

1 **Changes in the Timing and Duration of the Near-Surface Soil Freeze/Thaw**

2 **Status from 1956 to 2006 across China**

3

4 K. Wang¹ , T. Zhang^{1*} , and X. Zhong²

5

6 ¹ Key Laboratory of Western China's Environmental Systems (Ministry of
7 Education), College of Earth and Environmental Sciences, Lanzhou University,
8 Lanzhou 730000, China

9 ² Laboratory of Remote Sensing and Geospatial Science, Cold and Arid Regions
10 Environmental and Engineering Research Institute, Chinese Academy of
11 Sciences, Lanzhou 730000, China

12

13 *Correspondence to: T. Zhang (tjzhang@lzu.edu.cn)

14 **Abstract**

15 The near-surface soil freeze/thaw status is an important indicator of climate change.

16 Using data from 636 meteorological stations across China, we investigated the

17 changes in the first date, the last date, the duration, and the number of days of the

18 near-surface soil freeze over the period 1956–2006. The results reveal that the first

19 date of the near-surface soil freeze was delayed by about 5 days, or at a rate of $0.10 \pm$

20 0.03 day/yr, and the last date was advanced by about 7 days, or at a rate of 0.15 ± 0.02

21 day/yr. The duration of the near-surface soil freeze decreased by about 12 days or at a

22 rate of 0.25 ± 0.04 day/yr, while the actual number of the near-surface soil freeze days

23 was decreased by about 10 days or at a rate of 0.20 ± 0.03 day/yr. The rates of changes

24 in the near-surface soil freeze/thaw status increased dramatically from the early 1990s

25 through the end of the study period. Regionally, the changes in western China were

26 greater than those in eastern China. Changes in the near-surface soil freeze/thaw status

27 were primarily controlled by changes in air temperature, but urbanization may also

28 play an important role.

29

30 **1. Introduction**

31 The near-surface soil freeze/thaw state is related to the timing and duration of
32 cold/warm seasons, and is an important indicator of climate change (Zhang et al.,
33 2001). During the past few decades, many studies have focused on the dynamics of
34 the near-surface soil freeze/thaw status and the interactions between the ground
35 surface and the atmosphere. These studies have shown that changes in the near-
36 surface soil freeze/thaw status are interrelated, and soil freeze/thaw affects
37 hydrological processes (Cherkauer and Lettenmaier, 1999; Niu and Yang, 2006;
38 Rempel, 2012), ecological processes (Schimel et al., 1996; Tagesson et al., 2012), and
39 soil microbial processes (Lloyd and Taylor, 1994; Gilichinsky and Wagener, 1995;
40 Edwards and Jefferies, 2013).

41 Variations in the timing and duration of the near-surface soil freeze/thaw state
42 have been widely investigated using a range of approaches, including remote sensing
43 and in-situ observations, across spatial-temporal scales ranging from regional to
44 global. Menzel et al. (2003) used data from 41 meteorological stations across
45 Germany (from 1951 through 2000) to investigate soil frost dynamics. Their results
46 showed that the freeze-free period was extended with increasing air temperature.
47 Henry (2008) used observations from 31 stations across Canada to examine soil freeze
48 dynamics and found that number of days of the near-surface soil freeze declined from
49 1966 through 2004. Using long-term data from three stations in Indiana, USA, Sinha
50 et al. (2008) found that the number of soil freeze days had significantly decreased at
51 the central and southern study sites, but the near-surface soil temperature at the

52 northernmost site showed a significant decrease in the cold season due to a decrease
53 in snow depth. Anandhi et al. (2013) carried out a more-detailed analysis of frost
54 indices at 23 stations across Kansas, USA, and found that the first date and the last
55 date of freezing occurred later and earlier, respectively, over their study period.

56 Numerous studies have reported significant improvements in monitoring soil the
57 freeze/thaw status. NASA is launching the Hydrosphere State Mission as part of the
58 Earth System Science Pathfinder Program (ESSP) to improve satellite monitoring of
59 global land freeze/thaw status and soil moisture (Entekhabi et al., 2004). In China, a
60 multi-scale monitoring network has been established on the Qinghai-Tibetan Plateau
61 (Yang et al., 2013). Fifty-six (56) stations have been installed in cold and high-
62 elevation regions to enhance monitoring of soil temperature and moisture and hence
63 to support remote sensing data and large-scale climate modeling (Su et al., 2011; Yang
64 et al., 2013).

65 In this study, we use ground-based station data to investigate the long-term
66 spatiotemporal variation in the timing and duration of the near-surface soil
67 freeze/thaw across China over the period 1956–2006. Using data from 636 stations,
68 we examine the first date, last date, duration, and actual number of days of the near-
69 surface soil freeze, as well as the spatial characteristics of these variables across
70 China. Finally, we further investigate the response of the near-surface soil freeze/thaw
71 status to climate changes over the past few decades.

72 **2. Data and Methods**

73 We define the soil “freeze day”, as a day with a minimum temperature at or

74 below 0°C at the ground surface (Henry, 2008). Data used for this study include daily
75 minimum ground-surface temperature and mean annual air temperature (MAAT)
76 obtained from the China Meteorological Administration (CMA, 2007).

77 Temperature monitoring was conducted each day by trained professional
78 technicians at all meteorological stations across China. Ground surface temperatures
79 were measured with a mercury ball thermometer (ball diameter of about 3 mm).
80 Although measurement standards state that half of the thermometer sensor should be
81 buried in the ground and the other half exposed to the air, in practice, the sensors were
82 usually buried more than halfway and were often colored white to reduce solar
83 heating. When the ground was covered by snow, the sensor was moved to the snow
84 surface. Thus snow surface temperature was measured rather than the ground surface
85 temperature. In this case, it is assumed that soils near the ground surface are in a
86 frozen state (Zhang, 2005). Daily minimum temperatures were measured using a
87 minimum temperature thermometer, which recorded the daily minimum temperature
88 once a day although it could not record the time when it occurred. Daily minimum
89 temperature was reported at 20:00 Beijing Standard Time. Ground surface
90 temperatures were measured four times per day (02:00, 08:00, 14:00, and 20:00
91 Beijing Standard Time) and averaged as a daily mean. The thermometers at the study
92 stations have an accuracy of $\pm 0.1^\circ\text{C}$ and should be calibrated at least once a year
93 (CMA 2007). None of the thermometers were replaced during the study period. The
94 large majority of the meteorological stations remained geographically stable over the
95 study period (Ma et al., 2009); however, information is not available for those stations

96 with a history of location changes. We believe that effect of station movement on our
97 results is minimal.

98 Our daily surface temperature dataset was created with thorough data quality
99 control. On daily time scale, we checked the consistency of the temperature time
100 series by cross-referencing temperature values with the day before and the day after
101 the checking day.

102 Annual values of the first and last date, duration, and actual number of days of
103 the near-surface soil freeze were calculated for each year beginning on 1 July and
104 ending on 30 June of the next year, in order to cover the entire period with potential
105 freezing events. The anomalies of each variable were calculated over the entire study
106 period after removing the long-term average (1 July 1961 through 30 June 1991)
107 across China. We used linear regression to investigate the trend of changes for each
108 variable. Stations with statistically significant changes ($P < 0.05$) were kept in the
109 analysis. We also compared the linear trends of the freeze/thaw variables with latitude
110 and elevation to investigate the geographic characteristics of the freeze/thaw changes.
111 In addition, we used the Quantile-Quantile method to ensure that the linear hypothesis
112 was statistically appropriate (John, 2006; David, 2009).

113 The first date (FD) and last date (LD) of the near-surface soil freeze are defined
114 as the first and last date after 1 July on which the daily minimum ground surface
115 temperature is at or below 0°C. The duration (DR) of the near-surface soil freeze is
116 defined as the time span between the first and last date of the near-surface soil freeze.
117 It is common for the near-surface soil not be continuously frozen during the period

118 between the first date and the last date of freeze. Thus, we further define the actual
119 number of the near-surface soil freeze days (NF) by counting the number of days with
120 a daily minimum ground surface soil temperature at or below 0°C.

121 Not all of the meteorological stations in this study have continuous data over a
122 30-yr period (1 July 1961 through 30 June 1991). Generally, 8 or less missing years
123 (<25% of the 30-yr period) are permitted in a calculation of the long-term mean
124 (Jones and Hulme, 1996). The combined time series of anomalies was generated by
125 using data from all available stations with at least 22 years of records. In this study,
126 we applied a thorough data quality control approach to ensure the reliability and
127 consistency of results by station and year. Firstly, study years with 365 daily records
128 were utilized in the annual indices. Secondly, we detect the outliers with three
129 standard deviations (3σ) from its long-term mean as described by Polyakov et al.
130 (2003) and Park et al. (2014). To ensure a specific outlier which may be questionable,
131 we check the outlier with neighboring stations within 200 km. If data from the
132 neighboring stations are normal, we consider this data point as an outlier and remove
133 it from the time series. Otherwise, if there are at least two and/or more neighboring
134 stations that have data points with three standard deviations or higher, we consider
135 these data points represent true values and keep them in the analysis. Finally, we
136 plotted and screened each individual time series to identify questionable data points.

137 This resulted in 636 meteorological stations being included in this study (Fig. 1).

138 **3. Results**

139 **3.1 Climatology of the timing and duration of the near-surface soil freeze**

140 Long-term mean of the timing and duration of the near-surface soil freeze was
141 performed over a 30-yr period (1 July 1961 through 30 June 1991) to reveal the
142 spatial patterns of climatology (Fig. 2). Regions south of 24°N were considered as
143 freeze-free regions because freeze events were generally scarce in those areas.

144 The timing and duration of the near-surface soil freeze varied greatly across
145 China. FD occurred from July of the current year through January of the next year
146 across China. LD occurred from January of the next year through June of the next
147 year. DR ranged from two weeks or less in southern China through almost the entire
148 year on the Qinghai-Tibetan Plateau. The maximum of NF was up to 315 days, which
149 was significantly less than the maximum of DR because of the discontinuous freeze
150 events during the freeze period.

151 The earliest and latest dates of the near-surface soil freeze occurred in July of the
152 current year and in June of the next year on the Qinghai-Tibetan Plateau. NF was up
153 to ten months on the plateau.

154 Our results showed an understandable latitudinal zonal pattern in eastern China,
155 and a significant elevation correlation in western China. Maximum elevations in
156 eastern China are about 1500 m in eastern China and 5000 m in western China due to
157 the location of the Qinghai-Tibetan Plateau. Overall, NF increased about 10 days per
158 degree of latitude in eastern China and about 5 days per 100 m of elevation in western
159 China. The DR increased about 9 days per degree of latitude in eastern China and 6
160 days per 100 m of elevation in western China.

161 **3.2 Changes in the First Date of the Near-Surface Soil Freeze**

162 Overall, FD departures from its long-term mean showed a significant increase
163 across China by nearly 5 days, or a trend of 0.10 ± 0.03 day/yr, for the period 1956–
164 2006 (Fig. 3a). We found that the near-surface soil started to freeze later due to a
165 general warming in the fall season across China during the study period. The
166 coefficient of determination, $R^2=0.25$, means that one-fifth of the total variability in
167 the FD can be explained by the regression equation. Variations can be mainly broken
168 into two periods: before and after the early 1970s. FD anomalies during the middle
169 1960s through the middle 1970s are the lowest in the study period. A delay in FD
170 (0.22 day/yr) started in the early 1970s when a short cold period ended. Meanwhile, a
171 large delay in FD (0.72 ± 0.17 day/yr) occurred after the early 1990s (Fig. 3a); FD
172 has occurred approximately 10 days later since the early 1990s with $R^2=0.60$,
173 implying that about 60% of the total variability in the FD can be explained by the
174 linear trend.

175 Over the study period, the 126 study stations showed a significant trend in FD
176 delay in autumn (Fig. 3b). Most stations showed long-term FD delays, except for a
177 few stations where FD was advanced. Among about 84 of the 126 stations, the FD
178 delay was <0.25 day/yr (Fig. 3b). When comparing stations in western China and
179 eastern China (east and west of 110° E), we found that the FD delay was greater in the
180 west than in the east. A dry environment in western China may be an important
181 element enhancing the changes in FD because latent heat is less when moisture is low.
182 FD at stations surrounding or on the Qinghai-Tibetan Plateau was delayed by >0.5
183 day/yr (Fig. 3b).

184 **3.3 Changes in the Last Date of the Near-Surface Soil Freeze**

185 The LD was advanced in spring significantly over the period of 1956–2006, by

186 about 7 days, or a trend of 0.15 ± 0.02 day/yr (Fig. 4a). This indicates that warming
187 spring seasons result in an earlier end of the near-surface soil freeze. Approximately
188 46% of the total variability in the LD can be explained by the linear trend. Variations
189 in LD are divided into two periods: before and after the early 1990s. LD occurred
190 slightly earlier from 1956 through 1991. The highest deviated from the long-term
191 mean occurred during 1965–1980. A rapid advancement of LD appeared after the
192 early 1990s, with a linear trend of 0.60 ± 0.14 day/yr; i.e., LD has occurred earlier
193 by about 9 days since 1992.

194 LD changed significantly at 30% (202 stations) of all stations (Fig. 4b). This

195 percentage is larger than that of the stations with a significant delay in FD. Among
196 160 stations, LD was advanced by about 0.30 day/yr (Fig. 4b). LD changes in western
197 China were larger than those in eastern China. Overall, FD and LD were significantly
198 delayed and advanced, respectively, at 85 stations. These stations show a delayed
199 onset of autumn soil freeze and an earlier ending of the spring soil freeze over the
200 study period.

201 **3.4 Changes in the Duration of the Near-Surface Soil Freeze**

202 Over the period from 1956 through 2006, DR was shortened by almost 12 days,

203 or 0.25 ± 0.04 day/yr (Fig. 5a). Anomalies during 1966–1980 were higher than the
204 rest of the study period. The most significant decrease in DR appeared mainly after
205 the 1970s (0.45 day/yr). Since the early 1990s, DR has decreased sharply (1.18 ± 0.20

206 day/yr) (Fig. 5a), by almost 16 days. The overall variation in DR (0.25 day/yr) is a
207 combination of changes in FD (0.10 day/yr) and LD (0.15 day/yr). For example, the
208 increase in DR (12 days) corresponds to the delay of FD by 5 days and the advance of
209 LD by 7 days.

210 235 study stations showed a significant decrease in DR of < 0.50 day/yr (Fig.
211 5b). Most stations showed a long-term decrease in DR, except for three stations where
212 DR showed a slight increase. DR decreased more in western China than in eastern
213 China. This general decrease in DR indicates a shortening frost period in the near-
214 surface soil across China over our study period.

215 **3.5 Changes in the Number of Days of the Near-Surface Soil Freeze**

216 It is important to realize that near-surface soil may not be continuously frozen
217 during the period from the first date to the last date of the near-surface freeze,
218 especially in mid- or low-latitude sites. We determine NF by counting the actual
219 number of days with minimum soil temperature $\leq 0^{\circ}\text{C}$.

220 NF decreased by almost 10 days (0.20 \pm 0.03 day/yr) for the period 1956–
221 2006 (Fig. 6a). The trend in NF is similar to but smaller than that in DR (compare to
222 Fig. 4a). A statistically significant increase in NF has occurred since the early 1970s.
223 During the period from 1971 through the early 1990s, NF decreased slightly (0.27
224 day/yr). The NF decrease for the period from 1971 through the end of our study
225 period is 0.35 day/yr, with a decrease of 0.89 day/yr since early 1990s (Fig. 6a). The
226 actual number of freeze days in near-surface soil decreased by 12 or more days over
227 our study period.

228 At 344 stations (about 54% of all study stations), NF varied significantly over the
229 study period (Fig. 6b). Although a few stations in western China showed an increasing
230 trend in NF, the remaining stations showed a significant decreasing trend, with
231 decreasing trends ranging from 0.50 to 0.20 day/yr (Fig. 6b). This general decrease in
232 NF indicates a shortening cold season across China.

233 **3.6 Variations in the Near-Surface Soil Freeze with Latitude and Elevation**

234 Changes in the near-surface soil freeze are primarily controlled by elevation in
235 western China and by latitude in eastern China. In western China, the rate of change
236 in FD increases as elevation increases (Fig. 7A), which implies that changes in FD in
237 higher-elevation regions are greater than those over lower elevation areas. The rate of
238 change in NF decreases (becoming more negative) as the elevation increases (Fig.
239 7B). In other words, the absolute magnitude of the rate of NF change increases with
240 increasing elevation. This implies that NF decreases faster in the higher-elevation
241 areas than in the lower-elevation regions, which is consistent with the FD changes.
242 However, changes in LD and DR with elevation are not statistically significant in
243 western China (not shown).

244 Over eastern China, the rates of change in LD, DR, and NF are significantly
245 correlated with latitude. The rates of change in LD (Fig. 7C), DR (Fig. 7D), and NF
246 (Fig. 7E) increase as latitude increases, which demonstrates that the magnitude of
247 changes in LD, DR, and NF is greater in lower-latitude regions than in higher-latitude
248 regions. Lower-latitude regions are more sensitive to freeze/thaw timing and duration
249 because soils at more southerly latitudes are closer to the freezing point in cold

250 seasons. Under warming climate conditions, changes in soil temperature in southern
251 regions have a greater impact on the timing and duration of the near-surface soil
252 freeze. The FD is not significantly correlated with changes in latitudes in eastern
253 China (not shown). However, the rate of NF change increases (becoming less
254 negative) with elevation in eastern China (Fig. 7F). In other words, the magnitude of
255 NF changes decreases with elevation in eastern China. This is contradictory to the rate
256 of NF changes in western China. We believe that there are two possible explanations:
257 (i) changes in soil freeze in eastern China are primarily controlled by latitudes; (ii)
258 elevation changes in eastern China are relatively small compared with those in
259 western China. Elevation difference in western China is up to 5000 m (Fig. 7B), while
260 in eastern China, the difference is about 1500 m (Fig. 7F).

261 **3.7 Effects of Air Temperature on the Near-Surface Soil Freeze**

262 Air temperature is an important factor that affects the near-surface soil
263 freeze/thaw dynamics. The FD increased as mean autumn (September, October and
264 November) air temperature increased at a rate of about 3.86 ± 0.52 day/ $^{\circ}\text{C}$ (Fig. 8A),
265 implying that the FD was delayed in autumn. This positive correlation between FD
266 and mean autumn air temperature implies that overall delay in FD indeed reflects
267 autumn warming in recent decades across China. The LD decreased at a rate of $2.82 \pm$
268 0.72 day/ $^{\circ}\text{C}$ as mean spring (March, April, and May) air temperature increased (Fig.
269 8B), indicating that the LD advanced in spring as mean spring air temperature
270 increased over the past several decades across China. As a result, the DR and NF are
271 inversely correlated with MAAT (Figs. 8C and 8D), i.e., the DR was shortened and

272 the NF was decreased with increased MAAT, as expected. However, the DR was
273 shortened as a rate of 7.75 ± 1.31 day/ $^{\circ}\text{C}$, while the NF decreased at a rate of $6.61 \pm$
274 1.06 day/ $^{\circ}\text{C}$; the rate of NF change is about 15% less than that of the DR change.

275 Changes in DR are mainly controlled by changes in FD and LD. In other words,
276 changes in DR are mainly controlled by changes in autumn and spring air
277 temperatures, while changes in NF are controlled not only by changes in autumn and
278 spring air temperatures, but also by changes in air temperature during the entire cold
279 season.

280 The freeze index of air temperature (AFI) is a measure of the combined
281 magnitude of temperatures below 0°C from 1 July in the current year through 30 June
282 in the next year, in order to cover the entire freeze period (Zhang et al., 2001).

283 Overall, DR and NF are positively correlated with freeze index, as expected (Fig. 9).
284 During the entire period, DR was lengthened and NF was increased with increasing
285 freeze index across China. Similar to the correlations with mean annual air
286 temperature, the rate of the DR extension is larger than the rate of NF increase with
287 the freeze index. In addition, the variations of NF and DR can be explained about
288 21% and 26% by the freeze index of air temperature, which are significantly less than
289 that by MAAT (Figs. 8C and 8D). This is because the freeze index reflects not only
290 the freeze period but also the magnitude of freeze temperatures in air; in other words,
291 a higher freeze index can not be singly correlated to a longer freeze period because
292 the freeze index value may be caused by a greater magnitude of the cold temperatures.

293 **4. Discussion**

294 **4.1 Comparisons with previous results**

295 The timing and duration of the near-surface soil freeze were investigated using

296 ground-based measurements from 636 stations across China from 1956 through 2006.

297 Primary results indicate that the FD occurred later, while the LD became earlier,

298 resulting in a decrease in both the duration and number of days of the near-surface soil

299 freeze in China.

300 FD was delayed by about 5 days (0.10 day/yr) over the entire study period, as a

301 result of warming climate. Similar results have been found on the Qinghai-Tibetan

302 Plateau (Li et al., 2012), in Indiana, USA (Sinha and Cherkauer, 2008), and in Kansas,

303 USA (Anandhi et al., 2013). However, results from this study indicate that the rate of

304 FD change from the early 1990s to 2006 across China was about 0.72 day/yr, while Li

305 et al. (2012) found that the rate of FD change was about 0.50 day/yr over the Qinghai-

306 Tibetan Plateau from 1988 through 2007. Their results were obtained from passive

307 microwave satellite remote sensing data, which may have a large uncertainty and may

308 underestimate the autumn warming on the Qinghai-Tibetan Plateau.

309 Similarly, LD occurred approximately 7 days earlier (0.15 day/yr) over our study

310 period. Li et al. (2012) showed a later date of soil freeze by about 14 days (or 0.70

311 day/yr) from 1988 to 2007. We found more change in the LD in China since the early

312 1990s (0.60 day/yr). The last freeze date in Kansas, USA, occurred earlier by 0.01–

313 0.19 day/yr from 1919 through 2009 (Anandhi et al., 2013), and this is similar to our

314 results for our study period.

315 Our results indicate that DR and NF decreased 12 and 10 days, respectively,

316 from 1956 to 2006 and have decreased sharply since the early 1990s. We also found
317 significant regional diversity. On the Qinghai-Tibetan Plateau, the number of freeze
318 days decreased by 1.68 day/yr during the period 1988–2007 (Li et al., 2012). This
319 corresponds to our results (Fig. 6a). The number of freezing days in Kansas, USA,
320 varied from 0.01 to 0.24 day/yr from 1919 through 2009 (Anandhi et al., 2013), which
321 is similar to our results for our study period.

322 Increasing air temperature significantly influences the timing and duration of
323 near-surface soil freeze. Warming ground can play a significant role in carbon cycles
324 in land-atmosphere processes (Koven et al., 2011; Schuur et al., 2009; DeConto et al.,
325 2012; Tagesson et al., 2012), but the mechanism of this role is complex and not clear,
326 even though studies have found correlations between growing season carbon fluxes
327 and increased soil temperature, particularly in the high Arctic (Tagesson et al., 2012;
328 Mastepanov et al., 2008; Heimann and Reichstein, 2008). Other studies have shown
329 that increasing temperature results in the lengthening of the growing season and
330 improved productivity (Kimball et al., 2006; Barichivich et al., 2013). These effects
331 may partly counteract the negative effects of climate warming (Cornelissen et al.,
332 2007). Additionally, Kumar et al. (2013) suggested that the impact of climate change
333 on soil microbes in Arctic regions may be impossible to predict. Thus more and
334 deeper research is necessary in order to determine the role of soil freeze/thaw in land-
335 atmosphere feedbacks.

336 **4.2 Potential influences of urbanization**

337 Data used in this study were obtained from China Meteorological Stations. The

338 majority of these stations were established in the 1950s and 1960s (Ma et al., 2009),
339 and intentionally sited outside of cities in order to reduce the impact of human
340 activities on meteorological observations, and thus weather forecasts. However, since
341 the late 1970s, urban areas have expanded dramatically. Studies indicate that cities in
342 China have expanded by two to five times in area during the past 30 years (Wang et
343 al., 2012). Because of this, some of Chinese meteorological stations are now located
344 within urban areas. Hence, the immediate question is how much of the changes in the
345 near-surface soil freeze detected during this study are due to natural variations in
346 climate change versus the impact of human activities such as urban expansion.
347 Detailed investigation of this issue is far beyond this study; however, we provide here
348 some preliminary analysis using limited data.

349 To explore the impact of urbanization on the near-surface soil freeze, we used
350 data and information of urban expansion in China from 1990 through 2010 (Wang et
351 al., 2012). The urban areas were manually identified using Landsat TM/ETM+ in the
352 1990s, 2000s and 2010s. The identification was mainly performed by three
353 experienced operators and revised by high-resolution images in Google EarthTM. The
354 interpreted urban areas were finally integrated using statistical data of urban areas in
355 local official yearbooks (Wang et al., 2012).

356 Over the period from 1990 through 2010, three regions can be divided based
357 upon different degree of urbanization rates, i.e., low rate (<200%), medium rate
358 (200% – 500%), and high rate (>500%) of urban expansion (Fig. 10). We calculated
359 the regional anomalies of the number of soil freeze days (Fig. 11). For all three

360 regions, there were significant decreasing trends in the near-surface soil freeze days
361 since 1956 (Fig. 11). For the low- and medium- rate regions, the trends in NF were
362 approximately -0.19 to -0.18 day/yr; while for the high-rate regions, the trend was
363 about -0.27 days/yr, approximately 42% to 50% higher than the other two regions. It
364 showed a similar phenomenon to that shown in Figure 6b. Meanwhile, interannual
365 variations were also significantly large in high-rate regions (Fig. 11). Here we chose
366 1990 as the breakpoint because (1) urban expansion data begins in 1990 (Wang et al.,
367 2012), and (2) 1990 was close to the breakpoint that shown in Figure 6a.

368 We found that NF changed in a statistically non-significant manner in all three
369 regions before 1990, and significantly decreased after 1990 (Fig. 11). The NF
370 decreased sharply and continuously even though air temperature has a warming hiatus
371 since approximately 1998 worldwide (Easterling et al., 2009). Further analysis
372 indicated that after 1990, NF in the regions with the lower rate of urban expansion
373 decreased at a rate of about 0.85 day/yr, while NF in regions with a high rate of urban
374 expansion showed a statistically non-significant change over the same period (Fig.
375 10).

376 Based on these results, regions with high expansion rates had a significant long-
377 term (1956–2006) decreasing trend in NF, while regions with low and medium
378 expansion rates show a significant decrease in NF but their magnitudes were reduced
379 almost by one-third (Fig. 11). This is because the regions with the high urban
380 expansion rates are large cities along the east coast of China. These regions have been
381 relatively more developed since the mid 1950s, resulting in a greater long-term impact

382 of urban expansion over the past five decades on the near-surface soil freeze,
383 superimposed on long-term climate warming. Over the period from 1990 through
384 2006, the trend in NF was not statistically significant ($P > 0.05$), probably due to
385 climate warming hiatus, while the urban effect may be minimal because the urban
386 expansion mainly occurred around the edges of the large cities and meteorological
387 stations were not moved. For regions with low and medium expansion rates, the long-
388 term decrease trends in NF may mainly reflect the impact of climate warming, with a
389 relatively limited urban expansion effect because these regions are located far inland
390 and are less developed. Meteorological stations in these regions were installed in the
391 1950s and generally located several kilometers away from small and medium cities by
392 to avoid an urban effect on meteorological observations. However, over the period
393 from 1990 through 2006, the magnitude of the decreasing trends in NF increased
394 sharply (Fig. 11). This may be due to the boundary of urban was close to and probably
395 far beyond the meteorological stations, resulting in substantial heat island impacts on
396 the near-surface soil freeze.

397 **4.3 Relationship with snow cover, North Atlantic Oscillation and Arctic
398 Oscillation**

399 Snow cover may be an important contributors to the near-surface soil freeze/thaw
400 states in Arctic or pan-Arctic regions. The data used in this study reflected snow
401 surface temperature when the ground surface was fully snow covered. In this case, it
402 was simply assumed that the near-surface soil under the snow is in a frozen state. This
403 assumption is valid because the minimum requirement for the existence of snow on

404 ground is that the ground surface temperature be at or below the freezing point (Zhang
405 et al., 2003). It is possible that soil may not freeze in places where snow cover starts
406 early in autumn, and is relatively thick due to the snow insulation effect (Zhang
407 2005). Meanwhile, because of the effect of a monsoon climate over the Eurasian
408 continent, winter precipitation (snowfall) accounts for a very small fraction of the
409 annual precipitation in China; thus, the influence of snow cover on the near-surface
410 soil freeze-thaw status is very limited.

411 We examined the relationship between the long-term winter (December through
412 February) North Atlantic Oscillations (NAO) and the freeze/thaw parameters in this
413 study. Preliminary results indicated that there is a statistically significant negative
414 relationship between the winter NAO and the duration of the near-surface soil freeze
415 ($P < 0.05$) over the study period. We found that a higher winter NAO index
416 corresponds to a shorter duration of the near-surface soil freeze over China. The first
417 date of the near-surface soil freeze in autumn is positively correlated with the coming
418 January NAO index ($P < 0.05$), indicating that the late near-surface soil freeze
419 corresponds to a higher January NAO index. The number of days of the near-surface
420 soil freeze is also negatively correlated with the February Arctic Oscillation (AO)
421 index ($P < 0.05$), showing that the NF decrease corresponds to a higher February AO
422 index. These results are consistent with shorter DR, less NF, and late FD
423 corresponding to higher winter NAO and/or AO indexes.

424 We further conducted a correlation analysis between the monthly NAO/AO and
425 the annual freezing index of air temperature, and between the monthly NAO/AO and

426 the MAAT (July–June). The preliminary results show that NAO/AO indexes are
427 positively correlated with the MAAT and negatively correlated with the freezing
428 index of air temperature during winter months. These results further demonstrate that
429 higher NAO/AO indexes correspond to warmer winters over China. These results are
430 also consistent with changes in the shorter DR, less NF, and late FD found in our
431 study.

432 **5. Summary**

433 Changes in the timing and duration (the first date, last date, duration, and number
434 of days) of the near-surface soil freeze across China were investigated using ground-
435 based observations at 636 meteorological stations from 1956 through 2006. We also
436 investigated the response of changes in the timing and duration of the near-surface
437 soil freeze to the mean monthly, seasonal, and annual air temperature, freeze index of
438 air temperature and urban expansions across China during the past few decades.

439 The timing and duration of the near-surface soil freeze changed significantly
440 from 1956 through 2006 across China. The first date of the near-surface soil freeze
441 was delayed by about 5 days (0.10 ± 0.03 day/yr). The last date of the near-surface
442 soil freeze has occurred by about 7 days earlier (0.15 ± 0.02 day/yr) over the same
443 period. As a result, the duration of the near-surface soil freeze decreased by about 12
444 days, and the number of the near-surface soil freeze days decreased by about 10 days
445 (0.20 ± 0.03 day/yr) for the period 1956–2006.

446 The changes in the timing and duration of the near-surface soil freeze were
447 accompanied by changes in air temperature. The first freeze date was delayed by

448 about 3.86 ± 0.52 day/ $^{\circ}\text{C}$ with increasing mean autumn (September through
449 November) air temperature, and the last date of freeze advanced by about $2.82 \pm$
450 0.72 day/ $^{\circ}\text{C}$ with mean spring (March through May) air temperature. As a result, the
451 duration and number of days of the near-surface soil freeze were negatively correlated
452 with mean annual air temperature while positively correlated with freeze index of air
453 temperature. The duration of the near-surface soil freeze was shortened at a rate of
454 7.75 ± 1.31 day/ $^{\circ}\text{C}$, while the number of days of the near-surface soil freeze
455 decreased at a rate of 6.61 ± 1.06 day/ $^{\circ}\text{C}$, which is about 15% less than that of the
456 duration trend.

457 Urban expansion during the past few decades may also play a role in the changes
458 of the timing and duration of the near-surface soil freeze. The rates of change since
459 the early 1990s were approximately four times larger than the average rates from 1956
460 through 2006. Since the early 1990s, cities in China have expanded, by approximately
461 two to five times in urban area. The heat island effect may play a significant role in
462 the timing and duration of the near-surface soil freeze. We found that changes in the
463 timing and duration of the near-surface soil freeze in areas with low rates of urban
464 expansion were about one-third larger than those in areas with high rates of urban
465 expansion, indicating that the heat island effect in small cities was greater than that in
466 larger cities.

467

468 **Acknowledgements.** We wish to thank the anonymous reviewers and editor for
469 their insightful and constructive critiques and suggestions which helped to

470 improve this paper. This study was funded by the National Key Scientific
471 Research Program of China (grant No. 2013CBA01802) and the National Natural
472 Science Foundation of China (grant No. 91325202). The SRTM DEM data used
473 in Figure 1 was obtained from website: <http://srtm.csi.cgiar.org/>.

474

475 **References**

476 Anandhi, A., Perumal, S., Gowda, P., Knapp, M., Hutchinson, S., Harrington, J., Jr.,
477 Murray, L., Kirkham, M., and Rice, C.: Long-term spatial and temporal trends in
478 frost indices in Kansas, USA, *Climatic Change*, 120, 169-181, 10.1007/s10584-
479 013-0794-4, 2013.

480 Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M., Ciais, P.,
481 Piao, S., and Tucker, C.: Large-scale variations in the vegetation growing season
482 and annual cycle of atmospheric CO₂ at high northern latitudes from 1950 to
483 2011, *Global Change Biol.*, 19, 3167-3183, 10.1111/gcb.12283, 2013.

484 Cheng, G. D., and Wu, T. H.: Responses of permafrost to climate change and their
485 environmental significance, *Qinghai-Tibet Plateau, J. Geophys. Res. Earth Surf.*,
486 112, F02S03, 10.1029/2006jf000631, 2007.

487 Cherkauer, K. A., and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the
488 upper Mississippi River basin, *J. Geophys. Res. Atmos.*, 104, 19599-19610,
489 10.1029/1999JD900337, 1999.

490 CMA: Daily surface climatic dataset in China. *China Meteorological Data Sharing*
491 *Service System: Beijing, China,* <http://cdc.cma.gov.cn/>, 2007a.

492 CMA: Specifications for surface meteorological observation, Part13: Measurement of
493 soil temperature, China Meteorological Press: Beijing, China, 2007b.

494 Cornelissen, J. H. C., Van Bodegom, P. M., Aerts, R., Callaghan, T. V., Van Logtestijn,
495 R. S. P., Alatalo, J., Stuart Chapin, F., Gerdol, R., Gudmundsson, J., Gwynn-
496 Jones, D., Hartley, A. E., Hik, D. S., Hofgaard, A., Jónsdóttir, I. S., Karlsson, S.,
497 Klein, J. A., Laundre, J., Magnusson, B., Michelsen, A., Molau, U., Onipchenko,
498 V. G., Quested, H. M., Sandvik, S. M., Schmidt, I. K., Shaver, G. R., Solheim,
499 B., Soudzilovskaia, N. A., Stenström, A., Tolvanen, A., Totland, Ø., Wada, N.,
500 Welker, J. M., Zhao, X., and Team, M. O. L.: Global negative vegetation
501 feedback to climate warming responses of leaf litter decomposition rates in cold
502 biomes, *Ecol. Lett.*, 10, 619-627, 10.1111/j.1461-0248.2007.01051.x, 2007.

503 David, F.: Statistical models: theory and practice (revised version), Cambridge
504 University Press, Cambridge, United Kingdom, 2009. DeConto, R. M., Galeotti,
505 S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., and Beerling, D.
506 J.: Past extreme warming events linked to massive carbon release from thawing
507 permafrost, *Nature*, 484, 87-91, 10.1038/nature10929, 2012.

508 Easterling, D., and Wehner, M.: Is the climate warming or cooling? *Geophys. Res.*
509 *Lett.*, 36, L08706, doi:10.1029/2009GL037810, 2009.

510 Edwards, K. A., and Jefferies, R. L.: Inter-annual and seasonal dynamics of soil
511 microbial biomass and nutrients in wet and dry low-Arctic sedge meadows, *Soil*
512 *Biol. Biochem.*, 57, 83-90, 10.1016/j.soilbio.2012.07.018, 2013.

513 Entekhabi, D., Njoku, E. G., Houser, P., Spencer, M., Doiron, T., Yunjin, K., Smith, J.,

514 Girard, R., Belair, S., Crow, W., Jackson, T. J., Kerr, Y. H., Kimball, J. S., Koster,
515 R., McDonald, K. C., O'Neill, P. E., Pultz, T., Running, S. W., Jiancheng, S.,
516 Wood, E., and Van Zyl, J.: The hydrosphere State (hydros) Satellite mission: an
517 Earth system pathfinder for global mapping of soil moisture and land
518 freeze/thaw, *IEEE Trans. Geosci. Rem. Sens.*, 42, 2184-2195,
519 10.1109/TGRS.2004.834631, 2004.

520 Gilichinsky, D., and Wagener, S.: Microbial life in permafrost: A historical review,
521 *Permafrost Periglac.*, 6, 243-250, 10.1002/ppp.3430060305, 1995.

522 Heimann, M., and Reichstein, M.: Terrestrial ecosystem carbon dynamics and climate
523 feedbacks, *Nature*, 451, 289-292, 2008.

524 Henry, H. A. L.: Climate change and soil freezing dynamics: historical trends and
525 projected changes, *Climatic Change*, 87, 421-434, 10.1007/s10584-007-9322-8,
526 2008.

527 IPCC: Climate Change 2013: The Physical Science Basis. Working Group I
528 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
529 Climate Change, Cambridge University Press, Cambridge, United Kingdom and
530 New York, NY, USA, 1535pp, 2013. doi:10.1017/CBO9781107415324.

531 John, R.: Mathematical statistics and data analysis (3rd edition), Cengage Learning,
532 United States, 2006.

533 Jones, P., and Hulme, M.: Calculating regional climatic time series for temperature
534 and precipitation: methods and illustrations, *Int. J. Climatol.*, 16, 361-377,
535 10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F, 1996.

536 Kimball, J. S., McDonald, K. C., and Zhao, M.: Spring Thaw and Its Effect on
537 Terrestrial Vegetation Productivity in the Western Arctic Observed from Satellite
538 Microwave and Optical Remote Sensing, *Earth Interact.*, 10, 1-22,
539 10.1175/EI187.1, 2006.

540 Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov,
541 D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate feedbacks
542 accelerate global warming, *Proc. Natl. Acad. Sci. Unit. States Am.*, 108, 14769-
543 14774, 10.1073/pnas.1103910108, 2011.

544 Kumar, N., Grogan, P., Chu, H., Christiansen, C., and Walker, V.: The Effect of
545 Freeze-Thaw Conditions on Arctic Soil Bacterial Communities, *Biology*, 2, 356-
546 377, 10.3390/biology2010356, 2013.

547 Li, X., Jin, R., Pan, X., Zhang, T., and Guo, J.: Changes in the near-surface soil
548 freeze-thaw cycle on the Qinghai-Tibetan Plateau, *Int. J. Appl. Earth Obs.*, 17,
549 33-42, 10.1016/j.jag.2011.12.002, 2012.

550 Lloyd, J., and Taylor, J.: On the temperature dependence of soil respiration, *Funct.*
551 *Ecol.*, 315-323, 1994.

552 Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin: Evaluation of
553 precipitation from the ERA-40, NCEP-1, and NCEP-2 Reanalyses and CMAP-1,
554 CMAP-2, and GPCP-2 with ground-based measurements in China, *J. Geophys.*
555 *Res.*, 114, D09105, doi:10.1029/2008JD011178, 2009.

556 Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Strom, L.,
557 Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst during onset

558 of freezing, *Nature*, 456, 628-630, 10.1038/nature07464, 2008.

559 Menzel, A., Jakobi, G., Ahas, R., Scheifinger, H., and Estrella, N.: Variations of the
560 climatological growing season (1951–2000) in Germany compared with other
561 countries, *Int. J. Climatol.*, 23, 793-812, 10.1002/joc.915, 2003.

562 Niu, G.-Y., and Yang, Z.-L.: Effects of Frozen Soil on Snowmelt Runoff and Soil
563 Water Storage at a Continental Scale, *J. Hydrometeorol.*, 7, 937-952,
564 10.1175/JHM538.1, 2006.

565 Park, H., Sherstiukov, A. B., Fedorov, A. N., Polyakov, I. V., and Walsh, J. E.: An
566 observation-based assessment of the influences of air temperature and snow
567 depth on soil temperature in Russia, *Environ. Res. Lett.*, 9, 064026, 2014.

568 Polyakov, I. V., Bekryaev, R. V., Alekseev, G. V., Bhatt, U. S., Colony, R. L., Johnson,
569 M. A., Maskshtas, A. P., and Walsh, D.: Variability and Trends of Air
570 Temperature and Pressure in the Maritime Arctic, 1875–2000, *J. Clim.*, 16, 2067-
571 2077, 2003.

572 Rempel, A. W.: Hydromechanical Processes in Freezing Soils, *Vadose Zone J.*, 11,
573 10.2136/vzj2012.0045, 2012.

574 Schimel, J. P., and Mikan, C.: Changing microbial substrate use in Arctic tundra soils
575 through a freeze-thaw cycle, *Soil Biol. Biochem.*, 37, 1411-1418,
576 10.1016/j.soilbio.2004.12.011, 2005.

577 Schuur, E. A., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp,
578 T. E.: The effect of permafrost thaw on old carbon release and net carbon
579 exchange from tundra, *Nature*, 459, 556-559, 10.1038/nature08031, 2009.

580 Sinha, T., and Cherkauer, K. A.: Time Series Analysis of Soil Freeze and Thaw
581 Processes in Indiana, *J. Hydrometeorol.*, 9, 936-950, 10.1175/2008JHM934.1,
582 2008.

583 Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.:
584 The Tibetan Plateau observatory of plateau scale soil moisture and soil
585 temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution
586 satellite and model products, *Hydrol. Earth Syst. Sci.*, 15, 2303-2316,
587 10.5194/hess-15-2303-2011, 2011.

588 Sun, H.: Formation and Evolution of Qinghai-Xizang Plateau (in Chinese). Scientific
589 and Technical Publishers, China, 1996.

590 Tagesson, T., M ölder, M., Mastepanov, M., Sigsgaard, C., Tamstorf, M. P., Lund, M.,
591 Falk, J. M., Lindroth, A., Christensen, T. R., and Str öm, L.: Land-atmosphere
592 exchange of methane from soil thawing to soil freezing in a high-Arctic wet
593 tundra ecosystem, *Global Change Biol.*, 18, 1928-1940, 10.1111/j.1365-
594 2486.2012.02647.x, 2012.

595 Wang, L., Li, C., Ying, Q., Cheng, X., Wang, X., Li, X., Hu, L., Liang, L., Yu, L.,
596 Huang, H. and Gong, P.: China's urban expansion from 1990 to 2010 determined
597 with satellite remote sensing. *Chin. Sci. Bull.*, 57, 2802-2812,
598 doi:10.1007/s1434-012-5235-7, 2012.

599 Wu, Q., and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan Plateau, *J.*
600 *Geophys. Res. Atmos.*, 113, D13108, 10.1029/2007JD009539, 2008.

601 Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Lazhu, Chen, Z., Lv, N.,

602 Ding, B., Wu, H., and Lin, C.: A Multiscale Soil Moisture and Freeze–Thaw
603 Monitoring Network on the Third Pole, *Bull. Am. Meteorol. Soc.*, 94, 1907–
604 1916, 10.1175/BAMS-D-12-00203.1, 2013.

605 Zhang, T., Armstrong, R. L. and Smith, J.: Investigation of the near-surface soil
606 freeze-thaw cycle in the contiguous United States: Algorithm development and
607 validation, *J. Geophys. Res.*, 108(D22), 8860, doi:10.1029/2003JD003530, 2003.

608 Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An
609 overview, *Rev. Geophys.*, 43, RG4002, doi:10.1029/2004RG000157, 2005.

610 Zhang, T., Barry, R. G., Gilichinsky, D., Bykhovets, S., Sorokovikov, V., and Ye, J.:
611 An amplified signal of climatic change in soil temperatures during the last
612 century at Irkutsk, Russia, *Climatic Change*, 49, 41–76,
613 10.1023/A:1010790203146, 2001.

614 Zhang, Y., Li, B., and Zheng, D.: A Discussion on the Boundary and Area of the
615 Tibetan Plateau in China (DBATP), DOI:10.3974/geodb.2014.01.12.V1, 2014.

616

617 **Figure Captions**
618

619 **Fig. 1.** Map of meteorological stations across China used in this study. Background
620 reflects elevation, and sizes of circles reflect data availability during the period
621 from July 1971 to June 2001. Boundary line of Qinghai-Tibetan Plateau is from
622 Zhang, Y., et al. (2014).

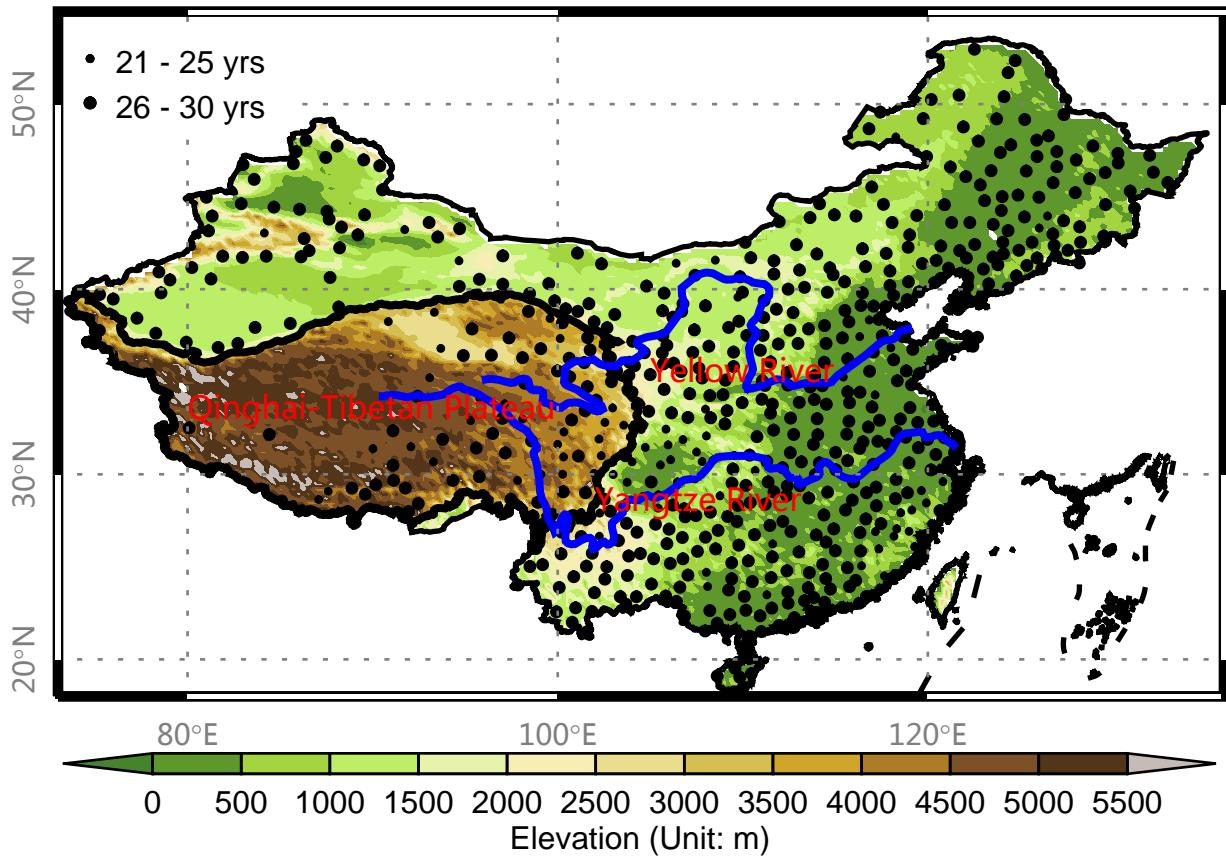
623 **Fig.2.** Climatology of the first date (A), the last date (B), the duration (C) and the
624 number of days (D) of the near-surface soil freeze/thaw status across China. The
625 30-year reference period was from July 1961 through June 1991.

626 **Fig. 3.** (A) Composite of anomalies for the first date (FD) from 1956 through 2006
627 across China. The composite of anomalies for FD was simply an average of
628 anomaly across all available stations for each year. The solid circles represent the
629 composite anomaly for a year. The shaded area represents one standard deviation
630 from the mean for each year. The thick line represents a smoothed curve by a
631 cut-off frequency of 0.091. The thick straight lines are linear regression trends.
632 Asterisk indicates a statistically significant trend with a 95% or higher
633 confidential level. (B) Rate of linear trends in FD from 1956 through 2006 for
634 stations with 95% or higher confidential level across China; center-top panel is
635 the histogram the rate of changes in FD.

636 **Fig. 4.** Same as Fig.3 except for the last date of the near-surface soil freeze.

637 **Fig. 5.** Same as Fig.3 except for the duration of the near-surface soil freeze.

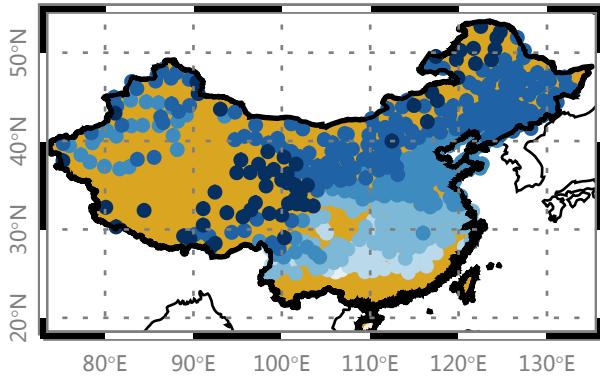
638 **Fig. 6.** Same as Fig.3 except for the number of days of the near-surface soil freeze.

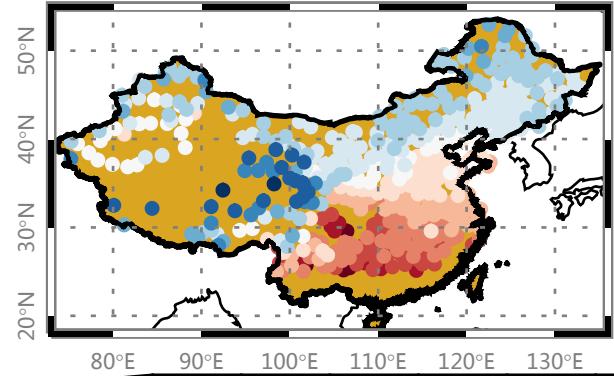

639 **Fig. 7.** Trends of the first date (FD), the last date (LD), duration (DR), and number of
640 freeze days (NF) at stations in western China (in first row, longitude $\leq 110^\circ$ E)
641 and in eastern China (in second and third rows, longitude $> 110^\circ$ E) against
642 latitude ($^\circ$ N) and elevation ($\times 10^3$ m a.s.l.). Each point represents one station, with
643 a statistically confidential level of 95% or higher. Solid cycles are data points,
644 and lines are linear fitted lines. Asterisk indicates a significant trend at the 95%
645 confidential level or higher.

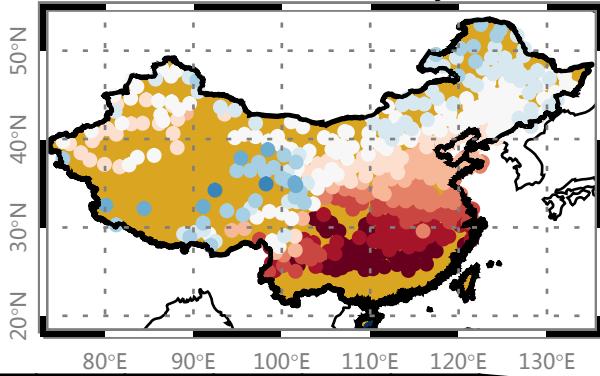
646 **Fig. 8.** Relationship between (A) anomalies of mean autumn air temperature
647 (September through November) and the first date (FD), (B) anomalies of mean
648 spring air temperature (March through May) and the last date (LD), (C)
649 anomalies of mean annual air temperature (July through June) and duration
650 (DR), and (D) number of days (NF) from 1956 through 2006 across China. All
651 regression lines have a statistically significant trend with at least a 95%
652 confidential level.

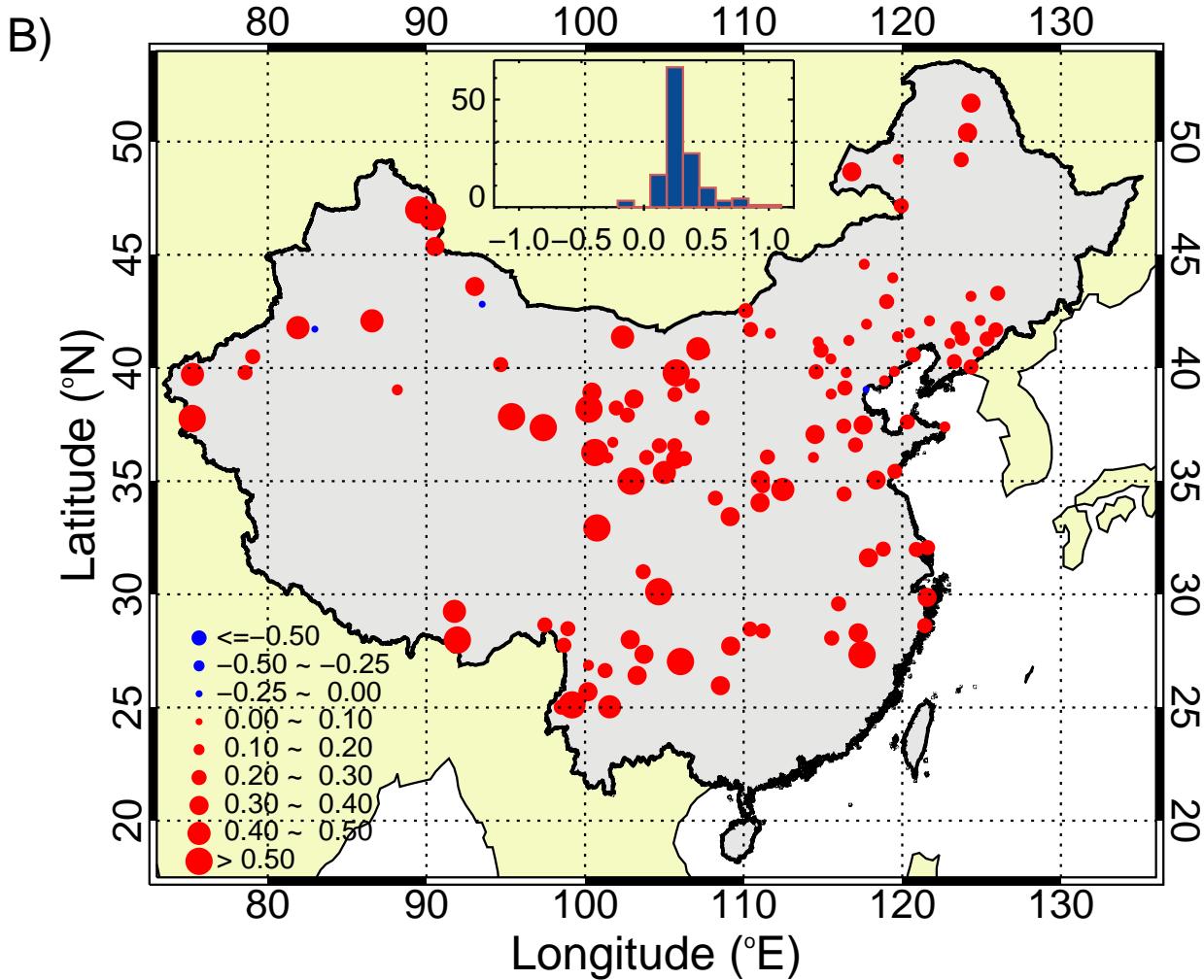
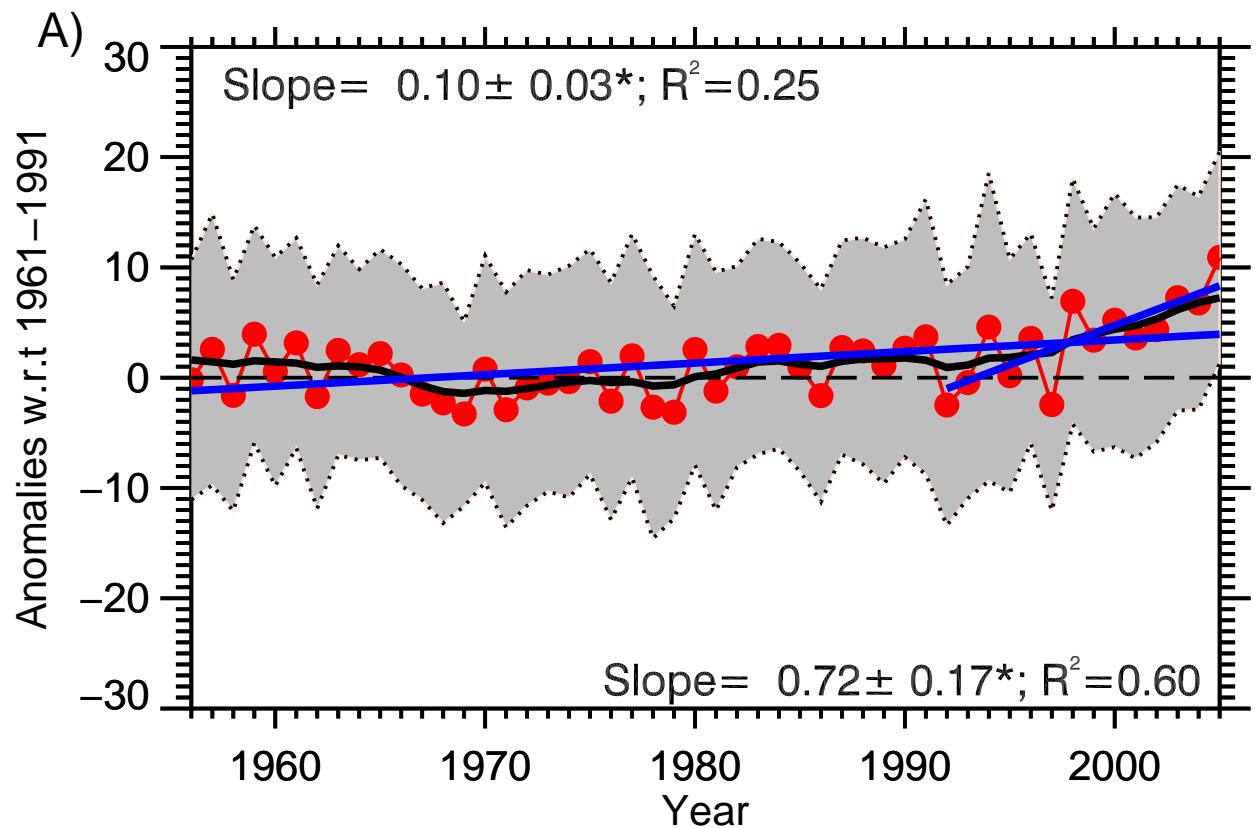
661 **Fig. 9.** Relationship between anomalies of the freeze index of air temperature (AFI)
662 and (A) duration (DR), and (B) number of days (NF) from 1956 through 2006
663 across China. All regression lines have a statistically significant trend with at
664 least a 95% confidential level.

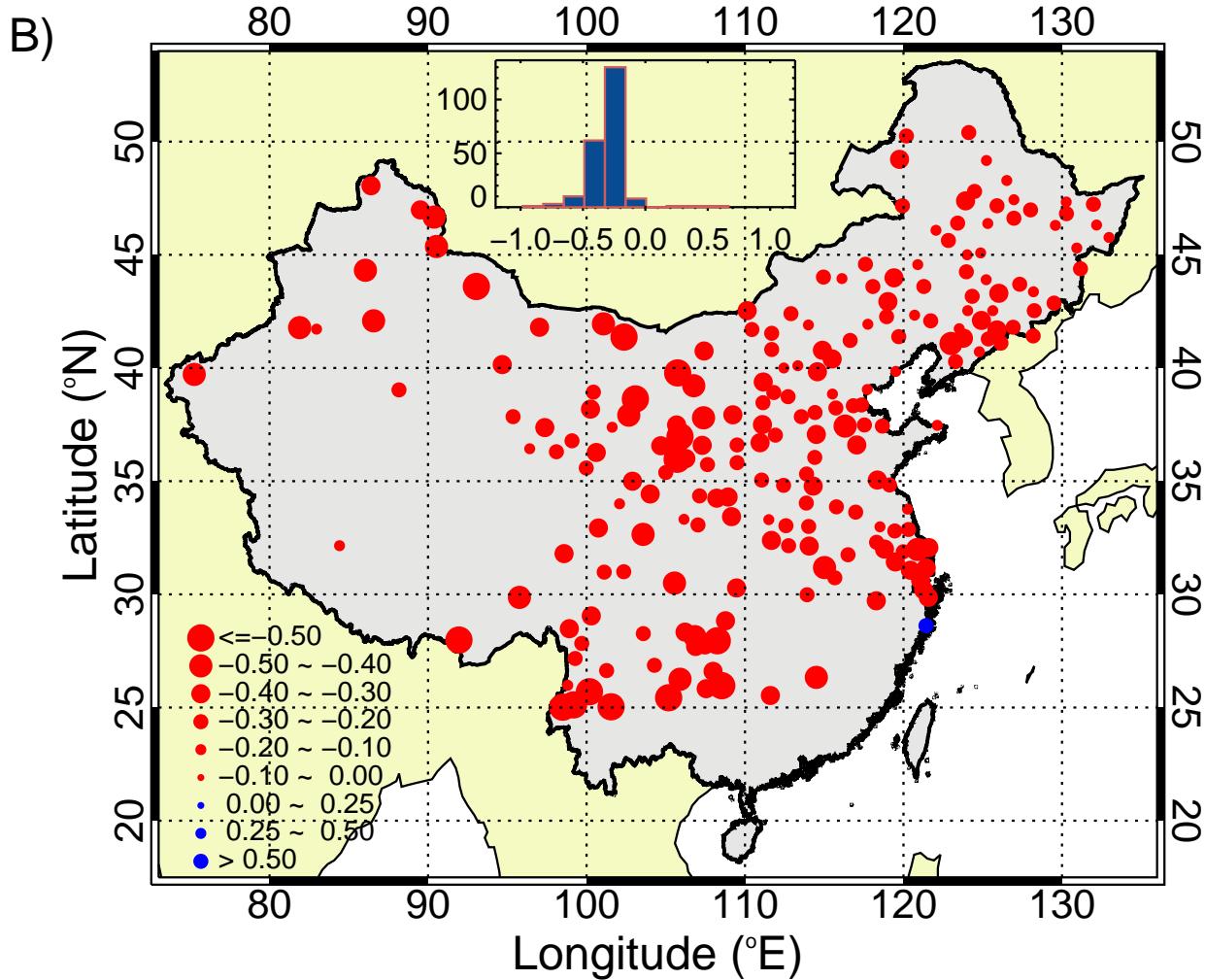
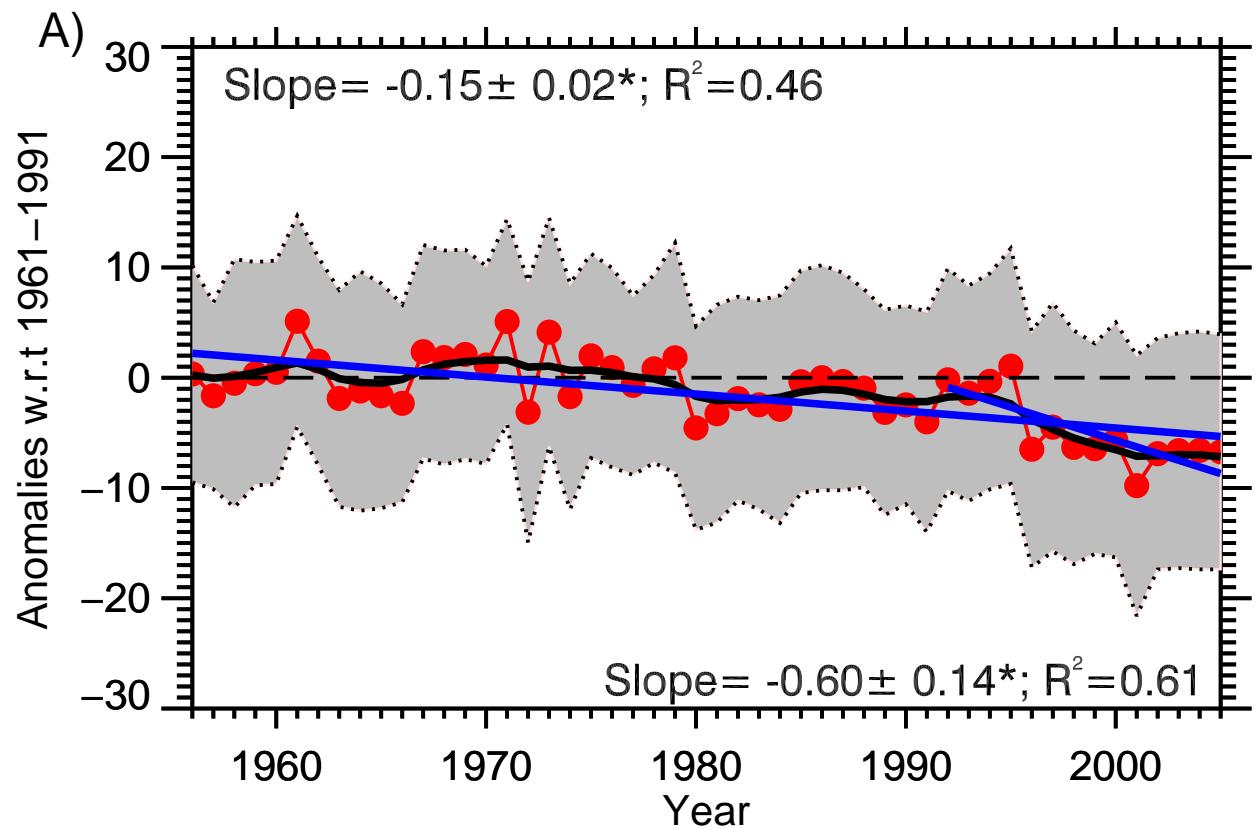
665
666 **Fig. 10.** Rates of urban expansion from 1990s through 2010s in China (modified from
667 Wang et al., 2012).

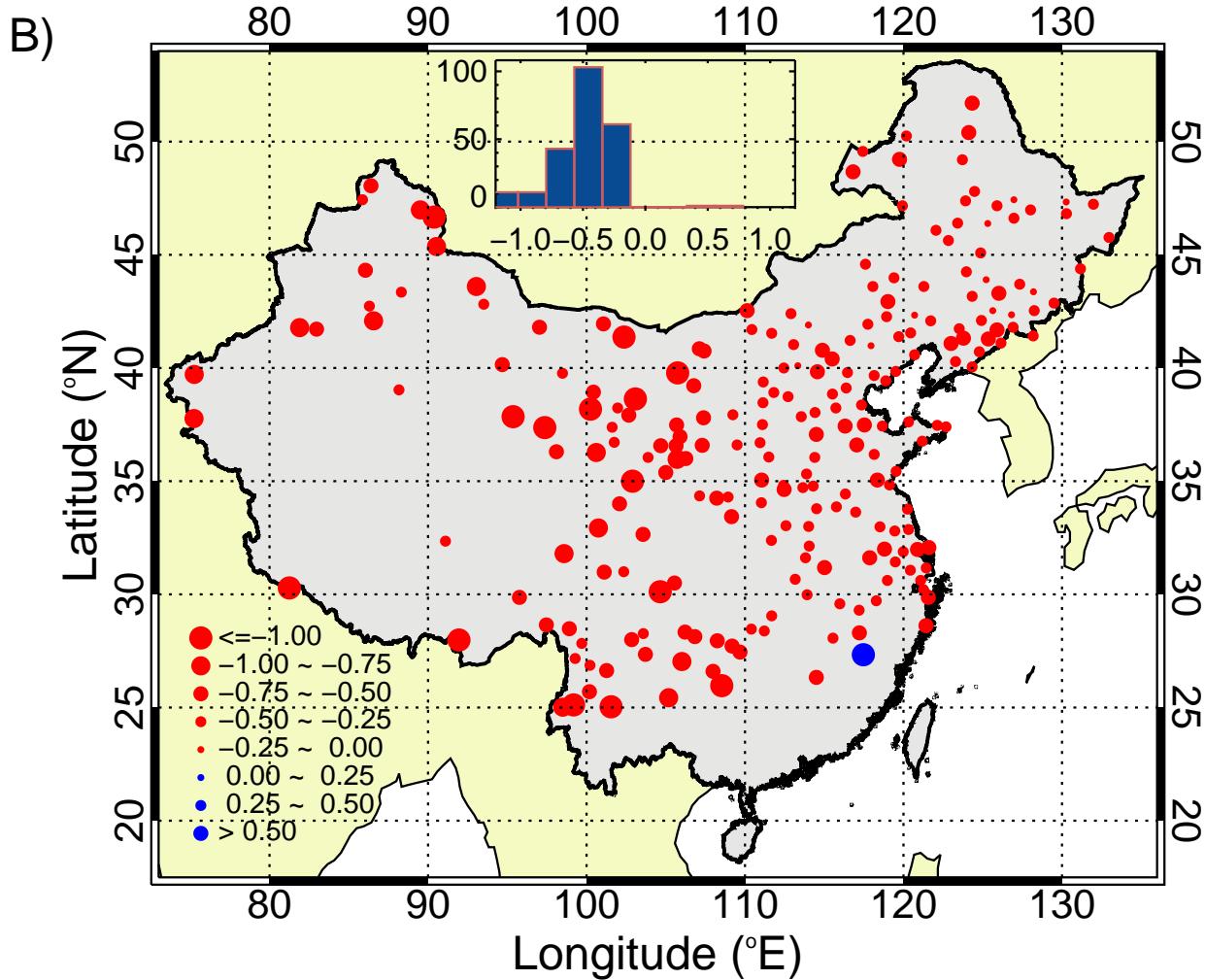

668
669 **Fig. 11.** Regional changes of number of days (NF) in regions with different
670 urbanization rates (lefts, i.e., A, C, and E). Black lines and red lines depict the
671 linear regression for the period after 1990 and the period since 1956,
672 respectively. Asterisk indicates a statistically significant trend at a 95%
673 confidential level or higher. Rights (B, D, and F) are number of stations used to
674 create each time-series.

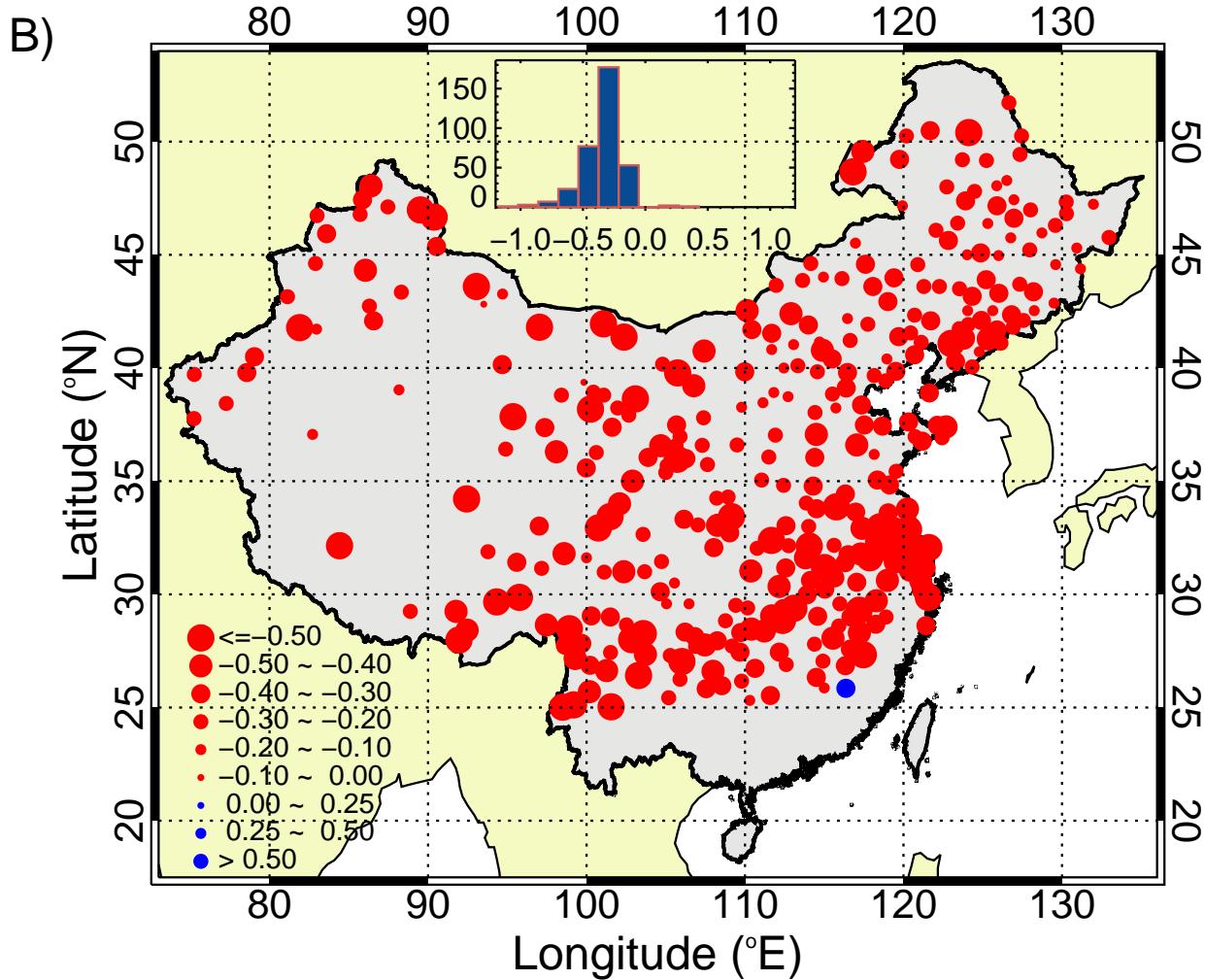
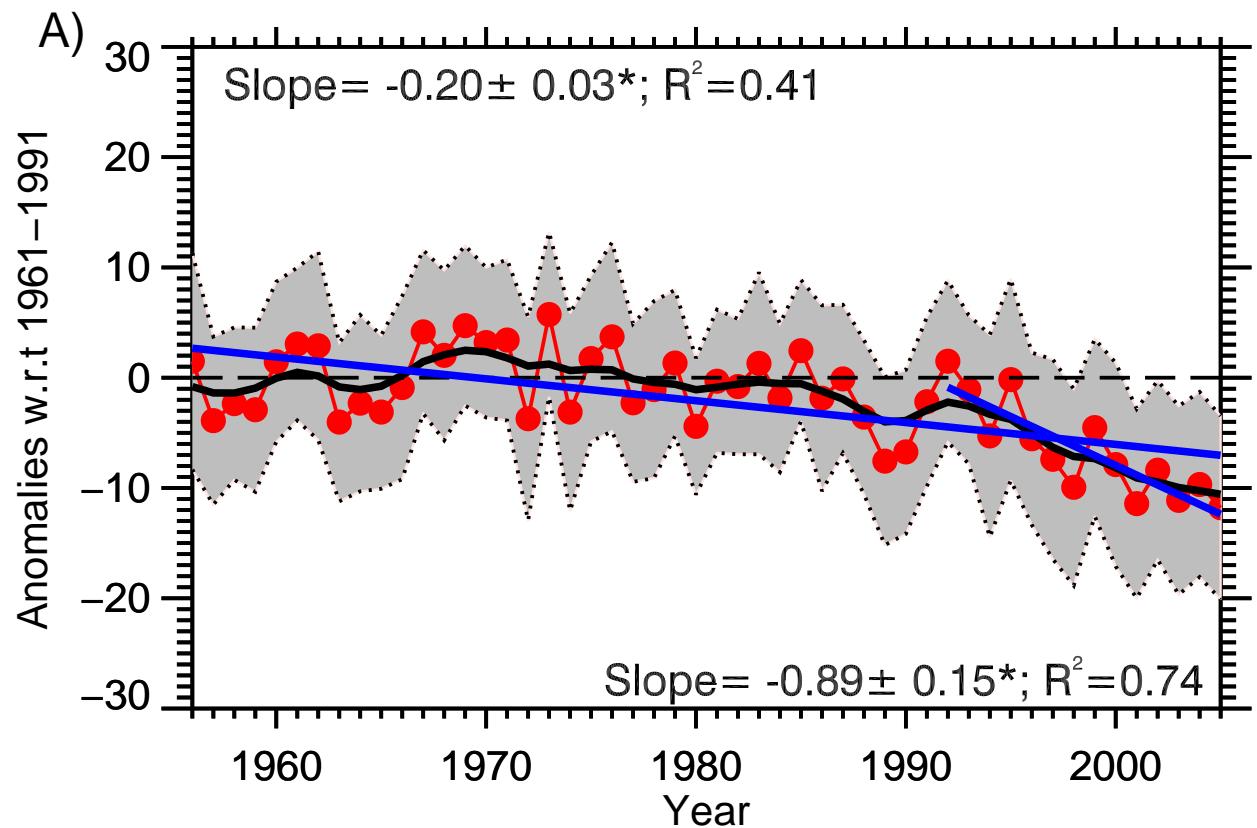

A: First Date


B: Last Date



C: Duration





D: Number of Days

