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Abstract. Recent studies have investigated the potential link between the freshwater input derived

from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in

the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the

trend in sea ice extent and concentration in simulations with data assimilation, spanning the period

1850–2009, as well as in retrospective forecasts (hindcasts) initialised in 1980. In the simulations5

with data assimilation, the inclusion of an additional freshwater flux that follows an autoregressive

process improves the reconstruction of the trend in ice extent and concentration between 1980 and

2009. This is linked to a better efficiency of the data assimilation procedure but can also be due to

a better representation of the freshwater cycle in the Southern Ocean. The results of the hindcast

simulations show that an adequate initial state, reconstructed thanks to the data assimilation proce-10

dure including an additional freshwater flux, can lead to an increase in the sea ice extent spanning

several decades that is in agreement with satellite observations. In our hindcast simulations, an in-

crease in sea ice extent is obtained even in the absence of anymajor change in the freshwater input

over the last decades. Therefore, while the additional freshwater flux appears to play a key role in

the reconstruction of the evolution of the sea ice in the simulation with data assimilation, it does not15

seem to be required in the hindcast simulations. The presentwork thus provides encouraging results

for sea ice predictions in the Southern Ocean, as in our simulation the positive trend in ice extent

over the last 30 years is largely determined by the state of the system in the late 1970’s.

1 Introduction

The sea ice extent in the Southern Ocean has been increasing at a rate estimated to be between20

0.13 and 0.2 millionkm2 per decade between November 1978 and December 2012 (Vaughanet al.,
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2013). The recent work of Eisenman et al. (2014) suggests that the positive trend in Antarctic sea

ice extent may be in reality smaller than the value given in Vaughan et al. (2013). Indeed, an ap-

proximate continuation of the trends in sea ice extent corresponding to the version 1 of the Bootstrap

algorithm provides a value around 0.1 millionkm2 per decade between November 1978 and Decem-25

ber 2012 (Fig. 1b of Eisenman et al., 2014). Nevertheless, even a slight expansion of the Antarctic

sea ice is in clear contrast with the behaviour of its Arctic counterpart which is currently shrinking

(e.g., Turner and Overland, 2009).

The processes that drive the evolution of the Antarctic sea ice and the causes of its recent expan-

sion are still debated. The hypothesis that the stratospheric ozone depletion (Solomon, 1999) could30

have been responsible for the increase in sea ice extent is not compatible with the results of some

recent model analyses (e.g., Sigmond and Fyfe, 2010; Bitz and Polvani, 2012; Smith et al., 2012;

Sigmond and Fyfe, 2013) but the impact of ozone changes involves complex mechanisms that need

to be further investigated (Ferreira et al., 2015). Besides, other studies have underlined the fact that

the positive trend in sea ice extent could be attributed to the internal variability of the system (e.g.,35

Mahlstein et al., 2013; Zunz et al., 2013; Polvani and Smith,2013; Swart and Fyfe, 2013). Never-

theless, this explanation cannot be confirmed by present-day general circulation models (GCMs)

involved in the 5th Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2011). Indeed,

because of the biases present in those models, they often simulate a seasonal cycle or an inter-

nal variability (or both) of the Southern Ocean sea ice that disagrees with what is observed (e.g.,40

Turner et al., 2013; Zunz et al., 2013).

Hypotheses related to changes in the atmospheric circulation or in the ocean stratification (e.g.,

Bitz et al., 2006; Zhang, 2007; Lefebvre and Goosse, 2008; Stammerjohn et al., 2008; Goosse et al.,

2009; Kirkman and Bitz, 2010; Landrum et al., 2012; Holland and Kwok, 2012; Goosse and Zunz,

2014; de Lavergne et al., 2014) have also been proposed. In particular, a link between the melting45

of the Antarctic ice sheet, especially the ice shelves, and the formation of sea ice has been recently

proposed (e.g., Hellmer, 2004; Swingedouw et al., 2008; Bintanja et al., 2013). The meltwater input

from the ice sheet leads to a fresher and colder surface layerin the ocean surrounding Antarctica. As

a consequence, the ocean gets more stratified and there is less interaction between the surface and

the warmer and saltier interior ocean, leading to an enhanced cooling of the surface. This negative50

feedback could counteract the greenhouse warming and couldthus contribute to the expansion of

the sea ice. Estimates of the Antarctic ice sheet mass imbalance are available thanks to satellite

observations and climate modelling. These estimates report an increase in the melting of the Antarc-

tic ice sheet over the past decade, mainly coming from West Antarctica (e.g., Rignot et al., 2008;

Velicogna, 2009; Pritchard et al., 2012; Shepherd et al., 2012). According to Bintanja et al. (2013),55

incorporating realistic changes in the Antarctic ice sheetmass in a coupled climate model could lead

to a better simulation of the evolution of the sea ice in the Southern Ocean. For past periods, this

may be achieved using estimates of changes in mass balance but for future projections this requires
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a comprehensive representation of the polar ice sheets in models. Besides, Swart and Fyfe (2013)

have shown that the freshwater derived from the ice sheet is unlikely to affect significantly the re-60

cent trend in sea ice extent simulated by CMIP5 models, when imposing a flux whose magnitude is

constrained by the observations.

In addition to the studies devoted to a better understandingof the causes of the recent variations,

models are also employed to perform projections for the changes at the end of the 21st century

and predictions for the next months to decades. Such predictions are generally performed using65

GCMs. Unfortunately, as mentioned above, current GCMs havebiases that reduce the accuracy of

the simulated sea ice in the Southern Ocean. In addition, taking into account observations to initialise

these models, generally through simple data assimilation (DA) methods, did not improve the quality

of the predictions in the Southern Ocean (Zunz et al., 2013).However, two recent studies performed

in a perfect model framework, i.e. using pseudo-observations provided by a reference simulation70

of the model instead of actual observations, underlined some predictability of the Antarctic sea ice

(e.g., Holland et al., 2013; Zunz et al., 2014). According tothese studies, at interannual timescales,

the predictability is limited to a few years ahead. Besides,significant predictability is found for the

trends spanning several decades. Both studies have pointedout that the heat anomalies stored in the

interior ocean could play a key role in the predictability ofthe sea ice. In particular, in their idealised75

study, Zunz et al. (2014) have described a link between the skill of the prediction of the sea ice cover

and the quality of the initialisation of the ocean below it.

On the basis of those results, the present study aims to identify a procedure that could improve the

quality of the predictions of the sea ice in the Southern Ocean at multi-decadal timescales. Unlike

Holland et al. (2013) and Zunz et al. (2014), the results discussed here have been obtained in a re-80

alistic framework. It means that actual observations are used to initialise the model simulations as

well as to assess the skill of the model. The results of Holland et al. (2013) and Zunz et al. (2013,

2014) encouraged us to focus on the prediction of the multi-decadal trends in sea ice concentration

or extent rather than on its evolution at interannual timescales. Our study deals with two aspects

that could influence the quality of the predicted trend in seaice in the Southern Ocean: the initial85

state of the simulation and the magnitude of the freshwater input associated, for instance, with the

Antarctic ice sheet mass imbalance. The initialisation procedure is based on the nudging proposal

particle filter (NPPF, Dubinkina and Goosse, 2013), a data assimilation method that requires a large

ensemble of simulations. Such a large amount of simulationscannot be afforded with GCMs be-

cause of their requirements in CPU time. We have thus chosen to work with an Earth-system model90

of intermediate complexity, LOVECLIM1.3. It has a coarser resolution and a lower level of com-

plexity than a GCM, resulting in a lower computational cost.However, it behaves similarly to the

GCMs in the Southern Ocean (Goosse and Zunz, 2014). It thus seems relevant to use this model to

study the evolution of the Antarctic sea ice.

The climate model LOVECLIM1.3 is briefly described in Sect. 2.1, along with a summary of95
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the simulations performed in this study. The data assimilation method used to compute the initial

conditions of the hindcast simulations is presented in Sect. 2.2. Section 2.3 explains how the addi-

tional freshwater flux is taken into account in the simulations. Details about the estimation of the

model skill are given in Sect. 2.4. The discussion of the results is divided into two parts: the simu-

lations with data assimilation that provide the initial states (Sect. 3.1) and the hindcast simulations100

(Sect. 3.2). Finally, Sect. 4 summarises the main results and proposes conclusions.

2 Methodology

2.1 Model and simulations

The three-dimensional Earth-system model of intermediatecomplexity LOVECLIM1.3

(Goosse et al., 2010) used here includes representations ofthe atmosphere (ECBilt2, Opsteegh et al.,105

1998), the ocean and the sea ice (CLIO3, Goosse and Fichefet,1999) and the vegetation (VECODE,

Brovkin et al., 2002). The atmospheric component is a T21 (corresponding to an horizontal

resolution of about5.6◦× 5.6◦), three-level quasi geostrophic model. The oceanic component

consists of an ocean general circulation model coupled to a sea-ice model with horizontal resolution

of 3◦× 3◦ and 20 unevenly spaced vertical levels in the ocean. The vegetation component simulates110

the evolution of trees, grasses and desert, with the same horizontal resolution as ECBilt2. The sim-

ulations performed in this study span the period 1850–2009 and are driven by the same natural and

anthropogenic forcings (greenhouse gases increase, variations in volcanic activity, solar irradiance,

orbital parameters and land use) as the ones adopted in the historical simulations performed in the

framework of CMIP5 (Taylor et al., 2011).115

Three kinds of simulation are performed in this study and allof them consist of 96-member en-

sembles. First, a simulation driven by external forcing only provides a reference to measure the

predictive skill of the model that can be accounted for by theexternal forcing alone (NODA in

Table 1). This numerical experiment does not take into account any observation, neither in its ini-

tialisation nor during the integration. At the initialisation and every three months of simulation, the120

surface air temperature of each members of NODA is slightly perturbed, to have an experimental de-

sign as close as possible to the simulations with data assimilation (see below). Second, simulations

that assimilate observations of surface air temperature anomalies (see Sect. 2.2 for details) are used

to reconstruct the past evolution of the system, from January 1850 to December 2009, and to pro-

vide initial conditions for hindcast simulations. Third, the hindcast simulations are initialised on 1125

January 1980 from a state extracted from a simulation with data assimilation and are not constrained

by the observations during the model integration.

Two simulations with data assimilation, from 1850 to 2009, are analysed here: one without ad-

ditional freshwater flux (DANOFWF in Table 1) and one that is forced by an autoregressive fresh-

water flux described in Sect. 2.3 (DAFWF in Table 1), representing crudely the meltwater input130
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to the Southern Ocean. The simulation DANOFWF provides the initial state of the first hindcast

(HINDCAST 1 in Table 1). The three hindcasts HINDCAST2.1, HINDCAST 2.2 and HIND-

CAST 2.3 (see Table 1) are initialised from a state extracted fromDA FWF. These three hindcasts

differ amongst each other in the additional freshwater flux they receive during the model integration.

No additional freshwater flux is applied for HINDCAST2.1. HINDCAST2.2 is forced by a time135

series resulting from the ensemble mean of the additional freshwater flux diagnosed in DAFWF.

The average over the period 1980–2009 of the ensemble mean diagnosed from DAFWF is applied

in HINDCAST 2.3 as a constant additional flux.

2.2 Data assimilation: the nudging proposal particle filter

Data assimilation consists of a combination of the model equations and the available observations,140

in order to provide an estimate of the state of the system as accurate as possible (Talagrand, 1997).

The data assimilation simulations performed here provide areconstruction of the past evolution of

the climate system over the period 1850–2009. Such a long period appears necessary because of

the long memory of the Southern Ocean. It allows the ocean to be dynamically consistent with the

surface variables, constrained by the observations, over awide depth range. The state of the system145

on 1 January 1980 is then extracted and used to initialise thehindcast. After the initialisation, the

hindcast is driven by external forcing only and no observations are taken into account anymore.

In this study, observed anomalies of surface air temperature are assimilated in LOVECLIM1.3

thanks to a nudging proposal particle filter (Dubinkina and Goosse, 2013). The assimilated observa-

tions are from the HadCRUT3 dataset (Brohan et al., 2006). This dataset has been derived from in150

situ land and ocean observations and provides monthly values of surface air temperature anomalies

(with regard to 1961–1990) since January 1850. Model anomalies of surface air temperature are

computed with regard to a reference computed over 1961–1990as well, from a simulation driven by

the external forcing only, without data assimilation and additional freshwater flux.

The NPPF is based on the particle filter with sequential resampling (e.g., van Leeuwen, 2009;155

Dubinkina et al., 2011) that consists of three steps. First,an ensemble of simulations, theparticles,

is integrated forward in time with the model. These particles are initialised from a set of different

initial conditions. Therefore, each particle represents adifferent solution of the model. Second,

after three months of simulation, a weight is attributed to each particle of the ensemble based on its

agreement with the observations. To compute this weight, only anomalies of surface air temperature160

southward of 30◦ S are taken into account. Third, the particles are resampled: the ones with small

weight are eliminated while the ones with large weight are retained and duplicated, in proportion

to their weight. This way, a constant number of particles is maintained throughout the procedure.

A small perturbation is applied on the duplicated particlesto generate different solutions of the

model and the three steps are repeated until the end of the period of interest.165

In the NPPF, a nudging is applied on each particle during the model integration. It consists
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of adding to the model equations a term that pulls the solution towards the observations (e.g.,

Kalnay, 2007). The nudging alone, i.e. not in combination with another DA method, has been

used in many recent studies on decadal predictions (e.g., Keenlyside et al., 2008; Pohlmann et al.,

2009; Dunstone and Smith, 2010; Smith et al., 2010; Kröger et al., 2012; Swingedouw et al., 2012;170

Matei et al., 2012; Servonnat et al., 2014). In LOVECLIM1.3,the nudging has been implemented as

an additional heat flux between the atmosphere and the oceanQ= γ(Tmod−Tobs). Tmod andTobs are

the monthly mean surface air temperature simulated by the model and from the observations respec-

tively. γ determines the relaxation time and equals 120Wm−2K−1, a value similar to the ones used

in other studies (e.g., Keenlyside et al., 2008; Pohlmann etal., 2009; Smith et al., 2010; Matei et al.,175

2012; Swingedouw et al., 2012; Servonnat et al., 2014). The nudging is applied on every ocean grid

cell, except the ones covered by sea ice and the amplitude of the nudging applied on a particle is

taken into account in the computation of its weight (Dubinkina and Goosse, 2013).

2.3 Autoregressive additional freshwater flux

As the freshwater related to the melting of the Antarctic icesheet may contribute to the variability180

of the sea ice extent (e.g., Hellmer, 2004; Swingedouw et al., 2008; Bintanja et al., 2013), it appears

relevant to check its impact on the data assimilation simulations as well as on the hindcasts. However,

deriving the distribution of the freshwater flux from the estimate of the observed Antarctic ice sheet

mass imbalance is not possible for the whole period covered by our simulations, because of the lack

of data. Furthermore, the configuration of the model used in our study does not allow simulating185

this freshwater flux in an interactive way. We have thus chosen to apply a random freshwater flux,

described in term of an autoregressive process as in Mathiotet al. (2013), on each particle during

the data assimilation simulations DAFWF (see Table 1 for details). This allows determining the

most adequate value of the additional freshwater flux for themodel using the NPPF. Because of this

additional freshwater flux, the parameters selected to define the error covariance matrix, required to190

compute the weight of each particle (see Dubinkina et al., 2011), are slightly modified in comparison

to the values applied for these parameters in the data assimilation without additional freshwater flux

(DA NOFWF).

The freshwater flux is computed every three months, i.e. withthe same frequency as the particle

filtering. In DA FWF, the additional freshwater flux is defined as:195

FWF(t) = 0.8FWF(t− 1)+ ǫFWF(t) (1)

whereǫFWF 1 is a random noise following a Gaussian distributionN(0,σFWF 1), with σFWF 1 equal

to 40 mSv.

The parameters of the autoregressive processes described in Eq. (1) have been chosen with the200

goal to obtain a freshwater flux roughly compatible with the estimates of the current Antarctic ice

sheet mass loss. The standard deviation of the resulting additional freshwater flux obtained from the
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simulation DAFWF (see Fig. 6), computed from the averages over independent 6-year time periods

between 1850 and 2009, equals 7mSv (≈ 218Gtyr−1). This value of the standard deviation is

about three times larger than the changes in the freshwater input derived from the West-Antarctic ice205

sheet melting between the periods 1992-2000 and 2005-2010 reported in the reconciled estimates

of Shepherd et al. (2012) (≈ 64 Gtyr−1). Alternatively, we can also consider that the ice sheet

mass imbalance is not the only contributor to the additionalfreshwater flux required by the model.

For instance, variations in precipitation are also expected to impact the freshwater balance in the

Southern Ocean and might not be simulated adequately by the model. A formulation of the additional210

freshwater flux that allows stronger variations of this freshwater flux and implies a larger impact

has also been tested. The results of this additional simulation are discussed in section S1 of the

Supplementary Material, along with three additional hindcast simulations.

The melting of the Antarctic ice sheet being particularly strong over West Antarctica (e.g.,

Rignot et al., 2008; Velicogna, 2009; Pritchard et al., 2012; Shepherd et al., 2012), we have chosen215

to distribute uniformly the freshwater flux in the ocean between 0◦ and 170◦ W, south of 70◦ S (area

in blue on Fig. 1). Here, the distribution of the freshwater flux is thus not limited to the cells adjacent

to Antarctica, unlike Bintanja et al. (2013); Swart and Fyfe(2013). This is based on the assumption

that a part of the freshwater might be redistributed offshore by icebergs (e.g., Silva et al., 2006) or

coastal currents not well represented in a coarse-resolution model. The spatial distribution of the220

additional freshwater flux likely impacts the model results. Here, we have chosen a spatial struc-

ture as simple as possible, consistent with the available observations, in order to limit the parameters

associated with the additional freshwater flux. A detailed investigation of the impact of different spa-

tial distributions of the additional freshwater input on the model solutions would probably provide

insightful results but is out of the scope of the present study.225

The additional freshwater flux increases the range of solutions reached by the particles and can

randomly bring some of them closer to the observations. Whena particle is picked up because of

its large weight, it is duplicated and the copied particles inherit the value of the freshwater flux

that possibly brought the particle close to the observations. This value keeps influencing the copied

particles because the freshwater flux is autoregressive. Itcould thus improve the efficiency of the230

particle filter. Furthermore, by selecting the solutions that best fit the observations, the particle

filter allows estimating the freshwater flux that is more likely to provide a state compatible with the

observations.

2.4 Skill assessment

In order to measure the skill of the model combined with the assimilation of observations, the results235

of the data assimilation simulations and of the hindcasts are compared to observations of the annual

mean sea ice concentration (the fraction of a grid cell covered by sea ice) and sea ice extent (the sum

of the areas of all grid cells having a sea ice concentration above 15 %), between 1980 and 2009.
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This corresponds to the period for which reliable observations of the whole ice covered area are

available. The sea ice concentration and extent data used here, unless specified otherwise, have been240

derived from the Nimbus-7 SMMR and DMSP SSM/I-SSMIS satellite observations through version

2 of the Bootstrap algorithm (Comiso, 1999, updated daily).The impact of the uncertainty of those

estimates on our conclusion is discussed in Sect. 3 and 4.

Particular attention is paid on the trend in sea ice concentration and extent. Significance levels

for the trends are computed on the basis of a two-tailedt test. The autocorrelation of the residuals245

is taken into account in both the standard deviation of the trend and in the number of degrees of

freedom used to determine the significance threshold (e.g.,Santer et al., 2000; Stroeve et al., 2012).

This statistical test provides an estimate of the relative significance of the trend, but we have to keep

in mind that the assumptions inherent to this kind of test arerarely totally satisfied in the real world

(e.g., Santer et al., 2000).250

The ensemble means computed for the results of the data assimilation simulations consist of

weighted averages. The ensemble meanX(y,m) of the variablex, for the monthm in the year

y is thus defined as

X(y,m) =
1

K

K∑

k=1

xk(y,m).wk(y,m), (2)
255

wherek is the member index,K is the number of members within the ensemble andwk(y,m) is the

weight attributed to the memberk during the data assimilation procedure. The ensemble meansof

each month of the year are then averaged over a year to obtain the annual mean.

The standard deviation of the annual mean of the ensemble cannot be computed explicitly because

of the possible time discontinuity in the results of individual members, arising from the resampling260

occurring every three months. An estimate of this standard deviation is however assessed by multi-

plying the weighted standard deviation of each month of a year by a coefficient and averaging it over

the year. These coefficients are introduced to take into account the fact that the standard deviation

of the annual mean is not the mean of the standard deviation from every month. They are obtained

here by computing the mean ratio between the ensemble standard deviation of the annual mean and265

the ensemble standard deviation of each month in the simulation NODA.

The ensemble means and standard deviations calculated for NODA and for the hindcast simu-

lations correspond to classical values that does not include any weight as this procedure is only

required when data assimilation is applied.

3 Results270

In this section, the results of the various simulations (seeTable 1 for details) are discussed. First, the

reconstructions of the evolution of the sea ice between 1850and 2009, provided by the simulations

NODA, DA NOFWF and DAFWF, are presented in Sect. 3.1 and compared to observations. Sec-
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ond, the hindcasts initialised with a state extracted from adata assimilation simulation are analysed

to measure the skill of the prediction system tested in this study (Sect. 3.2).275

3.1 Data assimilation simulations

The observations of yearly mean sea ice extent, based on version 2 of the Bootstrap algorithm,

display a positive trend between 1980 and 2009 equal to19.0× 103 km2yr−1, significant at the

99 % level (Fig. 2). This trend in sea ice extent is the result of an increase in sea ice concentration in

most part of the Southern Ocean, particularly in the Ross Sea(Fig. 3a).280

When no data assimilation is included in the model simulation (NODA), the ensemble mean

displays a decreasing trend in sea ice extent in response to the external forcing (Fig. 2a and b),

similar to the one found in other climate models (e.g., Zunz et al., 2013). Consequently, for the

ensemble mean, 30-year trends are negative during the whole period of the simulation without data

assimilation (Fig. 2b). Over the period 1980–2009, the ensemble mean of the trend in sea ice extent285

equals−15.5×103 km2 yr−1, with an ensemble standard deviation of14.5×103 km2yr−1, and the

reduction of sea ice concentration occurs everywhere in theSouthern Ocean (Fig. 3b), except in the

Ross Sea and in the Western Pacific sector. This negative trend obtained for the ensemble mean is the

result of a wide range of behaviours simulated by the different members belonging to the ensemble

(light green shade in Fig. 2a and b) and, considered individually, the members can thus provide290

positive or negative values for the trend. This indicates thus that, for some members, the natural

variability could compensate for the negative trend in sea ice extent simulated in response to the

external forcing. Positive trends similar to the one observed over the last 30years are however rare

in NODA. For instance, only 14 of the 96 members have a positive trend over the period 1980–2009

and none of them have a trend larger than the observed one.295

In NODA, the ensemble mean displays an increase in the heat contained in both the upper ocean,

defined here as the first 100m below the surface, and the interior ocean, considered to liebetween

−100 and−500m (green solid lines in Fig. 4a and b). The correlation betweenthese two variables

equals 0.89 over the period 1980–2009 (Table 2). This warming of the ocean results directly from

the increase in the external forcing and is consistent with the decrease in sea ice extent (Fig. 2a).300

Besides, the ocean salt content in the first 100m decreases (Fig. 4c). This is likely due to the

enhanced hydrological cycle in a global warming context andthe inherent increase in precipitation at

high southern latitudes that freshens the ocean surface (e.g., Liu and Curry, 2010; Fyfe et al., 2012).

Indeed, in NODA, the freshwater input resulting from precipitation integrated south of 60◦S is about

365 mSv in the early 1850’s and increases up to about 375 mSv in2009. In the simulation NODA,305

the negative correlation of−0.94 between the ocean heat and salt content in the first 100m below

the surface over the period 1980–2009 (see Table 2) is linkedto the response of these two variables

to the external forcing. Nevertheless, this contribution of the external forcing can be masked in

individual members by internal variability, leading to lowcorrelations between the heat content at
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surface and in the interior or between heat and salt contentsat surface on average over the ensemble310

(Table 2).

As the ocean heat content in ice covered regions is related tothe temperature of the freezing

point, which is in turn determined by the salinity of the seawater, the co-variations of the ocean heat

and salt contents may be constrained by the salinity dependance of the freezing point temperature.

Nevertheless, in all our simulations, the variations in thesea surface salinity associated with the315

freshwater input imply very weak changes in the freezing point temperature (standard deviation =

0.001◦C over the period 1850–2009). Besides, the variations in theupper ocean heat content in

NODA correspond to a standard deviation of the ocean temperature averaged over the first 100m,

south of 60◦S, equal to 0.03◦C. Therefore, it can be reasonably assumed that the salinitydependance

of the freezing point temperature has a negligible impact onthe ocean temperature and heat content.320

If observations of the anomalies of the surface air temperature are assimilated during the simu-

lation, without additional freshwater flux (DANOFWF), the model is able to capture the observed

interannual and multi-decadal variability of this variable, as expected (Fig. 5b). Consequently, the

trend in the ensemble mean sea ice extent is more variable than in NODA. Over the period 1850–

2009, the values of the 30-year trend in sea ice extent, computed from the ensemble mean, stand325

between−29.1× 103 km2 yr−1 and13.6× 103 km2yr−1 (Fig. 2d). Between 1980 and 2009, the

trend in sea ice extent equals−3.0× 103 km2 yr−1. On average over the ensemble, the trend is thus

less negative than in the case where no observations are taken into account during the simulation

but it still has a sign opposite to the observed one. The difference with the estimates derived from

version 2 of the Bootstrap algorithm between November 1978 and December 2009 is of the order330

of 20× 103 km2yr−1. The difference with the estimates from version 1 of the Bootstrap algorithm

is slightly smaller, being around15× 103 km2yr−1 (Eisenman et al., 2014). The trends in sea ice

concentration display a pattern roughly similar to the observed one (Fig. 3a and c), with an increase

in the eastern Weddell Sea, in the eastern Indian sector, in the Western Pacific sector and in the Ross

Sea, the sea ice concentration decreasing elsewhere. The decrease in sea ice concentration occurring335

in the Bellingshausen and Amundsen Seas is, however, overestimated by the model, leading to the

decrease of the overall extent.

In the simulation DANOFWF, the ocean heat content in both the upper and interior ocean is

lower than the ones obtained in the simulation NODA until about 1980 (Fig. 4a and b). This arises

from the lower surface air temperature in DANOFWF compared to NODA (Fig. 5a and b) that340

cools down the whole system. The correlation between the upper and interior ocean heat contents

equals 0.34 over the period 1980–2009 (Table 2) and is thus lower than for the ensemble mean in

NODA. This could be due to the interannual variability captured thanks to the data assimilation that

mitigates the global warming signal (see below). The ocean salt content is larger in DANOFWF

than in NODA until 1980, likely because of the weakening of the hydrological cycle associated345

to the lower simulated temperature. Indeed, in DANOFWF, the freshwater input associated with
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precipitation integrated over the area south of 60◦S equals 363mSv on average between 1850 and

1980, against 368mSv in NODA over the same period. From 1980 ahead, the ocean heat content, in

both the upper and middle layer, increases and the salt content decreases in response to the external

forcing, as in NODA. Nevertheless, as the ocean heat contentis still slightly lower in the simulation350

DA NOFWF than in the simulation NODA, the quantity of energy available to melt the sea ice at the

surface is also lower. This can explain why the absolute value of the trend in sea ice extent between

1980 and 2009 is smaller in DANOFWF than in NODA.

Including a freshwater flux following the autoregressive process defined in Eq. (1) in the sim-

ulation DA FWF increases the variance of the ensemble of particles. This also slightly enhances355

the variability of the ensemble mean sea ice extent at interannual and multi-decadal timescales (Fig.

2e,f). Over the period 1850–2009, the values of the 30-year trend in sea ice extent, computed from

the ensemble mean, lie between−35.2×103 km2yr−1 and20.3×103 km2 yr−1 (Fig. 2f). Over the

period 1980-2009, the trend in sea ice extent in DAFWF equals−2.8×103 km2yr−1 and is thus

slightly less negative than in the simulation DANOFWF. The spatial distribution of the trends in sea360

ice concentration in DAFWF is also in good agreement with the observations (Fig 3d).The decrease

in sea ice concentration occurring in the Bellingshausen and Amundsen Seas is less widespread than

in DA NOFWF but it is still overestimated. The increase in the eastern Weddell and Ross Seas is

better represented than in DANOFWF as well.

The additional freshwater flux in DAFWF also induces a higher variability of the heat and salt365

contents in the upper ocean compared to the simulation DANOFWF (Fig. 4a,c). The correlation

between the upper and interior ocean heat contents has a negative value of−0.24 over the period

1980-2009 (see Table 2). It means that when the ocean surfaceis colder, the intermediate layer

is warmer and vice-versa. This indicates that, in this experiment, the heat content in the water

column is strongly influenced by vertical mixing. The amplitude of this mixing depends on the370

difference in density between the surface and the deeper layers, which is in turn determined by the

difference in temperature and salinity. In the simulation DA FWF, the correlation between the ocean

salt and heat contents in the first 100m reaches a value of 0.35, while it is negative for the ensemble

mean in NODA and in DANOFWF (see Table 2). This confirms that, during periods of increase

in salt content in the upper layer, the vertical mixing in theocean is enhanced, allowing positive375

heat anomalies to be transported from the interior to the upper ocean. The heat content in the first

100m increases while the one between−100m and−500m decreases. On the contrary, when the

salt content in the upper layer decreases, the ocean becomesmore stratified, preventing the heat

exchange between the surface and the interior ocean. The heat is trapped in the interior ocean that

gets warmer, and the upper ocean cools down. This process appears more important in DAFWF than380

for the individual members of NODA (see Table 2) because of the effect of the additional freshwater

flux on the stratification. Keep in mind that correlation between the heat content in the upper and

intermediate layers is very high in the ensemble mean of NODAbecause of the contribution of the
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forcing.

Because of the additional freshwater flux that tends to stabilise the water column during some385

periods and to destabilise it in others (Fig. 6), the generalbehaviour of the ocean in the simulation

DA FWF differs from the simulation NODA and DANOFWF. While the latter simulations appear

mainly driven by the external forcing, the interaction between the different layers in the ocean seems

to be dominant in DAFWF. In the simulation DAFWF, the ocean heat and salt contents of the

surface layer are particularly large in 1980 while the heat content between 100 and 500m is low.390

This implies that the heat storage at depth in 1980 is much lower in DA FWF than in NODA. Note

that the heat content of the top 500m in DA FWF is also lower than in NODA. After 1980, the salt

content in DAFWF decreases until 2009 (Fig. 4c). This is associated with adecrease (increase) in

the upper (interior) ocean heat content until the early 1990’s, suggesting a reduction of the vertical

ocean heat flux. This is likely responsible for the weaker decrease in sea ice extent between 1980395

and 2009 in DAFWF (Fig. 2e). In DAFWF, the additional freshwater flux is the main cause of the

variability of the stratification. Additionally, internalprocesses can be responsible for such changes

in vertical exchanges, as discussed in detail in Goosse and Zunz (2014), also leading to a negative

correlation between the heat content in surface and intermediate layers. This explains why the

correlation between those two variables is lower for the ensemble mean of DANOFWF than in400

NODA. It is also much lower in individual simulations of NODA(0.03 on average, Table 2) than in

the ensemble mean (0.89, Table 2), the ensemble mean amplifying the contribution of the response

to the forcing associated with high positive value.

The additional freshwater flux also weakens the link betweenthe sea ice and the surface air tem-

perature because of the larger role of the changes in oceanicstratification. The correlation between405

the sea ice and the surface air temperature remains negativein the presence of an additional freshwa-

ter flux, i.e., a warmer ocean surface is still associated with a smaller sea ice extent. Nevertheless, the

correlation between the ensemble mean of the averaged sea surface temperature and the ensemble

mean of the sea ice extent over the period 1850–2009 is smaller in absolute value in the simulation

with data assimilation including an additional freshwaterflux (−0.78 in DA FWF) compared to the410

simulations without any additional freshwater flux (−0.97 in NODA and−0.86 in DA NOFWF).

Keep in mind that the reconstruction of the surface air temperature provided by both DANOFWF

and DA FWF is based on the assimilation of surface air temperature data. As expected, the surface

air temperature simulated in DANOFWF is thus very similar to the one in DAFWF, both simula-

tions achieving a clear model bias reduction. This bias reduction is, however, obtained differently in415

the two simulations DANOFWF and DAFWF. For instance, the sea ice simulated in DANOFWF,

in particular the trend in sea ice extent between 1980 and 2009, differs from the one in DAFWF.

These differences in the simulated sea ice extent are consistent with the modification of the link

between the surface air temperature and the sea ice extent induced by the additional freshwater flux.
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3.2 Hindcast simulations420

In this section, we focus on simulations that are initialised on 1 January 1980 with a state that has

been extracted from the data assimilation simulations discussed in Sect. 3.1. After the initialisa-

tion, the hindcast simulation is driven by external forcingbut no observation is taken into account

anymore. The analyses discussed here aims at answering two questions. (1) Can the information

contained in the initial state persist long enough to impactthe simulated trend in sea ice extent? (2)425

How does an additional freshwater flux impact the sea ice in hindcast simulations? Including an ad-

ditional freshwater flux appears indeed to be relevant to improve the efficiency of data assimilation

(see Sect. 3.1). The results of HINDCAST1, initialised from DANOFWF and HINDCAST2.1,

initialised from DA FWF, bring answers to the first question, these hindcasts including no additional

freshwater flux. The second question is specifically addressed in the analyses of HINDCAST2.2430

and HINDCAST2.3, initialised from a state provided by the simulation DAFWF, a freshwater

perturbation being applied during these two hindcasts. Given that it is not clear whether it is the

mean value of the additional freshwater flux or its variations that matters, two configurations for

the additional freshwater flux have been tested. In HINDCAST2.2, the additional freshwater flux

corresponds to the one that has been diagnosed from DAFWF, shown on Fig. 6, and evolves in time.435

On the contrary, in HINDCAST2.3, the freshwater flux is constant in time and equals 0.01Sv, the

average freshwater flux diagnosed in DAFWF between 1980 and 2009.

In HINDCAST 1, the sea ice extent is high at the beginning of the simulation and decreases

between 1980 and 2009 (Fig. 7a). The ensemble mean of the trends equals−14.2× 103 km2 yr−1,

with an ensemble standard deviation of13.2× 103 km2 yr−1. This provides a 95 % range that does440

not encompass the observed trend of19.0× 103 km2 yr−1. In this hindcast, the trend in sea ice

concentration is negative over a large area in the Bellingshausen and Amundsen Seas and slightly

positive elsewhere (Fig. 8b). This pattern thus roughly fitsthe observed one (Fig. 8a) but the decrease

obtained in the western part of the Southern Ocean covers toolarge an area and the increase in the

Weddell and Ross Seas is too weak. The regional distributionof the trend in sea ice concentration445

in HINDCAST 1 (Fig. 8b) is thus very similar to the one in DANOFWF, i.e. the simulation that

provided the initial state for HINDCAST1. This suggests that the information provided at the

initialisation can slightly impact the solution of the hindcast over multi-decadal timescales. The too

large decrease in sea ice concentration occurring in the Bellingshausen and Amundsen Seas already

noticed in DANOFWF is however amplified in HINDCAST1, leading to an overall decrease in sea450

ice extent similar to the mean of NODA. The ocean heat and saltcontents in HINDCAST1 follow

roughly the evolution of these variables for the ensemble mean in NODA (Fig. 4). The correlation

between the upper and interior ocean heat content equals 0.86 and the correlation between the upper

ocean heat and salt content equals−0.94 (see Table 2). This points out the role played by the external

forcing in this hindcast, as discussed in Sect. 3.1.455

In HINDCAST 2.1, the ensemble mean of the trends over the period 1980–2009 equals1.3×
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103 km2 yr−1, with an ensemble standard deviation of14.5× 103 km2 yr−1 (Fig 7b). The observed

trend is thus included in the 95% range of the ensemble. The spatial distribution of the trends

in sea ice concentration in HINDCAST2.1 is also in acceptable agreement with the observations

(Fig 8a,c). Given that no additional freshwater flux is applied in this hindcast, the positive trend in460

its sea ice extent likely arises from the state used to initialise this simulation. This initial state is

characterised by relatively large heat and salt contents inthe upper ocean (Fig. 4a,c) and a small

heat content in the interior ocean (Fig 4b). This situation corresponds to a weakly stratified ocean

column in 1980 that stabilises during the following years inHINDCAST 2.1, leading to a cooling

of the ocean surface that in turn favours the production of sea ice.465

HINDCAST 2.2 provides an ensemble mean of the trends over the period 1980–2009 equal to

13.0× 103 km2yr−1, with an ensemble standard deviation of12.4× 103 km2 yr−1 (Fig 7c). This

value of the trend is thus closer to the observation of19.0×103 km2 yr−1 (corresponding to version

2 of the Bootstrap algorithm) than the one provided by HINDCAST 2.1. Nevertheless, in realistic

conditions, this would require to obtain information on themass balance of the ice sheets spanning470

the period of the prevision itself. The spatial distribution of the trends in sea ice concentration

in HINDCAST 2.2 is very similar to the one in HINDCAST2.1 (Fig 8c,d). In HINDCAST2.3, a

constant additional freshwater flux equal to 0.01, corresponding to the average over the period 1980–

2009 of the freshwater flux diagnosed from DAFWF 1, is applied. This also provides trends in sea

ice extent and concentration over the period 1980–2009 thatare compatible with the observations475

(Fig 7d and Fig 8a,e). For both HINDCAST2.2 and HINDCAST2.3, no clear change in the ocean

heat and salt contents is noticed compared to HINDCAST2.1 (Fig 4). Nevertheless, the additional

freshwater flux results in a slightly higher increase in sea ice extent compared to HINDCAST2.1.

The results of our hindcast simulations demonstrate that the state used to initialise these simu-

lations plays a fundamental role in determining the trends in sea ice extent and concentration over480

the three decades following the initialisation, in agreement with the idealised experiments presented

in Zunz et al. (2014). In our simulations, the additional freshwater flux improves the reconstruction

of the evolution of the system in the simulation with data assimilation and thus helps to provide

an adequate initial state for the hindcasts. An appropriatefreshwater input during the last 30 years

may further improve the agreement with observations derived from both version 1 and version 2485

of the Bootstrap algorithm (Eisenman et al., 2014), as shownby the results of HINDCAST2.2 and

HINDCAST 2.3.

As mentioned in Sect. 2.3, another formulation of the additional freshwater flux that allows

stronger variations has also been tested. The results of this additional simulation are not discussed

in detail here for brevity’s sake (for details, see Sect. S1 of the Supplementary Material). In the490

corresponding simulation with data assimilation, the additional freshwater flux seems to contribute

to a reduction of the model biases. Nevertheless, the state associated with such a strongly varying

additional freshwater flux is characterised by an enhanced interannual and multi-decadal variability
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of the sea ice extent as well as the ocean heat and salt contents that may be unrealistic (Fig. S2

and S4 of the Supplementary Material). In addition, the strongly varying additional freshwater flux495

applied during this simulation with data assimilation induces a shift of the system compared to the

solution of the model in the absence of any additional freshwater flux. The hindcasts initialised in

January 1980 from a state extracted from this simulation provide trends in sea ice extent and concen-

tration, as HINDCAST2.1, HINDCAST2.2 and HINDCAST2.3, that agree relatively well with

the observations. Nevertheless, since the initial state used in these hindcasts is shifted, it is essential500

to apply a constant additional freshwater flux of adequate magnitude during the hindcast simulation

in order to ensure the consistency of the experimental design and to prevent a drift of the model (for

details see Sect. S1 of the Supplementary Material).

A change in the freshwater input from one period to the other (for instance between the 30 years

preceding and following 1980), in the absence of an adequateinitialisation of the simulation, is505

not sufficient to account for the observed positive trend in sea ice extent between 1980–2009. This

conclusion is supported by the results of an additional simulation, initialised in January 1960 from a

state extracted from NODA. This simulation is driven by external forcing and receives an additional

freshwater input, following the spatial distribution displayed in Fig 1, equal to−0.03Sv between

January 1960 and December 1979 and abruptly increased to−0.01Sv in January 1980, i.e., a larger510

shift than in any of our simulations with data assimilation or hindcasts. The additional freshwater

flux then remains constant until the end of the simulation in December 2009. In this simulation, the

sea ice extent decreases between 1960 and 1980 in response tothe external radiative forcing and the

negative freshwater perturbation (see Sect. S2 of the Supplementary Material). The sea ice extent

then rapidly increases after the abrupt change in the additional freshwater input in January 1980 but515

decreases again after a few years, in contrast to observations.

4 Summary and conclusions

The trend in sea ice extent derived from satellite observations is subject to uncertainties (e.g,

Eisenman et al., 2014) but even the lowest estimate of this trend indicates a slight increase in Antarc-

tic sea ice extent that is not reproduced in our simulation driven by external forcing only. Assimi-520

lating anomalies of the surface air temperature through thenudging proposal particle filter induces

an increase in the trend in simulated sea ice extent over recent decades in the Southern Ocean, com-

pared to the case where no observation is taken into account.This leads to a better agreement with

satellite data than in the simulation without data assimilation. Further improvement is achieved if

an additional autoregressive freshwater flux is included during the data assimilation. This freshwa-525

ter flux induces a larger spread of the ensemble and thus allows a better efficiency of the particle

filtering. The additional freshwater input may also compensate for model deficiencies that affect

the representation of the freshwater cycle (in particular the variability of the meltwater input), the
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ocean dynamics, the internal variability, etc. Overall, incombination with the data assimilation, the

additional freshwater input leads to simulated trends in sea ice extent and concentration between530

1980 and 2009 that reproduce reasonably well the observations. The freshwater flux thus appears to

play an important role on the simulated evolution of the sea ice, as already pointed out in previous

studies (e.g., Hellmer, 2004; Swingedouw et al., 2008; Bintanja et al., 2013).

Hindcasts initialised from those simulations with data assimilation identify several factors that can

help increase the model skill for predictions of trends in Antarctic sea ice extent and concentration535

for coming decades. Specifically, we highlight two findings.

1. Initialising a hindcast simulation with a state extracted from a simulation that has assimilated

observations through a nudging proposal particle filter hasa significant impact on the simu-

lated trends in sea ice extent and concentration over the period 1980–2009. This indicates that

the information contained in the initial state influences the results of the simulation over multi-540

decadal timescales, confirming the results of Zunz et al. (2014). As a consequence, an initial

condition that adequately represents the observed state isrequired in order to perform skillful

predictions for the trend in sea ice extent over the next decades. Nevertheless, the conclusions

drawn from our hindcast simulations have to be considered cautiously since they are based

on the analyses of the only 30-year period for which we have relevant observations. Similar545

analyses could be performed for periods starting before 1980, using the reconstruction of the

sea ice provided by the simulation with data assimilation astarget for the hindcast instead of

actual observations. However, this approach would be nearly equivalent to a perfect model

study, as proposed in Zunz et al. (2014).

2. In hindcast simulations, the additional freshwater input may help to correctly reproduce the550

observed positive trend in sea ice extent. Nevertheless, this additional freshwater flux is not the

dominant element in our experimental design, in agreement with the results of Swart and Fyfe

(2013). Indeed, an abrupt increase in the additional freshwater flux at the beginning of the

hindcast simulation, without an adequate initialisation of the simulation, does not provide a

long-term increase in sea ice extent such as the one derived from the observations over the last555

30 years (Fig. S7).

Our results suggest that the increase in ice extent and the surface cooling between 1980 and 2009

are not due to the greenhouse gas forcing or to a particular large melting of the ice sheet during this

period. The evolution of the variables at the surface of the ocean seems rather influenced by the state

of the ocean in the 1970’s, characterised by a warm and salty surface layer, a cold intermediate layer560

and strong vertical mixing. This state of the system is consistent with the results of de Lavergne et al.

(2014). It then evolves towards a fresher and cooler upper ocean that allows a greater production of

sea ice after 1980. In our experiments, this state in the late1970’s is reached thanks to variations in

the freshwater input to the Southern Ocean. This flux is very likely playing a role but we could not
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determine if it is amplified or not by our experimental designthat allows variations of this flux only565

and not of other forcings or model parameters. Overall, the results that have been discussed here

are rather encouraging and open perspectives to perform predictions of the sea ice in the Southern

Ocean over the next decades.
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Pohlmann, H., Jungclaus, J. H., Köhl, A., Stammer, D., and Marotzke, J.: Initializing Decadal Climate Predic-

tions with the GECCO Oceanic Synthesis: Effects on the NorthAtlantic, Journal of Climate, 22, 3926–3938,

2009.

Polvani, L. M. and Smith, K. L.: Can natural variability explain observed Antarctic sea ice trends? New655

modeling evidence from CMIP5, Geophysical Research Letters, 40, 3195–3199, 2013.

19

http://dx.doi.org/10.5194/gmd-3-603-2010
http://dx.doi.org/10.1029/2004GL019506
http://dx.doi.org/10.1029/2004GL019506
http://dx.doi.org/10.1002/grl.50410
http://dx.doi.org/10.1038/nature06921
http://dx.doi.org/10.1029/2006JC004032
http://dx.doi.org/10.1002/jgrd.50443


Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L.:

Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 502–505, 2012.

Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J., and van Meijgaard, E.:

Recent Antarctic ice mass loss from radar interferometry and regional climate modelling, Nature Geosci, 1,660

106–110, 2008.

Santer, B. D., Wigley, T. M. L., Boyle, J. S., Gaffen, D. J., Hnilo, J. J., Nychka, D., Parker, D. E., and Taylor,

K. E.: Statistical significance of trends and trend differences in layer-average atmospheric temperature time

series, J. Geophys. Res., 105, 7337–7356, doi:10.1029/1999JD901105, 2000.

Servonnat, J., Mignot, J., Guilyardi, E., Swingedouw, D., Séférian, R., and Labetoulle, S.: Reconstructing the665
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Table 1. Summary of the simulations analysed in this study.

Simulation Number of

members

Time period Initialisation Data

assimilation

Additional freshwater flux during the

simulation

NODA 96 Jan 1850–Dec 2009 on 1 Jan 1850 NO NO

DA NOFWF 96 Jan 1850–Dec 2009 on 1 Jan 1850 YES NO

DA FWF 96 Jan 1850–Dec 2009 on 1 Jan 1850 YES Autoregressive FWF following Eq. 1.

HINDCAST 1 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA NOFWF

NO NO

HINDCAST 2.1 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO NO

HINDCAST 2.2 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF between 1980 and 2009 (see Fig. 6).

HINDCAST 2.3 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF, averaged over the period 1980–2009

(= 0.01 Sv).

Table 2. Correlation between the ocean heat content in the first 100m below the surface and the ocean heat

content between−500m and−100m (2nd column) and correlation between the ocean heat contentand the

ocean salt content in the first 100m below the surface (3rd column), for the different simulations summarised in

Table 1. The correlation is computed over the period 1980 and2009, from the ensemble mean of the variables.

For the simulation NODA, the correlation computed for each member of the simulation and averaged over the

ensemble is given in brackets.

Simulation Correlation between the upper Correlation between the upper

and interior ocean heat content ocean heat and salt contents

NODA 0.89 (0.03) −0.94 (−0.02)

DA NOFWF 0.34 −0.28

DA FWF −0.24 0.35

HINDCAST 1 0.86 −0.94

HINDCAST 2.1 0.07 −0.03

HINDCAST 2.2 −0.44 0.44

HINDCAST 2.3 −0.32 0.27
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Fig. 1. Spatial distribution of the additional freshwater flux included in model simulations (shaded blue). The

shaded grey areas correspond to the land mask of the ocean model.
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Model linear fit 1980-2009 trend in the observations = 19.0 x 103 km2 yr-1

Ensemble mean Observations
Ensemble mean +/− 1 std Observations linear fit

(c) DA_NOFWF– sea ice extent (d) DA_NOFWF – SIE 30-yr running trend

(e) DA_FWF – sea ice extent (f) DA_FWF – SIE 30-yr running trend

(a) NODA – sea ice extent (b) NODA – SIE 30-yr running trend
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Fig. 2. (a, c, e)Yearly mean sea ice extent anomalies with regard to 1980–2009 and(b, d, f) 30-year running

trend in sea ice extent. Results are from(a, b) the simulation without data assimilation (NODA),(c, d) the

model simulation that assimilates anomalies of surface airtemperature (DANOFWF) and(e, f) the model sim-

ulation that assimilates anomalies of surface air temperature and that is forced by an additional autoregressive

freshwater flux following Eq. (1) (DAFWF). The model ensemble mean is shown as the dark green line sur-

rounded by one standard deviation shown as the light green shade. Observations (Comiso, 1999, updated daily)

are shown as the black line (cross) in(a, c, e)(in b, d,f). The green (black) dashed line shows the linear fit of

the model simulation (observations) in(a, c, e). The values of the trend indicated in (a, c, e) correspond to the

ensemble mean of the trends, computed over the period 1980–2009, along with the ensemble standard deviation

for NODA. Trends that are (non-)significant at the 99 % level are shown in green (red).
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(a) Observations (b) NODA
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−1

) − 1980-2009
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Fig. 3. Trend in yearly mean sea ice concentration between 1980 and 2009, shown for(a) the observations

(Comiso, 1999, updated daily),(b) the model simulation without data assimilation (NODA),(c) the model sim-

ulation that assimilates anomalies of surface air temperature (DA NOFWF) and(d) the model simulation that

assimilates anomalies of surface air temperature and that is forced by an additional autoregressive freshwater

flux following Eq. (1) (DA FWF). Hatched areas highlight the grid cells where the trendis not significant at

the 99 % level. The shaded grey areas correspond to the land mask of the ocean model.
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(b) Ocean heat content between −100 and −500 m

 

 

Fig. 4. Ensemble mean of yearly mean(a) ocean heat content in the first 100m below the surface,(b) ocean

heat content between−100 and−500m and(c) ocean salt content in the first 100m below the surface, for the

simulations summarised in Table 1. The ocean heat and salt contents are computed south of 60◦ S. The ocean

heat content is computed against absolute zero.
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Fig. 5. Yearly mean surface air temperature anomalies with regard to 1961–1990, averaged over the area south

of 30◦ S, from (a) the model simulation without data assimilation (NODA),(b) the model simulation that as-

similates anomalies of surface air temperature (DANOFWF) and(c) the model simulation that assimilates

anomalies of surface air temperature and that is forced by anadditional autoregressive freshwater flux follow-

ing Eq. (1) (DA FWF). The model ensemble mean is shown as the orange line, surrounded by one standard

deviation shown as the light orange shade. Observations (Brohan et al., 2006) are shown as the black line.
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Fig. 6. Freshwater flux from the model simulation with data assimilation and additional autoregressive fresh-

water flux following Eq. (1) (DAFWF). The ensemble mean is shown as the blue solid line, surrounded by one

standard deviation shown as the light blue shade. The dashedblue (purple) line shows the mean over the period

1850–2009 (1980–2009). The linear fit between 1980 and 2009 is shown as the solid purple line.
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Fig. 7. Yearly mean sea ice extent anomalies with regard to 1980–2009, for the four hindcast simulations

initialised on 1 January 1980 through data assimilation (see Table 1 for details). The model ensemble mean is

shown as the dark green line, surrounded by one standard deviation shown as the light green shade. Observations

(Comiso, 1999, updated daily) are shown as the black line. The green (black) dashed line shows the linear fit of

the model simulation (observations). The values of the trend indicated in each panel correspond to the ensemble

mean of the trends, computed over the period 1980–2009, along with the ensemble standard deviation. Trends

that are (non-)significant at the 99 % level are shown in green(red).
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(a) Observations
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(e) HINDCAST_2.3
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(c) HINDCAST_2.1
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Fig. 8. Trend in yearly mean sea ice concentration between 1980 and 2009, for(a) the observations (Comiso,

1999, updated daily) and(b,c,d,e) the four hindcast simulations initialised on 1 January 1980through data

assimilation (see Table 1 for details). Hatched areas highlight the grid cells where the trend is not significant at

the 99 % level. The shaded grey areas correspond to the land mask of the ocean model.
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