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Abstract

A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice
bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the dis-
tribution of crystal anisotropy, to understand its contribution to ice dynamics, is mainly
provided by crystal orientation fabric (COF) data from ice cores. However, the devel-5

oped anisotropic fabric does not only influence the flow behaviour of ice, but also the
propagation of seismic waves. Two effects are important: (i) sudden changes in COF
lead to englacial reflections and (ii) the anisotropic fabric induces an angle depen-
dency on the seismic velocities and, thus, also recorded traveltimes. A framework is
presented here to connect COF data with the elasticity tensor to determine seismic10

velocities and reflection coefficients for cone and girdle fabrics from ice-core data. We
connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of
the ice mass, observable with seismic methods. Elasticity tensors for different fabrics
are calculated and used to investigate the influence of the anisotropic ice fabric on seis-
mic velocities and reflection coefficients, englacially as well as for the ice-bed contact.15

Our work, therefore, provides a contribution to remotely determine the state of bulk ice
anisotropy.

1 Introduction

Understanding the dynamic properties of glaciers and ice sheets is one important step
to determine past and future behaviour of ice masses. One essential part is to increase20

our knowledge of the flow of the ice itself. When the ice mass is frozen to the base its
flow is primarily determined by internal deformation. The degree thereof is governed
by the viscosity (or the inverse of softness) of ice. The viscosity depends on different
factors, such as temperature, impurity content and the orientation of the anisotropic ice
crystals (Cuffey and Paterson, 2010).25
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Ice is a hexagonal crystal (ice Ih) under natural conditions on earth. These ice crys-
tals can align in specific directions in response to the stresses within an ice mass. In
contrast to a random distribution of the ice crystals a preferred orientation causes the
complete fabric to be anisotropic. This fabric anisotropy influences the viscosity of the
ice, as shear strength is several orders of magnitude smaller perpendicular to the ice5

crystal’s c-axis than parallel to it (Ashby and Duval, 1985; Cuffey and Paterson, 2010).
The influence of anisotropic ice fabric onto the flow behaviour of ice can directly

be observed in radar profiles from ice domes. At ice domes and divides a prominent
feature of flow conditions is a so called Raymond bump (Raymond, 1983; Martín et al.,
2009b). As ice is a non-Newtonian fluid, it is softer and deforms more easily on the10

flanks of the ice dome or divide due to the higher deviatoric stress there compared
to the centre of the dome. Thus, the vertical flow is slower at the dome itself than on
the flanks. This leads to an upwarping of the isochronous layers. The development
and influence of anisotropic fabric on the flow of ice at divides and the effects on the
development of Raymond bumps were, for instance, investigated by Pettit et al. (2007)15

and Martín et al. (2009a). Often observed features in radar profiles at these Raymond
bumps are double bumps and synclines at the flanks (Drews et al., 2013). Martín et al.
(2009a) could reproduce these features by including anisotropic rheology into a full-
Stokes model. Hence, they are presently considered a direct evidence of the existence
of a developed anisotropic fabric, with changes both vertically and laterally, and its20

influence on the flow behaviour of ice.
A second prominent feature in radar data is the basal layer. Before the advent of

multi-static, phase-sensitive radar systems, the basal layer has usually been observed
only as an echo-free zone (EFZ). The onset of it was connected to the appearance of
folds in ice cores on a centimetre scale (Drews et al., 2009). Considerable progress in25

radar imaging over the last decade make it now possible to also image the very bot-
tom layer of ice sheets (Bell et al., 2011; NEEM community members, 2013). The now
emergent features show an often fuzzy basal layer, with a rough upper surface and
considerably disturbed coherency of radar return power. The presence of the basal
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layer turns out to be widespread, especially in Antarctica (CReSIS, P. Gogineni, per-
sonal communication 2014). As the basal ice near the bed is subject to higher stresses
and higher temperatures than the ice above, it is the region where ice physical proper-
ties on the microscale change quickest (Faria et al., 2014b). These include changes in
crystal orientation fabric (COF) properties and distribution.5

With increasing computational power the incorporation of anisotropy into ice flow
models becomes feasible in three dimensions as well as on regional scales. However,
to include anisotropy into ice-flow modelling we need to understand the development
and the distribution of the anisotropic fabric, i.e. we have to observe the variation in
the COF distribution over depth, as well as their lateral extent. To extend our ability to10

determine the influence of these properties on ice flow and map them laterally beyond
the 10 cm scale of ice cores, we have to advance our knowledge between the connec-
tion of microscale properties and macroscale features on the 10 to 100 meter-scale of
geophysical methods like radar and seismics.

The standard method to measure the COF distribution is by analysing thin sections15

from ice cores under polarized light. The anisotropy is then normally given in form of the
sample-averaging eigenvalues of the orientation tensor (Woodcock, 1977) in discrete
depth intervals. From this we gain information about the local anisotropic conditions at
the ice-core location. Next to the analysis of ice cores, radar data has been used to
analyse the changing COF over depth (Matsuoka et al., 2003; Fujita et al., 2006; Eisen20

et al., 2007; Matsuoka et al., 2009). The challenge in analysing radar data is to distin-
guish the COF-induced reflections from the numerous conductivity-induced reflections.
This distinction is important as conductivity-induced layers are isochrones. By follow-
ing conductivity-induced reflections in radar data, layers of equal age can be followed
over large distances. Currently, identifying and tracing undisturbed layering is one of25

the major approaches to identify the location of a site for a potentially 1.5 Ma old ice
core in East Antarctica (Fischer et al., 2013).

Another possibility to investigate the anisotropic ice fabric on the macroscale can be
achieved by analysing COF-induced reflections and traveltimes from seismic data. Not
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only the longitudinal (P) pressure waves can be analysed here for the anisotropic fabric
but also the transversal waves, i.e. the horizontal (SH) and vertical (SV) shear wave.
One of the first studies of seismic anisotropy in context of ice crystal anisotropy was
the PhD thesis of Bennett (1988), who derived equations for the calculation of seismic
velocities for solid cone and surface cone fabrics. He fitted curves to the slowness5

surface (inverse of the phase velocity) calculated from an elasticity tensor measured
by means of ultrasonic sounding. This was applied to data from Dome C, Antarctica,
by Blankenship and Bentley (1987). Bentley (1972) investigated the anisotropic ice
fabric at Byrd Station, Antarctica, for which he used ultrasonic logging. To determine
the anisotropic seismic velocities for different cone fabrics, he calculated an average10

from the single crystal velocity for the encountered directions. This approach was used
later by Gusmeroli et al. (2012) for analysing the crystal anisotropy from borehole sonic
logging at Dome C, Antarctica.

These methods have one shortcoming. They limit the analysis of anisotropy from
seismic waves to the analysis of the traveltimes, i.e. seismic velocities. The influence15

of anisotropy has not only been observed in seismic velocities, but englacial reflections
were observed as well in seismic data from Antarctica (Horgan et al., 2011; Hofstede
et al., 2013) and Greenland (Horgan et al., 2008). These reflections were interpreted as
arising from an abrupt change in fabric orientation. However, to analyse the reflection
signature and determine the actual change in COF, we first need an understanding20

of the reflection coefficient for changing incoming angles for the transition between
different anisotropic fabrics.

One way to improve the analysis of seismic data is to apply full waveform inversion
algorithms, i.e. the analysis of the complete observed wave field and not only parts
of it like reflections or traveltimes, which gains more and more importance in applied25

geophysics in general. If we want to be able to investigate and understand the influence
of the anisotropic ice fabric on the seismic wave field and develop possibilities to derive
information from traveltimes and reflection signatures about different anisotropic ice
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fabrics from seismic data, we need to be able to derive the elasticity tensor for different
COF distributions.

In this paper we extend the analysis of seismic velocities beyond cone fabrics and
derive the elasticity tensor, which is necessary to describe the seismic wavefield in
anisotropic media. The description of seismic wave propagation in anisotropic materi-5

als is based on the elasticity tensor, a 4th order tensor with 21 unknowns in the general
case of anisotropy. If the elasticity tensor is known, seismic velocities, reflection coeffi-
cient or reflection angles can be calculated. From ice core analysis one normally gains
the COF eigenvalues describing the distribution of the crystal orientations. Hence, we
first need a connection between the COF eigenvalues and the elasticity tensor.10

We present a framework here to derive the elasticity tensor from the COF eigen-
values for cone as well as different girdle fabrics. We derive opening angles for the
enveloping of the c-axis distribution from the COF eigenvalues. We then integrate us-
ing a monocrystal elasticity tensor for these derived distributions to obtain the elasticity
tensor for the different anisotropic fabrics (Sect. 3). Based on these derived elasticity15

tensors we calculate seismic velocities and reflection coefficients for different c-axes
distributions. As examples, we investigate the compressional wave velocity variations
with increasing angle for different fabrics and the reflection coefficients for a change
from isotropic to girdle fabric for compressional and shear waves. Further, we anal-
yse the influence of anisotropy on the reflection signature of the ice–bed interface and20

discuss these results in Sect. 4. This is the first part of two companion papers. The
calculations introduced here will be applied to ice-core and seismic data from Kohnen
station, Antarctica in Part 2, Diez et al. (2014).

2 Ice crystal anisotropy

The ice crystal is an anisotropic, hexagonal crystal with the basal plane perpendicular25

to the ice crystal’s c-axis. Due to the existing stresses within glaciers and ice sheets
these anisotropic ice crystals can be forced to align in one or several specific directions.
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In such cases the crystal’s c-axis is oriented perpendicular to the main direction of
stress (Cuffey and Paterson, 2010). Depending on the stress regime different COF
distributions develop (Fig. 1).

Different fabric distributions were discussed by Wallbrecher (1986), who classifies 8
different fabric groups. Three of which we will use in the following analysis of the influ-5

ence of ice crystal anisotropy on seismic wave propagation: (i) the cluster distribution,
(ii) the thick girdle distribution, and (iii) the partial girdle distribution. These distributions
are shown in Fig. 1. The sketches show the enveloping of the specific c-axes distribu-
tion for the different fabrics. Here, the isotropic case is part of the cluster distribution.
The most extreme form of anisotropy we can expect in ice is a vertical single maximum10

(VSM) fabric, where all ice crystals are oriented vertical. Note that the term “lattice-
preferred orientation (LPO)” is used as well to refer to the orientation of the crystals
(Faria et al., 2014a), in addition to COF.

2.1 Crystal orientation fabric measurements

The standard method of measuring COF distributions is by analysing thin sections from15

ice cores under polarized light using an automatic fabric analyser (Wilson et al., 2003;
Peternell et al., 2010). The c-axis orientation of each single crystal is determined and
can be given as a unit vector (c). These orientations can be presented in Schmidt plots,
an equal-area projection of a sphere onto a plane, or as eigenvalues λ1,λ2,λ3 of the
weighted orientation tensor20

Ai j =W
n∑
l=1

(cicj )l , with i , j = 1,2,3. (1)

The number of grains is given by n and W is a weighting function, with weighting, e.g.
by grain number (W = 1/n) or by area. The three eigenvalues, with λ1 ≤ λ2 ≤ λ3 and∑
λi = 1, determine the extension of a rotation ellipsoid. The corresponding eigenvec-25

tors cannot be given, when the orientation of the ice core within the borehole is not
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measured in geolocated coordinates. Hence, the direction to which these eigenvalues
apply is often unknown.

Another possibility to describe the anisotropic fabric is to calculate the spherical aper-
ture from the orientation tensor. Hence, the c-axis distribution is given in form of one
opening angle for the enveloping cone (Wallbrecher, 1986). However, this limits the5

analysis of anisotropy to cone fabrics.
For the following derivation of the elasticity tensor we will use two opening angles

for the description of the enveloping of the c-axis distribution. Thus, we are able to
take into account cone as well as girdle fabric distributions. We distinguish between an
opening angle χ in x1-direction and an opening angle ϕ in x2-direction in a coordinate10

system where the x3-axis is pointing downwards (Fig. 1). These opening angles will
be calculated from the COF eigenvalues for the analysis of seismic wave propagation
(Sect. 3.1).

The two opening angles determine the kind of fabric (Fig. 1). If the angles ϕ and χ
are equal, the c-axis distribution is a cluster or cone distribution with the cone opening15

angle ϕ = χ . The two extrema of this distribution are the uniform distributions, i.e. the
isotropic case and the VSM-fabric. All ice crystals are oriented vertically in case of
a VSM-fabric. The eigenvalues are λ1 = λ2 = 0 and λ3 = 1 and the cone opening angle
is 0◦. The ice crystals are randomly oriented in case of isotropic fabric. The eigenvalues
are then λ1 = λ2 = λ3 = 1/3 and the cone opening angle is 90◦. The thick girdle fabric20

is a distribution where the c-axes are distributed between two planes with a certain
distance, so that the opening angle ϕ in x2-direction is 90◦ and χ in x1-direction gives
the thickness of the girdle. The partial girdle fabric is a distribution where all ice crystal
c-axes are in one plane, but only within a slice of this plane, so that the opening angle
χ in x1-direction is 0◦ and ϕ in x2-direction gives the size of the slice within the plane.25

A girdle fabric with χ = 0◦ and ϕ = 90◦ would correspond to the eigenvalues λ1 = 0 and
λ2 = λ3 = 0.5.
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2.2 Seismic anisotropy

The wave propagation of seismic waves is influenced by the anisotropic material, effect-
ing, e.g. seismic velocities, reflection coefficients and reflection angles, among other
properties. The propagation of wavefronts in the anisotropic case is no longer spher-
ical. Figure 2 shows the anisotropic wavefront for a P-wave travelling in a VSM-fabric5

(red line) and the spherical wavefront for a P-wave in isotropic ice fabric (dashed black
line). For the anisotropic case group and phase velocity, as well as group angle θ and
phase angle ϑ, are no longer the same. The group velocity determines the traveltime.
The phase velocity vector is normal to the wavefront. Thus, the phase velocity and
phase angle ϑ are needed for the calculation of reflection and transmission angles as10

well as reflection coefficients.
For an anisotropic medium the linear relationship between tensors of stress σmn and

strain τmn is described by Hook’s law

σmn = cmnopτop, (2)
15

with the elasticity tensor cmnop and m,n,o,p = 1,2,3. In the isotropic case these 81
components of the elasticity tensor can be reduced to the two well-known Lamé pa-
rameters. In the general anisotropic case, symmetry consideration of strain and stress
tensor apply, as well as thermodynamic consideration (Aki and Richards, 2002). Hence,
the general anisotropic elasticity tensor consist of 21 independent components and is20

referred to as triclinic.
To determine seismic velocities in anisotropic media a solution for the wave equation

needs to be found. Given here is the wave equation for homogeneous, linear elastic
media, without external forces and with triclinic anisotropy

ρ
∂2um
∂t2

−cmnop
∂2uo
∂xn∂xp

= 0, (3)25

with ρ the density of the material, t time, the components um and uo of the displace-
ment vector u and the different spatial directions xn, xp. Solving this equation leads
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to an eigenvalue problem, the so called Christoffel equation. For a detailed derivation
see, e.g. Tsvankin (2001).

Finally, three non-trivial solutions exist for this eigenvalue problem, giving the three
phase velocities and vectors for the quasi compressional (qP), the quasi vertical (qSV)
and the quasi horizontal shear (qSH) wave. The phase vectors are orthogonal to each5

other. However, qP- and qSV-waves are coupled, so the waves are not necessarily
pure longitudinal or shear waves outside of the symmetry planes. Therefore, they are
additionally denoted as “quasi” waves, i.e. qP-, qSV- and qSH-waves. As the following
analyses are mostly within the symmetry planes the waves will from now on be denoted
as P-, SV- and SH-waves. Nevertheless, outside of the symmetry planes this term is10

not strictly correct.
To be able to find analytical solutions of the Christoffel matrix the anisotropic materi-

als are distinguished by their different symmetries. Additionally, to simplify calculations
with the elasticity tensor we will use the compressed Voigt notation (Voigt, 1910) for
the elasticity tensor cmnop → Ci j . Therefore, the index combinations of mn and op are15

replaced by indices between 1 and 6 (11 ≡ 1, 22 ≡ 2, 33≡ 3, 23≡ 4, 13≡ 5, 12 ≡ 6).
Considering only certain symmetries reduces the unknowns of the elasticity tensor Ci j
further. For the analysis of anisotropic ice we consider cone, thick and partial girdle
fabric. Partial girdle fabric is the fabric with the lowest symmetry, corresponding to an
orthorhombic medium, with 9 unknowns,20

Ci j =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 . (4)

In case of orthorhombic media three symmetry planes, i.e. orthogonal planes of mirror
symmetry exist. The number of unknowns can be reduced further to five unknowns if
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transversely isotropic media exist, resulting in an anisotropy with a single axis of ro-
tation symmetry. This is normally distinguished in vertical transversely isotropic (VTI)
and horizontal transversely isotropic (HTI) media, with a vertical and horizontal axis
of rotation symmetry, respectively. A vertical cone fabric would be classified as VTI
media while a thick girdle fabric as given in Fig. 1 would be classified as HTI media.5

This distinction is important for the calculation of seismic velocities and reflection co-
efficients as the calculation simplifies for wave propagation within symmetry planes of
the anisotropic fabric (Sect. 4)

3 Calculation of elasticity tensor from COF eigenvalues

From the analysis of ice cores we gain the COF eigenvalues describing the crystal10

anisotropy over depth. The propagation of seismic waves in anisotropic media can be
calculated from the elasticity tensor. Hence, a relationship between the COF eigenval-
ues and the elasticity tensor is needed.

We will use a measured monocrystal elasticity tensor here to calculate the elas-
ticity tensor for the different observed anisotropic fabrics in ice from the COF eigen-15

values. For monocrystalline ice the components of the elasticity tensor have been
measured by a number of authors with different methods. The choice of the elastic-
ity tensor will be investigated in more detail in Part 2, Diez et al. (2014), where we find
best agreement between measured and calculated velocities using the elasticity ten-
sor of Gammon et al. (1983) (C11 = 13.93±0.04 GN m−2; C33 = 15.01±0.05 GN m−2;20

C55 = 3.01±0.01 GN m−2; C12 = 7.08±0.04 GN m−2; C13 = 5.77±0.02 GN m−2). Hence,
we will use this elasticity tensor in the following calculations. The c-axis of this ice crys-
tal is oriented vertically here, parallel to the x3-direction (Fig. 1).
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3.1 From COF eigenvalues to opening angles

When the COF eigenvalues are derived, the information on the fabric distribution is
significantly reduced, especially as the corresponding eigenvectors are normally un-
known. Hence, it is not possible to determine the elasticity tensor with at least five
unknowns directly from the three COF eigenvalues. Therefore, we first subdivide the5

observed anisotropies into different fabric groups (cone, thick girdle and partial girdle
fabric) by means of the eigenvalues and afterwards determine their opening angles
(Sect. 2.1).

To differentiate between cone and girdle fabric Woodcock (1977) suggests a loga-
rithmic representation of the eigenvalues and classification by a slope10

m =
ln(λ3/λ2)

ln(λ2/λ1)
. (5)

The fabric is a cone fabric with m> 1 and a girdle fabric with m< 1. However, we want
to put a stronger tendency towards a classification of the fabric as cone fabric. In the
seismic sense a cone fabric is a VTI media. It is easier to calculate velocities and reflec-15

tion coefficients for VTI media compared to girdle fabric, i.e. HTI media. Hence, we use
a threshold value to distinguish between cone and girdle fabric. If λ1 ≤ 0.1 and λ2 ≥ 0.2
the fabric is classified as girdle fabric, everything else is classified as cone fabric. Ad-
ditionally, we set a threshold to distinguish within the girdle fabric between partial and
thick girdle fabric. If λ1 ≤ 0.05 the fabric is classified as partial girdle, otherwise as thick20

girdle. By distinguishing between these fabrics we know, that ϕ = χ for the cone fabric,
ϕ = 90◦ for the thick girdle fabric and χ = 90◦ for the partial girdle fabric (Fig. 1).

In the next step the remaining, unknown opening angle for the different fabrics needs
to be calculated from the eigenvalues, i.e. ϕ for the cone fabric, χ for the thick girdle
fabric and ϕ for the partial girdle fabric. Wallbrecher (1986) for instance connects the25

opening angle ϕ of a cone fabric with the eigenvalue λ3 by λ3 = 1−2/3sin2ϕ. To verify
this calculation the eigenvalues for cone angles between 0 and 90◦ were calculated.
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In total 10 000 randomly distributed vectors were created, giving a random distribution
of c-axes. For each cone angle the vectors within this cone angle were selected. The
eigenvalues for this cone angle could then be calculated from these vectors. The pro-
cess was repeated 100 times for each cone angle ϕ. The calculated λ3(ϕ) values from
the equation given by Wallbrecher (1986) differ by up to 15◦ for ϕ. For a more precise5

connection of λ3 and ϕ than available from literature (Appendix A1) a 4th order polyno-
mial was fitted to the λ3–ϕ values. The same was done for the calculation of χ from λ1
for thick girdle fabrics, as well as for the calculation of ϕ from λ3 for partial girdle fabrics
(Appendix A1). The orientation of the girdle is normally not known. Thus, the azimuth
ψ of the girdle fabric cannot be determined from the eigenvalues. This is only possible10

if the eigenvector belonging to the eigenvalue λ1, the normal to the plane of the girdle,
is known in geolocated coordinates. Hence, in the following we normally assume girdle
fabrics to be orientated as HTI media with the azimuth ψ = 0◦ for the calculation of the
elasticity tensor (Fig. 1).

3.2 From opening angles to the elasticity tensor15

The elasticity tensor of the polycrystal can now be derived with help of the measured
elasticity tensor for a single ice crystal and the derived angles χ and ϕ. For the cal-
culation of the polycrystal elasticity tensor Ci j we follow the idea of Nanthikesan and
Sunder (1994). They use the concept of the Voigt (1910) and Reuss (1929) bounds.
This concept was developed to calculate the elasticity tensor of isotropic polycrystals,20

containing different crystals. This concept is generalized by Nanthikesan and Sunder
(1994) to calculate the elasticity tensor for anisotropic fabrics.

Voigt (1910) assumed that the strain on the polycrystal introduces the same uniform
strain in all monocrystals. To calculate the elasticity tensor of the polycrystal one has to
average over the elasticity tensor Cm

i j of the monocrystal (superscript m). The assump-25

tion of Reuss (1929) is that the stress on the polycrystal introduces the same uniform
stress in all monocrystals. Here, the compliance tensor of the polycrystal is calculated
by averaging over the compliance tensor Sm

i j of the single crystals. The compliance
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tensor smnop of a crystal is the inverse of the elasticity tensor, here given in terms of
Hook‘s law (Eq. 2):

τmn = smnopσop. (6)

For the inversion of elasticity to compliance tensor and vice versa see, e.g. Bower5

(2010). The method of Voigt (1910) and Reuss (1929) is an approximation of the elas-
ticity tensor due to violation of local equilibrium and compatibility conditions across
grain boundaries, respectively. Hill (1952) showed that the concepts of Voigt (1910)
and of Reuss (1929) give the upper and lower limit for the elastic moduli of the poly-
crystal Ci j , referred to as Voigt–Reuss bounds,10

CR
i j ≤ Ci j ≤ C

V
i j , (7)

where the superscripts R and V denote Reuss (1929) and Voigt (1910) calculation,
respectively.

To obtain the elasticity tensor of the anisotropic polycrystal Ci j from the elasticity ten-15

sor of the monocrystal Cm
i j with different orientations one has to integrate the elasticity

tensor C̃m
i j (φ) with a probability density function F (φ) for the different c-axes orienta-

tions, where φ gives the minimum (φ1) and maximum (φ2) extent of the c-axes in the
plane. This plane is perpendicular to the corresponding rotation axis, so that the elas-
ticity tensor C̃m

i j (φ) is determined from the monocrystal elasticity tensor Cm
i j using the20

rotation matrix RC
i j

C̃m
i j (φ) = (RC

i j )
TCm

i jR
C
i j . (8)

The rotation matrices RC
i j for the different directions in space are given in Appendix A2,

(RC
i j )

T is the transposed of RC
i j . The same applies for the calculation of the monocrystal25

compliance tensor depending on φ, with

S̃m
i j (φ) = (RS

i j )
TSm

i j R
S
i j . (9)
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with the rotation matrix RS
i j for the compliance tensor (Appendix A2) and its transposed

(RS
i j )

T. For a uniform distribution of the c-axis orientations the probability density func-
tion can be given by

F (φ) =
1

φ2 −φ1
for φ1 ≤φ ≤φ2 (10)

= 0 for φ2 ≤φ ≤ π;−π ≤φ ≤φ1, (11)5

which is symmetric around the main orientation, so that φ1 = −φ0 and φ2 = +φ0. The
elasticity tensor of the anisotropic polycrystal is then calculated by

Ci j =
1

2φ0

+φ0∫
−φ0

C̃m
i j (φ)dφ, (12)

10

and the compliance tensor is calculated by

Si j =
1

2φ0

+φ0∫
−φ0

S̃m
i j (φ)dφ. (13)

After considering the orthorhombic symmetry and some rearranging of the results of
Eqs. (12) and (13) the components of the elasticity tensor and compliance tensor of15

a polycrystal can be expressed in compact form. The results are different here, for c-
axes distributions in the different spatial directions x1, x2 and x3. As an example, the
equations for the elasticity and compliance tensor for a rotation around the x1 direction
are given in Appendix A3. This would correspond to a c-axis distribution in the [x2,x3]-
plane. The equations for rotation around the x2-axis and the x3-axis can equally be20

derived from Eqs. (12) and (13).
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The different rotation directions to calculate the polycrystal elasticity tensor Ci j from
a vertically oriented monocrystal elasticity tensor Cm

i j for cone, thick girdle and partial
girdle fabric are listed in Table 1. They are as well valid for the compliance tensor. For
the calculation of the elasticity tensor of a partial girdle (Fig. 1) the elasticity tensor of
the monocrystal Cm

i j is rotated around the x1-axis with the opening angle of the partial5

girdle in x2-direction (ϕ). The elasticity tensor is then calculated using Eq. (A12) with
φ0 =ϕ. For a thick girdleϕ = 90◦ to gain a full girdle in the [x2,x3]-plane in the first step.
In a second step this elasticity tensor obtained for a full girdle is then rotated around the
x2-axis with φ0 = χ . For cone fabrics with different opening angles the elasticity tensor
of a monocrystal is rotated around the x1-axis (Eq. A12) in a first step using the cone10

opening angle (φ0 =ϕ = χ ) and, afterwards, the obtained elasticity tensor is rotated
around the x3-axis with φ0 = 90◦.

3.3 Limitations of the method

Nanthikesan and Sunder (1994) developed the approach to calculate the polycrystal
elasticity tensor from the monocrystal elasticity tensors for, what they call, S1 (vertical15

single maximum), S2 (horizontal girdle) and S3 (horizontal partial girdle) ice for given
opening angles. They found that the Voigt–Reuss bounds for these fabrics are within
4.2 % of each other and concluded from this that either calculation, by means of the
elasticity tensor (Eq. 12) or compliance tensor (Eq. 13), can be used to calculate the
elasticity tensor of the polycrystal. We use the approach of Nanthikesan and Sunder20

(1994) not only for the calculation of partial girdle fabrics but also for the calculation of
the polycrystal elasticity tensor of thick girdle and cone fabrics.

By comparing the individual components of the elasticity tensor derived following
Voigt (1910) (Eq. 12) with those of the elasticity tensor derived following Reuss (1929)
(Eq. 13 and taking the inverse of the compliance tensor) the largest difference of 4.2 %25

for all the investigated fabrics can be found for the components C44 (S44) of a partial
girdle with an opening angle of 50◦ and 90◦. Thus, for all fabrics in this study, the
Voigt–Reuss bounds are within 4.2 % of each other and we follow Nanthikesan and

4364

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/8/4349/2014/tcd-8-4349-2014-print.pdf
http://www.the-cryosphere-discuss.net/8/4349/2014/tcd-8-4349-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
8, 4349–4395, 2014

Seismic wave
propagation in

anisotropic ice –
Part 1

A. Diez and O. Eisen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Sunder (1994) in their argumentation that either calculation can be used. However,
using the Voigt (1910) calculation no extra step in the calculation is needed to invert
the compliance tensor. Therefore, for all further calculations the approach by Voigt
(1910) is used (Eq. 12).

For the calculation of the anisotropic polycrystal from the monocrystal neither grain5

size nor grain boundaries are considered. Elvin (1996) investigated the number of
grains that are necessary to homogenize the elastic properties of polycrystalline ice
and found, that at least 230 grains are needed for girdle fabric (S2 ice). This number of
ice crystals should be reached with seismic waves in ice of around 300 Hz, i.e. a wave-
length of more than 10 m and ice crystals with ≤ 0.1 m diameter on average. Addition-10

ally, Elvin (1996) considered two cases, with and without grain boundary sliding. In
absence of grain-boundary sliding the anisotropy mainly defines the elastic behaviour.
Otherwise, grain shape and grain-boundary sliding become important as well. A cer-
tain mistake is, thus, made for the calculation of the polycrystal by only considering the
influence of the anisotropy of the monocrystal.15

The resultant polycrystal elasticity tensors depends of course on the choice of
the monocrystal elasticity tensor. Different authors (Jona and Scherrer, 1952; Green
and Mackinnen, 1956; Bass et al., 1957; Brockamp and Querfurth, 1964; Bennett,
1988; Dantl, 1968; Gammon et al., 1983) measured and calculated (Penny, 1948) the
monocrystal elasticity tensor. A comparison of the different elasticity tensors used can20

be found in Part 2 (Diez et al., 2014). There we investigate results of a vertical seismic
profiling survey in comparison to quantities from measured COF eigenvalues. We find
the best agreement between measured and calculated velocities using the monocrystal
elasticity tensor of Gammon et al. (1983) for the derivation of the polycrystal elasticity
tensor.25
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4 Seismic velocities and reflection coefficients in anisotropic ice

From the derived elasticity tensor we can now calculate velocities and reflection co-
efficients. Many approximations as well as exact solutions exist for the calculation of
velocities and reflection coefficients for different anisotropic fabrics. They are mostly
limited to certain symmetries.5

In case of the velocities, most studies have been done on VTI media (e.g. Daley and
Heron, 1977). These solutions are still valid within the symmetry planes of HTI media.
To be able to calculate seismic velocities for the different fabrics in ice we will use
a calculation of velocities for orthorhombic media derived by Daley and Krebes (2004)
(Sect. 4.1). We compare the velocities calculated based on the derived elasticity tensor10

with the well known velocities for a solid cone that were derived by Bennett (1988)
(Sect. 4.2).

For the calculation of the reflection coefficient we use exact (Graebner, 1992) as well
as approximate (Rüger, 1997; Zillmer et al., 1998b) calculations (Sect. 4.3). We show
the reflection coefficients for an abrupt change from isotropic to partial girdle fabric here15

as an example (Sect. 4.4). Additionally, we investigate the influence on the reflection
signature of an anisotropic ice mass above the base (Sect. 4.5).

4.1 Velocities in orthorhombic media

For the special case of wave propagation in ice with a developed cone fabric anisotropy
Bennett (1988) derived equations of the slowness surface for P-, SV- and SH-waves.20

The phase velocities are given by the inverse of the slowness surface. To calculate the
slowness surface over different angles Bennett (1988) first derived the elasticity tensor
from single natural ice crystals by measurements of ultrasonic pulses with 600 kHz.
With the derived equations velocities for different incoming angles ϑ in dependence of
the cone opening angle ϕ can be calculated. It is not possible to calculate velocities for25

girdle fabrics.
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Using the derived elasticity tensor we are now able to calculate velocities for differ-
ent COF distributions. Therefore, we use the equations derived by Daley and Krebes
(2004) for the calculation of phase velocities vph (vp, vsv, vsh) in dependency of the
phase angle ϑ for orthorhombic media as given in Appendix B1 (Eqs. B1–B3).

From these phase velocities we have to calculate the group velocities for the calcu-5

lation of traveltimes. The calculation of the group velocity vector vg can be found, e.g.
in Rommel and Tsvankin (2000) and Tsvankin (2001). If the propagation of the seismic
wave is within symmetry planes of the anisotropic fabric the group velocity and group
angle can be given in compact form. The group velocity vg is then calculated from the
phase velocity vph by10

vg = vph

√√√√1+

(
1
vph

∂vph

∂ϑ

)2

(14)

with the group angle θ in the symmetry plane defined by

tanθ =
tanϑ+ 1

vph

∂vph

∂ϑ

1− 1
vph

∂vph

∂ϑ tanϑ
. (15)

15

Outside the symmetry planes of, e.g. HTI media all components of the group velocity
vector vg have to be considered (Appendix B1).

Figure 3 shows the phase (dashed curves) and group velocities (solid curves) in
dependency of the corresponding phase ϑ and group angle θ of P- (red), SV- (light
blue) and SH-waves (blue) for a VSM-fabric. The largest difference between phase and20

group velocity can be observed for the SV-wave (light blue curves) with a triplication in
the group velocity for group angles of 43–47◦. Here three different velocities are given
for each angle. The SV-wave velocity is largest for 45◦ incoming angle (phase as well
as group angle) with 2180 m s−1, decreasing for 0◦ and 90◦ to 1810 m s−1. Variations
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for the SH-wave are rather small with velocities increasing between 0◦ and 90◦ from
1810 m s−1 to 1930 m s−1. The P-wave velocity has a minimum at ∼ 51◦ incoming angle
with 3770 m s−1. The highest wave speed is observed for waves parallel to the c-axis of
an ice crystal (0◦ incoming angle) with 4040 m s−1 and 150 m s−1 slower perpendicular
to it.5

4.2 Velocities for anisotropic ice

By deriving the elasticity tensor for different fabrics the group and phase velocities of P-
, SH- and SV-wave for these fabrics can now be calculated. Figure 4 show the P-wave
phase velocity for different cone and girdle fabrics calculated with the equations given
in Daley and Krebes (2004) and the equations derived by Bennett (1988) for a solid10

cone. The phase velocity for the SH- and SV-wave as well as the corresponding group
velocities can be displayed accordingly (Diez, 2013). Here, we will limit our analysis to
P-waves. However, with the derived elasticity tensor SH- and SV-wave velocities can
just as well be investigated and the effect of shear (S)-wave splitting can be analysed.

The subfigure (d) in Fig. 4 shows the velocities calculated from the equations derived15

by Bennett (1988) for a solid cone from the elasticity tensor he measured at −10 ◦C.
These velocities were corrected to −16 ◦C (Kohnen, 1974; Gammon et al., 1983) for
better comparison with the other results, where we use the elasticity tensor of Gammon
et al. (1983) measured at −16 ◦C. The other subfigures are phase velocities calculated
with Eq. (12) from an elasticity tensor derived following the steps in Table 1 with the20

elasticity tensor measured by Gammon et al. (1983). The top row (Fig. 4) shows ve-
locities for cone fabric (subfigure a: VTI) as well as partial girdle fabric (b: HTI) and
thick girdle fabric (c: HTI) in the [x2,x3]-plane, while the bottom rows show velocities for
cone fabric calculated following Bennett (1988) (d: VTI) as well as partial girdle fabric
(f: ψ = 90◦) and thick girdle fabric (e: ψ = 90◦) in the [x1,x3]-plane.25

The partial girdle (χ = 0◦, Fig. 4b and e) with ϕ = 90◦ displays the same fabric as the
thick girdle (ϕ = 90◦, Fig. 4c and f) with χ = 0◦. The same applies to the cone fabric with
an opening angle of 90◦ (Fig. 4a and d) as well as the thick girdle fabric (ϕ = 90◦) with
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χ = 90◦ (Fig. 4c and f), both showing the isotropic state. Apart from Bennett’s velocities,
these velocities for the isotropic state (Fig. 4a, c and f) are obviously not isotropic. Slight
variations still exist for these velocities with increasing incoming angle. This is due to
artefacts that seem to appear from the derivation of the elasticity tensor for the isotropic
state using the single crystal elasticity tensor.5

It should also be noted, that for a thick girdle with ϕ = χ = 90◦ the variations over
the incoming angle are just reversed to that of the cone fabric with opening angle
ϕ = χ = 90◦. This reflects the difference in the calculation of the elasticity tensor from
cone fabric and girdle fabric. While a girdle with ϕ = 90◦ (χ = 0◦) is calculated in the
first step for both fabrics (Table 1) by integration with rotation around the x1-axis, the10

second step is an integration with rotation around the x3-axis for the cone fabric and
around the x2-axis for the thick girdle fabric.

The higher velocities calculated with the equations of Bennett (1988) (Fig. 4d) are
due to the difference in the elasticity tensor as the elasticity tensor derived by Gammon
et al. (1983) was used for the calculation in case of the other subfigures (Fig. 4a–c,15

e and f). The Bennett (1988) calculation exhibits an isotropic state for ϕ = χ = 90◦.
However, this is only possible as Bennett (1988) used fitted curves for the derivation of
the slowness surface.

4.3 Reflection coefficients

The calculation of reflection coefficients for different incoming angles is already rather20

complicated for layered isotropic media given by the Zoeppritz equations (e.g. Aki and
Richards, 2002). In case of anisotropic media most of the studies have been done for
VTI media (Keith and Crampin, 1977; Daley and Heron, 1977) and in terms of Thomsen
parameters (Thomsen, 1993). A comprehensive overview of the different calculations
of reflection coefficients for VTI and HTI media is given by Rüger (2002).25

In the following, we use equations derived by Zillmer et al. (1997) by means of per-
turbation theory for the calculation of englacial reflection horizons. These equations for
general anisotropy were simplified by Zillmer et al. (1998a) for weak contrast interfaces.
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They are especially practical for the reflection coefficients in ice. For the isotropic ref-
erence values the elasticity tensor for isotropic ice can be used and no average needs
to be taken over different materials. The reflection coefficients for the anisotropic ma-
terial are then calculated as perturbation of the isotropic ice fabric. Thus, reflection
coefficients for P-, SV- and SH-waves are obtained. The equations for the calculation5

of reflection coefficients are given in Appendix B2. The Rshsh and Rsvsv reflection coef-
ficients are restricted to a symmetry plane of the layered medium. The indices give the
polarisation of the incoming and reflected wave, e.g. Rpp is the reflection coefficient for
an incoming P-wave, reflected as P-wave, equivalent for Rshsh and Rsvsv.

For the calculation of the reflection coefficient between cone fabric (VTI) and the bed10

the derivation of Thomsen (1993), further developed by Rüger (1997), for the P-wave
reflection coefficient can be used as approximate equations. Exact solutions for VTI
media are, for example, given by Keith and Crampin (1977) or Graebner (1992).

4.4 Reflection coefficients for anisotropic ice

With the equations given in Appendix B2 (Zillmer et al., 1998a) reflection coefficients15

can be calculated for different fabric transitions. A large amount of transitions between
different anisotropic ice fabrics is possible here. Figure 5 shows as an example the
Rpp, Rshsh and Rsvsv reflection coefficient for the transition at a layer interface from an
isotropic fabric to a partial girdle fabric, both for HTI media (ψ = 0◦) and with an azimuth
of ψ = 90◦.20

The reflection coefficients are given for angles of incidence between 0◦ and 60◦. This
has two reasons. Firstly, most seismic surveys do not exceed an incoming angle of 60◦

as this already corresponds to a large offset compared to the probed depth. Secondly
and more important, the calculation of the reflection coefficients using Eqs. (B12)–
(B13) is not exact. Instead, the error increases with increasing incoming angle.25

The largest magnitude of reflection coefficients can be observed for the SVSV-
reflection (Fig. 5). However, the reflection coefficients are ≤ 0.1 for all fabric combi-
nations shown here. Especially for the PP-reflection the reflection coefficients between
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different anisotropic fabrics are small. The PP-reflection between, e.g. isotropic and
VSM-fabric ice for normal incident is < 0.02. For comparison the reflection coefficient
between isotropic and lithified sediments (Fig. 6) is ∼ 0.4. Hence, reflection coefficients
at the ice–bed interface are an order of magnitude larger than reflection coefficients
for the transition between different anisotropic fabrics. To be able to observe englacial5

seismic reflections abrupt changes (i.e. within a wavelength) with significant variations
in the orientation of the ice crystals are needed. Such englacial reflections have been
observed in data from Greenland (Horgan et al., 2008), Antarctica (Horgan et al., 2011;
Hofstede et al., 2013) but also in the Swiss Alps (Polom et al., 2014; Diez et al., 2013).
These reflections can indicate a change in the anisotropic fabric. However, the investi-10

gation of reflection signatures (amplitude vs. offset, AVO) of englacial reflectors seems
difficult due to the small reflection coefficients, and the small range they cover with
changing incoming angle.

For englacial reflections caused by changing COF the variations in the reflection co-
efficient with offset are very small. The variation of the PP-reflection coefficient for the15

transition from isotropic to VSM-fabric (ϕ = 0◦, Fig. 5) from 0◦ to 60◦ is only between
0.019 and 0.036. It cannot be expected that the error bars for determining the reflec-
tion coefficient of englacial reflections would be smaller than those given for the bed
reflection coefficients. Peters et al. (2008) analysed reflection coefficient for the ice bed
interface and give error bars ≥ ±0.04. The change in the reflection coefficient with off-20

set for englacial reflections that we calculate is smaller than the given error bars. Thus,
it is unlikely that it is possible to derive information about the anisotropic fabric from
englacial reflections using AVO analysis. To be able to derive fabric information from
AVO analysis the error in determining the reflection coefficient from seismic data needs
to be reduced, e.g. better shooting techniques to reduce the signal-to-noise ratio (SNR)25

in the data or a better understanding of the source amplitude as well as the damping
of seismic waves in ice.
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4.5 Reflection coefficients for ice–bed interfaces

Of special interest is the determination of the properties of the ice–bed interface from
seismic data. It is possible to determine the bed properties below an ice sheet or glacier
by analysing the normal incident reflection coefficient (e.g. Smith, 2007) or by AVO
analysis (Anandakrishnan, 2003; Peters et al., 2008). Fig. 6 shows reflection coeffi-5

cients for the transition from isotropic and anisotropic (VSM-fabric) ice to different pos-
sible bed properties (Table 2). The properties, P-wave and S-wave velocity and density,
for the different bed scenarios and the isotropic ice are taken from Peters et al. (2008).
For the anisotropic VSM-fabric the elasticity tensor of Gammon et al. (1983) is used.

Exact solutions are calculated using the equations given by Graebner (1992), with10

corrections by Rüger (2002). Their equations were used to calculate the exact reflection
coefficients for the isotropic ice above the bed (solid lines) and for the anisotropic ice
above the bed (dashed lines) shown in Fig. 6. The approximate reflection coefficients
for the isotropic ice above the bed (dotted lines) are calculated using equations given
in Aki and Richards (2002). The approximate reflection coefficients for the VSM-fabric15

above the bed (dashed-dotted lines) are calculated using equations given in Rüger
(1997).

The differences between the isotropic (solid lines) and anisotropic reflection coeffi-
cients (dashed lines) are small (≤ 0.04) for the exact solutions. The approximate calcu-
lations fit well to the exact solutions up to a group angle of about 30◦, with differences20

in the same order as isotropic to anisotropic variations. However, differences between
exact and approximate reflection coefficients become large for increasing phase an-
gle (≥ 30◦). Thus, errors introduced by using approximate calculations for the reflection
coefficients are larger than the effect of anisotropic ice fabric above the bed.

Peters et al. (2008) analysed the reflection amplitude from a survey near the South25

Pole. For the reflection coefficients they derive from the seismic data they give error
bars ±0.04, with increasing error bars for decreasing incoming angles, limited by ±0.2.
However, the variation observable for reflection coefficients between an isotropic and
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a VSM-fabric overburden are ≤ 0.04. The VSM-fabric is the strongest anisotropy to be
expected in ice. If an anisotropic layer exists above the bed, it influences the reflection
coefficient compared to the isotropic ice overburden. However, the difference between
the isotropic overburden reflection coefficient and the anisotropic overburden reflection
coefficient is within the range of the error bars given by Peters et al. (2008). Thus, the5

anisotropic fabric will not have an influence on the analysis of the bed properties by
means of the AVO method.

5 Conclusions

We presented an approach to derive the elasticity tensor, required for the calculation
of seismic wave propagation in anisotropic material, from the COF eigenvalues derived10

from ice-core measurements. From the elasticity tensors we derived seismic phase
and group velocities of P-, SH- and SV-waves for cone, partial girdle and thick girdle
structures, i.e. orthorhombic media. We could find good agreement between the veloc-
ities derived with our approach and velocities calculated from the equations given by
Bennett (1988) for cone fabrics. However, we extend existing theories and algorithms15

and are now able to investigate the velocity variations in dependency of the incoming
angle for different girdle distributions and the reflection coefficients in anisotropic ice as
well.

We used the elasticity tensor to derive the reflection signature for englacial fabric
changes and investigated the influence of anisotropic fabric on the reflection coeffi-20

cients for basal reflectors. We found that the reflection coefficients and the variations
of the reflection coefficients with increasing offset are weak for the transition between
different COF distributions. They are at least an order of magnitude smaller than reflec-
tions from the ice–bed interface. Thus, either significant changes in the COF distribution
or extremely sensitive measurement techniques are needed to observe englacial seis-25

mic reflections. The influence of anisotropic ice fabric compared to the isotropic case
for the reflection at the ice–bed interface is so small that it is within the measurement
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inaccuracy of currently employed seismic AVO analysis. An important result is that the
difference between exact and approximate calculations of reflection coefficients for the
ice–bed interface is larger than the influence of an anisotropic ice fabric above the bed.
This implies that exact calculations are necessary if the fabric above the bed is in the
focus of AVO analysis.5

Better results in the calculation of the elasticity tensor could probably be gained by
calculation of the opening angles directly from the c-axes vectors. This would avoid our
classification into cone, partial girdle and thick girdle fabric. Nevertheless, the approach
presented here offers the opportunity to use the readily available COF data from ice
cores and go towards an investigation of the seismic wavefield in ice without the limita-10

tion to velocities only. The inclusion of further properties influencing the propagation of
seismic waves in ice, like density and temperature, will offer the opportunity to model
the complete wave field. Hence, we are confident that it will become feasible in the
future to derive physical properties of the ice from analyses of the complete observed
wave field by full waveform inversions.15

Appendix A: From COF eigenvalues to elasticity tensor for seismics

A1 Connection of eigenvalues to opening angles

The following equations give the connection between the eigenvalues λ1,λ2 and λ3 an
the two opening angles ϕ and χ .

For a cone fabric the angle ϕ = χ is calculated by20

ϕ = χ = b1 sin(c1λ3 +d1)+b2 sin(c2λ3 +d2)+b3 sin(c3λ3 +d3)+b4 sin(c4λ3 +d4), (A1)
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with

b1 = 141.9,c1 = 6.251,d1 = 2.157,

b2 = 139,c2 = 10.33,d2 = −1.809,

b3 = 90.44,c3 = 14.68,d3 = 4.685,

b4 = 36.61,c4 = 16.9,d4 = 12.63.5

For a thick girdle fabric the angle χ is calculated by

χ =p1λ
7
1 +p2λ

6
1 +p3λ

5
1 +p4λ

4
1 +p5λ

3
1 +p6λ

2
1 +p7λ1 +p8, (A2)

ϕ =90◦, (A3)
10

with

p1 = 2.957×107,p2 = −3.009×107,p3 = 1.233×107,p4 = −2.599×106,

p5 = 3.023×105,p6 = −1.965×104,p7 = 877.6,p8 = 2.614.

For a partial girdle fabric the angle ϕ is calculated by15

ϕ =a1 sin(b1λ3 +c1)+a2 sin(b2λ3 +c2)+a3 sin(b3λ3 +c3)+a4 sin(b4λ3 +c4), (A4)

χ =0◦, (A5)

with

a1 = 118.7,b1 = 7.415,c1 = −3.517,20

a2 = 97.47,b2 = 13.68,c2 = 1.161,

a3 = 46.57,b3 = 18.58,c3 = 6.935,

a4 = 7.455,b4 = 25.18,c4 = 11.47.
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A2 Rotation matrices for elasticity and compliance tensor

Here the rotation matrix for the elasticity tensor and compliance tensor following Sunder
and Wu (1994) are given. For the calculation of the elasticity tensor for different fabrics
the monocrystal elasticity tensor needs to be rotated (Sect. 3.2).

The rotation matrix for the elasticity tensor is5

RC =



l21 m2
1 n2

1 2m1nl1 2n1l1 2l1 m1

l22 m2
2 n2

2 2m2nl2 2n2l2 2l2 m2

l312 m2
3 n2

3 2m3nl3 2n3l3 2l3 m3
l2l3 m2 m3 n2n3 m2n3 −m3n2 n2l3 −n3l2 l2 m3 − l3 m2
l3l1 m3 m1 n3n1 m3n1 −m1n3 n3l1 −n1l3 l3 m1 − l1 m3
l1l2 m1 m2 n1n2 m1n2 −m2n1 n1l2 −n2l1 l1 m2 − l2 m1


, (A6)

and the compliance tensor

RS =



l21 m2
1 n2

1 m1nl1 n1l1 l1 m1

l22 m2
2 n2

2 m2nl2 n2l2 l2 m2

l312 m2
3 n2

3 m3nl3 n3l3 l3 m3
2l2l3 2m2 m3 2n2n3 m2n3 −m3n2 n2l3 −n3l2 l2 m3 − l3 m2
2l3l1 2m3 m1 2n3n1 m3n1 −m1n3 n3l1 −n1l3 l3 m1 − l1 m3
2l1l2 2m1 m2 2n1n2 m1n2 −m2n1 n1l2 −n2l1 l1 m2 − l2 m1


, (A7)

10

with the following direction cosines l1 l2 l3
m1 m2 m3
n1 n2 n3

 , (A8)
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for rotation around the x1-axis 1 0 0
cosφ −sinφ 0
sinφ cosφ 0

 , (A9)

for rotation around the x2-axiscosφ 0 −sinφ
0 1 0

sinφ 0 cosφ

 , (A10)5

and for rotation around the x3-axiscosφ −sinφ 0
sinφ cosφ 0

0 0 1

 . (A11)

A3 Components of elasticity and compliance tensor for polycrystal10

The components of the polycrystal elasticity tensor as derived from Eq. (12) with c-axes
distribution around the x1-axis, i.e. within the [x2,x3]-plane are calculated by:

Cp
11 =C

m
11,

Cp
22 =

1
2φ0

[
b1C

m
22 +b2C

m
33 +2b3(Cm

23 +2Cm
44)
]
,

Cp
33 =

1
2φ0

[
b1C

m
33 +b2C

m
22 +2b3(Cm

23 +2Cm
44)
]
,15

Cp
44 =

1
2φ0

[
(b1 +b2)Cm

44 +b3(Cm
22 −2Cm

23 +C
m
33 −2Cm

44)
]
,

Cp
55 =

1
2φ0

[
Cm

55(φ0 +α)+Cm
66(φ0 −α)

]
,

4377

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/8/4349/2014/tcd-8-4349-2014-print.pdf
http://www.the-cryosphere-discuss.net/8/4349/2014/tcd-8-4349-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
8, 4349–4395, 2014

Seismic wave
propagation in

anisotropic ice –
Part 1

A. Diez and O. Eisen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Cp
66 =

1
2φ0

[
Cm

66(φ0 +α)+Cm
55(φ0 −α)

]
,

Cp
12 =

1
2φ0

[
Cm

12(φ0 +α)+Cm
13(φ0 −α)

]
,

Cp
13 =

1
2φ0

[
Cm

13(φ0 +α)+Cm
12(φ0 −α)

]
,

Cp
23 =

1
2φ0

[
(b1 +b2)Cm

23 +b3(Cm
22 −4Cm

44 +C
m
33)
]
. (A12)

5

The components of the polycrystal compliance tensor as derived from Eq. (13) with
c-axes distribution around the x1-axis, i.e. within the [x2,x3]-plane are calculated by:

Sp
11 =S

m
11,

Sp
22 =

1
2φ0

[
b1S

m
22 +b2S

m
33 +b3(2Sm

23 +S
m
44)
]
,

Sp
33 =

1
2φ0

[
b1S

m
33 +b2S

m
22 +b3(2Sm

23 +S
m
44)
]
,10

Sp
44 =

1
2φ0

[
(b1 +b2)Sm

44 +4b3(Sm
22 −2Sm

23 +S
m
33 −

1
2
Sm

44)
]

,

Sp
55 =

1
2φ0

[
Sm

55(φ0 +α)+Sm
66(φ0 −α)

]
,

Sp
66 =

1
2φ0

[
Sm

66(φ0 +α)+Sm
55(φ0 −α)

]
,

Sp
12 =

1
2φ0

[
Sm

12(φ0 +α)+Sm
13(φ0 −α)

]
,

Sp
13 =

1
2φ0

[
Sm

13(φ0 +α)+Sm
12(φ0 −α)

]
,15
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Sp
23 =

1
2φ0

[
(b1 +b2)Sm

23 +b3(Sm
22 −S

m
44 +S

m
33)
]
. (A13)

These variables apply for the equations for the calculation of the elasticity and com-
pliance tensor of the polycrystal:

b1 =
3
4
φ0 +α+β,5

b2 =
3
4
φ0 −α+β,

b3 =
1
4
φ0 −β,

α =
1
2

sin2φ0,

β =
1

16
sin4φ0. (A14)

10

Appendix B: Equations for calculation of velocities and reflection coefficients

B1 Velocities in anisotropic media

To be able to calculate velocities for partial girdle fabric the calculation of phase velocity
for orthorhombic media derived by Daley and Krebes (2004) is used. They rearrange
linearised equations to obtain the velocity from an ellipsoidal part with anellipsoidal15

correction term:

vp(n) =
√

1/ρ(C11n
2
1 +C22n

2
2 +C33n

2
3 +2B12n

2
1n

2
2 +2B13n

2
1n

2
3 +2B23n

2
2n

2
3), (B1)

vsv(n) =
√

1/ρ(C44 sin2ψ +C55 cos2ψ +2B12n
2
1n

2
3 sin2ψ −2B13n

2
2n

2
3 −2B23n

2
1n

2
3),

(B2)
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vsh(n) =
√

1/ρ(C44n
2
3 cos2ψ +C55n

2
3 sin2ψ +C66 sin2ϑ−2B12n

2
1 sin2ψ), (B3)

with

B12 =(C13 +2C66)− (C11 +C22)/2, (B4)

B13 =(C12 +2C55)− (C11 +C33)/2, (B5)5

B23 =(C23 +2C44)− (C22 +C33)/2, (B6)

and the unit phase normal vector

n = (n1,n2,n3) = (sinϑcosψ ,sinϑsinψ ,cosϑ). (B7)
10

with the phase angle ϑ and the azimuth ψ , here the azimuth for the orientation of
a girdle fabric (Fig. 1).

The components of the group velocity vector are given by (Tsvankin, 2001)

vg,x1
=v sinϑ+

∂vph

∂ϑ

∣∣∣∣∣
ψ=const

cosϑ, (B8)

vg,x2
=

1
sinϑ

∂vph

∂ψ

∣∣∣∣∣
ϑ=const

, (B9)15

vg,x3
=vph cosϑ+

∂vph

∂ϑ

∣∣∣∣∣
ψ=const

sinϑ. (B10)

Within the symmetry planes the group velocity can be calculated using vg,x1
and vg,x3

only (Eq. 14).
Outside the symmetry planes of the HTI media the component vg,x2

can not be ne-20

glected as the derivation ∂v
∂ψ is no longer zero. In this case vg is the norm of the group
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velocity vector vg considering all three components vg,x1
, vg,x2

and vg,x3
. Here, a sec-

ond group angle (next to the one in the plane Eq. 15) exists for the direction outside
the plane with

tanθout =
vg,x2√

v2
g,x1

+ v2
g,x3

. (B11)

5

B2 Reflection coefficients (Zillmer)

The reflection coefficients as derived by Zillmer et al. (1997, 1998a) are given by

Rpp =
1
4

 ∆C33

C(0)
44 +2C(0)

12

+
∆ρ

ρ(0)

− 1
4
∆ρ

ρ(0)
tan2(ϑ)+

1
4

2∆C13 −C33 −4∆C55

C(0)
44 +2C(0)

12

sin2ϑ

+
1
4

∆C11

C(0)
44 +2C(0)

12

sin2ϑ tan2ϑ, (B12)

Rsvsv =− 1
4

∆C55

C(0)
12

+
∆ρ

ρ(0)

− 1
4
∆ρ

ρ(0)
tan2(ϑ)+

1
4

∆C11 −2∆C13 +C33 −3∆C55

C(0)
12

sin2ϑ10

− 1
4

∆C55

C(0)
12

sin2ϑ tan2ϑ, (B13)

Rshsh =− 1
4

∆C44

C(0)
12

+
∆ρ

ρ(0)

+
1
4

∆C66

C(0)
12

+
∆ρ

ρ(0)

 tan2ϑ, (B14)

where ∆ denotes the difference between the upper layer 1 and the lower layer 2, for
example ∆C33 = C

(2)
33 −C(1)

33 . The superscript (0) gives the isotropic reference values.15

When reflection coefficients are calculated for different anisotropic ice fabrics, the den-
sity is constant, i.e. the ∆ρ-terms can be neglected (ρ(2) −ρ(1) = 0).
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Table 1. Steps for calculation of elasticity tensor (Eq. 13) or compliance tensor (Eq. 13) for
different fabrics (Fig. 1).

step rotation axis angle

cone 1 x1 ϕ = χ
2 x3 90◦

partial girdle 1 x1 ϕ
thick girdle 1 x1 90◦

2 x2 χ
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Table 2. P- and S-wave velocity as well as density for different bed scenarios and isotropic is as
given in Peters et al. (2008). These values are used for the calculation of reflection coefficients
given in Fig. 6.

material vp in m s−1 vs in m s−1 ρ in kg cm−3

ice 3810 1860 920
basement 5200 2800 2700
lithfied sediment 3750 2450 2450
dilatant sediment 1700 200 1800
water 1498 0 1000
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φ = 90° , χ
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girdle rotated  
azimuth Ψ
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χ

χ
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n
→

ψ

Fig. 1. Enveloping of different COF distributions used in the following analysis of seismic data within
the used coordinate system. It is distinguished between cone fabric, thick and partial girdle fabric. The
cone fabric, seismically a vertical transversely isotropic (VTI) medium, includes the two extreme forms
of single vertical maximum and isotropic state. The two girdle fabrics are within the [x2,x3]-plane, a
horizontal transversely isotropic (HTI) medium and can be turned around the azimuth ψ.
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Figure 1. Enveloping of different COF distributions used in the following analysis of seismic
data within the used coordinate system. It is distinguished between cone fabric, thick and par-
tial girdle fabric. The cone fabric, seismically a vertical transversely isotropic (VTI) medium,
includes the two extreme forms of single vertical maximum and isotropic state. The two girdle
fabrics are within the [x2,x3]-plane, a horizontal transversely isotropic (HTI) medium and can
be turned around the azimuth ψ .
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Fig. 2. Wavefront of a P-wave travelling in isotropic ice fabric (dashed line) and in an vertical single
maximum (VSM) fabric (red line), thus, a vertical transversely isotropic (VTI) media. The solid arrow
shows the group velocity with group angle θ, the dashed arrow the phase velocity with phase angle ϑ.
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Figure 2. Wavefront of a P-wave travelling in isotropic ice fabric (dashed line) and in an vertical
single maximum (VSM) fabric (red line), thus, a vertical transversely isotropic (VTI) media. The
solid arrow shows the group velocity with group angle θ, the dashed arrow the phase velocity
with phase angle ϑ.
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Fig. 3. Phase (dashed lines) and group velocities (solid lines) over the corresponding phase ϑ and group
angle θ for P- (red curves), SH- (blue curves) and SV-waves (light blue curves) of a VSM-fabric. The
SV-wave group velocity shows a triplication. For group angles θ between 43◦ and 46◦ three different
velocities are given for each angle.
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Figure 3. Phase (dashed lines) and group velocities (solid lines) over the corresponding phase
ϑ and group angle θ for P- (red curves), SH- (blue curves) and SV-waves (light blue curves)
of a VSM-fabric. The SV-wave group velocity shows a triplication. For group angles θ between
43◦ and 46◦ three different velocities are given for each angle.
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Fig. 4. P-wave phase velocities over phase angle ϑ for different fabrics. P-wave velocity for (a) different
cone opening angles (ϕ= χ), (b) partial girdle fabric (χ= 0◦) and (c) thick girdle fabric (ϕ= 90◦)
within the [x2,x3]-plane, (e) partial girdle fabric (χ= 0◦) and (f) thick girdle fabric (ϕ= 90◦) within
the [x1,x3]-plane calculated with equation (B1) given by Daley and Krebes (2004). (d) shows the P-wave
velocity for different cone opening angles (ϕ= χ) calculated with the Equation given by Bennett (1968).
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Figure 4. P-wave phase velocities over phase angle ϑ for different fabrics. P-wave velocity for
(a) different cone opening angles (ϕ = χ ), (b) partial girdle fabric (χ = 0◦) and (c) thick girdle
fabric (ϕ = 90◦) within the [x2,x3]-plane, (e) partial girdle fabric (χ = 0◦) and (f) thick girdle
fabric (ϕ = 90◦) within the [x1,x3]-plane calculated with Eq. (B1) given by Daley and Krebes
(2004). (d) shows the P-wave velocity for different cone opening angles (ϕ = χ ) calculated with
the equation given by Bennett (1988).
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Fig. 5. Reflection coefficients for the boundary between an isotropic (upper) layer and a partial girdle
fabric (lower) layer with different opening angles ϕ (χ= 0◦) of the girdle. The reflection coefficients
are calculated with equations given in Sect. 4.3 for different incoming phase angles ϑ. The subfigures
(a), (b) and (c) show the reflection coefficients for a girdle orientation (lower layer) perpendicular to the
travelpath of the wave (HTI media) for PP-, SHSH- and SVSV-reflection, respectively. The subfigures
(d), (e) and (f) show the reflection coefficients for a girdle orientation parallel to the travelpath of the
wave (azimuth ψ = 90◦) for PP-, SHSH- and SVSV-reflection, respectively.
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Figure 5. Reflection coefficients for the boundary between an isotropic (upper) layer and a par-
tial girdle fabric (lower) layer with different opening angles ϕ (χ = 0◦) of the girdle. The reflec-
tion coefficients are calculated with equations given in Sect. 4.3 for different incoming phase
angles ϑ. The subfigures (a), (b) and (c) show the reflection coefficients for a girdle orienta-
tion (lower layer) perpendicular to the travelpath of the wave (HTI media) for PP-, SHSH- and
SVSV-reflection, respectively. The subfigures (d), (e) and (f) show the reflection coefficients for
a girdle orientation parallel to the travelpath of the wave (azimuth ψ = 90◦) for PP-, SHSH- and
SVSV-reflection, respectively.
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Fig. 6. Reflection coefficients for ice-bed interface with different bed properties as a function of phase an-
gle of incidence ϑ: basement (black), lithified sediments (red), dilatant sediments (gray) and water (blue).
The solid and dotted lines are the reflection coefficients for an isotropic ice overburden, the dashed and
dashed-dotted lines for the anisotropic (VSM) overburden. The solid and dashed lines are the reflection
coefficients calculated with exact equations for VTI media given by Graebner (1992) and Rüger (2002).
The dotted and dashed-dotted lines are approximate calculations following the approach by Aki and
Richards (2002) for the isotropic and that of Rüger (1997) for the anisotropic case, respectively. Bed
property values for bed and isotropic ice are taken from Peters et al. (2008), for the anisotropic ice the
elasticity tensor given by Gammon et al. (1983) is used.
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Figure 6. Reflection coefficients for ice-bed interface with different bed properties as a function
of phase angle of incidence ϑ: basement (black), lithified sediments (red), dilatant sediments
(gray) and water (blue). The solid and dotted lines are the reflection coefficients for an isotropic
ice overburden, the dashed and dashed-dotted lines for the anisotropic (VSM) overburden. The
solid and dashed lines are the reflection coefficients calculated with exact equations for VTI
media given by Graebner (1992) and Rüger (2002). The dotted and dashed-dotted lines are
approximate calculations following the approach by Aki and Richards (2002) for the isotropic
and that of Rüger (1997) for the anisotropic case, respectively. Bed property values for bed
and isotropic ice are taken from Peters et al. (2008), for the anisotropic ice the elasticity tensor
given by Gammon et al. (1983) is used.
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