
We present here the changes in the revised manuscript responding to the comments of the 
referees and corresponding to our previous replies during the interactive discussion. We further 
performed minor editorial corrections and completed or corrected four entries in the reference list. 
 
Reply to referee 1 (Referee’s comments in italic) 
1. Page 5046, line 14-16, Pokhrel et al, 2014 had not corrected the precipitation at Pyramid 
station, thus the corrected annual value in this paper cannot be compared with Pokhrel et al., 
2014. 
Pokhrel et al., 2014 was removed from the text (penultimate paragraph of chapter 2.4 Modeling) 
and the reference list. Instead, we included at the same place a brief comparison with the annual 
mean for the precipitation at PYRAMID on the order of 449 mm for the period 1994 to 2013 
presented by Salerno et al. (Weak precipitation, warm winters and springs impact glaciers of 
south slopes of Mt. Everest (central Himalaya) in the last two decades (1994-2013), Cryosphere 
Discuss. 8, 5911-5959, 2014). 
 
2. Page 5052, line 2-6; in this paper evaluation of the model is presented for point scale then why 
the point scale measurements show error for point scale validation. I would agree authors view if 
they simulate the impact on basin scale. 
The concerned paragraph was modified to stress the non-ideal conditions at the field site 
introducing additional variability in the observations used to force and validate the snow model: 
“However, the spatial variability of the meteorological as well as the snow conditions in the rugged 

terrain of the Himalayas cannot be captured by the point measurements used here to drive and 

validate the snow model. The atmospheric and snow observations at the field site may only 

represent localized conditions. We assume that the non-ideal conditions at the field site introduce 

additional variability that cannot be represented by the simulations. This variability as well as further 

uncertainties in the observations directly translates into errors in the snowpack simulations that can 

further explain the differences between simulations and observations.” 
 
3. Provide the table for the model parameters of the standard and upgraded Crocus model for the 
simulation of albedo. 
We repeat here our previous reply because we refrain from modifying the manuscript. The 
parameters used in the simulations with the standard Crocus model correspond to those 
described in Vionnet et al. (2012) and are summarized in their Table 4. Therefore, we believe it is 
not necessary to repeat the same numbers here. The upgraded Crocus model does not rely on a 
prescribed set of parameters, but calculates for each snow layer the optical properties according 
to the theory described by Warren and Wiscombe (1980) and Wiscombe and Warren (1980) 
using as input snow grain size, SWE, soil albedo, BC, dust, and the solar zenith angle (only for 
the top layer). To apply the equations of Warren and Wiscombe (1980) and Wiscombe and 
Warren (1980) the optical properties of the three materials ice, BC, and dust need to be 
calculated. They are based on fixed parameters and like in previous applications of the same 
module (Krinner et al., 2006; Ménégoz et al., 2013b), we used published optical properties for ice 
and assumed log-normal size distributions for BC and dust. All characteristic numbers for the 
properties of BC and dust are summarized on page 5045, but they represent completely different 
properties and are, thus, not comparable to the parameters presented by Vionnet et al. (2012). 
We prefer to keep this information in the text, but if requested by the editor this information can 
also be presented in a table. 
 
4. How the decay of the albedo is accounted in standard Crocus model. The large 
bias/overestimation in snow albedo is due to its poor representation of the decay of the albedo. 



Employment of more physically based scheme for decay of albedo is under-shadowed by the 
implementation of upgraded version of the model for black carbon and dust. Many albedo 
parameterization schemes were adopted for various land surface schemes. Please clarify the 
parameterization of old scheme vs. implementation of upgraded version. 
Like described in our previous reply there is no prescribed decay of the albedo as a function of 
snow age or similar, since the albedo relies on the simulated properties of the snowpack. We 
stress this point in the revised manuscript and changed the chapter “2.4 Modeling” to: “In the 

Crocus standard version the albedo is not prescribed, but parameterized using the snow grain size 

and age of only the uppermost layer of the snowpack (Vionnet et al., 2012).” and “In order to be able 

to study the impact of BC and dust on the snowpack with Crocus, we implemented a physically-based 

radiative transfer scheme without using prescribed albedo values.” 
Since the albedo in both model versions depends on the simulated properties a simple and 
straightforward comparison of the parameterizations is not possible. A reasonable direct 
comparison of the albedo is only possible for the derived albedo in the different model versions as 
done in Fig. 4. However, it must be noted that differences in the simulated albedo can only be 
directly linked to the parameterizations if the snowpack is the same (or at least very similar) in the 
model runs. As demonstrated for the period in Fig. 4, modeled snowpack properties quickly 
deviate and cause additional differences in the albedo as described in chapter 3.3 of the 
manuscript. 
 
5. The biases in albedo and snow depth is critical in the melting season. Please perform the 
analysis in the melting season similar to the analysis presented for 22-31 Jan 2005 (fig.4). 
Like described in detail in our previous reply a direct comparison of the albedo values in the 
different model runs is not straightforward because differences are not only due to the calculation 
of the albedo, but also due to differences in the simulated snowpack properties. This point could 
be overcome if snow observations were assimilated for the simulations. However, the needed 
detailed snowpack observations are not available for the field site. A more detailed comparison of 
the calculated albedo in the different model runs confirms the results described on page 5054. 
The differences in albedo for the different BC concentrations reach their maximum values at the 
end of the winter season and correspond to the upper limits already given in the manuscript on 
page 5054. 
 
6. What is the reason for the large discrepancy of albedo decay even for the upgraded model as 
presented in Fig.5. 
We assume that the major reason is the overestimation of the duration with snow on the ground 
and the snow height. These two parameters are strongly linked to the total precipitation and the 
fraction of solid precipitation. Here, large uncertainties remain as described in the methods 
section. Improved observations and further simulations are certainly needed to arrive at a fully 
validated snowpack model for the Himalayas. Further details were given in our previous reply. 
 
7. Please present the analysis of simulated vs observed soil temperature as soil temperature has 
larger effect on shallow snowpack, mainly in the melting season. How the initial condition for soil 
parameters were provided, please clarify. 
As described in our previous reply, soil temperatures are not needed in the used stand-alone 
version of Crocus. However, a comparison with preliminary ground heat fluxes revealed 
reasonable agreements between simulated and observed values. Nevertheless, the 
parameterization of the heat fluxes can introduce additional uncertainty in the simulation 
especially early and late in the winter season. Therefore, we added the sentence “Furthermore, 

the parameterization of the ground heat fluxes in the Crocus model may not be well adapted to the 



conditions of the Himalayas possibly contributing to the over-estimation of the snowpack especially 

late and early in the winter season.” to the second paragraph of chapter “4. Conclusion”. 
 
8. Are threshold air temperature parameter (for separation of precipitation into rainfall and 
snowfall) and fresh snow density parameters sensitive? If so, it is better to show quantitative 
analysis of their effect on snowpack simulation as these parameters are the drivers for the 
correction of snowfall. 
With the few available observations a development of a more sophisticated method to estimate 
the solid precipitation remains difficult and uncertain. In our opinion a better estimation of solid 
precipitation for this sensitive region is certainly needed and should be developed also for further 
applications like done for other high altitude regions (see our previous response for more details). 
However, this is beyond the scope of the current manuscript. In chapter “4. Conclusions” we 
added “This mainly concerns measurements of the total and solid precipitation, which are crucial 

parameters in snowpack and hydrological modelling for this sensitive region.”  
 
9. Please discuss a little about the future strategies for improving the simulation of 
albedo besides enhanced field observations. 
We extended the discussion of needed improvements in the conclusions: “A heterogeneous 

distribution of absorbing compounds within the snowpack may induce stronger temperature 

gradients inside the snowpack further accelerating the snow metamorphism compared to a 

snowpack with homogeneous concentrations as assumed in our simulations. Differing concentrations 

can be caused by processes during the melting of the snowpack as described above. Since the 

absorbing compounds are introduced by dry and wet deposition, concentration gradients inside the 

snowpack can be expected even in the not-melting snowpack. Moreover, these gradients can be 

different for different absorbing compounds. Vertical profiles of the absorbing compounds need to 

be determined to address this point. If it can also have a profound impact on the snowpack 

simulations remains to be seen and will be the subject of further studies. 

The simulations with the Crocus model reveal further that dust and probably also other absorbers 

play a strong role not only for the snow albedo itself, but also for the impact of BC. While the impact 

of a given amount of an absorber on the snow albedo diminishes with the presence of more 

impurities, this is the opposite case for the increase of snow-free days and the radiative forcing. 

Here, the simulations demonstrated that the presence of other absorbers like dust even enhances 

the effect of the addition of BC. Therefore, in the future the role of dust in the snow needs to be 

studied together with the role BC and a correct determination of dust and its properties parallel to 

the determination of BC in the snow is needed. Organic absorbers in the snow may also play a role 

(Wang et al., 2013) similar to dust and should also be considered in further studies. In summary, a full 

characterization of all absorbing compounds and their different contributions seems necessary to 

study the full impact of these compounds on the snow albedo and further related snow properties 

and processes.” 

 
10. Corrections in citation: a. Line 25-27; Kaab et al, 2012 and Menegoz et al 13a do not discuss 
about black carbon. b. Page 5039, line 9; Immerzeel et al, 2010 also does not discuss about BC, 
please reorganize the sentence. 
Like mentioned in our previous reply, we disagree with the above comments and did not modify 
the manuscript. 
 
c. Shresta should be replaced by Shrestha throughout the manuscript 



This is corrected in the revised manuscript. 
 
 
Reply to referee 2 (Referee’s comments in italic) 
My major concern is that the model Crocus seems to fail to simulate the snow albedo, seeing 
Figure 4 and Figure 5. In Figure 4, the differences between the observed and simulated albedos 
are very large under standard and different BC concentrations. In Figure 5, the model seems to 
be not able to correctly describe the albedo decay with BC involved, and even in the area around 
1/2/2005, the figure does not clearly clarify the observed albedo and simulated albedo with BC, 
which should be amplified and further described after comparisons. If the model does fail to 
simulate the snow albedo, all the discussions regarding the impact of BC on albedo will make no 
senses, which should be carefully addressed. 
Unfortunately, the comment about the differences in the observed and simulated albedo remains 
vague. In our previous response we explained why we believe that in general the simulated 
albedo using the upgrade Crocus model is in agreement with the observations. Of course, large 
differences persist. But these are mainly due to deviations regarding the overall simulation of the 
seasonal snowpack. We would like to note that in previous snow model comparison projects 
Crocus was identified as one of the most realistic snow models (e.g. Etchevers et al., 2004). 
Further details have been presented in our previous response, which is copied here. 
We are surprised that the referee judges the differences between observed and simulated albedo 
in Fig. 4 as “very large”. We calculated the average differences between simulated and observed 
albedo for the period shown in Figure 4 (22 – 31 January 2005). The average differences for the 
entire period are 1.9, -1.2, and -5.1 In contrast, we fully agree that the differences in the observed 
and simulated albedo shown in Figure 5 are large for the period beginning around mid-February 
and they are very large at least for the period after early March. In our opinion there are multiple 
reasons that explain these differences as described in the reply to a similar comment of referee 1, 
which is repeated here. The large discrepancy is mainly linked to the overestimation of the 
duration with snow on the ground and the snow height. While the maximum observed snow 
height remained below 40 cm, the simulated maximum heights were in most runs higher. As a 
result, the simulated snow remained much longer on the ground compared to the observations 
causing the large differences in the albedo later in the winter season. The overestimation of the 
snow height and duration can be due to many different reasons, the most important may be an 
overestimation of the precipitation and/or an overestimation of the fraction of solid precipitation. 
Other factors may also contribute like the spatial variability as mentioned in the manuscript, the 
ground heat flux as raised by the referee, or a bias in the simulations of the turbulent fluxes. 
Further modifications and applications of the Crocus model are certainly needed before it can be 
considered as a fully validated model for the Himalayas. However, these tests are beyond the 
scope of this manuscript. The deviations between the simulated snow properties and the 
observations certainly introduce additional uncertainty into the simulated snow cover duration and 
radiative forcing. We will further underline this in a revised manuscript. Nevertheless, we believe 
that the presented observations, new model developments and applications contribute to a better 
understanding of how the seasonal snowpack reacts to the presence of absorbers and how these 
processes may impact the regional climate in the high altitude region of the Himalayas. 
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Abstract 

Black carbon (BC) in the snow in the Himalayas has recently attracted considerable interest due to its 

impact on snow albedo, snow and glacier melting, regional climate and water resources. A single 

particle soot photometer (SP2) instrument was used to measure refractory BC (rBC) in a series of 

surface snow samples collected in the upper Khumbu Valley in Nepal between November 2009 and 

February 2012. The obtained time series indicates annual cycles with maximum concentration before 

the onset of the monsoon season and fast decreases in rBC during the monsoon period. Measured 

concentrations ranged from a few ppb up to 70 ppb rBC. However, due to the handling of the 

samples the measured concentrations possess rather large uncertainties. Detailed modeling of the 

snowpack including the measured range and an estimated upper limit of rBC concentrations was 

performed to study the role of BC in the seasonal snowpack. Simulations were performed for three 

winter seasons with the snowpack model Crocus including a detailed description of the radiative 



transfer inside the snowpack. While the standard Crocus model strongly overestimates the height 

and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new 

radiative transfer scheme enhanced the representation of the snow. However, the period with snow 

on the ground neglecting BC in the snow was still over-estimated between 37 and 66 days, which was 

further diminished by 8 to 15 % and more than 40 % in the presence of 100 or 300 ppb of BC. 

Compared to snow without BC the albedo is on average reduced by 0.027 and 0.060 in the presence 

of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for 

clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an 

even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the 

snowpack caused by a more efficient metamorphism of the snow due to an increasing size of the 

snow grains with increasing BC concentrations. The melting of the winter snowpack was shifted by 3 

to 10 days and 17 to 27 days during the three winter seasons in the presence of 100 and 300 ppb BC 

compared to clean snow, while the simulated annual local radiative forcing corresponds to 3 to 4.5 

and 10.5 to 13.0 W m
-2

. An increased sublimation or evaporation of the snow reduces the simulated 

radiative forcing leading to a net forcing that is lower by 0.5 to 1.5 W m
-2

, while the addition of 10 

ppm dust causes an increase of the radiative forcing between 2.5 and 3 W m
-2

. According to the 

simulations 7.5 ppm of dust has an effect equivalent to 100 ppb of BC concerning the impact on the 

melting of the snowpack and the local radiative forcing. 

 

1 Introduction 

Black carbon (BC) constitutes the most important light-absorbing aerosol in the atmosphere, where it 

contributes to the warming of the atmosphere (Bond et al., 2013). It further affects cloud formation 

either acting as cloud nuclei or increasing the evaporation rates in cloudy layers. It is formed during 

incomplete combustion processes and mainly emitted due to natural and anthropogenic sources like 

biomass burning or fossil fuel and biofuel combustion (Bond et al., 2013). If BC is incorporated in 

snow, it can lead to further warming due to its impact on the albedo of snow and ice causing an 

accelerated melting (e.g. Hansen and Nazarenko, 2004; Flanner et al., 2007; Ménégoz et al., 2014). 

BC is also a strong pollutant, dangerous for human health and the environment, and is considered as 

an important short-lived climate forcer. Therefore, reductions in BC emissions can potentially lead to 

a fast climate response, in particular for regions where elevated BC concentrations are observed. The 

global annual climate forcing of BC in the atmosphere and in the snow remains uncertain with the 

most recent estimates ranging from +0.64 (± 0.4) to +1.1 W m
-2

 (with a 90% uncertainty range from 

+0.17 to 2.1 W m
-2

) (Stocker et al., 2013; Bond et al., 2013). 

Since regional warming due to BC can be much stronger than the global average, the Himalayas have 

become of great interest. The extended cryosphere in the high altitude regions of the Himalayas 

including numerous glaciers (Kääb et al., 2012) and extended snow-covered regions (Ménégoz et al., 

2013a) is expected to be especially vulnerable because of the vicinity of large anthropogenic BC 

sources on the Indian sub-continent or in South-East Asia and high radiation intensities. Xu et al. 

(2009) proposed that BC in snow contributes to the retreat of glaciers observed in parts of the 

Himalayas, while Ramanathan et al. (2007) suggested that BC transported to the Himalayas 

contributed to the melting of the snow. If BC has an impact on the glacier mass balance as well as on 

the timing of the run-off formation due to the snow melt in springtime, this would have implications 

on the hydrological cycle, water resources, hydropower generation, and agriculture in the 



downstream regions possibly affecting the living conditions of a population of more than a billion 

people (e.g. Immerzeel et al., 2010). Changes in the cryosphere may further modify sensible and 

latent heat fluxes affecting also the Asian monsoon (Lau and Kim, 2006; Qian et al., 2011). 

Measurements at the Nepal Climate Observatory at Pyramid (NCO-P) carried out since 2006 at 5079 

m a.s.l. have confirmed that aerosols including BC can effectively be transported from the source 

regions to the high altitude regions of the Himalayas (Bonasoni et al., 2010; Marinoni et al., 2010). Ice 

cores and surface snow samples from different locations in the Himalayas (Ming et al., 2008; Kaspari 

et al., 2011; Ginot et al., 2014) and on the Tibetan Plateau (Ming et al., 2009; Xu et al., 2009) 

demonstrated that BC and other absorbing impurities like dust are efficiently incorporated into the 

snow. Based on ice core data, reductions in the snow albedo were estimated (Ginot et al., 2014) 

assuming that the profile of the ice core concentration directly correspond to the evolution of the BC 

concentration in the surface snow layer. Furthermore, the transport of BC from the source regions 

and its deposition to the snow was calculated using different global transport and chemistry models 

(Flanner et al., 2007; Kopacz et al., 2011; Ménégoz et al., 2014). These studies resulted in an 

estimated annual radiative forcing due to BC in snow between 7 and 12 W m
-2

 close to the Mt. 

Everest (Kopacz et al., 2011) and between 1 and 4 W m
-2

 in the snow-covered areas of the Himalayas 

(Ménégoz et al, 2014), while peak values in the monthly radiative forcing exceeded 15 to 25 W m
-2

 

for some parts of the Tibetan plateau (Flanner et al., 2007; Kopacz et al., 2011; Qian et al., 2011). 

However, large uncertainties in the calculated radiative forcing remain because of the low spatial 

resolution of the used global models preventing a precise representation of the high altitude regions 

and the pronounced topography of the mountain range. These model limitations constrain a 

multitude of simulated processes including local-scale flow, transport of water vapor and aerosols, 

precipitation, and snow cover formation and melting (Ménégoz et al., 2013a), which are crucial in 

obtaining a correct radiative forcing for BC in snow. It has been demonstrated that these deficits can 

cause an overestimation of the snow cover on the Tibetan Plateau producing also a likely positive 

bias in the estimated radiative forcing for BC in snow in this region (Ménégoz et al., 2013a, 2014). 

Moreover, some models generate significantly higher BC in snow concentrations compared to the 

few available observations in the Himalayas and on the Tibetan Plateau (Flanner et al., 2007; 

Ménégoz et al., 2014). However, the limited BC in snow measurements make it difficult to get a 

reliable idea of the spatial distribution, seasonal cycle, and inter-annual variability of BC in snow in 

this vast and complex region greatly diminishing our capability to validate model results (Qian et al., 

2011). 

It is well known that BC is not the only absorbing impurity in the snow in the high altitude region of 

Tibet and the Himalayas. High concentrations of dust have been observed in the atmosphere (e.g. 

Carrico et al., 2003; Duchi et al., in press) and in ice cores (Thompson et al., 2000; Kaspari et al., 2011; 

Ginot et al., 2014). In the atmosphere, Duchi et al (in press) reported the frequency of dust transport 

events at NCO-P with a maximum during the pre-monsoon period causing on average a 10-fold 

increase of PM10 compared to days without identified dust events. While the absorption of solar 

radiation due to dust is much less efficient compared to BC, this is at least partly compensated by 

much higher concentrations. Ginot et al. (2014) found dust concentrations up to almost 70 ppm and 

an average concentration throughout all seasons around 10 ppm in an ice core from the Mera 

glacier, which is significantly higher than any observed concentration of BC or elemental carbon (EC) 

in snow in this region (Ming et al., 2008, 2009; Xu et al., 2006; Kaspari et al., 2011; Ginot et al., 2014). 



The presence of absorbers in the snow has multiple impacts on the properties of the snow, which 

finally contribute to the radiative forcing (Painter et al., 2007; Flanner et al., 2007). The first order 

impact is related to the direct reduction of the snow albedo due to the incorporation of the 

absorbers in the snow. A second order impact is linked to the fact that the reduction of the albedo 

leads to a stronger warming of the snowpack compared to the clean snow causing a faster 

metamorphism (or snow aging) and, thus, a more efficient growing of the snow crystals. Since larger 

snow crystals lead to a smaller albedo, this effect leads to a further reduction of the albedo of the 

snowpack. Nevertheless, the forcing related to changes in the albedo remains small compared to the 

positive radiative forcing induced by the earlier exposition of the underlying soil caused by an 

accelerated melting of the warmer snow containing BC. To study in detail these multiple impacts of 

the absorbing impurities on the processes and properties of the snow a detailed physical snowpack 

model like Crocus with sufficient complexity is needed (Brun et al., 1989, 1992; Vionnet et al., 2012). 

Crocus is capable to calculate the internal energy budget of the snowpack, to resolve temperature 

gradients inside the snowpack, and to simulate the metamorphism of the snow. However, the 

standard model version does not allow considering absorbing impurities like BC or dust for the 

calculation of the albedo. 

Here, we report multi-annual measurements of BC in surface snow sampled on the southern slopes 

of the Himalayas close to NCO-P. We compare the snow concentrations with simultaneous 

atmospheric measurements to investigate the role of wet and dry deposition. Moreover, we present 

the Crocus snowpack model with an upgraded radiative transfer scheme to study the impact of BC 

and dust in snow. Forced with three years of meteorological observations from the Pyramid 

International Laboratory (close to NCO-P) and with observed BC and dust concentrations, the model 

was used to study the impact of the two absorbing impurities on snow metamorphism, melting, and 

local radiative forcing. The model results including sensitivities of the melting and radiative forcing 

due to the presence of BC and/or dust in the snow are presented and compared to previous large-

scale model studies. 

2 Methods 

2.1 Snow sampling 

56 samples of surface snow were collected in Nepal during the period from 13 November 2009 to 29 

February 2012 at three different locations in the Khumbu region south of the Mount Everest: At 

NCO-P (27.96° N, 86.81° E; 5079 m a.s.l.) and on the glaciers Changri Nup (27.98° N, 86.76° E; 5700 m 

a.s.l.) and Pokalde (27.93° N; 86.83° E; 5600 m a.s.l.) (Fig. 1). In most cases snow from the top layer 

(≤10 cm) was collected and transported to France. Using field notes, observed precipitation and snow 

height at NCO-P, 51 of the available snow samples were classified into fresh snow (i.e. snowfall 

within 24 h before sampling) and old snow. Five samples remained unclassified. 

2.2 Snow sample analysis and handling 

The snow samples were analyzed using a Single Particle Soot Photometer (SP2, Droplet 

Measurement Technologies, US) to determine refractory BC (rBC) particles. Details of the analytical 

procedure are described in Lim et al. (2014). The SP2 applies a laser-induced incandescence 

technique to measure the mass of individual rBC particles (Schwarz et al., 2006) independent of 



particle morphology and light-scattering coating materials (Moteki and Kondo, 2007, 2010). Each rBC 

particle passes through the laser beam intra-cavity, where it absorbs light, reaches a vaporization 

temperature, at which it incandesces, and emits visible thermal radiation proportional to the mass of 

the individual particles. The SP2 is highly sensitive to rBC particles, but much less to other absorbing 

particles like dust. It was calibrated with fullerene soot (Alfa Aesar Inc., USA), a standard BC material 

of known single particle mass aggregating primary particles with graphitic structure. A new nebulizer 

(APEX-Q, Elemental Scientific Inc., Omaha, USA) was used to increase the efficiency, with which the 

rBC particles in the snow were transferred to the gas phase. The rBC losses during aerosolization 

were determined using eight liquid Aquadag® standards resulting in an average efficiency of 56 %, 

which was applied to all here reported BC concentrations. 

All snow samples melted during transport from the field sites to France. They were stored at < 5 °C 

until analysis in April 2012. Before analysis, the samples were sonicated for 15 minutes to minimize 

rBC losses on the container wall. Five selected samples were re-analyzed almost two years later to 

evaluate the rBC particle loss during long-term storage of the samples in liquid form. The samples 

showed decreases in detected rBC concentrations between 0 and 80 %, which is probably related to 

particles attachment on the container wall and the agglomeration of particles. The loss during 

storage was not straightforward and seemed to be highly variable depending on storage time and 

rBC concentration. Therefore, all measured concentrations are presented here without any further 

correction for potential rBC losses during transport or storage and should be considered as minimum 

values. 

2.3 Meteorological data and atmospheric BC 

Meteorological parameters have been recorded at Pyramid International Laboratory close to NCO-P 

since 1994, radiation and snow depth since 2002. Moreover, continuous measurements of 

atmospheric BC concentrations have been performed at NCO-P using a Multi-Angle Absorption 

Photometer since 2006. Further details of the instrument set-up and the calculation of equivalent BC 

concentrations are described by Marinoni et al. (2010). 

2.4 Modeling 

Simulations were performed with the 1-dimensional multi-layer physical snowpack model Crocus 

(Brun et al., 1989, 1992; Vionnet et al., 2012), which explicitly solves the surface mass and energy 

budgets taking into account heat diffusion, transfer of radiation, densification, sublimation, 

condensation, melting, and liquid water percolation in the snow. The model is forced using 

meteorological data like air temperature, wind speed, relative humidity, precipitation quantity and 

phase, incoming direct and diffuse solar radiation, incoming long-wave radiation, and cloud cover. 

The simulated snowpack consists of multiple homogeneous horizontal layers, which are established 

according to snowfall events undergoing transformation related to a metamorphism scheme. It 

calculates physical properties of each modeled snow layer including thickness, temperature, density, 

liquid water content, snow type, grain size, and age. The model further computes budgets of the 

snowpack like total height, run-off, latent and sensible heat fluxes, and fluxes of infrared and short-

wave radiation. 



In the Crocus standard version the albedo is not prescribed, but parameterized using the snow grain 

size and age of only the uppermost layer of the snowpack (Vionnet et al., 2012). The albedo is 

subsequently applied to calculate the absorbed amount of incoming radiation, while the penetration 

of the absorbed radiation is simulated using absorption coefficients estimated from the density and 

grain size of each snowpack layer. 

The standard albedo parameterization does not offer the possibility to account for the presence of 

absorbing impurities. In order to be able to study the impact of BC and dust on the snowpack with 

Crocus, we implemented a physically-based radiative transfer scheme without using prescribed 

albedo values. We employed the theory of Wiscombe and Warren (1980) and Warren and Wiscombe 

(1980) based on a module previously used in the land surface scheme ORCHIDEE for simulations with 

the global model LMDZ (Krinner et al., 2006; Ménégoz et al., 2013b, 2014). Starting with a fixed soil 

albedo, the albedo for diffuse radiation is calculated at the top of the bottom snow layer using snow 

water equivalent (SWE), grain size, and BC and dust concentrations of this layer. The same procedure 

is applied for the overlying snow layers until the surface layer is reached. For the surface layer, the 

albedo for direct radiation is calculated taking into account the solar zenith angle. The albedo for 

diffuse and direct radiation was separately combined with the incoming direct and diffuse radiation 

to calculate the overall amount of absorbed radiation. Since the albedo calculation for the diffuse 

radiation delivers also absorption coefficients, these were used to calculate the amount of radiation 

energy absorbed in each snow layer assuming that within the top snow layer all direct radiation was 

transformed into diffuse radiation. We used the same optical properties for ice like Krinner et al. 

(2006). For BC we assumed a log-normal size distribution with a median number radius of 11.8 nm, a 

density of 1 g cm
−3

, and a refractive index of m=1.75–0.45 i (Ménégoz et al., 2013b); for dust a log-

normal size distribution was used with a median mass diameter of 2 μm and a refractive index 

according to its haematite content (Krinner et al., 2006). Using these typical, but fixed properties for 

BC and dust may lead to an underestimation of the impact of the aerosols on the simulated albedo 

mainly because the model only considers externally mixed aerosols (Flanner et al., 2012). 

Nevertheless, the derived BC mass absorption cross section of 7.6 m
2
 g

−1
 at 545 nm corresponds to 

previously published values (Bond and Bergstrom, 2006; Flanner et al., 2007). Since the standard 

version of Crocus considers three different wavelength ranges for the albedo and the absorption 

coefficient, the values derived from the radiative transfer module were also averaged for the same 

bands from 300 to 800 nm, 800 nm to 1.5 μm, and 1.5 to 2.8 μm. 

For our simulations we used observations covering the period August 2004 to July 2007 obtained at 

an altitude of 5050 m a.s.l. at Pyramid Laboratory to construct the needed forcing data. Quality 

controlled 1-hour averages for temperature, wind speed, humidity, and radiation were used without 

further correction. However, it is well known that the observed precipitation significantly 

underestimates solid precipitation (Bonasoni et al., 2010; Shrestha et al., 2012). Accordingly, the 

observed snow height shows for several instances strong increases while no simultaneous 

precipitation was recorded as already described by Shrestha et al. (2012). As a result, preliminary 

simulations with the standard and upgraded Crocus model with the recorded precipitation did not 

lead to the built-up of a significant snowpack. Therefore, a corrected precipitation data set based on 

the observed snow height was constructed and employed for all further snowpack simulations. If the 

snow height showed an increase while no precipitation was detected, the increase in snow height 

was transformed into accumulation using a density of fresh snow of 0.08 g cm
-3

. Using such a density 

led to a good agreement of simulated and observed increases in the snowpack height during the 



2004/05 winter season. Since the detector of the snowpack height showed regular fluctuations 

around ±1 cm, only increases in height larger than 1 cm were considered (Shrestha et al., 2012). In 

addition, the snow height sensor recorded several peaks with strong increases in height and 

subsequent large decreases of several tens of cm within hours or days. These peaks were removed 

after visual inspection of the time series. Finally, the phase of the precipitation was estimated using 

observed air temperatures with only solid precipitation at Tair < 0°C, only liquid precipitation at Tair > 

+2°C, and mixed phase precipitation with 50 % solid precipitation in the remaining temperature 

range. A comparison of recorded and corrected time series of precipitation is shown in the 

supplementary material (Figs. S1a to S1c). After applying the corrections the estimated total annual 

precipitation corresponds to 491.7 mm (41 % solid precipitation), 423.8 mm (55 % solid 

precipitation), and 454.8 mm (51 % solid precipitation) for the years 2004/05, 2005/06, and 2006/07 

compared to recorded total precipitation of only 360 mm (2004/05), 231 mm (2005/06), and 304 mm 

(2006/07). The corrected annual values are in excellent agreement with an estimated multi-year 

average of the annual precipitation of ~450 mm at NCO-P for the period 1994 to 2013 (Salerno et al., 

2014). 

In the Crocus simulations, the fraction of cloud cover is used to determine the contribution of direct 

and diffuse radiation to the total incoming radiation. For the simulations, the cloud cover fraction 

was set to 0 (= clear sky) if the ratio between observed and theoretical incoming solar radiation was 

larger than 0.8, to 0.5 (= cloudy) if the ratio was between 0.2 and 0.8, and to 1 (= overcast) if the ratio 

was below 0.2. Based on these derived cloud fractions, the observed incoming short-wave radiation 

was divided into direct and diffuse radiation using the same parameterizations as in the Crocus 

model. As a result the total incoming radiation for the forcing of the model corresponds exactly to 

the measured values. The estimated cloud cover only affects the distribution between direct and 

diffuse radiation, which has a slightly impact on the calculation of the albedo as described above. 

 

3 Results and discussion 

3.1 BC concentrations in surface snow 

Observed rBC concentrations are highly variable and range from less than 0.1 to more than 70 ppb 

(Fig. 2). Calculated average and median concentrations using all samples correspond to 10 and 1.5 

ppb. As described in the Methods section, the reported concentrations are potentially 

underestimating the real BC concentrations. Nevertheless, the increases in the reported 

concentrations during the dry seasons 2009/2010 and 2010/2011 are well beyond the uncertainty of 

the measurements, which can be as high as a factor of 5. Despite this uncertainty and the high 

variability, we conclude that the concentrations follow a seasonal cycle with low values in the post-

monsoon and winter season and higher concentrations in the pre-monsoon culminating at maximum 

concentrations before the onset of the monsoon. 

Regarding snow types, we obtained somewhat higher concentrations in the old snow samples 

(average 15 ppb, median 3 ppb) compared to the fresh snow samples with average and median 

concentrations of 5 and 1.3 ppb. However, these differences and also differences between the 



sampling sites remain questionable because they are small compared to the uncertainty of the 

measured rBC concentrations. 

Lower rBC concentrations were measured by Kaspari et al. (2011) in an ice core from the East 

Rongbuk Glacier at 6500 m a.s.l. close to the Mt. Everest using the same analytical method. They 

found average concentrations of (0.7 ± 0.1) ppb for the period 1975 to 2000 and a maximum 

concentration of 32 ppb. However, the same uncertainty in the measured rBC concentrations as for 

our samples due to the sample handling applies to the data reported by Kaspari et al. (2011). 

Finally, the concentrations reported here are lower compared to the results for EC obtained with the 

thermo-optical method for snow and ice core samples from the high altitude region of the Himalayas 

and the Tibetan Plateau. For example, Ming et al. (2008, 2009) reported EC concentrations between 

2 and 981 ppb in surface snow samples from West China for the period 2004 to 2006 and average 

concentrations around 20 ppb in an ice core section covering 1995-2002 extracted from the East 

Rongbuk Glacier. Higher EC values compare well to a comparison of EC and rBC measurements using 

the same snow samples from Nepal leading to an average EC-to-rBC ratio of 3.4 (Lim et al., 2014). In 

contrast, comparable results were obtained by Xu et al. (2006), who reported a range of EC 

concentration between 4 and 80 ppb in surface and fresh snow samples collected between 2001 and 

2004 on various glaciers on the Tibetan Plateau. 

The seasonal cycle in the surface snow corresponds well to the rBC concentration profile measured in 

an ice core retrieved from the Mera glacier at 6376 m a.s.l. (Ginot et al., 2014). While minimum rBC 

concentrations are similar, maximum concentrations in the ice core remained smaller probably due 

to lower deposition at higher altitudes. For comparison, the results of the overlapping period in the 

ice core and surface snow samples are shown in Fig. 2. Low concentrations of 0.35 ppb were found in 

the surface snow corresponding to the November layer, which is absent in the rest of the ice core 

due to efficient erosion during the following winter season. 

The surface snow samples as well as the Mera ice core reveal the impact of wet and dry deposition 

responsible for the incorporation of rBC into the snow and strong links with the seasonal cycle of 

precipitation and atmospheric BC concentrations as recorded at NCO-P (Figs. S1a to c, 2). It seems 

that wet deposition due to the accumulation of fresh snow leads to relatively small concentrations of 

rBC around 1 ppb. However, in the case of snowfall during the pre-monsoon season, when 

atmospheric BC concentrations are high, rBC concentrations in fresh snow can increase to more than 

10 ppb. Additional dry deposition of rBC seems to have a relatively small impact during the winter 

period and old snow exposed at the surface contains relatively low rBC amounts. Maximum rBC 

concentrations are reached again in the pre-monsoon season potentially combining large inputs due 

to wet and dry deposition. Yasunari et al (2013) estimated BC concentrations in surface snow using 

deposition velocities calculated with meteorological measurements at NCO-P and atmospheric 

measurements of equivalent BC. Considering only dry deposition they obtained concentrations 

between 90 and 130 ppb in old snow for a continuous snowpack until end of May. The observed rBC 

maxima are somewhat lower than these values, possibly because the seasonal snowpack at NCO-P 

melts earlier and some of the BC is lost due to the handling of the samples. 



3.2 Snowpack modeling: Standard vs. upgraded model 

Although the Crocus model has so far been used in different alpine and polar regions (e.g. Jacobi et 

al., 2010; Brun et al., 2011; Vionnet et al., 2012), it has to our knowledge never been applied to 

simulate the seasonal snowpack in the Himalayas. Recently, a modified version of the model was 

employed to simulate the snow on top of a debris-covered glacier in the Khumbu Valley (Lejeune et 

al., 2013). To examine the performance of the two model versions, we first compared the results of 

the standard Crocus model and the upgraded version including the radiative transfer for the seasons 

2004/05, 2005/06, and 2006/07 applying the forcing data based on the observations at the Pyramid 

site. The simulated snowpack heights for the season 2004/05 are shown in Fig. 3 (and for the seasons 

2005/06 and 2006/07 in the Supplementary material, Figs. S2a and b). In all three winter seasons, the 

standard Crocus model largely overestimates the period with snow on the ground (Figs. 3, S2a and 

b). For example, Crocus predicts the formation of a continuous snowpack starting on 14 October 

2004 and lasting until 4 January 2005 due to several small snowfall events in October and November. 

However, the snow height records and albedo measurements show that during this period the fresh 

snow regularly melts within a day after precipitation. The onset of the seasonal winter snowpack 

corresponding to the longest period with continuous snow on the ground at the end of January 2005 

is well represented by Crocus because the observed snowpack heights are used to construct the 

precipitation time series. In contrast, observed snowpack heights start to decrease mid-February 

2005, interrupted only by additional accumulation in mid-March, until the snow disappeared before 

the end of March 2005. In contrast, the winter snowpack remains intact in the Crocus simulations 

until end of May 2005, before it melts completely on 10 June 2005. In summary, while the observed 

total period with snow on the ground (defined as an observed snow height > 2 cm) corresponds to 78 

d, the standard Crocus model predicts a period of 238 d with snow on the ground. The period with 

snow on the ground is similarly overestimated by Crocus for the years 2005/06 and 2006/07 with +91 

and +157 d compared to the observations (Figs. S2a and b). 

The positive bias is strongly reduced using the upgraded Crocus model including the radiative 

transfer even without considering any absorbing impurity. During these simulations the snowpack 

shows a much stronger dynamic with faster drops in the snow height compared to the standard 

model. Moreover, fresh snow in the fall and early winter season is not conserved for more than 24 h 

(Figs. 3 and S2a) or melts in agreement with the observed snow heights (Fig. S2b). The simulated 

duration of the snow cover is reduced between 54 and 103 d compared to the standard Crocus 

model. Nevertheless, the period with snow on the ground is still overestimated by 57, 37, and 66 d 

for the years 2004/05, 2005/06, and 2006/07 relative to the observations. 

The obvious reason for the different behavior of the standard and the upgraded model is related to 

the calculated albedo and the corresponding energy absorbed by the snowpack. Figure 3 shows a 

comparison of the simulated albedo together with observed albedo calculated from the ratio of the 

up- and down-welling shortwave radiation for 2004/05. Strongest differences between observed and 

simulated albedo concerning all model results are related to the overestimation of the simulated 

periods with snow compared to the observations without snow. Nevertheless, Fig. 3 also illustrates 

the differences in the simulated albedo of the two different model versions. In the standard model, 

the albedo rises with each precipitation event to values around 0.9 before it slowly decreases due to 

the albedo parameterization related to the aging of the snow. Since only the properties of the top 

snow layer are considered in the standard model, the simulated albedo is not affected by the 



thickness of the snowpack and the parameterized albedo is similar regardless of the snow height. In 

contrast, the effect of a thin snowpack is much better reproduced by the upgraded model including 

the radiative transfer inside the snowpack. Here, the SWE of each snowpack layer is an important 

variable and leads in the case of a thin snowpack to strongly reduced albedo values as can be seen in 

the cases of snowfall before December 2004 or after June 2005 (Fig. 3). During these events the 

simulated albedo remains between 0.2 and 0.7 causing a stronger absorption of the incoming solar 

radiation and, thus, a complete melting of the snow. In all model versions, the precipitation in late 

January leads to the formation of the seasonal winter snowpack (Fig. 2) with an albedo between 0.6 

and 0.9. These albedo values of the fresh snow are relatively well reproduced by both model versions 

(Fig. 3). However, neither model captures the relatively strong decrease of the albedo to 0.3 until 10 

March before a new snowfall event increases the observed albedo to more than 0.8. In both model 

versions the overestimation of the period with snow on the ground is directly linked to the positive 

bias in the simulated albedo. Similar results are obtained for the years 2005/06 and 2006/07 (Figs. 

S3a and b). 

In summary, the standard Crocus model does not capture the dynamic of the snow albedo for the 

conditions at Pyramid especially in cases with light snowfall and quick melting of the snow early and 

late in the period 2004 to 2005 and also for the thin seasonal winter snowpack. Similarly, Shrestha et 

al. (2012) simulated a delayed melting of the snow and overestimated the springtime snow-covered 

area in the Dudhkoshi region with a 3-layer snow model. They also attributed a large part of the 

model bias to the used simplified albedo parameterization. Most of the features of the albedo are 

better represented with the upgraded Crocus model. As a result, the period with snow on the ground 

and in some cases also the maximum snow height is largely overestimated with the standard model. 

This positive bias is reduced if the radiative transfer inside the snowpack is considered in the model. 

This corresponds well to results from previous snow model comparisons indicating that the albedo 

parameterization is a crucial component for snow models (Etchevers et al., 2004). 

Nevertheless, the overestimation of the albedo and the period with snow on the ground persists also 

in the model runs with the improved albedo parameterization. An important part of this bias is 

reduced in the presence of absorbing impurities (see below). However, the spatial variability of the 

meteorological as well as the snow conditions in the rugged terrain of the Himalayas cannot be 

captured by the point measurements used here to drive and validate the snow model. The 

atmospheric and snow observations at the field site may only represent localized conditions. We 

assume that the non-ideal conditions at the field site introduce additional variability that cannot be 

represented by the simulations. This variability as well as further uncertainties in the observations 

directly translates into errors in the snowpack simulations that can further explain the differences 

between simulations and observations. 

3.3 Impact of BC on snow albedo 

To study the impact of BC present in the snow further runs with different constant BC concentrations 

in the snow were performed. We selected concentrations of 100 and 300 ppb covering the range of 

the here reported maximum BC concentration including their uncertainty. Figure 4 shows the 

simulated albedo for the three different BC concentrations (0, 100, and 300 ppb) during the period 

21 to 31 January 2005. During 21 to 23 January, several snowfall events led to the initial formation of 

the winter snowpack. As a result, the observed albedo increased from values below 0.2 on 21 



January to more than 0.8 the following day and to even higher values on 23 January. It followed a 

period of seven days without further precipitation and slightly decreasing albedo values. Similar 

results are obtained in the simulations, during which a maximum albedo was reached early on 24 

January with a subsequent decrease in the calculated albedo. Further fresh snow during the night 

from 30 to 31 January increased albedo values in the observations and simulations. Figure 4 shows 

that overall trends as well as several short-term features in the observations are well reproduced in 

the simulations, e.g. the diurnal cycle of the albedo with morning and evening maxima (26 and 27 

January), the continuous decrease on 24 January, or the unusual behavior on 28 January. The model 

is also capable of simulating a positive feedback loop between albedo, snow temperature, and grain 

size in the presence of BC referred to as the first indirect effect (Painter et al., 2007). Initial conditions 

in the snowpack with different BC concentrations are very similar leading to almost indistinguishable 

albedo values on 22 January in all model runs. However, first small differences in the snowpack 

properties become apparent on 23 January (Tab. 1). While snow height, SWE, and average 

temperature are similar in all model runs, simulated snow temperatures in the top layer are slightly 

higher with BC present in the snow. For example, the presence of 100 and 300 ppb BC in the snow 

increase the temperature in the top 10 cm by 0.2 and 0.4 K. The simulated averaged diameter of the 

snow grains is still very similar in all model runs with average diameters around 300 μm and 

differences smaller than 5 μm. Nevertheless, they show already an increasing trend with increasing 

BC. On 30 January, this situation has changed with snow temperatures (average for the entire 

snowpack or for top 10 cm) that are at least 0.5 K higher in the presence of BC. During the same 

period, the simulated average grain diameter increased to 369, 386, and 400 μm, respectively, in the 

presence of 0, 100, and 300 ppb BC in the snow. These grain sizes still remain smaller than the 

average grain size of 418 to 475 μm retrieved by Negi and Kokhanovsky (2011) using satellite data for 

a 7-day old snowpack in the upper Himalaya, which evolved at snowpack temperatures below -20 °C.  

Due to the faster growing snow grains, the simulated albedo values decrease faster in the presence 

of BC. The growing gap between the simulated albedo values with 100 and 300 ppb compared to 

snow without BC is shown in Fig. 4. On average, due to metamorphism the albedo of the pure snow 

decreases on average by ~0.004 per day between 24 and 31 January. In the presence of 100 and 300 

ppb BC the simulated albedo decreases by additional ~0.003 and ~0.005 per day during the same 

period. The albedo differences in the presence of BC are partly compensated after the addition of 

fresh snow. The snowfall event on 30 January increases not only the absolute albedo values of the 

snowpack in all simulations, but the new snow layer simultaneously reduces the gap in the albedo 

caused by the different properties of the older, underlying snow.  

On longer time scales of weeks or month, the presence of BC in the snow causes a general reduction 

of the simulated albedo as shown in Fig. 5 for the simulated winter snowpack between January and 

May 2005 and an earlier melting of the snowpack. In this particular case, the small initial changes in 

the albedo shifts the melting date of the persistent snowpack by 5 and 25 days in the presence of 

100 or 300 ppb BC. 

Although the differences in the simulated albedo with different BC concentrations increase with the 

age of the snow as predicted by Warren and Wiscombe (1980), we attempt to quantify the average 

impact of BC on the snow albedo for typical conditions at Pyramid. We calculated averaged albedo 

values for several periods between 22 January 2005 and 30 March 2007 from simulations with 

different BC concentrations in the snow between 0 and 300 ppb. Figure 6 shows the normalized 



albedo as differences of the averaged albedo at a certain BC concentrations minus the averaged 

albedo of pure snow. All selected periods are characterized by a continuous snowpack with a height 

of more than 10 cm in all simulations to exclude the impact of melting snow on the albedo. We 

tested if the length of the selected period is important and found that while the averaged albedo 

values are significantly higher during the period 12 to 17 March 2006 compared to the period 12 

March to 5 May 2006 the sensitivity of the averaged albedo as a function of BC is essentially the 

same during both periods at least for BC concentrations below 100 ppb (Fig. 6). A further comparison 

for the periods from 22 January to either 11 March 2005 or 8 April 2005 gave essentially the same 

values for the absolute as well as normalized albedo (not shown). For all periods the relationship 

between normalized albedo and BC is best described using quadratic polynomials with regression 

coefficients R
2
 between 0.989 and 0.998. The fit demonstrates the non-linear behavior of the albedo 

with respect to the BC concentration in the snow, because adding BC to the snow exerts a decreasing 

effect on the snow albedo with increasing BC in snow concentrations. This behavior corresponds to 

the applied radiative transfer theory of Warren and Wiscombe (1980) because the BC already 

present captures some of the solar radiation that the additional BC otherwise would receive. Overall 

the albedo reductions remain small ranging from 0.012 to 0.034 (average 0.027) and 0.031 to 0.078 

(average 0.060) for BC concentrations of 100 ppb and 300 ppb. The changes are similar to the values 

of Yasunari et al. (2013) who estimated reductions in snow albedo between 0.012 and 0.022 after the 

addition of 120 ppb BC. 

The sensitivity of the albedo towards BC depends further on the season with the smallest impact on 

the snowpack in December 2006 and the strongest in the March to May 2006 period. The seasonal 

dependence of the sensitivity is linked to the radiation intensity, which is lowest in December and 

increases until June, and the positive feedback between BC, snow temperature, grain size, and 

albedo as described above. 

3.4 Impact of BC and dust on snow melting 

Although the overall impact of BC in the snow on the albedo remains limited, the impact on the 

melting of the snow can be rather large in the Himalayas as demonstrated in several model studies 

(e.g. Flanner et al., 2007; Ménégoz et al., 2014). In the presence of BC, the melting of the winter 

snowpack (corresponding to the longest period with a simulated continuous snowpack of a height of 

> 2 cm) is shifted to early dates compared to the simulations without BC. This shift corresponds to 3 

to 10 days in the presence of 100 ppb BC and increases to 17 to 27 days with 300 ppb BC for the 

three simulated years (Fig. 7). The relationship between the melting date and the BC concentrations 

is not always linear and depends for example on the timing of the precipitation events during 

springtime. If the winter snowpack does not persist until these events, a fast shift in the melting date 

is observed. One example is the shift of 5 days of the melting in the season 2006/07 if the BC is 

increased from 80 to 100 ppb. Besides the impact of the meteorological conditions, the number of 

days with snow on the ground steadily decreases with increasing BC concentrations. While this 

decrease shows a relatively large inter-annual variability, the overall trend is similar in all three years 

of simulations with a stronger impact of an incremental increase of BC at higher concentrations 

compared to lower concentrations in the snow. This behavior is, thus, in contrast to the direct effect 

of BC on the snow albedo, which is strongest at low concentrations and becomes weaker at higher 

concentrations (Fig. 6). 



Although we did not measure the dust concentration in the surface snow samples, we can assume 

that dust was also present like previously observed in ice cores from the Himalayas (Thompson et al., 

2000; Kaspari et al., 2011; Ginot et al., 2014). To study the impact of dust, we performed calculations 

with a constant dust concentration of 10 ppm corresponding to the average observed in the Mera ice 

core (Ginot et al., 2014) and BC concentrations varying between 0 and 150 ppb and additional 

calculations without BC, but with dust concentrations up to 15 ppm. In all simulations, the addition of 

absorbing impurities like BC and dust leads to a reduction of the snow-covered periods. On average 

the snow-covered period is reduced by 5.6 · 10
-2

 days (ppb BC)
-1

 and 7.6 · 10
-4

 days (ppb dust)
-1

. The 

impact of the addition of BC increases strongly in the presence of 10 ppm dust compared to pure 

snow because in these simulations the reduction is enhanced to 8.6 · 10
-2

 days (ppb BC)
-1

. The 

reduction in the snowpack duration is on average 50 % stronger compared to the simulations with 

only BC. This behavior is similar to the acceleration of the melting of the snow at higher BC 

concentrations. A linear regression using only the results for the simulations with dust = 0 and 80 ppb 

≤ BC ≤ 250 ppb in Fig. 7 leads to a reduction of 7.9 · 10
-2

 days (ppb BC)
-1

 and is, thus, similar to the 

impact obtained with a constant dust concentration of 10 ppm. Obviously, the influence of the two 

different absorbing impurities in the model is comparable and exerts the same processes and 

modifications of the snowpack. As a result, in general 100 ppb BC and 7.5 ppm dust can be regarded 

as equivalent considering the melting of the snowpack. This relationship depends of course on the 

optical properties of the BC and dust used in the simulations and can vary since the optical properties 

of dust are quite variable depending on the chemical composition. 

3.5 Radiative and net forcing 

The reduction of the snow albedo and the earlier melting of the snowpack leads to a radiative forcing 

since a larger proportion of the incoming radiation is absorbed at the Earth surface. We calculated 

the radiative forcing using the observed incoming short-wave radiation and the simulated albedo of 

the snowpack. In the absence of snow, we used a soil albedo of 0.15 corresponding to the observed 

wintertime albedo without snow on the ground (Fig. 3). All values for the radiative forcing are 

calculated as the difference in absorbed shortwave radiation with and without absorbing impurities 

in the snow. Since the radiative forcing can partly be compensated by latent and sensible heat fluxes 

due to an increased sublimation or evaporation of the snow, a net forcing is calculated after 

considering these fluxes between the snow and the atmosphere. However, no further feedback 

mechanisms between the snow and the atmosphere are included because all simulations were 

driven by the same meteorological data sets. 

The calculated radiative forcing (Fig. 7) as well as the net forcing (Supplement Fig. S4) shows similar, 

but opposite trends as the reduction in snow-covered periods. A reduction of the snow-covered 

period leads to stronger absorption due to the longer exposition of the underlying soil causing an 

increased radiative forcing. This effect becomes obvious in the seasonal cycle of the simulated 

forcing with 100 ppb BC in the snow shown as an example in Fig. 8. The maximum monthly radiative 

and net forcing is simulated for the end of the snow-covered period (i.e. May in 2004/05 and 

2005/06 and April in 2006/07). A large inter-annual variability in the forcing is apparent for the 

annual mean as well as in the seasonal cycle. For example, with 100 ppb BC the net forcing varied for 

the three simulated years by ±1 W m
-2

, while the average forcing is only around 3 W m
-2

. An even 

larger variability becomes apparent in the seasonal cycle (Fig. 8). In April and May, the minimum and 



maximum forcing can vary between less than 3 and more than 25 W m
-2

. In contrast, at the beginning 

of the snow-covered period the forcing due to the presence of absorbers remains below 5 W m
-2

 and 

is relatively constant during the three simulated years. Several factors contribute to the inter-annual 

variability like differences in the incoming radiation and the length and timing of the snow-covered 

period (Fig. 8). However, Fig. 8 also demonstrates that the incoming short-wave radiation is not the 

major driver for the inter-annual variability because in April the largest forcing is observed in the year 

2006/07 while the incoming short-wave radiation was smaller compared to the two preceding years. 

Therefore, the seasonality of the forcing is mainly driven by the timing of the snowfall and the 

melting of the snow. If solid precipitation occurs early in the winter season as in the simulations for 

2006/07, a forcing can also occur in the period from October to December, which may be 

comparable or even larger than the forcing calculated for March or April. 

The simulated annual mean of the forcing due to the presence of 100 ppb BC for the three years of 

simulation corresponds to 3 to 4.5 W m
-2

 for the radiative forcing (Fig. 7) and 2 to 4 W m
-2

 for the net 

forcing (Fig. S4). In the presence of 10 ppm dust the values for the forcing increase to 6 to 7 W m
-2

 

and 5.5 to 7 W m
-2

 for the radiative and net forcing. This range corresponds to the detected BC in 

snow concentrations. Due to the uncertainties in the measurements (see Methods) the correct BC 

concentrations could be a factor of three higher. With 300 ppb BC the radiative and net forcing 

increases to 10.5 to 13 and 9 to 12.5 W m
-2

. 

Using the range of detected BC in snow concentrations (≤ 100 ppb) the radiative forcing obtained 

with the local model is similar to results from previous global model runs. For example, Flanner et al. 

(2007) and Ménégoz et al. (2014) have reported annual means of the radiative forcing due to BC for 

the Himalayas and the Tibetan Plateau around 3.5 to 4 and 1 to 4 W m
-2

. These calculations included 

either no feedbacks (Flanner et al., 2007) or only short adjustments neglecting long-term feedbacks 

like changes of atmospheric circulation or sea surface temperature (Ménégoz et al., 2014). Ménégoz 

et al. (2014) also included dust in the snow, while Flanner et al. (2009) calculated that the addition of 

dust increases the total radiative forcing during springtime by 1 to 2 W m
-2

 in the considered region. 

However, in both studies the simulated annual averages of the BC in snow concentrations ranged 

from 100 to 200 ppb. Since a comparable radiative forcing was obtained with higher BC in snow 

concentrations it can be concluded that the sensitivities are lower in the global model compared to 

our local model. Since the approach to represent the radiative transfer in the snow is similar or even 

the same in all three models, a major reason for the lower sensitivity could be the simplified 

representation of the snow in the global models, which describe the entire snowpack with a limited 

number of layers (Flanner et al., 2007; Ménégoz et al., 2014). As a result, the energy budget and the 

snow temperature profiles may not be well described leading to a bias in the simulation of the snow 

aging in the presence of the absorbers and of the melting of the snow. Moreover, the coarse spatial 

resolution of the models does not allow to represent the specific local conditions at NCO-P. 

Using a further global model, Kopacz et al. (2011) found BC in snow concentrations around 46 ppb in 

October in the Mt. Everest region. Using simple estimates of the relationship between BC in snow 

and albedo, they derived an average radiative forcing of 9 W m
-2

 for October with monthly means 

ranging from 7.5 to 12 W m
-2

. While the simulated BC in snow concentrations are more reasonable 

(although still too high), the applied sensitivities are high compared to our simulations for NCO-P and 

do not reflect the complex processes occurring in the snowpack. 



 

4 Conclusions 

The here reported time series of rBC concentrations in the surface snow in the upper Khumbu valley 

indicates a seasonal cycle with maximum concentrations in the pre-monsoon period and low 

concentrations during the monsoon period. This cycle directly reflects the behavior of atmospheric 

BC in the same high altitude region (Marinoni et al., 2010) and is also conserved in ice cores from 

near-by glaciers (Ginot et al., 2014). Therefore, ice cores can be used to re-construct historic BC 

concentrations in these regions. Unfortunately, a large uncertainty remains regarding the absolute 

BC in snow concentrations. While the SP2 technique delivers precise concentrations of rBC, the 

melting of the snow samples during transport and storage potentially modified the detected 

concentrations. This effect probably contributed to discrepancies between the here reported snow 

concentrations compared to previously reported results for EC, while the two different techniques 

also add to the mismatch (Lim et al., 2014). Further measurements are needed to resolve these 

discrepancies and to determine actual concentrations. Such accurate data are urgently needed for 

the validation of global and regional models used to calculate the impact of BC in snow on the 

regional climate (Qian et al., 2011; Ménégoz et al., 2014). While models simulating the impact of BC 

in snow on albedo and radiative forcing for a given snowpack exist, the quantification is currently 

mostly hampered by the uncertainty in BC in snow concentrations. 

In its first application to the snowpack in the Himalayas, the standard Crocus model reveals 

significant discrepancies compared to observations with a large positive bias in the simulated albedo. 

While the Crocus model is well adapted to conditions in the Alps and gives satisfying results in polar 

regions (Jacobi et al., 2010; Brun et al., 2011; Vionnet et al., 2012), the high radiation intensities in 

the lower latitudes of the Himalayas make the model obviously more vulnerable due to the simplified 

parameterization of the albedo. While simulations were performed for typical conditions at Pyramid, 

it is likely that this simulated bias can be expected for wider regions of the high altitude area of the 

Himalayas. This concerns the simulation of the thin seasonal snowpack with a large contrast in 

albedo between the snow-free and –covered ground. The bias in the standard Crocus model is 

probably diminished in regions with the formation of a thicker snowpack like in the Western 

Himalayas (Ménégoz et al., 2013a) and in calculations over glaciers, where the underlying firn and ice 

exhibit a higher albedo than the ground. Furthermore, the parameterization of the ground heat 

fluxes in the Crocus model may not be well adapted to the conditions of the Himalayas possibly 

contributing to the over-estimation of the snowpack especially late and early in the winter season. 

The bias in the albedo and the snowpack simulations are strongly reduced with the upgraded Crocus 

model taking into account the radiative transfer in the snow. This improvement becomes obvious 

even in the case when no absorbing impurities are considered in the simulations. The results are 

further enhanced if BC in the snow is considered and varied in a range constraint by the here 

presented surface snow and previous ice cores measurements (Ginot et al., 2014). Nevertheless, 

even in these simulations the albedo of and the length of the period with the seasonal snowpack 

remain overestimated. Since the simulations were all performed with constant BC concentrations, 

any enrichment of BC at the snow surface or in specific layers due to sublimation, dry deposition, 

melting, and refreezing (Doherty et al., 2013) is not included. Nevertheless, even in the model runs 

with a BC concentration of 300 ppb, which is more than threefold the maximum observed BC 

concentration in the surface snow as well as the ice core from this region (Ginot et al., 2014), the 



snowpack is more persistent than observed. Thus, even if any or all of the post-depositional 

processes leads to an enrichment of more than a factor of three throughout the snowpack, 

differences in the simulations and the observations would remain. Stronger enrichments of BC in 

certain layers, like reported previously for the Mera glacier (Kaspari et al., 2013) or in the Arctic 

(Doherty et al., 2013), appear unlikely because they should have been detected in our surface snow 

samples or in the Mera ice core (Ginot et al., 2014). Moreover, the observed maxima of BC 

concentrations in the snow can easily be explained by dry deposition alone without invoking any 

further enrichment processes (Yasunari et al., 2013). These results do not rule out that higher BC in 

snow concentrations are encountered under different conditions like on glaciers or even higher 

altitudes, where the snowpack may not melt before April, when the air masses with the highest 

concentrations in BC finally arrive at the high-altitude region (Fig. 2). 

A heterogeneous distribution of absorbing compounds within the snowpack may induce stronger 

temperature gradients inside the snowpack further accelerating the snow metamorphism compared 

to a snowpack with homogeneous concentrations as assumed in our simulations. Differing 

concentrations can be caused by processes during the melting of the snowpack as described above. 

Since the absorbing compounds are introduced by dry and wet deposition, concentration gradients 

inside the snowpack can be expected even in the not-melting snowpack. Moreover, these gradients 

can be different for different absorbing compounds. Vertical profiles of the absorbing compounds 

need to be determined to address this point. If it can also have a profound impact on the snowpack 

simulations remains to be seen and will be the subject of further studies. 

The simulations with the Crocus model reveal further that dust and probably also other absorbers 

play a strong role not only for the snow albedo itself, but also for the impact of BC. While the impact 

of a given amount of an absorber on the snow albedo diminishes in the presence of further 

impurities, this is the opposite case for the increase of snow-free days and the radiative forcing. 

Here, the simulations demonstrated that the presence of other absorbers like dust even enhances 

the effect of the addition of BC. Therefore, in the future the role of dust in the snow needs to be 

studied together with the role BC and a correct determination of dust and its properties parallel to 

the determination of BC in the snow is needed. Organic absorbers in the snow may also play a role 

(Wang et al., 2013) similar to dust and should also be considered in further studies. In summary, a full 

characterization of all absorbing compounds and their different contributions seems necessary to 

study the full impact of these compounds on the snow albedo and further related snow properties 

and processes. 

Finally, this study concentrated only on the effect of the albedo for the snowpack simulations. Other 

processes parameterized in the snow model (e.g. turbulent fluxes, ground heat flux, snow 

metamorphism) and uncertainties in the forcing data may also contribute to differences between 

simulations and observations. Further detailed observations are needed to improve future snowpack 

simulations in this sensitive region. This mainly concerns measurements of the total and solid 

precipitation, which are crucial parameters in snowpack and hydrological modeling for this sensitive 

region. 
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Table 1. Snowpack properties for 23 and 31 January 2005 simulated with the upgraded model 

including radiative transfer and with different BC concentrations. 

  BC = 0 BC = 100 ppb BC = 300 ppb 

Snow height [cm] 52.8 52.6 52.4 

SWE [cm] 5.66 5.64 5.64 

Tsnowpack [°C] 
a
 -13.3 -13.2 -13.0 

T10 cm [°C] 
b
 -24.1 -23.9 -23.7 

23/01/2005 

12:00 

Grain diameter [μm] 
a
 301 303 305 

Snow height [cm] 33.6 32.4 31.1 

SWE [cm] 5.51 5.45 5.41 

Tsnowpack [°C] 
a
 -10.3 -9.7 -9.8 

T10 cm [°C] 
b
 -12.3 -11.7 -11.7 

31/01/2005 

12:00 

Grain diameter [μm] 
a
 369 386 400 

a
 SWE-weighted average for the entire snowpack. 

b
 SWE-weighted average for the top 10 cm of the snowpack. 



 

 

Figure 1. Google earth map indicating the field sites NCO-P, Pyramid, Changri Nup, and Pokalde. Also 

shown is the drilling site of the Mera ice core (Ginot et al., 2013). 



 

 

Figure 2. Time series of measured BC concentration in surface snow samples from the Khumbu 

Valley. The samples were classified into fresh (blue), old (red), and unknown snow (black). The 

symbols on the right show median concentrations for fresh (blue), old (red), and all snow samples 

(black). The error bars correspond to the 25
th

 and 75
th

 percentile. Shaded blue areas indicate the 

monsoon periods 2009, 2010, and 2011 over Nepal according to Tyagi et al. (2010, 2011) and Tyagi 

and Pai (2012). The black line corresponds to the BC concentration for the period between 1 

September 2009 and 8 November 2010 season determined in the Mera ice core (Ginot et al., 2013) 

with the surface snow concentration from 11 November 2010 shown as black square. The green line 

shows the atmospheric BC concentrations measured at NCO-P. 
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Figure 3. (Top) Comparison of observed (black) and simulated snowpack heights at NCO-P for the 

winter season 2004/05. Simulations were performed with the standard crocus model (red) and with 

the upgraded model including radiative transfer with constant BC concentrations of 0 (yellow), 100 

(blue), and 300 ppb (green). Snowpack heights simulated with the upgraded model are 

indistinguishable for the different BC concentrations until late January and after mid-May. (Bottom) 

Comparison of observed (black) and simulated albedo at NCO-P. Simulations were performed with 

the standard crocus model (red) and with the upgraded model including radiative transfer but 

without BC (yellow). 
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Figure 4. Comparison of observed (black) and simulated albedo at NCO-P for the period 22 to 31 

January 2005. Model results are obtained with the upgraded model including radiative transfer with 

different BC concentrations: 0 (yellow), 100 ppb (blue), and 300 ppb (green). Circles at the bottom 

indicate the differences of the simulated albedo between BC = 100 ppb and 0 (blue) and BC = 300 

ppb and 0 (green). Straight blue and green lines show the results obtained by linear regressions for 

the albedo differences during the period 22 to 30 January 2005. 
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Figure 5. Comparison of observed (black) and simulated albedo at NCO-P for the period 15 January to 

1 June 2005. Model results are obtained with the upgraded model including radiative transfer with 

different BC concentrations: 0 (yellow), 100 ppb (blue), and 300 ppb (green). 
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Figure 6. (Top) Simulated average albedo for several periods with continuous snow higher than 10 cm 

as a function of BC concentration. (Bottom) Normalized albedo as differences of the averaged albedo 

minus the averaged albedo at BC = 0. The lines correspond to the best fit of a quadratic polynomial 

forced through zero for each set of the normalized albedo. 
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Figure 7. (Top) Reduction in the snow-covered period in days simulated for different BC and dust 

concentrations in the snow. (Bottom) Simulated annual radiative forcing related to shortwave 

radiation due to the presence of BC and dust in the snow. Simulations are performed without dust, 

without BC (shifted by -10 days or +5 W m
-2

), and with dust = 10 ppm (shifted by -20 days or +10 W 

m
-2

). In the last case, the reductions are calculated relative to the case with BC = 0 and dust = 10 

ppm. Black symbols indicate the 3-year averages of the radiative forcing with the error bars 

representing the standard deviation. Black lines correspond to linear regressions forced through the 

origin for the average values for BC ≤ 150 ppb. 
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Figure 8. Simulated monthly mean radiative (open bars) and net forcing (filled bars) for the seasons 

2004/05 (blue), 2005/06 (red), and 2006/07 (green) due to the presence of 100 ppb of BC in the 

snow. Black open squares and filled circles indicate 3-year averages of the monthly means of the 

radiative and net forcing. Also shown are snow-covered periods in percent based on the simulations 

without BC in the snow (middle) and the monthly means of the observed incoming short-wave 

radiation (top) for the three years. The black circles in the top panel indicate the 3-year average of 

the monthly means of the incoming radiation. 

 


