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Abstract. A preferred orientation of the anisotropic ice crystals influences the viscosity of the

ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution

of crystal anisotropy is mainly provided by crystal orientation fabric (COF) data from ice cores.

However, the developed anisotropic fabric does not only influence the flow behaviour of ice, but

also the propagation of seismic waves. Two effects are important: (i) sudden changes in COF lead5

to englacial reflections and (ii) the anisotropic fabric induces an angle dependency on the seismic

velocities and, thus, recorded traveltimes. A framework is presented here to connect COF data from

ice-cores with the elasticity tensor to determine seismic velocities and reflection coefficients for

cone and girdle fabrics. We connect the microscopic anisotropy of the crystals with the macroscopic

anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics10

are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities

and reflection coefficients, englacially as well as for the ice–bed contact. Hence, it is possible to

remotely determine the bulk ice anisotropy.

1 Introduction

Understanding the dynamic properties of glaciers and ice sheets is one important step to determine15

past and future behaviour of ice masses. One essential part is to increase our knowledge of the flow

of the ice itself. When the ice mass is frozen to the base its flow is primarily determined by internal

deformation. The degree thereof is governed by the viscosity (or the inverse of softness) of ice. The

viscosity depends on different factors, such as temperature, impurity content and the orientation of

the anisotropic ice crystals (Cuffey and Paterson, 2010).20
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Ice is a hexagonal crystal (ice Ih) under natural conditions on earth. These ice crystals can align

in specific directions in response to the stresses within an ice mass. A preferred orientation of the

ice crystals causes the complete fabric to be anisotropic, in contrast to a random distribution of the

ice crystals where the ice is isotropic on the macroscopic scale. This fabric anisotropy influences

the viscosity of the ice. The shear strength is several orders of magnitude smaller perpendicular to25

the ice crystal’s c-axis than parallel to it, as shown in laboratory studies (Ashby and Duval, 1985;

Cuffey and Paterson, 2010).

The influence of anisotropic ice fabric on the flow behaviour of ice can directly be observed in

radar profiles from ice domes. At ice domes and divides a prominent feature of flow conditions is a

Raymond bump (Raymond, 1983; Martı́n et al., 2009b). As ice is a non-Newtonian fluid, it is softer30

and deforms more easily on the flanks of the ice dome or divide due to the higher deviatoric stress

there compared to the centre of the dome. Thus, the vertical flow is slower at the dome itself than

on the flanks. This leads to an apparent upwarping of the isochronous layers. The development and

influence of anisotropic fabric on the flow of ice at divides and the effects on the development of

Raymond bumps were investigated by, for instance, Pettit et al. (2007) and Martı́n et al. (2009a).35

At ice divides features like double bumps and synclines are observed (Drews et al., 2013), next to

single bumps. Martı́n et al. (2009a) could reproduce these double bumps and synclines by including

anisotropic rheology in a full-Stokes model. Hence, they are presently considered a direct evidence

of the existence of developed anisotropic fabric.

A second prominent feature in radar data is the basal layer. Before the advent of multi-static,40

phase-sensitive radar systems, the basal layer has usually been observed only as an echo-free zone

(EFZ). The onset of it was connected to the appearance of folds in ice cores on a centimetre scale

(Drews et al., 2009). Considerable progress in radar imaging over the last decade make it now pos-

sible to image the very bottom layer of ice sheets (Bell et al., 2011; NEEM community members,

2013). The radar data show an often fuzzy basal layer, with a rough upper surface and consider-45

ably disturbed coherency of radar return power. The presence of the basal layer turns out to be

widespread, especially in Antarctica (CReSIS, P. Gogineni, pers. comm. 2014). As the basal ice

near the bed is subject to higher stresses and elevated temperatures than the ice above, it is the region

where ice physical properties on the microscale change most rapidly (Faria et al., 2014b). These

include changes in crystal orientation fabric (COF) properties and distribution.50

With increasing computational power the incorporation of anisotropy into ice flow models be-

comes feasible in three dimensions as well as on regional scales. However, to include anisotropy in

ice-flow modelling we need to understand the development and the distribution of the anisotropic

fabric, i.e. we have to observe the variation in the COF distribution over depth, as well as the lateral

extent. To extend our ability to determine the influence of these properties on ice flow and map them55

laterally beyond the 10 cm scale of ice cores, we have to advance our knowledge of the connec-

tion between microscale properties and macroscale features on the tenths to hundreds of meter-scale
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observed with geophysical methods like radar and seismics.

The standard method to measure the COF distribution is to analyse thin sections from ice cores

under polarized light. The anisotropy is then normally given in the form of the sample-averaging60

eigenvalues of the orientation tensor (Woodcock, 1977) in discrete depth intervals. From this we

gain information about the local anisotropic conditions at the ice-core location. Radar data have

also been used to analyse the changing COF over depth (Matsuoka et al., 2003; Fujita et al., 2006;

Eisen et al., 2007; Matsuoka et al., 2009). The challenge in analysing radar data is to distinguish

the COF-induced reflections from the numerous conductivity-induced reflections. This distinction is65

important as conductivity-induced layers are isochrones; by following conductivity-induced reflec-

tions in radar data, layers of equal age can be followed over large distances. Currently, identifying

and tracing undisturbed layering is one of the main methods being used to identify the location of a

site for a potentially 1.5 Ma old ice core in East Antarctica (Fischer et al., 2013).

Further, the anisotropic fabric has an influence on the wave propagation of seismic waves. Hence,70

by analysing COF-induced reflections and traveltimes the anisotropic fabric on the macroscale can

be determined. Not only the longitudinal (P) pressure waves can be analysed here for the anisotropic

fabric but also the transverse waves, i.e. the horizontal (SH) and vertical (SV) shear wave. One of

the first studies of seismic anisotropy in the context of ice crystal anisotropy was the PhD thesis

of Bennett (1968), who derived equations for the calculation of seismic velocities for solid cone75

and surface cone fabrics. He fitted curves to the slowness surface (inverse of the phase velocity)

calculated from an elasticity tensor measured by means of ultrasonic sounding. This was applied to

data from Dome C, Antarctica, by Blankenship and Bentley (1987). Bentley (1972) investigated the

anisotropic ice fabric at Byrd Station, Antarctica, for which he used ultrasonic logging. To determine

the anisotropic seismic velocities for different cone fabrics, he calculated an average from the single80

crystal velocity for the encountered directions. This approach was used later by Gusmeroli et al.

(2012) for analysing the crystal anisotropy from borehole sonic logging at Dome C, Antarctica.

These methods have one shortcoming. They limit the analysis of anisotropy of seismic waves

to the analysis of the traveltimes, i.e. seismic velocities. The influence of anisotropy has not only

been observed in seismic velocities. Englacial reflections were also observed in seismic data from85

Antarctica (Horgan et al., 2011; Hofstede et al., 2013) and Greenland (Horgan et al., 2008). These re-

flections were interpreted as arising from an abrupt change in fabric orientation. However, to analyse

the reflection signature and determine the actual change in COF, we first need an understanding of the

reflection coefficient for changing incoming angles for the transition between different anisotropic

fabrics.90

One way to improve the analysis of seismic data is to apply full waveform inversion algorithms,

i.e. the analysis of the complete observed wave field and not only quantifiable characteristics such

as reflection strength or traveltimes, which gains more and more importance in applied geophysics

in general. If we want to be able to investigate and understand the influence of the anisotropic
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ice fabric on the seismic wave field and develop ways to derive information from traveltimes and95

reflection signatures about different anisotropic ice fabrics from seismic data, we need to be able to

derive the elasticity tensor for different COF distributions.

In this paper we extend the analysis of seismic velocities beyond cone fabrics and derive the

elasticity tensor, which is necessary to describe the seismic wavefield in anisotropic media. The

description of seismic wave propagation in anisotropic materials is based on the elasticity tensor,100

a 4th order tensor with 21 unknowns in the general case of anisotropy. If the elasticity tensor is

known, seismic velocities, reflection coefficients or reflection angles, can be calculated. From ice

core analysis one normally gains the COF eigenvalues describing the distribution of the crystal

orientations. Hence, we first need a connection between the COF eigenvalues and the elasticity

tensor.105

We present a framework here to derive the elasticity tensor from the COF eigenvalues for cone as

well as different girdle fabrics. We derive opening angles for the enveloping of the c-axis distribution

from the COF eigenvalues. We then integrate using a monocrystal elasticity tensor for these derived

distributions to obtain the elasticity tensor for the different anisotropic fabrics (Sect. 3). Based on

these derived elasticity tensors we calculate seismic velocities and reflection coefficients for different110

c-axis distributions. As examples, we investigate the compressional wave velocity variations with

increasing angle for different fabrics and the reflection coefficients for a change from isotropic to

girdle fabric for compressional and shear waves. Further, we analyse the influence of anisotropy

on the reflection signature of the ice–bed interface and discuss these results in Sect. 4. This is the

first part of two companion papers. The calculations introduced here will be applied to ice-core and115

seismic data from Kohnen Station, Antarctica, in Part II, Diez et al. (2014, subm.).

2 Ice crystal anisotropy

The ice crystal is an anisotropic, hexagonal crystal with the basal plane perpendicular to the ice

crystal’s c-axis. Due to the existing stresses within glaciers and ice sheets these anisotropic ice

crystals can be forced to align in one or several specific directions. In such cases the crystal’s c-axis120

is oriented perpendicular to the main direction of stress (Cuffey and Paterson, 2010). Depending

on the stress regime different COF distributions develop. Common stress regimes in glaciers are

simple shear and uniaxial stress (Table 1). At ice domes simple shear can be observed, such that

the ice crystals orient towards the vertical, i.e cone distributions can be found, also called cluster

distributions in mineralogy. At ice divides, with a main direction of extension and compression125

perpendicular to that, ice crystals tend to orient in one plane, i.e. in girdle distribution.

Different fabric distributions were discussed by Wallbrecher (1986), who classifies eigth different

fabric groups. Of these we will use the three most common fabrics observed in glacier ice in the

following analysis of the influence of ice crystal anisotropy on seismic wave propagation: (i) the
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cluster (or cone) distribution, (ii) the thick girdle distribution, and (iii) the partial girdle distribution.130

These distributions are shown in Table 1. The sketches (first row) show the enveloping of the specific

c-axes distribution for the different fabrics. We will use the term cone fabric instead of cluster

fabric hereinafter, as it is the more commonly used term in glaciology. The most extreme forms of

anisotropy we can expect in ice are the isotopic fabric, with a uniform distribution of ice crystals,

and the vertical single maximum (VSM) fabric, where all ice crystals are oriented vertical. Note that135

the term ’lattice-preferred orientation (LPO)’ is used as well in literature to refer to the orientation

of the crystals (Faria et al., 2014a), in addition to COF.

2.1 Crystal orientation fabric measurements

The standard method of measuring COF distributions is by analysing thin sections from ice cores

under polarized light using an automatic fabric analyser (Wilson et al., 2003; Peternell et al., 2010).140

The c-axis orientation of each single crystal is determined and can be given as a unit vector (c).

These orientations can be presented in Schmidt plots, an equal-area projection of a sphere onto a

plane, or as eigenvalues λ1,λ2,λ3 of the weighted orientation tensor

Aij =W

n∑
l=1

(cicj)l, with i, j = 1,2,3. (1)
145

The number of grains is given by n and W is a weighting function, with weighting, e.g. by grain

number (W = 1/n) or by area. The three eigenvalues, with λ1 ≤ λ2 ≤ λ3 and
∑
λi = 1, determine

the extension of a rotation ellipsoid. The corresponding eigenvectors cannot be given when the

orientation of the ice core within the borehole is not measured in geolocated directions. Hence, the

direction to which these eigenvalues apply is often unknown.150

Another possibility to describe the anisotropic fabric is to calculate the spherical aperture from the

orientation tensor. Hence, the c-axis distribution is given in the form of one opening angle for the

enveloping cone (Wallbrecher, 1986). However, this limits the analysis of anisotropy to cone fabrics

(Table 1).

2.2 Seismic anisotropy155

The propagation of seismic waves is influenced by the anisotropic material, effecting, e.g. seismic

velocities, reflection coefficients and reflection angles, among other properties. The propagation of

wavefronts in the anisotropic case is no longer spherical. Figure 1 shows the anisotropic wavefront

for a P-wave travelling in a VSM-fabric (red line) and the spherical wavefront for a P-wave in

isotropic ice fabric (dashed black line). For the anisotropic case group and phase velocity, as well160

as group angle θ and phase angle ϑ, are no longer the same. The group velocity determines the

traveltime. The phase velocity vector is normal to the wavefront. Thus, the phase velocity and phase

angle ϑ are needed for the calculation of reflection and transmission angles as well as reflection

coefficients in anisotropic media.
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For an anisotropic medium the linear relationship between tensors of stress σmn and strain τmn is165

described by Hooke’s law

σmn = cmnopτop, (2)

with the elasticity tensor cmnop and m,n,o,p= 1,2,3. In the isotropic case these 81 components

of the elasticity tensor can be reduced to the two well-known Lamé parameters. In the general170

anisotropic case, symmetry consideration of the strain and stress tensors apply, as well as thermo-

dynamic considerations (Aki and Richards, 2002). Hence, the general anisotropic elasticity tensor

consist of 21 independent components and is referred to as triclinic.

To determine seismic velocities in anisotropic media a solution for the wave equation needs to

be found. Given here is the wave equation for homogeneous, linear elastic media, without external175

forces and with triclinic anisotropy

ρ
∂2um
∂t2

− cmnop
∂2uo
∂xn∂xp

= 0, (3)

with ρ the density of the material, t time, the components um and uo of the displacement vector u

and the different spatial directions xn, xp. Solving this equation leads to an eigenvalue problem, the180

Christoffel equation. For a detailed derivation see, e.g. Tsvankin (2001).

Finally, three non-trivial solutions exist for this eigenvalue problem, giving the three phase veloc-

ities and vectors for the quasi compressional (qP), the quasi vertical (qSV) and the quasi horizontal

shear (qSH) wave. The phase vectors are orthogonal to each other. However, qP- and qSV-waves are

coupled, so the waves are not necessarily pure longitudinal or shear waves outside of the symmetry185

planes. Therefore, they are additionally denoted as ’quasi’ waves, i.e. qP-, qSV- and qSH-waves.

As the following analyses are mostly within the symmetry planes, the waves will from now on be

denoted as P-, SV- and SH-waves. Nevertheless, outside of the symmetry planes this term is not

strictly correct.

To be able to find analytical solutions of the Christoffel matrix the anisotropic materials are distin-190

guished by their different symmetries. Additionally, to simplify calculations with the elasticity ten-

sor we will use the compressed Voigt notation (Voigt, 1910) for the elasticity tensor cmnop→ Cij .

Therefore, the index combinations of mn and op are replaced by indices between 1 and 6 (11≡ 1,

22≡ 2, 33≡ 3, 23≡ 4, 13≡ 5, 12≡ 6). Considering only certain symmetries reduces the unknowns

of the elasticity tensorCij further. For the analysis of anisotropic ice we consider cone, thick and par-195

tial girdle fabric. The connection between the different fabric types and symmetry classes, i.e. seis-

mic terminology for this fabric, can be found in Table 1. Partial girdle fabric is the fabric with the
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lowest symmetry, corresponding to an orthorhombic medium, with 9 unknowns,

Cij =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (4)

200

In case of orthorhombic media three symmetry planes, i.e. orthogonal planes of mirror symmetry

exist. The number of unknowns can be reduced further to five unknowns if transversely isotropic

media exists, resulting in an anisotropy with a single axis of rotation symmetry. This is normally dis-

tinguished in vertical transversely isotropic (VTI) and horizontal transversely isotropic (HTI) media,

with a vertical and horizontal axis of rotation symmetry, respectively. A vertical cone fabric, includ-205

ing VSM fabric, would be classified as VTI media while a thick girdle fabric as given in Table 1

would be classified as HTI media. This distinction is important for the calculation of seismic veloc-

ities and reflection coefficients as the calculation simplifies for wave propagation within symmetry

planes of the anisotropic fabric (Sect. 4)

3 Calculation of elasticity tensor from COF eigenvalues210

From the analysis of ice cores we determine the COF eigenvalues which describe the crystal anisotropy

over depth. The propagation of seismic waves in anisotropic media can be calculated from the elas-

ticity tensor. Hence, a relationship between the COF eigenvalues and the elasticity tensor is needed.

For the following derivation of the elasticity tensor we will use two opening angles for the descrip-

tion of the fabric that envelopes the c-axis distribution. Thus, we are able to take into account cone215

as well as girdle fabric distributions. We distinguish between an opening angle χ in x1-direction and

an opening angle ϕ in x2-direction in a coordinate system where the x3-axis is pointing downwards

(Table 1). These opening angles will be calculated from the COF eigenvalues.

The two opening angles determine the kind of fabric (Table 1). If the angles ϕ and χ are equal,

the c-axis distribution is a cone distribution with the cone opening angle ϕ= χ, i.e. it is a VTI220

media. The two extrema of this distribution are the uniform distributions, i.e. the isotropic case, and

the VSM-fabric. All c-axes are oriented vertically in case of a VSM-fabric. The eigenvalues are

λ1 = λ2 = 0 and λ3 = 1 and the cone opening angle is 0◦. The ice crystals are randomly oriented in

case of isotropic fabric. The eigenvalues are then λ1 = λ2 = λ3 = 1/3 and the cone opening angle

is 90◦. The thick girdle fabric is an HTI media: The c-axes are distributed between two planes with225

a certain distance, so that the opening angle ϕ in x2-direction is 90◦ and χ in x1-direction gives the

thickness of the girdle. The partial girdle fabric, an orthorhombic media, is a distribution where all

ice crystal c-axes are in one plane, but only within a slice of this plane, so that the opening angle χ
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in x1-direction is 0◦ and ϕ in x2-direction gives the size of the slice within the plane. A girdle fabric

with χ= 0◦ and ϕ= 90◦ would correspond to the eigenvalues λ1 = 0 and λ2 = λ3 = 0.5.230

We will use a measured monocrystal elasticity tensor here to calculate the elasticity tensor for

the different observed anisotropic fabrics in ice from the COF eigenvalues. For monocrystalline ice

the components of the elasticity tensor have been previously measured by a number of authors with

different methods. For the following calculations we use the elasticity tensor of Gammon et al.

(1983) (C11 = 13.93± 0.04 GNm−2; C33 = 15.01± 0.05 GNm−2; C55 = 3.01± 0.01 GNm−2;235

C12 = 7.08± 0.04 GNm−2; C13 = 5.77± 0.02 GNm−2). The c-axis of this ice crystal is oriented

vertically here, parallel to the x3-direction (Table 1).

3.1 From COF eigenvalues to opening angles

When the COF eigenvalues are derived, the information on the fabric distribution is significantly re-

duced, especially as the corresponding eigenvectors are normally unknown. Hence, it is not possible240

to determine the elasticity tensor with at least five unknowns directly from the three COF eigenval-

ues. Therefore, we first subdivide the observed anisotropies into different fabric groups (cone, thick

girdle and partial girdle fabric) by means of the eigenvalues. Afterwards, we determine their opening

angles (Sect. 2.1).

To differentiate between cone and girdle fabric Woodcock (1977) suggests a logarithmic repre-245

sentation of the eigenvalues and classification by a slope

m=
ln(λ3/λ2)

ln(λ2/λ1)
. (5)

The fabric is a cone fabric with m> 1 and a girdle fabric with m< 1. However, we want to put a

stronger tendency towards a classification of the fabric as cone fabric. In the seismic sense a cone250

fabric is a VTI media. It is easier to calculate velocities and reflection coefficients for VTI media

compared to girdle fabric, i.e. HTI media. Hence, we use a threshold value to distinguish between

cone and girdle fabric. If λ1 ≤ 0.1 and λ2 ≥ 0.2 the fabric is classified as girdle fabric, everything

else is classified as cone fabric. Additionally, we set a threshold to distinguish within the girdle

fabric between partial and thick girdle fabric. If λ1 ≤ 0.05 the fabric is classified as partial girdle,255

otherwise as thick girdle. By distinguishing between these fabrics we know that ϕ= χ for the cone

fabric, ϕ= 90◦ for the thick girdle fabric and χ= 0◦ for the partial girdle fabric (Table 1).

In the next step the remaining, unknown opening angle for the different fabrics needs to be cal-

culated from the eigenvalues, i.e. ϕ for the cone fabric, χ for the thick girdle fabric and ϕ for the

partial girdle fabric. Wallbrecher (1986) for instance connects the opening angle ϕ of a cone fabric260

with the eigenvalue λ3 by λ3 = 1−2/3sin2ϕ. To verify this calculation we determine the eigenval-

ues for cone angles between 0 and 90◦. In total 10000 randomly distributed vectors were created,

giving a random distribution of c-axes. For each cone angle the vectors within this cone angle were

selected. The eigenvalues for this cone angle were then calculated from these vectors. The process
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was repeated 100 times for each cone angle ϕ. The calculated λ3(ϕ) values from the equation given265

by Wallbrecher (1986) differ by up to 15◦ for ϕ. For a more precise connection of λ3 and ϕ than

available from literature a 4th-order polynomial was fitted to the λ3–ϕ values (App. A1). The same

was done for the calculation of χ from λ1 for thick girdle fabrics, as well as for the calculation of

ϕ from λ3 for partial girdle fabrics (App. A1). The orientation of the girdle is normally not known.

Thus, the azimuth ψ (Fig. 2) of the girdle fabric cannot be determined from the eigenvalues. This is270

only possible if the eigenvector belonging to the eigenvalue λ1, the normal to the plane of the girdle,

is known in geolocated directions. Hence, in the following we normally assume girdle fabrics to be

orientated as HTI media with the azimuth ψ = 0◦ for the calculation of the elasticity tensor.

3.2 From opening angles to the elasticity tensor

The elasticity tensor of the polycrystal can now be derived using the measured elasticity tensor for275

a single ice crystal and the derived angles χ and ϕ. For the calculation of the polycrystal elasticity

tensor Cij we follow the idea of Nanthikesan and Sunder (1994). They use the concept of the Voigt

(1910) and Reuss (1929) bounds. This concept was developed to calculate the elasticity tensor of

isotropic polycrystals, containing different crystals. This concept is generalized by Nanthikesan and

Sunder (1994) to calculate the elasticity tensor for anisotropic fabrics.280

Voigt (1910) assumed that the strain on the polycrystal introduces the same uniform strain in all

monocrystals. On the contrary, Reuss (1929) assumed that the stress on the polycrystal introduces

the same uniform stress in all monocrystals. To calculate the elasticity tensor of the polycrystal with

the Voigt (1910) assumption one has to average over the elasticity tensor Cm
ij of the monocrystal

(superscript m). In case of the Reuss (1929) assumption, the compliance tensor of the polycrystal is285

calculated by averaging over the compliance tensor Sm
ij of the single crystals. The compliance tensor

of a crystal is the inverse of the elasticity tensor, here given in terms of Hooke’s law (Eq. (2)):

τmn = smnopσop. (6)

For the inversion of elasticity to compliance tensor and vice versa see, e.g. Bower (2010). The290

method of Voigt (1910) and Reuss (1929) is an approximation of the elasticity tensor due to violation

of local equilibrium and compatibility conditions across grain boundaries, respectively. Hill (1952)

showed that the concepts of Voigt (1910) and of Reuss (1929) give the upper and lower limit for the

elastic moduli of the polycrystal Cij , referred to as Voigt–Reuss bounds,

CR
ij ≤ Cij ≤ CV

ij , (7)295

where the superscripts R and V denote Reuss (1929) and Voigt (1910) calculation, respectively.

To obtain the elasticity tensor of the anisotropic polycrystal Cij from the elasticity tensor of the

monocrystal Cm
ij with different orientations one has to integrate the elasticity tensor C̃m

ij (φ) with a

probability density function F (φ) for the different c-axes orientations, where φ gives the minimum300
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(φ1) and maximum (φ2) extent of the c-axes in the plane. This plane is perpendicular to the cor-

responding rotation axis, so that the elasticity tensor C̃m
ij (φ) is determined from the monocrystal

elasticity tensor Cm
ij using the rotation matrix RC

ij

C̃m
ij (φ) = (RC

ij)
TCm

ijR
C
ij . (8)305

The rotation matrices RC
ij for the different directions in space are given in App. A2, (RC

ij)
T is

the transpose of RC
ij . The same applies for the calculation of the monocrystal compliance tensor

depending on φ, with

S̃m
ij (φ) = (RS

ij)
TSm

ijR
SRij . (9)310

with the rotation matrix RS
ij for the compliance tensor (App. A2) and its transpose (RS

ij)
T. For a

uniform distribution of the c-axis orientations the probability density function can be given by

F (φ) =
1

φ2−φ1
for φ1 ≤ φ≤ φ2 (10)

= 0 textfor φ2 ≤ φ≤ π;−π ≤ φ≤ φ1, (11)315

which is symmetric around the main orientation, so that φ1 =−φ0 and φ2 = +φ0. The elasticity

tensor of the anisotropic polycrystal is then calculated by

Cij =
1

2φ0

+φ0∫
−φ0

C̃m
ij (φ)dφ, (12)

and the compliance tensor is calculated by320

Sij =
1

2φ0

+φ0∫
−φ0

S̃m
ij (φ)dφ. (13)

After considering the orthorhombic symmetry and some rearranging of the results of Eqs. (12)

and (13) the components of the elasticity tensor and compliance tensor of a polycrystal can be ex-

pressed in compact form. The results are different for c-axes distributions in the different spatial325

directions x1, x2 and x3. As an example, the equations for the elasticity and compliance tensor for a

rotation around the x1 direction are given in App. A3. This would correspond to a c-axis distribution

in the [x2, x3]-plane. The equations for rotation around the x2-axis and the x3-axis can equally be

derived from Eqs. 12 and 13.

The different rotation directions to calculate the polycrystal elasticity tensor Cij from a vertically330

oriented monocrystal elasticity tensor Cm
ij for cone, thick girdle and partial girdle fabric are listed in

Table 2. They are also valid for the compliance tensor. For the calculation of the elasticity tensor of a

partial girdle (Table 1) the elasticity tensor of the monocrystal Cm
ij is rotated around the x1-axis with

the opening angle of the partial girdle in x2-direction (ϕ). The elasticity tensor is then calculated
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using Eq. (A12) with φ0 = ϕ. For a thick girdle ϕ= 90◦ to gain a full girdle in the [x2, x3]-plane335

in the first step. In a second step this elasticity tensor obtained for a full girdle is then rotated

around the x2-axis with φ0 = χ. For cone fabrics with different opening angles the elasticity tensor

of a monocrystal is rotated around the x1-axis (Eq. (A12)) in a first step using the cone opening

angle (φ0 = ϕ= χ) and, afterwards, the obtained elasticity tensor is rotated around the x3-axis with

φ0 = 90◦.340

3.3 Limitations of the method

Nanthikesan and Sunder (1994) developed the approach to calculate the polycrystal elasticity tensor

from the monocrystal elasticity tensors for, what they call, S1 (vertical single maximum), S2 (hor-

izontal girdle) and S3 (horizontal partial girdle) ice for given opening angles. They found that the

Voigt–Reuss bounds for these fabrics are within 4.2% of each other and concluded from this that345

either calculation, by means of the elasticity tensor (Eq. (12)) or compliance tensor (Eq. (13)), can

be used to calculate the elasticity tensor of the polycrystal. We use the approach of Nanthikesan and

Sunder (1994) not only for the calculation of partial girdle fabrics but also for the calculation of the

polycrystal elasticity tensor of thick girdle and cone fabrics.

By comparing the individual components of the elasticity tensor derived following Voigt (1910)350

(Eq. (12)) with those of the elasticity tensor derived following Reuss (1929) (Eq. (13) and taking the

inverse of the compliance tensor) the largest difference of 4.2% for all the investigated fabrics can be

found for the components C44 (S44) of a partial girdle with an opening angle of 50◦ and 90◦. Thus,

for all fabrics in this study, the Voigt–Reuss bounds are within 4.2% of each other and we follow

Nanthikesan and Sunder (1994) in their argumentation that either calculation can be used. However,355

using the Voigt (1910) calculation no extra step in the calculation is needed to invert the compliance

tensor. Therefore, for all further calculations the approach by Voigt (1910) is used (Eq. (12)).

To be able to calculate the opening angels from the COF eigenvalues the fabrics are classified into

the different fabric groups based on their eigenvalues: cone, thick girdle and partial girdle fabric

(Table 1). This classification introduces artificial discontinuities in the velocity profile over depth,360

calculated from an ice core. These discontinuities only reflect the calculation method and no suden

changes in the prevailing fabric (Part II, Diez et al., 2014, subm.). This limitation, introduced by

the classification of the different fabric groups, could be overcome by calculating the opening angels

directly from the derived c-axis vectors. Another possibility would be to calculate the elasticity

tensor using the orientation distribution function (ODF), e.g. using the open source software METX365

(Mainprice et al., 2011). The calculation of the elasticity tensor in this software is likewise based

on Voigt–Reuss bounds, as is done in this study. However, in glaciology the fabric distribution is

normally presented in the compact form of the COF eigenvalues. With the here presented framework

the information of the eigenvalues can directly be used for the calculation of the elasticity tensor,

without further information. To enable direct applicability of our method to existing ice-core data370
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sets, we except the limitations of our approach for the sake of ease of use.

For the calculation of the anisotropic polycrystal from the monocrystal neither grain size nor

grain boundaries are considered. Elvin (1996) modelled the number of grains that are necessary to

homogenize the elastic properties of polycrystalline ice and found, that at least 230 grains are needed

for girdle fabric (S2 ice). This number of ice crystals should be reached with seismic waves in ice375

of around 300 Hz, i.e. a wavelength of more than 10 m and ice crystals with ≤0.1 m diameter on

average. Additionally, Elvin (1996) computed two cases, with and without grain boundary sliding

and found a difference of up to 25% in Young’s modulus and Poisson ratio. In absence of grain-

boundary sliding the anisotropy mainly defines the elastic behaviour. Otherwise, grain shape and

grain-boundary sliding become important as well. A certain mistake is, thus, made for the calculation380

of the polycrystal by only considering the influence of the anisotropy of the monocrystal.

The resultant polycrystal elasticity tensors depends of course on the choice of the monocrystal

elasticity tensor. Different authors measured (Jona and Scherrer, 1952; Green and Mackinnen, 1956;

Bass et al., 1957; Brockamp and Querfurth, 1964; Bennett, 1968; Dantl, 1968; Gammon et al., 1983)

and calculated (Penny, 1948) the monocrystal elasticity tensor. A comparison of the different elas-385

ticity tensors used can be found in Part II (Diez et al., 2014, subm.). There we investigate results of

a vertical seismic profiling survey in comparison to quantities from measured COF eigenvalues. We

find the best agreement between measured and calculated velocities using the monocrystal elasticity

tensor of Gammon et al. (1983) for the derivation of the polycrystal elasticity tensor.

4 Seismic velocities and reflection coefficients in anisotropic ice390

From the derived elasticity tensor we can now calculate velocities and reflection coefficients. Many

approximations as well as exact solutions exist for the calculation of velocities and reflection coeffi-

cients for different anisotropic fabrics. They are mostly limited to certain symmetries.

In the case of velocities, most studies have been performed on VTI media (e.g. Daley and Heron,

1977). These solutions are still valid within the symmetry planes of HTI media. To be able to395

calculate seismic velocities for the different fabrics in ice we will use a calculation of velocities for

orthorhombic media derived by Daley and Krebes (2004) (Sect. 4.1). We compare our calculated

velocities, based on the derived elasticity tensor, with the well known velocities for a solid cone that

were derived by Bennett (1968) (Sect. 4.2).

For the calculation of the reflection coefficient we use exact (Graebner, 1992) as well as approxi-400

mate (Rüger, 1997; Zillmer et al., 1998b) calculations (Sect. 4.3). We show the reflection coefficients

for an abrupt change from isotropic to partial girdle fabric here as an example (Sect. 4.4). Addition-

ally, we investigate the influence on the reflection signature of an anisotropic ice mass above the base

(Sect. 4.5).
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4.1 Velocities in orthorhombic media405

For the special case of wave propagation in ice with a developed cone fabric anisotropy Bennett

(1968) derived equations of the slowness surface for P-, SV- and SH-waves. The phase velocities are

given by the inverse of the slowness surface. To calculate the slowness surface over different angles

Bennett (1968) first derived the elasticity tensor from single natural ice crystals by measurements of

ultrasonic pulses of 600 kHz. With the derived equations, velocities for different incoming angles ϑ410

in dependence of the cone opening angle ϕ can be calculated. It is not possible to calculate velocities

for girdle fabrics with this approach.

Using the derived elasticity tensor we are now able to calculate velocities for different COF dis-

tributions. We use the equations derived by Daley and Krebes (2004) for the calculation of phase

velocities vph (vp, vsv, vsh) as a function of the phase angle ϑ for orthorhombic media as given in415

App. B1 (Eqs. (B1)–(B3)).

From these phase velocities we have to calculate the group velocities for the calculation of travel-

times. The calculation of the group velocity vector vg can be found, e.g. in Rommel and Tsvankin

(2000) and Tsvankin (2001). If the propagation of the seismic wave is within symmetry planes of

the anisotropic fabric the group velocity and group angle can be given in compact form. The group420

velocity vg is then calculated from the phase velocity vph by

vg = vph

√
1 +

(
1

vph

∂vph
∂ϑ

)2

(14)

with the group angle θ in the symmetry plane defined by

tanθ =
tanϑ+ 1

vph

∂vph

∂ϑ

1− 1
vph

∂vph

∂ϑ tanϑ
. (15)425

Outside the symmetry planes of, e.g. HTI media, all components of the group velocity vector vg

have to be considered (App. B1).

Figure 3 shows the phase (dashed curves) and group velocities (solid curves) as a function of the

corresponding phase ϑ and group angle θ of P- (red), SV- (light blue) and SH-wave (blue) for a430

VSM-fabric. The largest difference between phase and group velocity can be observed for the SV-

wave (light blue curves) with a triplication in the group velocity for group angles of 43–47◦. Here

three different velocities are given for each angle. Due to the small spread of these velocities, we

do not expect that this triplication is of relevance for applications given the current day accuracy of

measurements. The SV-velocity is largest for 45◦ incoming angle (phase as well as group angle) with435

2180 m/s, decreasing for 0◦ and 90◦ to 1810 m/s. Variations for the SH-wave are rather small with

velocities increasing between 0◦ and 90◦ from 1810 m/s to 1930 m/s, i.e. 6%. The P-wave velocity

has a minimum at ∼51◦ incoming angle with 3770 m/s. The highest wave speed is observed for

waves parallel to the c-axis of an ice crystal (0◦ incoming angle) with 4040 m/s and 150 m/s (4%)

slower perpendicular to it.440
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4.2 Velocities for anisotropic ice

By deriving the elasticity tensor for different fabrics the group and phase velocities of P-, SH- and

SV-wave for these fabrics can now be calculated. Figure 4 show the P-wave phase velocity for

different cone and girdle fabrics calculated with the equations given in Daley and Krebes (2004) and

the equations derived by Bennett (1968) for a solid cone. The phase velocity for the SH- and SV-445

wave as well as the corresponding group velocities can be displayed accordingly (Diez, 2013). Here,

we will limit our analysis to P-waves. However, with the derived elasticity tensor SH- and SV-wave

velocities can just as well be investigated and the effect of S-wave splitting can be analysed.

Figure 4d shows the velocities calculated from the equations derived by Bennett (1968) for a solid

cone from the elasticity tensor he measured at −10◦C. These velocities were corrected to −16◦C450

(Kohnen, 1974; Gammon et al., 1983) for better comparison with the other results, where we use

the elasticity tensor of Gammon et al. (1983) measured at −16◦C. The other subfigures are phase

velocities calculated with Eq. (12) from an elasticity tensor derived following the steps in Table 2

with the elasticity tensor measured by Gammon et al. (1983). The top row (Fig. 4) shows velocities

for cone fabric (subfigure a: VTI) as well as partial girdle fabric (b: HTI) and thick girdle fabric455

(c: HTI) in the [x2, x3]-plane, while the bottom row shows velocities for cone fabric calculated

following Bennett (1968) (d: VTI) as well as partial girdle fabric (f: ψ = 90◦) and thick girdle fabric

(e: ψ = 90◦) in the [x1, x3]-plane.

The partial girdle (χ= 0◦, Fig. 4, b, e) with ϕ= 90◦ displays the same fabric as the thick girdle

(ϕ= 90◦, Fig. 4, c, f) with χ= 0◦. The same applies to the cone fabric with an opening angle of 90◦460

(Fig. 4, a, d) as well as the thick girdle fabric (ϕ= 90◦) with χ= 90◦ (Fig. 4, c, f), both showing

isotropic c-axes distribution. Apart from Bennett’s velocities, these velocities for the isotropic state

(Fig. 4, a, c, f) are obviously not isotropic. Slight variations still exist for these velocities with

increasing incoming angle. This is due to artefacts that seem to appear from the derivation of the

elasticity tensor for the isotropic state using the single crystal elasticity tensor.465

It should also be noted, that for a thick girdle with ϕ= χ= 90◦ the variations over the incoming

angle are just reversed to that of the cone fabric with opening angle ϕ= χ= 90◦. This reflects

the difference in the calculation of the elasticity tensor from cone fabric and girdle fabric. While a

girdle with ϕ= 90◦ (χ= 0◦) is calculated in the first step for both fabrics (Table 2) by integration

with rotation around the x1-axis, the second step is an integration with rotation around the x3-axis470

for the cone fabric and around the x2-axis for the thick girdle fabric.

The higher velocities calculated with the equations of Bennett (1968) (Fig. 4, d) are due to the

difference in the elasticity tensor, as the elasticity tensor derived by Gammon et al. (1983) was used

for the calculation in all of the other subfigures (Fig. 4, a–c, e, f). The Bennett (1968) calculation

exhibits an isotropic state for ϕ= χ= 90◦. However, this is only possible as Bennett (1968) used475

fitted curves for the derivation of the slowness surface.
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4.3 Reflection coefficients

The calculation of reflection coefficients for different incoming angles is already rather complicated

for layered isotropic media given by the Zoeppritz equations (e.g. Aki and Richards, 2002). In the

case of anisotropic media most of the studies have been done for VTI media (Keith and Crampin,480

1977; Daley and Heron, 1977) and in terms of Thomsen parameters (Thomsen, 1993). A compre-

hensive overview of the different calculations of reflection coefficients for VTI and HTI media is

given by Rüger (2002).

In the following, we use equations derived by Zillmer et al. (1997) by means of perturbation

theory for the calculation of englacial reflection horizons. These equations for general anisotropy485

were simplified by Zillmer et al. (1998a) for weak contrast interfaces. They are, thus, especially

practical for the reflection coefficients in ice. For the isotropic reference values the elasticity tensor

for isotropic ice can be used and no average needs to be taken over different materials. The reflection

coefficients for the anisotropic material are then calculated as perturbations of the isotropic ice fabric.

Thus, reflection coefficients for P-, SV- and SH-waves are obtained. The equations for the calculation490

of reflection coefficients are given in App. B2. The Rshsh and Rsvsv reflection coefficients are

restricted to a symmetry plane of the layered medium. The indices give the polarisation of the

incoming and reflected wave, e.g. Rpp is the reflection coefficient for an incoming P-wave, reflected

as P-wave, equivalent for Rshsh and Rsvsv.

To calculate the P-wave reflection coefficient for the bed reflector with an overlaying cone fabric,495

i.e. VTI media, we use the equations given by Thomsen (1993), that were further developed by

Rüger (1997). Exact solutions for VTI media are, for example, given by Keith and Crampin (1977)

or Graebner (1992).

4.4 Reflection coefficients for anisotropic ice

With the equations given in App. B2 (Zillmer et al., 1998a) reflection coefficients can be calculated500

for interfaces between different fabrics. Figure 5 shows as an example the Rpp, Rshsh and Rsvsv

reflection coefficient for the transition at a layer interface from an isotropic fabric to a partial girdle

fabric, both for HTI media (ψ = 0◦) and with an azimuth of ψ = 90◦.

The reflection coefficients are given for angles of incidence between 0◦ and 60◦. This has two

reasons. Firstly, most seismic surveys do not exceed an incoming angle of 60◦ as this already505

corresponds to a large offset compared to the probed depth. Secondly and more important, the

calculation of the reflection coefficients using Eqs. (B12)–(B13) is not exact. Instead, the error

increases with increasing incoming angle.

The largest magnitude of reflection coefficients can be observed for the SVSV-reflection (Fig. 5).

However, the reflection coefficients are ≤ 0.1 for all fabric combinations shown here. Most sig-510

nificantly, for the PP-reflection the reflection coefficients between different anisotropic fabrics are
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small. The PP-reflection between, for example isotropic and VSM-fabric ice for normal incidence is

< 0.02. For comparison the reflection coefficient between isotropic and lithified sediments (Fig. 6)

is∼ 0.4. Hence, reflection coefficients at the ice–bed interface are an order of magnitude larger than

reflection coefficients for the transition between different anisotropic fabrics. To be able to observe515

englacial seismic reflections, abrupt changes (i.e. within a wavelength) with significant variations in

the orientation of the ice crystals are needed. Such englacial reflections have been observed in data

from Greenland (Horgan et al., 2008), Antarctica (Horgan et al., 2011; Hofstede et al., 2013) and

also in the Swiss Alps (Polom et al., 2014; Diez et al., 2013). These reflections can indicate a change

in the fabric. However, the investigation of reflection signatures (amplitude versus offset, AVO) of520

englacial reflectors is difficult due to the small reflection coefficients, and the small range they cover

with changing incoming angle.

For englacial reflections caused by changing COF the variations in the reflection coefficient with

offset are very small: The PP-reflection coefficient for the transition from isotropic to VSM-fabric

(ϕ= 0◦, Fig. 5) from 0◦ to 60◦ is between 0.019 and 0.036. To put these values in perspective525

we consider error bars for reflection coefficents as determined for ice–bed interfaces. It cannot be

expected that the error bars for measuring the reflection coefficient of englacial reflections would

be smaller than those given for the bed reflection coefficients. Peters et al. (2008) analysed the

reflection amplitude for the ice bed interface from a survey near the South Pole. For the reflection

coefficients they derive from the seismic data they give error bars of±0.04, with increasing error bars530

for decreasing incoming angles, limited by±0.2. The change in the reflection coefficient with offset

for englacial reflection that we calculate is smaller than the given error bars. Thus, it is not possible

to derive information about the anisotropic fabric from englacial reflections using AVO analysis at

the moment. To be able to derive fabric information from AVO analysis the error in determining

the reflection coefficient from seismic data needs to be reduced, e.g. better shooting techniques to535

reduce the signal-to-noise ratio (SNR) in the data or a better understanding of the source amplitude

as well as the damping of seismic waves in ice.

4.5 Reflection coefficients for ice–bed interface

Of special interest is the determination of the properties of the ice–bed interface from seismic data.

It is possible to determine the bed properties below an ice sheet or glacier by analysing the normal540

incident reflection coefficient (e.g. Smith, 2007) or by AVO analysis (Anandakrishnan, 2003; Peters

et al., 2008). Fig. 6 shows reflection coefficients for the transition from isotropic and anisotropic

(VSM-fabric) ice to different possible bed properties (Table 3). The values for density, P-wave and

S-wave velocity, for the different bed scenarios and the isotropic ice, are taken from Peters et al.

(2008). For the anisotropic VSM-fabric the elasticity tensor of Gammon et al. (1983) is used.545

Exact solutions are calculated using the equations given by Graebner (1992), with corrections

by Rüger (2002). Their equations were used to calculate the exact reflection coefficients for the
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isotropic ice above the bed (solid lines) and for the anisotropic ice above the bed (dashed lines)

shown in Fig. 6. The approximate reflection coefficients for the isotropic ice above the bed (dotted

lines) are calculated using equations given in Aki and Richards (2002). The approximate reflection550

coefficients for the VSM-fabric above the bed (dashed-dotted lines) are calculated using equations

given in Rüger (1997).

The differences between the isotropic (solid lines) and anisotropic reflection coefficients (dashed

lines) are small (≤ 0.04) for the exact solutions. The approximate calculations fit well to the ex-

act solutions up to a group angle of about 30◦, with differences of the same order as isotropic to555

anisotropic variations. However, differences between exact and approximate reflection coefficients

become large for increasing phase angle (≥ 30◦). Thus, errors introduced by using approximate

calculations for the reflection coefficients are larger than the effect of anisotropic ice fabric above

the bed.

The observable differences of reflection coefficients for an isotropic and a VSM-fabric overburden560

are ≤ 0.04, i.e. smaller then the smallest error bars given by Peters et al. (2008) (Sect. 4.4). The

VSM-fabric is the strongest anisotropy to be expected in ice. If an anisotropic layer exists above the

bed, it yields a different reflection coefficient compared to the case of the isotropic ice overburden.

However, the difference between the isotropic overburden reflection coefficient and the anisotropic

overburden reflection coefficient is within the range of the error bars given by Peters et al. (2008).565

Thus, the anisotropic fabric will not have a measurable influence on the analysis of the bed properties

by means of the AVO method, given the current degree of data accuracy and SNR.

5 Conclusions

We presented an approach to derive the ice elasticity tensor, required for the calculation of seismic

wave propagation in anisotropic material, from the COF eigenvalues derived from ice-core measure-570

ments. From the elasticity tensors we derived seismic phase and group velocities of P-, SH- and

SV-waves for cone, partial girdle and thick girdle structures, i.e. orthorhombic media. Velocities we

derived for different cone fabrics agree well with velocities derived for cone fabric using the already

established method of Bennett (1968). However, with our method it is now also possible to calcu-

late velocities for girdle fabrics. Further, we can use the derived elasticity tensors to investigate the575

reflections coefficients in anisotropic ice.

We used the elasticity tensor to derive the reflection signature for englacial fabric changes and

investigated the influence of anisotropic fabric on the reflection coefficients for basal reflectors. We

found that the reflection coefficients and the variations of the reflection coefficients with increasing

offset are weak for the transition between different COF distributions: They are at least an order of580

magnitude smaller than reflections from the ice–bed interface. Thus, either significant changes in

the COF distribution or extremely sensitive measurement techniques are needed to observe englacial
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seismic reflections. The influence of anisotropic ice fabric compared to the isotropic case for the re-

flection at the ice–bed interface is so small that it is within the measurement inaccuracy of currently

employed seismic AVO analysis. An important result is that the difference between exact and ap-585

proximate calculations of reflection coefficients for the ice–bed interface is larger than the influence

of an anisotropic ice fabric above the bed. This implies that exact calculations are necessary if the

fabric above the bed is in the focus of AVO analysis.

Better results in the calculation of the elasticity tensor could probably be gained by calculation

of the opening angles directly from the c-axes vectors. This would avoid our classification into590

cone, partial girdle and thick girdle fabric. Nevertheless, the approach presented here offers the

opportunity to use the readily available COF data from ice cores and go towards an investigation

of the seismic wavefield in ice without the limitation to velocities only. The inclusion of further

properties influencing the propagation of seismic waves in ice, like density and temperature, will

offer the opportunity to model the complete wave field. Hence, we are confident that it will become595

feasible in the future to derive physical properties of the ice from analyses of the complete observed

wave field by full waveform inversions.

Appendix A

From COF eigenvalues to elasticity tensor for seismics

A1 Connection of eigenvalues to opening angles600

The following equations give the connection between the eigenvalues λ1,λ2 and λ3 an the two

opening angles ϕ and χ.

For a cone fabric the angle ϕ= χ is calculated by

ϕ= χ= b1 sin(c1λ3 + d1) + b2 sin(c2λ3 + d2) + b3 sin(c3λ3 + d3) + b4 sin(c4λ3 + d4),

(A1)605

with

b1 = 141.9, c1 = 6.251,d1 = 2.157,

b2 = 139, c2 = 10.33,d2 =−1.809,

b3 = 90.44, c3 = 14.68,d3 = 4.685,

b4 = 36.61, c4 = 16.9,d4 = 12.63.610

For a thick girdle fabric the angle χ is calculated by

χ=p1λ
7
1 + p2λ

6
1 + p3λ

5
1 + p4λ

4
1 + p5λ

3
1 + p6λ

2
1 + p7λ1 + p8, (A2)

ϕ=90◦, (A3)615
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with

p1 = 2.957× 107,p2 =−3.009× 107,p3 = 1.233× 107,p4 =−2.599× 106,

p5 = 3.023× 105,p6 =−1.965× 104,p7 = 877.6,p8 = 2.614.

For a partial girdle fabric the angle ϕ is calculated by620

ϕ=a1 sin(b1λ3 + c1) + a2 sin(b2λ3 + c2) + a3 sin(b3λ3 + c3) + a4 sin(b4λ3 + c4), (A4)

χ=0◦, (A5)

with

a1 = 118.7, b1 = 7.415, c1 =−3.517,625

a2 = 97.47, b2 = 13.68, c2 = 1.161,

a3 = 46.57, b3 = 18.58, c3 = 6.935,

a4 = 7.455, b4 = 25.18, c4 = 11.47.

A2 Rotation matrices for elasticity and compliance tensor630

Here the rotation matrix for the elasticity tensor and compliance tensor following Sunder and Wu

(1994) are given. For the calculation of the elasticity tensor for different fabrics the monocrystal

elasticity tensor needs to be rotated (Sect. 3.2).

The rotation matrix for the elasticity tensor is

RC =



l21 m2
1 n21 2m1nl1 2n1l1 2l1m1

l22 m2
2 n22 2m2nl2 2n2l2 2l2m2

l312 m2
3 n23 2m3nl3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3−m3n2 n2l3−n3l2 l2m3− l3m2

l3l1 m3m1 n3n1 m3n1−m1n3 n3l1−n1l3 l3m1− l1m3

l1l2 m1m2 n1n2 m1n2−m2n1 n1l2−n2l1 l1m2− l2m1


, (A6)635

and the compliance tensor

RS =



l21 m2
1 n21 m1nl1 n1l1 l1m1

l22 m2
2 n22 m2nl2 n2l2 l2m2

l312 m2
3 n23 m3nl3 n3l3 l3m3

2l2l3 2m2m3 2n2n3 m2n3−m3n2 n2l3−n3l2 l2m3− l3m2

2l3l1 2m3m1 2n3n1 m3n1−m1n3 n3l1−n1l3 l3m1− l1m3

2l1l2 2m1m2 2n1n2 m1n2−m2n1 n1l2−n2l1 l1m2− l2m1


, (A7)

with the following direction cosines640 
l1 l2 l3

m1 m2 m3

n1 n2 n3

 , (A8)
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for rotation around the x1-axis
1 0 0

cosφ −sinφ 0

sinφ cosφ 0

 , (A9)

645

for rotation around the x2-axis
cosφ 0 −sinφ

0 1 0

sinφ 0 cosφ

 , (A10)

and for rotation around the x3-axis
cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 . (A11)650

A3 Components of elasticity and compliance tensor for polycrystal

The components of the polycrystal elasticity tensor as derived from Eq. (12) with c-axes distribution

around the x1-axis, i.e. within the [x2, x3]-plane are calculated by:

Cp
11 =Cm

11,655

Cp
22 =

1

2φ0
[b1C

m
22 + b2C

m
33 + 2b3(Cm

23 + 2Cm
44)] ,

Cp
33 =

1

2φ0
[b1C

m
33 + b2C

m
22 + 2b3(Cm

23 + 2Cm
44)] ,

Cp
44 =

1

2φ0
[(b1 + b2)Cm

44 + b3(Cm
22− 2Cm

23 +Cm
33− 2Cm

44)] ,

Cp
55 =

1

2φ0
[Cm

55(φ0 +α) +Cm
66(φ0−α)] ,

Cp
66 =

1

2φ0
[Cm

66(φ0 +α) +Cm
55(φ0−α)] ,660

Cp
12 =

1

2φ0
[Cm

12(φ0 +α) +Cm
13(φ0−α)] ,

Cp
13 =

1

2φ0
[Cm

13(φ0 +α) +Cm
12(φ0−α)] ,

Cp
23 =

1

2φ0
[(b1 + b2)Cm

23 + b3(Cm
22− 4Cm

44 +Cm
33)] . (A12)

The components of the polycrystal compliance tensor as derived from Eq. (13) with c-axes distri-665

bution around the x1-axis, i.e. within the [x2, x3]-plane are calculated by:

Sp
11 =Sm

11,

Sp
22 =

1

2φ0
[b1S

m
22 + b2S

m
33 + b3(2Sm

23 +Sm
44)] ,
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Sp
33 =

1

2φ0
[b1S

m
33 + b2S

m
22 + b3(2Sm

23 +Sm
44)] ,

Sp
44 =

1

2φ0

[
(b1 + b2)Sm

44 + 4b3(Sm
22− 2Sm

23 +Sm
33−

1

2
Sm
44)

]
,670

Sp
55 =

1

2φ0
[Sm

55(φ0 +α) +Sm
66(φ0−α)] ,

Sp
66 =

1

2φ0
[Sm

66(φ0 +α) +Sm
55(φ0−α)] ,

Sp
12 =

1

2φ0
[Sm

12(φ0 +α) +Sm
13(φ0−α)] ,

Sp
13 =

1

2φ0
[Sm

13(φ0 +α) +Sm
12(φ0−α)] ,

Sp
23 =

1

2φ0
[(b1 + b2)Sm

23 + b3(Sm
22−Sm

44 +Sm
33)] . (A13)675

These variables apply for the equations for the calculation of the elasticity and compliance tensor

of the polycrystal:

b1 =
3

4
φ0 +α+β,

b2 =
3

4
φ0−α+β,680

b3 =
1

4
φ0−β,

α=
1

2
sin2φ0,

β =
1

16
sin4φ0. (A14)

(A15)685

Appendix B

Equations for calculation of velocities and reflection coefficients

B1 Velocities in anisotropic media

To be able to calculate velocities for partial girdle fabric the calculation of phase velocity for or-

thorhombic media derived by Daley and Krebes (2004) is used. They rearrange linearised equations690

to obtain the velocity from an ellipsoidal part with anellipsoidal correction term:

vp(n) =
√

1/ρ(C11n21 +C22n22 +C33n23 + 2B12n21n
2
2 + 2B13n21n

2
3 + 2B23n22n

2
3), (B1)

vsv(n) =

√
1/ρ(C44 sin2ψ+C55 cos2ψ+ 2B12n21n

2
3 sin2ψ− 2B13n22n

2
3− 2B23n21n

2
3), (B2)

vsh(n) =

√
1/ρ(C44n23 cos2ψ+C55n23 sin2ψ+C66 sin2ϑ− 2B12n21 sin2ψ), (B3)695

with

B12 =(C13 + 2C66)− (C11 +C22)/2, (B4)
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B13 =(C12 + 2C55)− (C11 +C33)/2, (B5)

B23 =(C23 + 2C44)− (C22 +C33)/2, (B6)700

and the unit phase normal vector

n = (n1,n2,n3) = (sinϑcosψ,sinϑsinψ,cosϑ). (B7)

with the phase angle ϑ and the azimuth ψ, here the azimuth for the orientation of a girdle fabric

(Fig. 2).

The components of the group velocity vector are given by (Tsvankin, 2001)705

vg,x1
= v sinϑ+

∂vph
∂ϑ

∣∣∣∣
ψ=const

cosϑ, (B8)

vg,x2
=

1

sinϑ

∂vph
∂ψ

∣∣∣∣
ϑ=const

, (B9)

vg,x3
= vph cosϑ+

∂vph
∂ϑ

∣∣∣∣
ψ=const

sinϑ. (B10)

Within the symmetry planes the group velocity can be calculated using vg,x1
and vg,x2

only (Eq. (14))

Outside the symmetry planes of the HTI media the component vg,x2 can not be neglected as710

the derivation ∂v
∂ψ is no longer zero. In this case vg is the norm of the group velocity vector vg

considering all three components vg,x1
, vg,x2

and vg,x3
. Here, a second group angle (next to the one

in the plane Eq. (15)) exists for the direction outside the plane with

tanθout =
vg,x2√

v2g,x1
+ v2g,x3

. (B11)

715

B2 Reflection coefficients (Zillmer)

The reflection coefficients as derived by Zillmer et al. (1997, 1998a) are given by

Rpp =
1

4

(
∆C33

C
(0)
44 + 2C

(0)
12

+
∆ρ

ρ(0)

)
− 1

4

∆ρ

ρ(0)
tan2(ϑ) +

1

4

2∆C13−C33− 4∆C55

C
(0)
44 + 2C

(0)
12

sin2ϑ

+
1

4

∆C11

C
(0)
44 + 2C

(0)
12

sin2ϑtan2ϑ, (B12)

Rsvsv =− 1

4

(
∆C55

C
(0)
12

+
∆ρ

ρ(0)

)
− 1

4

∆ρ

ρ(0)
tan2(ϑ) +

1

4

∆C11− 2∆C13 +C33− 3∆C55

C
(0)
12

sin2ϑ720

− 1

4

∆C55

C
(0)
12

sin2ϑtan2ϑ, (B13)

Rshsh =− 1

4

(
∆C44

C
(0)
12

+
∆ρ

ρ(0)

)
+

1

4

(
∆C66

C
(0)
12

+
∆ρ

ρ(0)

)
tan2ϑ, (B14)

where ∆ denotes the difference between the upper layer 1 and the lower layer 2, for example ∆C33 =

C
(2)
33 −C

(1)
33 . The superscript (0) gives the isotropic reference values. When reflection coefficients725

22



are calculated for different anisotropic ice fabrics, the density is constant, i.e. the ∆ρ-terms can be

neglected (ρ(2)− ρ(1) = 0).
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Fig. 1. Wavefront of a P-wave travelling in isotropic ice fabric (dashed line) and in a vertical single maximum

(VSM) fabric (red line), thus, a vertical transversely isotropic (VTI) media. The solid arrow shows the group

velocity with group angle θ, the dashed arrow the phase velocity with phase angle ϑ for the anisotropic case.

Fig. 2. Girdle fabrics classified as HTI media are within the [x2, x3]-plane. If the girdle is rotated around the

x3-axis the rotation is given by the azimuth ψ.
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Fig. 3. Phase (dashed lines) and group velocities (solid lines) over the corresponding phase ϑ and group angle

θ for P- (red curves), SH- (blue curves) and SV-waves (light blue curves) of a VSM-fabric. The SV-wave group

velocity shows a triplication for group angles θ between 43◦ and 46◦.

Fig. 4. P-wave phase velocities over phase angle ϑ for different fabrics. P-wave velocity for (a) different

cone opening angles (ϕ= χ), (b) partial girdle fabric (χ= 0◦) and (c) thick girdle fabric (ϕ= 90◦) within the

[x2, x3]-plane, (e) partial girdle fabric (χ= 0◦) and (f) thick girdle fabric (ϕ= 90◦) within the [x1, x3]-plane

calculated with equation (B1) given by Daley and Krebes (2004). (d) shows the P-wave velocity for different

cone opening angles (ϕ= χ) calculated with the equation given by Bennett (1968). The contour lines give the

velocity differences in percent, in relation to the maximum velocity of the respective fabric group.
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Fig. 5. Reflection coefficients for the boundary between an isotropic (upper) layer and a partial girdle fabric

(lower) layer with different opening angles ϕ (χ= 0◦) of the girdle. The reflection coefficients are calculated

with equations given in Sect. 4.3 for different incoming phase angles ϑ. The subfigures (a), (b) and (c) show

the reflection coefficients for a girdle orientation (lower layer) perpendicular to the travelpath of the wave (HTI

media) for PP-, SHSH- and SVSV-reflection, respectively. The subfigures (d), (e) and (f) show the reflection

coefficients for a girdle orientation parallel to the travelpath of the wave (azimuth ψ = 90◦) for PP-, SHSH- and

SVSV-reflection, respectively.
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Fig. 6. P-wave reflection coefficients for ice–bed interface with different bed properties as a function of phase

angle of incidence ϑ: basement (black), lithified sediments (red), dilatant sediments (gray) and water (blue).

The solid and dotted lines are the reflection coefficients for an isotropic ice overburden, the dashed and dashed-

dotted lines for the anisotropic (VSM) overburden. The solid and dashed lines are the reflection coefficients

calculated with exact equations for VTI media given by Graebner (1992) and Rüger (2002). The dotted and

dashed-dotted lines are approximate calculations following the approach by Aki and Richards (2002) for the

isotropic case and that of Rüger (1997) for the anisotropic case, respectively. Property values for the bed and

isotropic ice are taken from Peters et al. (2008). For the anisotropic ice the elasticity tensor given by Gammon

et al. (1983) is used.
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Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦
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Table 2. Steps for calculation of elasticity tensor (Eq. (13)) or compliance tensor (Eq. (13)) for different fabrics

(Table 1).

step rotation axis angle

cone
1 x1 ϕ= χ

2 x3 90◦

partial girdle 1 x1 ϕ

thick girdle
1 x1 90◦

2 x2 χ

Table 3. P-wave velocity, S-wave velocity and density for different bed scenarios and isotropic ice as given in

Peters et al. (2008). These values are used for the calculation of reflection coefficients given in Fig. 6.

material vp in m/s vs in m/s ρ in kg/cm3

ice 3810 1860 920

basement 5200 2800 2700

lithfied sediment 3750 2450 2450

dilatant sediment 1700 200 1800

water 1498 0 1000
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