, we select the cells that have their center in the box. When the sum of the area
of those cells is greater than half the box area, the deformation over the box is defined by
averaging the spatial derivatives of the displacement weighted by the surface of each cell.
The spatial scale for this new estimate of the deformation is the square root of the sum
of the cell areas. The shear and absolute divergence for each box are then reported as a5

function of the spatial scale on a log-log plot (see Fig. 10 for the absolute divergence rate).
The mean value h✏̇

L

i (where ✏̇

L

is either the shear rates or the absolute divergence rates,
computed at scale L) relates to scale L following a power law. The power-law exponent is
evaluated by applying a linear regression of the logarithm of h✏̇

L

i vs. the logarithm of L. Due
to the finite size of the domain the power-law model is not expected to hold for the largest10

scales. For this reason we restrict the power-law regression of the data to the spatial scales
7, 14, 25, 50, 100 and 200 km.

The filtered shear and absolute divergence closely follows the power-law model for the
spatial scaling as their first order moments are well aligned with the power-law fit for the
spatial scales ranging from 7 to 200 km (see right panel of Fig. 10 for the absolute diver-15

gence). This is not the case for the unfiltered deformation fields (see left panel of Fig. 10)
and we explain this strong departure from the power-law model by the presence of artificial
noise. If the power-law fits were computed only from 50 to 200 km, spatial scaling expo-
nents would be similar for the filtered and unfiltered data. Furthermore, the other moments
h✏̇q

L

i of the distributions (see Fig. 11, for the absolute divergence rate, with q, the moment20

order, ranging from 0.5 to 3) computed from the unfiltered deformation fields also exhibit
a strong departure from the power law, whereas the moments computed from the filtered
deformation fields are well aligned with the power-law fits.

By definition, if a scaling holds for a given range of scales, it should be respected for any
pair of scales within this range. To evaluate the deviation from the power law scaling, we25

compute the power-law exponents for each pair of successive spatial scales (i.e. from 7
to 14 km, from 14 to 25 km, and so on) and we take the minimum and maximum values of
these exponents. Those values as well as the exponents previously obtained with the whole
range from 7 to 200 km are reported as a function of the moment order q in Fig. 12. The

15
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relationship between the power-law exponents and the moment order q is called the struc-
ture function �(q) and is defined by h✏̇q

L

i ⇠ L

��(q). The minimum and maximum exponents
define the bars around �(q).

To check that the reference values for the model parameters are well chosen, we look
at the deviation from the power law. This deviation is evaluated by the min–max error. For5

each moment order, the min–max error is defined as the difference between the minimum
and maximum exponents obtained with any pairs of spatial scales within the defined range.
It other words, it is the length of the bar drawn on Fig. 12. Applied to the composite fields
used as example here, we find that using a threshold for the total deformation of 0.02 per
day gives the lowest min–max error for the highest order. For the parameter n, the lowest10

min–max error for the highest moment order is obtained with n= 2, but n= 3 is better
for the other moment orders. The application of our metric to this single example tends to
indicate that the reference values are well chosen. However, this metric should be applied
to a larger number of examples to really identify the best values for the parameters.

3.2 Discussion15

Comparing the original RGPS deformation to the unfiltered deformation allows us to evalu-
ate the impact of using a triangulation to define well-shaped triangular cells. As in Lindsay
and Stern (2003), we observe unrealistic values for the shear and divergence rates retrieved
from the RGPS deformation dataset. For the period 2–10 February 2007, the composite
picture made from RGPS has maximum opening, closing and shear rates equal to 1.73,20

�6.73 and 66.47 per day, respectively. These extreme values arise from highly distorted
cells. A very small fraction of the dataset is polluted by these unrealistic values, however
it has a high impact on the multifractal scaling analysis, particularly when looking at the
highest moment orders of the distributions. In Marsan et al. (2004) and Stern and Lindsay
(2009), additional constraints on the initial and current size of the cells were applied and25

the cells with total deformation higher than 1 per day were not taken into account. In many
other studies based on the RGPS deformation dataset, the presence and impacts of these
unrealistic extreme values are simply not discussed.
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The simple fact of redefining a new mesh from the actual position of the RGPS nodes
allows us to avoid badly shaped cells and then to significantly reduce the number and mag-
nitude of extreme values. For the same period, the composite picture obtained from the un-
filtered version of our RGPS Image Pair dataset has maximum opening, closing and shear
rates equal to 0.63, �1.17 and 1.97 per day, respectively. The smoother also logically de-5

creases the extreme values. For this example, the filtered composite picture has maximum
opening, closing and shear rates equal to 0.13, �0.20 and 0.73 per day, respectively.

Comparing the filtered and unfiltered deformation allows us to analyze the impact of
the artificial noise. From the scaling analysis for the total deformation, shear and absolute
divergence, we found that the scaling exponents estimated from the unfiltered fields are10

systematically larger in magnitude by about 100% for the absolute divergence and by about
50% for the shear and total deformation. In the example corresponding to Fig. 10, the
power-law exponent for the absolute divergence is �0.38 for the unfiltered field, instead of
�0.20 for filtered data (for the shear: �0.17 instead of �0.1, and for the total deformation:
�0.19 instead of �0.12). For each moment, we observe that using unfiltered data leads15

to a systematic overestimation of the scaling exponents of about 100% for the absolute
divergence and 50% for the shear and total deformation. We also performed the multifractal
scaling analysis on the original RGPS deformation dataset with the same constraints on the
data as in Stern and Lindsay (2009) and we found that the departure from the power-law is
similar to the one observed for the unfiltered deformation data set.20

The impact of the artificial noise is also seen on the structure function �(q) (see Fig. 12).
As a consequence of the systematic overestimation of the scaling exponents, its curvature,
which indicates the degree of multifractality of the deformation fields, is found twice as high
for the unfiltered divergence field (0.20) than for the filtered one (0.11). For the shear and
total deformation, the overestimation of the curvature is about 50%, with a value of 0.1625

instead of 0.1.
Differences are also seen in the cumulative distribution of the closing and opening rates

(see Fig. 13, for the period 2–10 February 2007). Differences between the RGPS and the
unfiltered deformation may be due to differences in the coverage and the selection of the
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data, but also come from the difference in resolution (10 km for the RGPS instead of 7 km)
and from the impact of distorted cells included in the RGPS dataset. Differences between
the filtered and unfiltered deformation induce a modification of the shape of the distribution.
The distribution of the filtered divergence field is closer to an exponential distribution (lin-
ear in the semi-log plot), while the distribution of the unfiltered divergence field is clearly5

a stretched exponential.
Finally, we compare the three datasets by computing the total area that has been opened

and closed. For the original RGPS deformation data, 40 000 km2 have been opened during
the period 2–10 February 2007, whereas 39 000 km2 have been closed. For our unfiltered
data, we find lower values of 30 000 and 38 000 km2, respectively. For the filtered data these10

numbers drastically drop down to 15 000 and 24 000 km2, respectively. In this example
the artificial noise is then responsible of an overestimation of the opening and closing of
about 100 and 60%, respectively. Over the entire winter season 2006–2007, the cumulative
opening and closing are both 60% higher in the unfiltered data than in the filtered data.

4 Conclusions15

A method is proposed to derive accurate sea ice deformation fields from SAR-derived mo-
tion products. The first step of the method consists of a triangulation of the tracked points
to generate a mesh of triangular cells on which a first estimate of deformation is computed.
The second step consists of applying a smoother to the deformation fields. The method
relies on two parameters: a deformation threshold and the size of the smoothing kernel.20

By applying the method to idealized test cases, we show that using triangles instead of
quadrangles induces an increase of about 10 % of the opening and closing error, whereas
our smoothing method reduces the opening and closing error by at least a factor of 3 in any
of the test-cases presented here. The sensitivity to the value of the threshold used to detect
deformation features is analyzed with a quality index and the efficiency of our method is25

assessed using a metric based on a spatial scaling analysis and comparison between the
unfiltered and filtered deformation fields.
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The proposed method is used to produce a new deformation dataset called RGPS Im-
age Pair Product. Compared to the RGPS deformation dataset, the RGPS Image Pair
dataset does not exhibit unrealistic large values caused by badly shaped cells. Moreover,
our method drastically reduces the artificial noise arising along dynamic discontinuities.

By comparing the unfiltered and filtered deformation fields for winter 2006–2007, we es-5

timate that this artificial noise may cause an overestimation of the opening and closing of
about 60%. We also estimate that the spatial scaling exponents as computed in Marsan
et al. (2004) and Stern and Lindsay (2009) could have been overestimated by about 100%
for the absolute divergence and by about 60% for the shear and total deformation.

The findings of the present study indicate that errors in sea ice deformation fields re-10

trieved from SAR-derived motion may have been strongly underestimated, leading to po-
tential significant biases on the estimates of sea ice production, salt rejection and sea ice
ridging that one may find in the literature.

The method proposed here is applicable to other sea ice drift datasets, as provided, for
example, by GlobICE project. The method can handle Lagrangian trajectories or displace-15

ment between pairs of images. The same method could be applied to buoy trajectories
when their spatial resolution is high enough, as with nested arrays of buoys (Hutchings
et al., 2011, 2012).

The method proposed here could be modified to better manage intersecting cracks and
to adapt its parameters depending on the local fields. However, substantial improvements20

may also come by combining within tracking algorithms, the detection of dynamic disconti-
nuities and the computation of sea ice deformation as proposed by Thomas et al. (2008). A
complete validation using independent datasets should also be done.
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Figure 1. Example of the divergence (a, c, e) and shear (b, d, f) obtained for the single crack test
case at a normalized resolution of 0.1. The relative displacement parallel and normal to the crack
(black line) are set to 0.01 and 0, respectively. (a) and (b) correspond to the unfiltered deformation
fields, (c) and (d) to the deformation fields filtered with a classical smoothing kernel and (e) and
(f) to the deformation fields filtered with our smoother. Triangles in white show the kernel defined
for the triangle in green. With both smoothers the kernel corresponds to cells that can be reached
by crossing a maximum of n edges (here n= 7). The classical smoother takes all the cells into
account whereas our smoother only takes into account the cells whose deformation is above a given
threshold.
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Figure 2. Root mean square closing/opening error normalized by up and computed from 100 re-
alizations of the single crack (disks) and double cracks test cases (squares and triangles) at the
resolution 0.1. For all curves, up = 0.01.
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Figure 3. Example of the unfiltered (left panel) and filtered (right panel) divergence obtained for the
double cracks test case at a normalized resolution of 0.1. The domain is divided in 3 blocks. Points
below the principal crack are fixed. Points above the principal crack experiment

:::::::::
experience the same

displacement un, perpendicular to the principal crack (here un =�0.0025) but have distinct tangent
components, up for the block on the left (here up = 0.01) and u

0
p for the block on the right of the

secondary crack (here u

0
p = 0.0125). Triangles in white show the kernel defined for the triangle in

green. In this example, the parameter n is equal to 3.
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Figure 4. Unfiltered divergence rate computed from the RGPS sea ice trajectory dataset and corre-
sponding to the pair of images taken at tk�1 = 3 February 2007 17:44:00 UTC and tk = 7 February
2007 17:26:35 UTC.
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Figure 5. Unfiltered total deformation rate for the same example as in Fig. 4. Triangles in black are
above the threshold for the total deformation (here, 0.02 per day) and are then selected to be treated
by the smoother.
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Figure 6. Filtered divergence rate after the application of the smoother to the selected cells (see
Fig. 5). In this example, the parameter n is set to 3. The triangles that have been treated by the
smoother are those in black in Fig. 5. For the other triangles, the value of the deformation remains
the same as in Fig. 4.
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Figure 7. Composite picture of the divergence rate given by the RGPS deformation dataset for the
period 2–10 February 2007. RGPS cells are here represented by squares as their actual shape is
not known.
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Figure 8. Composite picture of the unfiltered divergence rate computed after the first step of our
method for the period 2–10 February 2007.
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Figure 9. Composite picture of the filtered divergence rate for the period 2–10 February 2007 ob-
tained with a threshold parameter equal to 0.02 per day and with the parameter n equal to 3.
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Figure 10. Scaling analysis: absolute divergence rate as a function of the spatial scale, from the un-
filtered (left panel) and filtered (right panel) composite deformation field for the period 2–10 February
2007 (each color corresponds to a different box size used for the coarse graining procedure). The
mean values h|✏̇div|i are represented by circles and the dashed lines are power-law fits of the first
six mean values (here, from 7 to 200 km)
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Figure 11. Multifractal analysis: moments of the absolute divergence rates h|✏̇div|qi as a function
of the scale L for q = 0.5 to 3, from the unfiltered (left panel) and filtered (right panel) composite
deformation field for the period 2–10 February 2007. Dashed lines are power-law fits of the first six
values (here, from 7 to 200 km).
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Figure 12. Structure function �(q) corresponding to the exponents of the power-law relationship
between the absolute divergence rate and the spatial scale: h|✏̇div|qi ⇠ L

��(q). The bars on the
graph indicate the deviation from the power law as they correspond to the minimum and maximum
power-law exponents obtained for two successive spatial scales.
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Figure 13. Cumulative probability functions, in other words the probabilities of exceedance, for the
RGPS, unfiltered and filtered composite divergence fields shown in Figs. 7–9, respectively.
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