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Abstract. Recent studies have investigated the potential link between the freshwater input derived

from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in

the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the

trend in sea ice extent and concentration in simulations with data assimilation, spanning the period

1850–2009, as well as in retrospective forecasts (hindcasts) initialised in 1980. Inthesimulations5

with data assimilation, including an additional freshwater flux that follows an autoregressive process

improves the reconstruction of the trend in ice extent and concentration between 1980 and 2009.

This is linked to a better efficiency of the data assimilation procedure but can also bepartly due

to a better representation of the freshwater cycle in the Southern Ocean, but the additionalflux

couldalsocompensatefor someor to some compensations formodel deficiencies.The results of10

the hindcast simulations show that an adequate initial state can lead to an increase in the sea ice

extent spanning several decades that is in satisfying agreement with satellite observations, even in

the absence of any major change in the freshwater input. Therefore, while the additional freshwater

flux appears to play a key role in the reconstruction of the evolution of the sea ice in the simulation

with data assimilation, it does not seem absolutely required in the hindcast simulations.In addition,15

it modifiesthesimulatedmeanstateof thesystem.A hindcastinitialisedfrom this shiftedstatehas

to be forcedby anadditionalfreshwaterflux with anamplitudesimilar to the oneincludedin the

simulationwith dataassimilationin order to avoid a modeldrift. This pointsout the importance

of the experimentaldesignthat has to beconsistentbetweenthe simulationusedto computethe

initial stateandthehindcastinitialised from this initial state.Thehindcastincludingthis constant20

additionalfreshwaterflux providestrendsin seaice extentandconcentrationthatare in satisfying

agreementwith satelliteobservations.The present workthus constitutes encouraging results for sea

ice predictions in the Southern Oceanas in our simulation, the positive trend in ice extent over the
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last 30 years is largely determined by the state of the systemin the late 1970’s.No increasein

meltwaterflux from Antarcticais required.25

1 Introduction

The sea ice extent in the Southern Ocean has been increasing at a rateestimated to be between

0.13 and 0.2 millionkm2 per decade between November 1978 and December 2012 (Vaughanet al.,

2013). The recent work of Eisenman et al. (2014) suggests that the positive trend in Antarctic sea

ice extent may be in reality smaller than the value given in Vaughan et al. (2013). Indeed, an ap-30

proximate continuation of the trends in sea ice extent corresponding to the version 1 of the Bootstrap

algorithm provides a value around 0.1 millionkm2 per decade between November 1978 and Decem-

ber 2012 (Fig. 1b of Eisenman et al., 2014). Nevertheless, even a slight expansion of the Antarctic

sea ice is in clear contrast with the behaviour of its Arctic counterpart which is currently shrinking

(e.g., Turner and Overland, 2009).The processes that drivethe evolutionof the Antarctic sea ice35

and the causes ofits recentexpansion are still debated. The hypothesis that the stratospheric ozone

depletion (Solomon, 1999) could have been responsible for the increase in sea ice extent is not com-

patible with the results of recent analyses (e.g., Sigmond and Fyfe, 2010; Bitz and Polvani, 2012;

Smith et al., 2012; Sigmond and Fyfe, 2013). Besides, other studies have underlined the fact that

the positive trend in sea ice extent could be attributed to the internal variability of the system (e.g.,40

Mahlstein et al., 2013; Zunz et al., 2013; Polvani and Smith,2013; Swart and Fyfe, 2013). Never-

theless, this explanation cannot be confirmed by present-day general circulation models (GCMs)

involved in the 5th Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2011). Indeed,

because of the biases present in those models, they often simulate a seasonal cycle or an inter-

nal variability (or both) of the Southern Ocean sea ice that disagrees with what is observed (e.g.,45

Turner et al., 2013; Zunz et al., 2013).

Hypotheses related to changes in the atmospheric circulation or in the ocean stratification (e.g.,

Bitz et al., 2006; Zhang, 2007; Lefebvre and Goosse, 2008; Stammerjohn et al., 2008; Goosse et al.,

2009; Kirkman and Bitz, 2010; Landrum et al., 2012; Holland and Kwok, 2012; Goosse and Zunz,

2014; de Lavergne et al., 2014) have also been proposed. In particular, apotential link between50

the melting of the Antarctic ice sheet, especially the ice shelves, and the formation of sea ice has

been recentlyproposed(e.g., Hellmer, 2004; Swingedouw et al., 2008; Bintanja et al., 2013). The

meltwater input from the ice sheet leads to a fresher and colder surface layer in the ocean surrounding

Antarctica. As a consequence, the ocean gets more stratifiedand there is less interaction between

the surface and the warmer and saltier interior ocean, leading to an enhanced cooling of the surface.55

This negative feedback could counteract the greenhouse warming and could thus contribute to the

expansion of the sea ice. Estimates of the Antarctic ice sheet mass imbalance are available thanks to

satellite observations and climate modelling. These estimates report an increase in the melting of the
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Antarctic ice sheet over the past decade, mainly coming fromWest Antarctica (e.g., Rignot et al.,

2008; Velicogna, 2009; Pritchard et al., 2012; Shepherd et al., 2012). According to Bintanja et al.60

(2013), incorporating realistic changes in the Antarctic ice sheet mass in a coupled climate model

could lead to a better simulation of the evolution of the sea ice in the Southern Ocean. For past

periods, this may be achieved using estimates of changes in mass balance but, for the future, this

requires a comprehensive representation of the polar ice sheets in models. Besides, Swart and Fyfe

(2013) have shown that the freshwater derived from the ice sheet is unlikely to affect significantly the65

recent trend in sea ice extent simulated by CMIP5 models, when imposing a flux whose magnitude

is constrained by the observations.

In addition to the studies devoted to a better understandingof the causes of the recent variations,

models are also employed to perform projections for the changes at the end of the 21st century

and predictions for the next months to decades. Such predictions are generally performed using70

GCMs. Unfortunately, as mentioned above, current GCMs havebiases that reduce the accuracy of

the simulated sea ice in the Southern Ocean. In addition, taking into account observations to initialise

these models, generally through simple data assimilation (DA) methods, did not improve the quality

of the predictions in the Southern Ocean (Zunz et al., 2013).However, two recent studies performed

in a perfect model framework, i.e. using pseudo-observations provided by a reference simulation75

of the model instead of actual observations, underlined some predictability of the Southern Ocean

sea ice (e.g., Holland et al., 2013; Zunz et al., 2014). According to these studies, at interannual

timescales, the predictability is limited to a few years ahead. Besides, significant predictability is

found for the trends spanning several decades. Both studieshave pointed out that the heat anomalies

stored in the interior ocean could play a key role in the predictability of the sea ice. In particular,in80

their idealised study,Zunz et al. (2014) havedescribeda link between the skill of the prediction of

the sea ice cover and the quality of the initialisation of theocean below it.

On the basis of those results, the present study aims at identifying a procedure that could improve

the quality of the predictions of the sea ice in the Southern Ocean at multi-decadal timescales. Un-

like Holland et al. (2013) and Zunz et al. (2014), the resultsdiscussed here have been obtained in85

a realistic framework. It means that actual observations are used to initialise the model simulations

as well as to assess the skill of the model. The results of Holland et al. (2013) and Zunz et al. (2013,

2014) encouraged us to focus on the prediction of the multi-decadal trends in sea ice concentration

or extent rather than on its evolution at interannual timescales. Our study deals with two aspects that

could influence the quality of the predicted trend in sea ice in the Southern Ocean: the initial state of90

the simulation and the magnitude of the freshwater input, associatedfor instanceto the Antarctic ice

sheet mass imbalance. The initialisation procedure is based on the nudging proposal particle filter

(NPPF, Dubinkina and Goosse, 2013), a data assimilation method that requires large ensemble of

simulations. Such a large amount of simulations cannot be afforded with GCMs because of their re-

quirements in CPU time. We have thus chosen to work with an Earth-system model of intermediate95
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complexity, LOVECLIM1.3. It has a coarser resolution and a lower level of complexity than a GCM,

resulting in a lower computational cost. However, it behaves similarly to the GCMs in the Southern

Ocean (Goosse and Zunz, 2014). It thus seems relevant to use this model to study the evolution of

the Southern Ocean sea ice.

The climate model LOVECLIM1.3 is briefly described in Sect. 2.1, along with a summary of the100

simulations performed in this study. The data assimilationmethod used to compute the initial con-

ditions of the hindcast simulations is presented in Sect. 2.2. Section 2.3 explains how the additional

freshwater flux is taken into account in the simulations. Details about theestimationof the model

skill are given in Sect. 2.4. The discussion of the results isdivided into three parts: the simulations

with data assimilation that provide the initial states (Sect. 3.1), theimpact of the additional freshwa-105

ter flux on the efficiency of the data assimilation procedure(Sect. 3.2) and the hindcast simulations

(Sect. 3.3). Finally, Sect. 4 summarises the main results and proposes conclusions.

2 Methodology

2.1 Model and simulations

The three-dimensional Earth-system model of intermediatecomplexity LOVECLIM1.3110

(Goosse et al., 2010) used here includes representations ofthe atmosphere (ECBilt2, Opsteegh et al.,

1998), the ocean and the sea ice (CLIO3, Goosse and Fichefet,1999) and the vegetation (VECODE,

Brovkin et al., 2002). The atmospheric component is a T21 (corresponding to an horizontal

resolution of about5.6◦× 5.6◦), three-level quasi geostrophic model. The oceanic component

consists of an ocean general circulation model coupled to a sea-ice model with horizontal resolution115

of 3◦× 3◦ and 20 unevenly spaced vertical levels in the ocean. The vegetation component simulates

the evolution of trees, grasses and desert, with the same horizontal resolution as ECBilt2. The sim-

ulations performed in this study span the period 1850–2009 and are driven by the same natural and

anthropogenic forcings (greenhouse gases increase, variations in volcanic activity, solar irradiance,

orbital parameters and land use) as the ones adopted in the historical simulations performed in the120

framework of CMIP5 (Taylor et al., 2011).

Three kinds of simulation are performed in this study and allof them consist of 96-member en-

sembles. First, a simulation driven by external forcing only provides a reference to measure the

predictive skill of the model that can be accounted for by theexternal forcing alone (NODA in

Table 1). This numerical experiment does not take into account any observation, neither in its ini-125

tialisation nor during the integration. At the initialisation and every three months of simulation, the

surface air temperature of each members of NODA is slightly perturbed, to have an experimental de-

sign as close as possible to the simulations with data assimilation (see below). Second, simulations

that assimilate observations of surface air temperature anomalies (see Sect. 2.2 for details) are used

to reconstruct the past evolution of the system, from January 1850 to December 2009, and to pro-130
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vide initial conditions for hindcast simulations. Third, the hindcast simulations are initialisedon 1

January 1980from a state extracted from a simulation with data assimilation and are not constrained

by the observations during the model integration.

Threesimulations with data assimilation, from 1850 to 2009, are analysed here: one without

additional freshwater flux (DANOFWF in Table 1) andtwo that are forced by an autoregres-135

sive freshwater flux described in Sect. 2.3 (DA FWF 1 andDA FWF 2 in Table 1), representing

crudely the meltwater input to the Southern Ocean. The simulation DA NOFWF provides the initial

state of the first hindcast (HINDCAST1 in Table 1).The three hindcasts HINDCAST2.1, HIND-

CAST 2.2 and HINDCAST2.3 (see Table 1) are initialised from a state extracted fromDA FWF 1.

These three hindcasts differ to each other in the additionalfreshwater flux they receive during the140

model integration. No additional freshwater flux is appliedfor HINDCAST 2.1. HINDCAST 2.2

is forced by a time series resulting from the ensemble mean ofthe additional freshwater flux diag-

nosed in DAFWF 1. The average over the period 1980–2009 of the ensemble mean diagnosed from

DA FWF 1 is applied in HINDCAST2.3as a constant additional flux.Similarly, three hindcast sim-

ulations are initialised from a state extracted from DAFWF 2 (HINDCAST 3.1, HINDCAST3.2145

and HINDCAST3.3 in Table 1). These latter hindcasts also differ from eachother in the additional

freshwater flux applied to them: no additional freshwater flux in HINDCAST 3.1, a time evolving

additional freshwater flux in HINDCAST3.2, corresponding to the freshwater flux diagnosed from

DA FWF 2, and a constant additional freshwater flux in HINDCAST3.3, equal to the average over

the period 1980–2009 of the freshwater flux diagnosed from DAFWF 2.150

2.2 Data assimilation: the nudging proposal particle filter

Data assimilation consists of a combination of the model equations and the available observations,

in order to provide an estimate of the state of the system as accurate as possible (Talagrand, 1997).

The data assimilation simulations performed here provide areconstruction of the past evolution of

the climate system over the period 1850–2009. Such a long period appears necessary because of155

the long memory of the Southern Ocean. It allows the ocean to be dynamically consistent with the

surface variables, constrained by the observations, over awide depth range. The state of the system

on 1 January 1980 is then extracted and used to initialise thehindcast. After the initialisation, the

hindcast is driven by external forcing only and no observations are taken into account anymore.

In this study, observed anomalies of surface air temperature are assimilated in LOVECLIM1.3160

thanks to a nudging proposal particle filter (Dubinkina and Goosse, 2013). The assimilated observa-

tions are from the HadCRUT3 dataset (Brohan et al., 2006). This dataset has been derived from in

situ land and ocean observations and provides monthly values of surface air temperature anomalies

(with regard to 1961–1990) since January 1850. Model anomalies of surface air temperature are

computed with regard to a reference computed over 1961–1990as well, from a simulation driven by165

the external forcing only, without data assimilation and additional freshwater flux.
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The NPPF is based on the particle filter with sequential resampling (e.g., van Leeuwen, 2009;

Dubinkina et al., 2011) that consists of three steps. First,an ensemble of simulations, theparticles,

is integrated forward in time with the model. These particles are initialised from a set of different

initial conditions. Therefore, each particle represents adifferent solution of the model. Second,170

after three months of simulation, a weight is attributed to each particle of the ensemble based on its

agreement with the observations. To compute this weight, only anomalies of surface air temperature

southward of 30◦ S are taken into account. Third, the particles are resampled: the ones with small

weight are eliminated while the ones with large weight are retained and duplicated, in proportion

to their weight. This way, a constant number of particles is maintained throughout the procedure.175

A small perturbation is applied on the duplicated particlesto generate different solutions of the

model and the three steps are repeated until the end of the period of interest.

In the NPPF, a nudging is applied on each particle during the model integration. It consists

of adding to the model equations a term that pulls the solution towards the observations (e.g.,

Kalnay, 2007). The nudging alone, i.e. not in combination with another DA method, has been180

used in many recent studies on decadal predictions (e.g., Keenlyside et al., 2008; Pohlmann et al.,

2009; Dunstone and Smith, 2010; Smith et al., 2010; Kröger et al., 2012; Swingedouw et al., 2012;

Matei et al., 2012; Servonnat et al., 2014). In LOVECLIM1.3,the nudging has been implemented as

an additional heat flux between the atmosphere and the oceanQ= γ(Tmod−Tobs). Tmod andTobs are

the monthly mean surface air temperature simulated by the model and from the observations respec-185

tively. γ determines the relaxation time and equals 120Wm−2K−1, a value similar to the ones used

in other studies (e.g., Keenlyside et al., 2008; Pohlmann etal., 2009; Smith et al., 2010; Matei et al.,

2012; Swingedouw et al., 2012; Servonnat et al., 2014). The nudging is applied on every ocean grid

cell, except the ones covered by sea ice and the amplitude of the nudging applied on a particle is

taken into account in the computation of its weight (Dubinkina and Goosse, 2013).190

2.3 Autoregressive additional freshwater flux

As the freshwater related to the melting of the Antarctic icesheet may contribute to the variability

of the sea ice extent (e.g., Hellmer, 2004; Swingedouw et al., 2008; Bintanja et al., 2013), it appears

relevant to check its impact on the data assimilation simulations as well as on the hindcasts. However,

deriving the distribution of the freshwater flux fromtheestimate of the observed Antarctic ice sheet195

mass imbalance is not possible for the whole period covered by our simulations, because of the lack

of data. Furthermore, the configuration of the model used in our study does not allow simulating

this freshwater flux in an interactive way. We have thus chosen to apply a random freshwater flux,

described in term of an autoregressive process as in Mathiotet al. (2013), on each particle during

the data assimilation simulations DA FWF 1 and DA FWF 2 (see Table 1 for details). This allows200

determining the most adequate value of the additional freshwater flux for the model using the NPPF.

Because of this additional freshwater flux, the parameters selected to define the error covariance
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matrix, required to compute the weight of each particle (seeDubinkina et al., 2011), are slightly

modified in comparison to the values applied for these parameters in the data assimilation without

additional freshwater flux (DANOFWF).205

The freshwater flux is computed every three months, i.e. withthe same frequency as the particle

filtering. Two distinct definitions of the autoregressive process havebeen used in the two simulations

DA FWF 1 and DAFWF 2. In DA FWF 1, the additional freshwater flux is defined as:

FWF 1(t) = 0.8FWF(t− 1)+ ǫFWF 1(t) (1)210

whereǫFWF 1 is a random noise following a Gaussian distributionN(0,σFWF 1), with σFWF 1 equal

to 40 mSv.

In DA FWF 2, the additional freshwater flux follows a definition similar to the one used in

Mathiot et al. (2013):

FWF 2(t) = FWF 2(t− 1)+ 0.25ǫFWF 2(t− 1)+ ǫFWF 2(t) (2)215

whereǫFWF 2 is a random noise following a Gaussian distributionN(0,σFWF 2), with σFWF 2 equal

to 10 mSv. The parameters of the autoregressive processes described in Eq. (1) and (2)have been

chosen in order to obtain a freshwater fluxroughly compatible with the estimates of the current

Antarctic ice sheet mass loss.Nevertheless, the additional freshwater flux FWF2 displays large220

amplitude variations that in turn generate strong and maybeunrealistic variations in several climate

variables such as the sea ice extent and the ocean heat content, as discussed in Sect. 3.

The melting of the Antarctic ice sheet being particularly strong over West Antarctica (e.g.,

Rignot et al., 2008; Velicogna, 2009; Pritchard et al., 2012; Shepherd et al., 2012), we have chosen

to distribute uniformly the freshwater flux in the ocean between 0◦ and 170◦ W, southof 70◦ S (area225

in blue on Fig. 1). Here, the distribution of the freshwater flux is thus not limited to the cells adjacent

to the Antarctic shelf, unlike Bintanja et al. (2013); Swartand Fyfe (2013). This is based on the as-

sumption that a part of the freshwater might be redistributed offshore by icebergs (e.g., Silva et al.,

2006) or coastal currents not well represented in a coarse-resolution model. Alternatively, we can

also consider that the ice sheet mass imbalance is not the only contributor to the additional freshwa-230

ter flux required by the model. For instance, variations in precipitation are also expected to impact

the freshwater balance in the Southern Ocean and might not besimulated adequately by the model.

Furthermore, the spatial distribution of the additional freshwater flux likely impacts the model re-

sults. Here, we have chosen a spatial structure as simple as possible, consistent with the available

observations, in order to limit the parameters associated with the additional freshwater flux. Investi-235

gating in details the impact of different spatial distributions of the additional freshwater input would

probably provide insightful results but this is out of the scope of the present study.

The additionalfreshwater flux increases the range of solutions reached by the particles andcan

randomly bring some of them closer to the observations. Whena particle is picked up because of
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its large weight, it is duplicated and the copied particles inherit the value of the freshwater flux240

that possibly brought the particle close to the observations. This value keeps influencing the copied

particles because the freshwater flux is autoregressive. Itcould thus improve the efficiency of the

particle filter. Furthermore, by selecting the solutions that best fit the observations, the particle

filter allows estimating the freshwater flux that is more likely to provide a state compatible with the

observations.245

2.4 Skill assessment

In order to measure the skill of the model combined with the assimilation of observations, the results

of the data assimilation simulations and of the hindcasts are compared to observations of the annual

mean sea ice concentration (the fraction of grid cell covered by sea ice) and sea ice extent (the sum of

the areas of all grid cells having a sea ice concentration above 15 %), between 1980 and 2009. This250

corresponds to the period for which reliable observations of the whole ice covered area are available.

The sea ice concentrationand extentdata used here are, unless specified otherwise,derived from

the Nimbus-7 SMMR and DMSP SSM/I-SSMIS satellite observations through theversion 2 of the

Bootstrap algorithm (Comiso, 1999, updated daily).The seaice extentis providedby the SeaIce

Indexfrom theNationalSnowandIceDataCenter (Fetterer et al., 2002, updated daily).The impact255

of the uncertainty of those estimates on our conclusion is discussed in Sect. 3 and 4.

Particular attention is paid on the trend in sea ice concentration and extent. Significance levels for

the trends are computed on the basis of a two-tailedt test. The autocorrelation of the residuals is

taken into account in both the standard deviation of the trend and in the number of degrees of freedom

used to to determine the significance threshold (e.g., Santer et al., 2000; Stroeve et al., 2012). This260

statistical test provides an estimate of the relative significance of the trend, but we have to keep in

mind that the assumptions inherent to this kind of test are rarely totally satisfied in the real world

(e.g., Santer et al., 2000).

The ensemble means computed for the results of the data assimilation simulations consist of

weighted averages. The ensemble meanX(y,m) of the variablex, for the monthm in the year265

y is thus defined as

X(y,m) =
1

K

K∑

k=1

xk(y,m).wk(y,m), (3)

wherek is the member index,K is the number of members within the ensemble andwk(y,m) is the

weight attributed to the memberk during the data assimilation procedure. The ensemble meansof270

each month of the year are then averaged over a year to obtain the annual mean.

The standard deviation of the annual mean of the ensemble cannot be computed explicitly because

of the possible time discontinuity in the results of individual members, arising from the resampling

occurring every three months. An estimate of this standard deviation is however assessed by multi-

plying the weighted standard deviation of each month of a year by a coefficient and averaging it over275
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the year. These coefficients are introduced to take into account the fact that the standard deviation

of the annual mean is not the mean of the standard deviation from every month. They are obtained

here by computing the mean ratio between the ensemble standard deviation of the annual mean and

the ensemble standard deviation of each month in the simulation NODA.

The ensemble means and standard deviations calculated for NODA and for the hindcast simu-280

lations correspond to classical values that does not include any weight as this procedure is only

required when data assimilation is applied.

3 Results

In this section, the results of the various simulations (seeTable 1 for details) are discussed. First,

the reconstructionsof the evolution of the sea ice between 1850 and 2009, provided by the simula-285

tions NODA, DA NOFWF, DA FWF 1 and DAFWF 2, arepresented in Sect. 3.1 and compared

to observations. Second, the link between theefficiency of the particle filteringand theadditional

freshwater inputis presented in Sect. 3.2. Third, the hindcasts initialisedwith a state extracted from

a data assimilation simulation are analysed to measure the skill of the prediction system tested in

this study (Sect. 3.3).290

3.1 Data assimilation simulations

The observations of yearly mean sea ice extent, based on version 2 of the Bootstrap algorithm,

display a positive trend between 1980 and 2009 equal to19.0× 103 km2yr−1, significant at the

99 % level (Fig. 2). This trend in sea ice extent is the result of an increase in sea ice concentration in

most part of the Southern Ocean, particularly in the Ross Sea(Fig. 3a).295

When no data assimilation is included in the model simulation (NODA), the ensemble mean

displays a decreasing trend in sea ice extent in response to the external forcing (Fig. 2a and b),

similar to the one found in other climate models (e.g., Zunz et al., 2013). Consequently, for the

ensemble mean, 30-year trends are negative during the whole period of the simulation without data

assimilation (Fig. 2b). Over the period 1980–2009, the ensemble mean of the trend in sea ice extent300

equals−15.5×103 km2 yr−1, with an ensemble standard deviation of14.5×103 km2yr−1, and the

melting of sea ice occurs everywhere in the Southern Ocean (Fig. 3b), except in the Ross Sea and

in the Western Pacific sector. This negative trend obtained for the ensemble mean is the result of

a wide range of behaviours simulated by the different members belonging to the ensemble (light

green shade in Fig. 2a and b) and, considered individually, the members can thus provide positive or305

negative values for the trend. This indicates thus that, forsome members, the natural variability could

compensate for the negative trend in sea ice extent simulated in response to the external forcing.

Positive trends similar to the one observed over the last 30years are however rare in NODA. For

instance, only 14 of the 96 members have a positive trend overthe period 1980–2009 and none of
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them have a trend larger than the observed one.310

In NODA, the ensemble mean displays an increase in the heat contained in both the upper ocean,

defined here as the first 100m below the surface, and the interior ocean, considered to liebetween

−100 and−500m (green solid lines in Fig. 4aand b). The correlation between these two variables

equals 0.89over the period 1980–2009 (Table 2). This warming of the ocean results directly from the

increase in the external forcing and is consistent with the decrease in sea ice extent (Fig. 2a). Besides,315

the ocean salt content in the first 100m decreases (Fig. 4c). This is likely due to the enhanced

hydrological cycle in a global warming context and the inherent increase in precipitations at high

southern latitudes that freshens the ocean surface (e.g., Liu and Curry, 2010; Fyfe et al., 2012). In

the simulation NODA, the negative correlation of−0.94 between the ocean heat and salt content in

the first 100m below the surface over the period 1980–2009 (see Table 2) is linked to the response320

of these two variables to the external forcing.Nevertheless, this contribution of the external forcing

can be masked in individual members by internal variability, leading to low correlations between the

heat content at surface and in the interior or between heat and salt contents at surface on average

over the ensemble (Table 2).

If observations of the anomalies of the surface air temperature are assimilated during the simu-325

lation, without additional freshwater flux (DANOFWF), the model is able to capture the observed

interannual and multi-decadal variability of this variable, as expected (Fig. 5b). Consequently, the

trend in the ensemble mean sea ice extent is more variable than in NODA. Over the period 1850–

2009, the values of the 30year trend in sea ice extent, computed from the ensemble mean, stand

between−29.1× 103 km2 yr−1 and13.6× 103 km2yr−1 (Fig. 2d). Between 1980 and 2009, the330

trend in sea ice extent equals−3.0× 103 km2 yr−1. On average over the ensemble, the trend is thus

less negative than in the case where no observation are takeninto account during the simulation

but it still has a sign opposite to the observed one.The difference with the estimates derived from

version 2 of the Bootstrap algorithm between November 1978 and December 2009 is of the order

of 20× 103 km2yr−1. The difference with the estimates from version 1 of the Bootstrap algorithm335

is slightly smaller, being around15× 103 km2yr−1 (Eisenman et al., 2014).The trends in sea ice

concentration display a pattern roughly similar to the observed one (Fig. 3a and c), with an increase

in theeasternWeddell Sea, in the eastern Indian sector, in the Western Pacific sector and in the Ross

Sea, the sea ice concentration decreasing elsewhere. The decrease in sea ice concentration occurring

in the Bellingshausen and Amundsen Seas is, however, overestimated by the model, leading to the340

decrease of the overall extent.

In the simulation DANOFWF, the ocean heat content in both the upper and interior ocean is

lower than the ones obtained in the simulation NODA until about 1980 (Fig. 4a and b). This arises

from the lower surface air temperature in DANOFWF compared to NODA (Fig. 5a and b) that

cools down the whole system. The correlation between the upper and interior ocean heat contents345

equals0.34over the period 1980–2009 (Table 2) and is thus lower thanfor the ensemble meanin
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NODA. This could be due to the interannual variability captured thanks to the data assimilation that

mitigates the global warming signal (see below). The ocean salt content is larger in DANOFWF

than in NODA until 1980, likely because of the weakening of the hydrological cycle associated

to the lower simulated temperature. From 1980 ahead, the ocean heat content, in both the upper350

and middle layer, increases and the salt content decreases in response to the external forcing, as in

NODA. Nevertheless, as the ocean heat content is still slightly lower in the simulation DANOFWF

than in the simulation NODA, the quantity of energy available to melt the sea ice at the surface is

also lower. This can explain why the absolute value of the trend in seaice extent between 1980 and

2009 is smaller in DANOFWF than in NODA.355

Including a freshwater flux following the autoregressive process defined in Eq. (1) in the simu-

lation DA FWF 1 increases the variance of the ensemble of particles. This also slightly enhances

the variability of the ensemble mean sea ice extent at interannual and multi-decadal timescales (Fig.

2e,f). Over the period 1850–2009, the values of the 30year trend in sea ice extent, computed from

the ensemble mean, lie between−35.2× 103 km2yr−1 and20.3× 103 km2 yr−1 (Fig. 2f). Over360

the period 1980-2009, the trend in sea ice extent in DAFWF 1 equals−2.8×103 km2yr−1 and is

thus slightly less negative than in the simulation DANOFWF. The spatial distribution of the trends

in sea ice concentration in DAFWF 1 is also in good agreement with the observations (Fig 3d).

The decrease in sea ice concentration occurring in the Bellingshausen and Amundsen Seas is less

widespread than in DANOFWF but it is still overestimated. The increase in the western Weddell365

and Ross Seas is better represented than in DANOFWF as well.

The additional freshwater flux in DAFWF 1 also induces a higher variability of the heat and salt

contents in the upper ocean compared to the simulation DANOFWF (Fig. 4a,c). The correlation

between the upper and interior ocean heat contents has a negative value of−0.24 over the period

1980-2009 (see Table 2). It means that when the ocean surfaceis colder, the intermediate layer is370

warmer and vice-versa. This indicates that in this experiment, the heat content in the water columns

is strongly influenced by vertical mixing.The amplitude ofthis mixing depends on the difference

in density between the surface and the deeper layers, which is in turn determined by the difference

in temperature and salinity. In the simulation DAFWF 1, the correlation between the ocean salt

and heat contents in the first 100m reaches a value of0.35, while it is negativefor the ensemble375

meanin NODA and in DA NOFWF (see Table 2). This confirms that, during periods of increase

in salt content in the upper layer, the vertical mixing in theocean is enhanced, allowing positive

heat anomalies to be transported from the interior to the upper ocean. The heat content in the first

100m increases while the one between−100m and−500m decreases. On the contrary, when the

salt content in the upper layer decreases, the ocean becomesmore stratified, preventing the heat380

exchange between the surface and the interior ocean. The heat is trapped in the interior ocean that

gets warmer, and the upper ocean cools down.This process appears more important in DANOFWF

than for the individual members of NODA (see Table 2) becauseof the effect of the additional
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freshwater flux on the stratification. Remind that correlations between the heat content in the upper

and intermediate layers is very high in the ensemble mean of NODA because of the contribution of385

the forcing.

In the simulation DAFWF 2, the additional freshwater flux follows the definition given in Eq. 2

that allows a larger amplitude of variations at decadal timescale (Fig. 6). Besides, the ensemble stan-

dard deviation of the additional freshwater flux is slightlysmaller in DAFWF 2 than in DAFWF 1.

The stronger variations of the additional freshwater flux implies a larger variability of the ensemble390

mean sea ice extent (Fig. 2g,h).This is particularly clear before 1950, i.e. during the timeperiod

over which less observations are available to constrain themodel (Dubinkina and Goosse, 2013).

Over the period 1850–2009, the ensemble mean of the 30year trend in sea ice extent varies between

−68.3× 103 km2yr−1 and70.9× 103 km2 yr−1. Between 1980 and 2009, the average simulated

trend equals14.7× 103 km2yr−1 (not significant at the 99 % level), which is very close to the ob-395

served value of19.0× 103 km2yr−1 corresponding to data derived from version 2 of the Bootstrap

algorithm. The distribution of the trend in sea ice concentration, between 1980 and 2009, fitsrel-

atively well the observations (Fig. 3a ande). In particular, the decrease in sea ice concentration

occurring in the Bellingshausen and Amundsen Seas is weakerthan in DA NOFWF and it is thus in

better agreement with satellite data. We shouldstresshere that this good match with observed trends400

is obtained from the constraints provided by (scarce) surface temperature observations, as no sea ice

data is used in the assimilation process.Nevertheless, this satisfying reconstruction of the trends in

ice extent and concentration has been obtained at the price of an enhanced and maybe unrealistic

variability in the system. Furthermore, the anomalies of the sea ice extent, with regard to the simu-

lation NODA, have a mean of−0.42× 106 km2 over the period 1980–2009. This shift in the mean405

state of the sea ice is discussed in Sect. 3.2.

In DA FWF 2, the correlation between the heat content in the upper ocean(Fig. 4a) and the one

in the interior ocean (Fig. 4b)equals−0.84 over the period 1980–2009 (see Table 2).The strongly

varying additional freshwater flux in DAFWF 2 leads to an even stronger relationship between the

ocean heat contents in the upper and interior ocean than in DAFWF 1. This negative correlation410

indicates that the direct impact of the external forcing is weaker compared to the influence of the

stratification changes. This is confirmed by the correlationbetween the ocean heat and salt contents

in the upper ocean which equals 0.78 over the period 1980-2009. As for the sea ice extent, the

large variability occurring in the ocean heat and salt contents computed from DAFWF 2 may be

unrealistic.415

In summary, because of the additional freshwater flux that tends to stabilise the water column

during some periods and to destabilise it in others (Fig. 6),the general behaviour of the ocean in

the simulations DA FWF 1 andDA FWF 2 differs from the simulation NODA and DANOFWF.

While the latter simulations appear mainly driven by the external forcing, the interaction between the

different layers in the ocean seems to be dominant inDA FWF 1 andDA FWF 2. In the simulations420
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DA FWF 1 andDA FWF 2, the ocean heat and salt contents of the surface layer are particularly

large in 1980 while the heat content between 100 and 500m is low. This implies that the heat storage

at depth is much lower inDA FWF 1 andDA FWF 2 than in NODA. Note that the heat content of

the top 500m in DA FWF 1 and inDA FWF 2 is also lower than in NODA. After 1980, the salt

contents in both DAFWF 1 and DAFWF 2 decrease until 2009 (Fig. 4c). This is associated with425

a decrease in the upper ocean heat content and a strong increase in the ocean temperature between

100 and 500m, suggesting a reduction of the vertical ocean heat flux. Thisis likely responsible for

theweaker decrease in sea ice extent between 1980 and 2009 in DAFWF 1 (Fig. 2e)andtheincrease

in sea ice extentin DA FWF 2 (Fig. 2g). In DA FWF 1 andDA FWF 2, the additional freshwater

flux is the main cause of the variability of the stratification. Additionally, internal processes can430

be responsible for such changes in vertical exchanges, as discussed in details in Goosse and Zunz

(2014), also leading to a negative correlation between the heat content in surface and intermediate

layers. This explains why the correlation between those twovariables is lower for the ensemble

mean of DANOFWF than in NODA. It is also much lower in individual simulation of NODA (0.03

on average, Table 2) than in the ensemble mean (0.89, Table 2), the ensemble mean amplifying the435

contribution of the response to the forcing associated withhigh positive value.

3.2 Impact of the additional freshwater flux on simulations with data assimilation

Over the years 1980–2009, the model, without data assimilation, simulates too cold a surface air tem-

perature on average over the box southward of 30◦ S compared to the reference period 1961–1990,

i.e., a mean anomaly over 1980–2009 of 0.06◦C in NODA against 0.13◦C in the observations. Be-440

sides, the model is much too warm before 1960. This bias is clearly reduced in thethree simulations

with data assimilationDA NOFWF, DA FWF 1 and DA FWF 2, that furthermore provide a better

synchronisation between the model solutions and the observations (Fig. 5). Nevertheless, this bias

reduction is likely achieved differentlyin the different simulations with data assimilation presented

here.445

If no additional freshwater flux is taken into account, the shift in the model state induced by the

data assimilation procedure is partly due to the nudging andpartly to the selection of the particles

whose simulated temperature is closer to the observations.The sea ice simulated by a particle is then

linked to the surface air temperature through the model dynamics. Adding a freshwater flux during

the data assimilation procedure can improve the efficiency of the particle filtering by perturbing450

each particle and thus increasing the range of the ensemble.A more dispersed ensemble more

likely contains a solution that is close to the observationsand the particle filtering can thus be more

efficient.

The additional freshwater inputmodifies the structure of the ocean, as discussed in Sect. 3.1,that

in turn impacts the sea ice formation and the temperature at the ocean surface.This is particularly455

clear in the simulation DAFWF 2 whose additional freshwater flux displays a large amplitude of
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variations (standard deviation over the period 1850–2009= 0.03Sv against 0.02Sv in DA FWF 1).

Because of the contribution of this process,thecorrelationbetween the sea ice and the surface air

temperature is thusweaker. This correlation remains negative in the presence of an additional fresh-

water flux, i.e., a warmer ocean surface is still associated to a smaller sea ice extent. Nevertheless,460

the correlation between the ensemble mean of the averaged sea surface temperature and the ensem-

ble mean of the sea ice extent over the period 1850–2009 is slightly smaller in absolute value in the

simulations with data assimilation and additional freshwater flux (−0.78 in DA FWF 1 and−0.56

in DA FWF 2) compared to the simulations without any additional freshwater flux (−0.97 in NODA

and−0.86 in DA NOFWF).465

In the simulations with data assimilation and additional freshwater flux,the particles are still

selected on the basis of the agreement between the surface air temperature they simulate and

the observed one. As a consequence, the state of the mean surface air temperature simulated in

DA NOFWF is very similar to the ones inDA FWF 1 andDA FWF 2 but the state of the sea ice

maydiffer. betweenthesetwo dataassimilationsimulationIn particular,the simulation DAFWF 2470

displaysa lower sea ice extent over the period 1980–2009than NODA. This smaller sea ice extent is

associated with an averaged additional freshwater flux thatequals−0.03Sv (Fig. 6) over the period

1980–2009. In this case, the negative additional freshwater flux seems to contribute to a reduction

of the cold model bias in the surface air temperature over that period (Fig. 5a).Indeed, a negative

freshwater flux makes the ocean surface saltier and destabilises the water column. This enhances475

the vertical mixing and warmer water from the interior oceanreaches the surface that consequently

warms up. Therefore, particles receiving a negative freshwater flux are more likely to get closer to

the observations compared to the mean of NODA that is too coldover this period. They have thus

a higher probability to be selected by the particle filter, reducing the model bias.This process is

likely less active in DAFWF 1 in which the additional freshwater flux equals 0.01 on average over480

the period 1980–2009.

The negative value obtained for the ensemble mean of the freshwater flux between 1980 and

2009in DA FWF 2 may appear in contradiction with the estimates of the Antarctic ice sheet mass

imbalance. Indeed, these clearly indicate a melting of the ice sheet that results in a freshwater

input in the Southern Ocean. Nevertheless, the freshwater flux applied inthis simulation allows485

first compensating for model biases thanks to this negative mean value. Starting from a negative

value in 1980, the ensemble mean of the freshwater flux slightly increases until 2009 at a rate of

4.53× 10−5 Svyr−1, equivalent toan acceleration of the melting of 1.4Gtyr−2 between 1980

and 2009 (Fig. 6). This value is much smaller than the increase in freshwater flux derived from

the recent estimates of the ice sheet mass imbalance but the values are only available on shorter490

timescales. For instance, in their reconciled estimates, Shepherd et al. (2012) reported a freshwater

input from the West-Antarctic ice sheet melting of38± 32Gtyr−1 (≃ 10−3 Sv) over 1992–2000

and of102±18Gtyr−1 (≃ 3×10−3 Sv) over 2005–2010, i.e., a bit smaller than in DAFWF 1. To
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sum up, our results show that the mean value of the additionalfreshwater fluxin DA FWF 2 does

impact the simulation results by compensating for biasesin the model or in the experimental design495

but the increase in this flux may not be a determinant feature.

It is also important to stress here that the parameters used to define the additional freshwater fluxes

in the simulations DAFWF 1 (Eq. (1)) and DAFWF 2 (Eq. (2)) allows seasonal variations that are

much larger than the estimates of the change in the freshwater input associated to the recent melting

of the West-Antarctic ice sheet. Indeed, the standard deviation of the random noiseǫFWF 1 in Eq.500

(1) equals 0.04Sv (ǫFWF 2 in Eq. (2) equals 0.01Sv), which is equivalent to about 1200Gtyr−1

(300Gtyr−1). Nevertheless, while the plausibility of the states computed in DA FWF 2 is ques-

tionable, the solutions provided by DAFWF 1 can be reasonably considered as realistic estimates

of the state of the system.

3.3 Hindcast simulations505

In this section, we focus on simulations that are initialised on 1 January 1980 with a state that has

been extracted from the data assimilation simulations discussed in Sect. 3.1. After the initialisa-

tion, the hindcast simulation is driven by external forcingbut no observation is taken into account

anymore. The analyses discussed here aims at answering two questions. (1) Can the information

contained in the initial state persist long enough to impactthe simulated trend in sea ice extent? (2)510

How does an additional freshwater flux impact the sea ice in hindcast simulations? Including an

additional freshwater flux appears indeed to be relevant to improve the efficiency of data assimila-

tion (see Sect. 3.1). The results of HINDCAST1, initialised from DANOFWF,HINDCAST 2.1,

initialised from DA FWF 1 andHINDCAST 3.1, initialised from DA FWF 2, bring answers to the

first question, these hindcasts including no additional freshwater flux. The second question is specif-515

ically addressed in the analyses ofHINDCAST 2.2 and HINDCAST2.3, initialised from a state

provided by the simulation DAFWF 1, as well as HINDCAST3.2 and HINDCAST3.3, initialised

from a state provided by the simulation DAFWF 2, a freshwater perturbation being applied during

these four hindcasts.Given that it is not clear whether it is the mean value of the additional fresh-

water flux or its variations that matters, two configurationsfor the additional freshwater flux have520

been tested. InHINDCAST 2.2 (HINDCAST 3.2), the additional freshwater flux corresponds to

the one that has been diagnosed fromDA FWF 1 (DA FWF 2), shown on Fig. 6, and evolves in

time. On the contrary, inHINDCAST 2.3 (HINDCAST 3.3), the freshwater flux is constant in time

and equals0.01Sv (−0.03Sv), the average freshwater flux diagnosed inDA FWF 1 (DA FWF 2)

between 1980 and 2009.525

In HINDCAST 1, the sea ice extent is high at the beginning of the simulation and decreases be-

tween 1980 and 2009 (Fig. 7a). The ensemble mean of the trendsequals−14.2×103 km2yr−1, with

an ensemble standard deviation of13.2× 103 km2 yr−1. This provides a 95 % range that does not

encompass the observed trend of19.0× 103 km2 yr−1. In this hindcast, the trend in sea ice concen-
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tration is negative over a large area in the Bellingshausen and Amundsen Seas and slightly positive530

elsewhere (Fig. 8a). This pattern thus roughly fits the observed one but the decrease obtained in the

western part of the Southern Ocean covers too large an areaand the increase in the Weddell and

Ross Seas is too weak. The regional distribution of the trend in sea ice concentration in HIND-

CAST 1 (Fig. 8a) isthusvery similar to the one in DANOFWF, i.e. the simulation that provided

the initial state for HINDCAST1. This suggests that the information provided at the initialisation535

canslightly impact the solution of the hindcast over multi-decadal timescales, in agreementwith the

resultsdiscussedin Zunz et al. (2014). The too large decrease in sea ice concentration occurring

in the Bellingshausen and Amundsen Seas already noticed in DA NOFWF is however amplified in

HINDCAST 1, leading to an overall decrease similar to the mean of NODA.The ocean heat and salt

contents in HINDCAST1 follow roughly the evolution of these variables for the ensemble mean540

in NODA (Fig. 4). The correlation between the upper and interior ocean heat content equals 0.86

and the correlation between the upper ocean heat and salt content equals−0.94 (see Table 2). This

points out the role played by the external forcing in this hindcast, as discussed in Sect. 3.1.

In HINDCAST 2.1, the ensemble mean of the trends over the period 1980–2009 equals1.3×

103 km2 yr−1, with an ensemble standard deviation of14.5× 103 km2 yr−1 (Fig 7b). The observed545

trend is thus included in the 95% range of the ensemble. The spatial distribution of the trends in sea

ice concentration in HINDCAST2.1 is also in good agreement with the observations (Fig 8). Given

that no additional freshwater flux is applied in this hindcast, the positive trend in its sea ice extent

likely arises from the state used to initialise this simulation. This initial state is characterised by

relatively large heat and salt contents in the upper ocean (Fig. 4a,c) and a small heat content in the550

interior ocean (Fig 4b). This situation corresponds to a weakly stratified ocean column in 1980 that

stabilises during the following years in HINDCAST2.1, leading to a cooling of the ocean surface

that in turn favours the production of sea ice.

HINDCAST 2.2 provides an ensemble mean of the trends over the period 1980–2009 equal to

13.0× 103 km2yr−1, with an ensemble standard deviation of12.4× 103 km2 yr−1 (Fig 7c). This555

value of the trend is even closer to the observation of19.0×103 km2yr−1 (corresponding to version

2 of the Bootstrap algorithm) than the one provided by HINDCAST 2.1. Nevertheless, in realistic

conditions, this would require to obtain information on themass balance of the ice sheets spanning

the period of the prevision itself. The spatial distribution of the trends in sea ice concentration

in HINDCAST 2.2 is very similar to the one in HINDCAST2.1 (Fig 8b,c). In HINDCAST2.3,560

a constant additional freshwater flux equal to 0.01, corresponding to the average over the period

1980–2009 of the freshwater flux diagnosed from DAFWF 1, is applied. This also provides trends

in sea ice extent and concentration over the period 1980–2009 that agree well with the observations

((Fig 7d and Fig 8d). For both HINDCAST2.2 and HINDCAST2.3, no clear change in the ocean

heat and salt contents is noticed compared to HINDCAST2.1 (Fig 4). Nevertheless, the additional565

freshwater flux results in a slightly higher increase in sea ice extent compared to HINDCAST2.1.
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The results of HINDCAST3.1, initialised from the simulation DAFWF 2, display a low sea ice

extent at the beginning of the simulation (Fig. 7e). During the first 5years following the initialisa-

tion, the sea ice extent rapidly increases until the solution reaches the model climatology and then

remains more or less stable. Overall, the trend in sea ice extent between 1980 and 2009 computed570

from this hindcast has an ensemble mean equal to19.1× 103 km2yr−1 and a standard deviation of

15.7× 103 km2yr−1. The ensemble is thus shifted towards positive values of thetrend in sea ice

extent compared to HINDCAST1, with an ensemble mean that is very close to the observed one.

Nevertheless, the increase in sea ice extent essentially occurs during the first 5 years after the initial-

isation. This thus suggests that the positive value of the trend in sea ice extent ismainly due to the575

model drift caused byan abruptchange in the conditions of the experiment compared to DAFWF 2

that provided the initial state. As HINDCAST3.1 is not driven by any additional freshwater flux,

the sea ice extent rapidly tends to its mean climatological state in this configuration: this is the one

obtained in NODA which is characterised by a higher ice extent than in DA FWF. The model drift

is also clearly seen in the ocean heat and salt contents (Fig.4a and b). The regional distribution of580

the trend in sea ice concentration is in good agreement with the observations (Fig. 8e). Nevertheless,

this apparent satisfying results provided by HINDCAST3.1has to be moderated given the drift that

produces unrealistic trends at the beginning of the simulation.

In HINDCAST 3.2, the additional freshwater flux(which is negative)applied during the simu-

lation slows down the increase in sea ice extent at the beginning of the simulation (Fig. 7f), re-585

sulting in a weaker trend compared to HINDCAST3.1 (Fig. 7d). The ensemble mean (standard

deviation) of the trends equals5.1× 103 km2 yr−1 (15.5× 103 km2 yr−1), the observed value of

19.0× 103 km2yr−1 is thus well within the ensemble range. The trend is relatively stable over the

whole 30year period and not concentrated on the first years of simulation,as in HINDCAST3.1.

Furthermore, the experimental conditions are much closer to DA FWF 2. There is thus no reason to590

suspect that the increase in sea ice extent in HINDCAST3.2is due to a spurious drift. Such a weak

or even non existent drift is ensured by the experimental design, consistent with the behaviour of the

ocean heat and salt contents that remain relatively far fromthe results of NODA (Fig. 4). The pat-

tern of the trend in sea ice concentrationalsoreasonably fits the observations (Fig. 8f). Includingan

additionalfreshwaterflux duringthehindcastsimulationensuresthusacompensationof themodel595

biases,as in the simulationDA FWF, andavoidsthe generationof unrealistictrendjust after the

initialisation. This improvesthe resultsof the hindcastbut the methodapplied in HINDCAST 3

requiresusinginformationspanningtheperiodbeingpredictedto determinethe time evolution of

theadditionalfreshwaterflux.

The additional freshwater flux applied during the simulation HINDCAST 3.3, equal to−0.03Sv,600

corresponds to the mean of the diagnosed freshwater flux overthe period 1980–2009 in DAFWF 2

and thus does not require a detailed knowledge of its variation in time. Note that this value is

very close to the one of the30-yearperiod preceding the hindcast. The trend in sea ice extent in
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HINDCAST 3.3 has an ensemble mean equal to1.9× 103 km2yr−1 and a standard deviation of

16.6× 103 km2yr−1 (Fig. 7g). The ensemble mean of the trend is thus slightly smaller than the605

one of HINDCAST3.2 but the ensemble still contains the observed trend. Furthermore, the sea

ice extent does not display a rapid change during the first years of simulation. This suggests that

the model drift is also prevented by the addition of a constant freshwater flux during the hindcast

simulation. The ocean heat and salt contents stay relatively far from the model climatology (Fig. 4),

confirming the absence of a significant model drift in HINDCAST 3.2. The regional distribution610

of the trend in sea ice concentration is in a satisfying agreement with the observed one (Fig. 8g).

This last hindcast thus provides trends in sea ice extent andconcentration that fit the observations.

Forcingthehindcastwith ameanvaluefor theadditionalfreshwaterflux alsoallowscompensating

for modelbiasesandavoidsmodeldrift. Therefore, while adding a freshwater fluxin the present

case is requiredto maintain the sea ice of the hindcast around a mean state compatible with the615

initial stateextracted from the results of DAFWF 2, a detailed knowledge of the time evolution of

the freshwater flux does not seem to be crucial.

The results of our hindcast simulations demonstrate that the state used to initialise these simula-

tions plays a fundamental role in determining the trends in sea ice extent and concentration over the

three decades following the initialisation, in agreement with the idealised experiments presented in620

Zunz et al. (2014). In our simulations, the additional freshwater flux improves the reconstruction of

the evolution of the system in the simulation with data assimilation and thus helps in providing an

adequate initial state for the hindcasts. An suitable freshwater input during the last 30 years may

further improve the agreement with observations derived from both version 1 and version 2 of the

Bootstrap algorithm (Eisenman et al., 2014), as shown by theresults of HINDCAST2.2 and HIND-625

CAST 2.3. Nevertheless, a change in the freshwater input from oneperiod to the other (for instance

between the 30 years preceding and following 1980), in the absence of an adequate initialisation of

the simulation, is not sufficient to account for the observedpositive trend in sea ice extent between

1980–2009. This conclusion is supported by the results of anadditional simulation, initialised in

January 1960 from a state extracted from NODA. This simulation is driven by external forcing and630

receives an additional freshwater input, following the spatial distribution displayed in Fig 6, equal

to −0.03Sv between January 1960 and December 1979 and abruptly increased to−0.01Sv in Jan-

uary 1980, i.e., a larger shift than in any of our simulationswith data assimilation or hindcasts. The

additional freshwater flux then remains constant until the end of the simulation in December 2009.

In this simulation, the sea ice extent decreases between 1960 and 1980 in response to the external635

radiative forcing and the negative freshwater perturbation (Fig S1 of the Supplementary Material).

The sea ice extent then rapidly increases after the abrupt change in the additional freshwater input in

January 1980 but decreases again after a few years.
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4 Summary and conclusions

The trend in sea ice extent derived from satellite observations is subject to uncertainties (e.g,640

Eisenman et al., 2014) but even the lowest estimate of this trend indicates a slight increase in Antarc-

tic sea ice extent that is not reproduced in our simulation driven by external forcing only.Assimi-

lating anomalies of the surface air temperature through thenudging proposal particle filter induces

an increase in the trend in simulated sea ice extent over recent decades in the Southern Ocean, com-

pared to the case where no observation is taken into account.This leads to a better agreement with645

satellite data than in the simulation without data assimilation, thelatterdisplayingareductionof the

extentin responseto the forcing. Further improvement is achieved if an additional autoregressive

freshwater flux is included during the data assimilation.This freshwater flux induces a larger spread

of the ensemble and thus allows a better efficiency of the particle filtering but, in some cases, may

lead to an excessive interannual variability of the model. The additional freshwater input may also650

compensatefor model deficiencies that affect the representation of thefreshwater cycle (in particular

the variability of the meltwater input), the ocean dynamics, the internal variability, etc.Overall, in

combination with the data assimilation, the additional freshwater input leads to simulated trends in

sea ice extent and concentration between 1980 and 2009 that reproduce well the observations. The

freshwater flux thus appears to play an important role on the simulated evolution of the sea ice, as al-655

ready pointed out in previous studies (e.g., Hellmer, 2004;Swingedouw et al., 2008; Bintanja et al.,

2013).

Hindcasts initialised from those simulations with data assimilation have allowed illustrating fac-

tors that can potentially increase the model skill to predict the trend in Southern Ocean sea ice over

the next decades. This is summarised into three points below.660

1. Initialising a hindcast simulation with a state extracted from a simulation that has assimilated

observations through a nudging proposal particle filter hasa significant impact on the simu-

lated trends in sea ice extent and concentration over the period 1980–2009. This indicates that

the information contained in the initial state influences the results of the simulation over multi-

decadal timescales, confirming the results of Zunz et al. (2014). As a consequence, an initial665

condition that adequately represents the observed state isrequired in order to perform skillful

predictions for the trend in sea ice extent over the next decades. Nevertheless, the conclusions

drawn from our hindcast simulations have to be considered cautiously since they are based

on the analyses of the only 30year period for which we have relevant observations. Similar

analyses could be performed for periods starting before 1980, using the reconstruction of the670

sea ice provided by the simulation with data assimilation astarget for the hindcast instead of

actual observations. However, this approach would be nearly equivalent to a perfect model

study, as proposed in Zunz et al. (2014).

2. It has been shown that the experimental design used to perform a prediction has to be consis-
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tent with the one applied in the simulation providing the initial state for the forecast simulation.675

In particular, a shift in the mean state of the sea ice has beenpointed out in the simulation with

data assimilation anda strongly varyingadditional freshwater flux(DA FWF 2), that could

lead to a model drift in the hindcast initialised from this simulation. Such a drift could be

prevented if a freshwater flux of amplitude similar to the oneapplied during the simulation

with data assimilation is included in the hindcast simulation.680

3. In hindcast simulations, theadditional freshwater input may contribute to reproduce a positive

trend in sea ice extent such as the observed one but is not the dominant element, in agreement

with the results of Swart and Fyfe (2013). Indeed, an abrupt increase in the additional fresh-

water flux at the beginning of the hindcast simulation, without an adequate initialisation of

the simulation, does not provide a long-term increase in seaice extent such as the one derived685

from the observations over the last 30 years.The strong link between the freshwater input

derived from the melting of the Antarctic ice sheet and the increase in sea ice extent between

1980 and 2009, suggested by Bintanja et al. (2013), is thus not confirmed in the present study.

Those resultssuggestthat the increase in ice extent, the surface cooling and the freshening sim-

ulated between 1980 and 2009, in both simulations with data assimilation and hindcasts using ad-690

ditional freshwater flux,is not dueto the anthropogenical forcing or to a particular large melting of

the ice sheet during this period. The evolution of the variables at the surface of the ocean after 1980

seems rather influenced by the state of the ocean in the 1970’s, characterised by a warm and salty

surface layer, a cold intermediate layer and a strong convection. This state is consistent with the

results of de Lavergne et al. (2014) and evolves towards a fresher and cooler upper ocean that allows695

a greater production of sea ice. In our experiments, this state in the late 1970’s is reached thanks to

variations in the freshwater input to the Southern Ocean. This flux is very likely playing a role but

we could not determine if it is amplified or not by our experimental design that allows variations of

this flux only and not of other forcings or model parameters. Whether the addition of a freshwater

flux could compensate for biases in the simulated sea ice in other climate models still needs to be700

investigated, a reduction of the model biases being also possible through other approaches. Overall,

the results that have been discussed here are rather encouraging and open perspectives to perform

predictions of the sea ice in the Southern Ocean over the nextdecades.
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Table 1. Summary of the simulations analysed in this study.

Simulation Number of

members

Time period Initialisation Data

assimilation

Additional freshwater flux during the

simulation

NODA 96 Jan 1850–Dec 2009 on 1 Jan 1850 NO NO

DA NOFWF 96 Jan 1850–Dec 2009 on 1 Jan 1850 YES NO

DA FWF 1 96 Jan 1850–Dec 2009 on 1 Jan 1850 YES Autoregressive FWF following Eq. 1.

DA FWF 2 96 Jan 1850–Dec 2009 on 1 Jan 1850 YES Autoregressive FWFfollowing Eq. 2.

HINDCAST 1 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA NOFWF

NO NO

HINDCAST 2.1 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO NO

HINDCAST 2.2 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF 1 between 1980 and 2009 (see

Fig. 6).

HINDCAST 2.3 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF 1, averaged over the period 1980–

2009 (= 0.01 Sv).

HINDCAST 3.1 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO NO

HINDCAST 3.2 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF 2 between 1980 and 2009 (see

Fig. 6).

HINDCAST 3.3 96 Jan 1980–Dec 2009 on 1 Jan 1980

from DA FWF

NO Ensemble mean of the FWF computed in

DA FWF 2, averaged over the period 1980–

2009 (=−0.03 Sv).
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Fig. 1. Spatial distribution of the additional freshwater flux included in model simulations.
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Table 2. Correlation between the ocean heat content in the first 100m below the surface and the ocean heat

content between−500m and−100m (2nd column) and correlation between the ocean heat contentand the

ocean salt content in the first 100m below the surface (3rd column), for the different simulations summarised in

Table 1. The correlation is computed over the period 1980 and2009, from the ensemble mean of the variables.

For the simulation NODA, the correlation computed for each member of the simulation and averaged over the

ensemble is given in brackets.

Simulation Correlation between the upper Correlation between the upper

and interior ocean heat content ocean heat and salt contents

NODA 0.89 (0.03) −0.94 (−0.02)

DA NOFWF 0.34 −0.28

DA FWF 1 −0.24 0.35

DA FWF 2 −0.84 0.78

HINDCAST 1 0.86 −0.94

HINDCAST 2.1 0.07 −0.03

HINDCAST 2.2 −0.44 0.44

HINDCAST 2.3 −0.32 0.27

HINDCAST 3.1 −0.92 0.89

HINDCAST 3.2 −0.40 0.37

HINDCAST 3.3 −0.23 0.29
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Ensemble mean +/− 1 std
Ensemble mean

Model linear fit 1980-2009 trend in the observations = 19.0 x 103 km2 yr-1

Observations

Observations linear fit

(c) DA_NOFWF– sea ice extent (d) DA_NOFWF – SIE 30-yr running trend
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(e) DA_FWF_1 – sea ice extent
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(f) DA_FWF_1 – SIE 30-yr running trend

(g) DA_FWF_2 – sea ice extent (h) DA_FWF_2 – SIE 30-yr running trend
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(a) NODA – sea ice extent (b) NODA – SIE 30-yr running trend
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Fig. 2. (a, c, e)Yearly mean sea ice extent anomalies with regard to 1980–2009 and(b, d, f) 30year running

trend in sea ice extent. Results are from(a, b) the simulation without data assimilation (NODA),(c, d) the model

simulation that assimilates anomalies of surface air temperature (DANOFWF), (e, f) the model simulation that

assimilates anomalies of surface air temperature and that is forced by an additional autoregressive freshwater

flux following Eq. (1) (DA FWF 1) and(g, h) the model simulation that assimilates anomalies of surfaceair

temperature and that is forced by an additional autoregressive freshwater fluxfollowing Eq. (2)(DA FWF 2).

The model ensemble mean is shown as the dark green line surrounded by one standard deviation shown as the

light green shade. Observations (Comiso, 1999, updated daily) are shown as the black line (cross) in(a, c, e, g)

(in b, d, f, h). The green (black) dashed line shows the linear fit of the model simulation (observations) in(a,

c, e, g). The values of the trend indicated in the (a, c eand g) correspond to the ensemble mean of the trends

along with the ensemble standard deviation for NODA. Trendsthat are (non-)significant at the 99 % level are

shown in green (red).
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(e) DA_FWF_2
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(d) DA_FWF_1

Fig. 3. Trend in yearly mean sea ice concentration between 1980 and 2009, shown for(a) the observations

(Comiso, 1999, updated daily),(b) the model simulation without data assimilation (NODA),(c) the model

simulation that assimilates anomalies of surface air temperature (DANOFWF), (d) the model simulation that

assimilates anomalies of surface air temperature and that is forced by an additional autoregressive freshwater

flux following Eq. (1) (DA FWF 1) and(e) the model simulation that assimilates anomalies of surfaceair

temperature and that is forced by an additional autoregressive freshwater fluxfollowing Eq. (2)(DA FWF 2).

Hatched areas highlight the grid cells where the trend is notsignificant at the 99 % level. The shaded grey areas

correspond to the land mask of the ocean model.
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NODA and simulations with DA Hindcasts
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NODA and simulations with DA Hindcasts
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NODA and simulations with DA Hindcasts

Fig. 4. Ensemble mean of yearly mean(a) ocean heat content in the first 100m below the surface,(b) ocean

heat content between−100 and−500m and (c) ocean salt content in the first 100m below the surface, for

the simulations summarised in Table 1. The ocean heat and salt contents are computed southward of 60◦ S. In

each panel(a,b,c), the curves on the left correspond to the results of NODA and of the simulations with data

assimilation, while the curves on the right correspond to the results of the hindcast simulations initialised from

DA NOFWF (HINDCAST1), from DA FWF 1 (HINDCAST 2.1, HINDCAST2.2 and HINDCAST2.3) and

from DA FWF 2 (HINDCAST 3.1, HINDCAST3.2 and HINDCAST3.3).
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(c) DA_FWF_1

Fig. 5. Yearly mean surface air temperature anomalies with regard to 1961–1990, averaged over the area

southward of 30◦ S, from(a) the model simulation without data assimilation (NODA),(b) the model simulation

that assimilates anomalies of surface air temperature (DANOFWF), (c) the model simulation that assimilates

anomalies of surface air temperature and that is forced by anadditional autoregressive freshwater flux following

Eq. (1) (DA FWF 1) and(d) the model simulation that assimilates anomalies of surfaceair temperature and

that is forced by an additional autoregressive freshwater flux following Eq. (2) (DA FWF 2). The model

ensemble mean is shown as the orange line, surrounded by one standard deviation shown as the light orange

shade. Observations (Brohan et al., 2006) are shown as the black line.
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(a) DA_FWF_1

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Year

F
W

F
 W

A
IS

 (
S

v
)

 

 

(a) DA_FWF_2

FWF WAIS ensemble mean +/− 1std
FWF WAIS ensemble mean
Mean over the whole period

Mean over the period 1980−2009
Linear trend over the period  1980−2009

Fig. 6. Freshwater flux(a) from the model simulation with data assimilation and additional autoregressive

freshwater fluxfollowing Eq. (1) (DA FWF 1) and(b) from the model simulation with data assimilation and

additional autoregressive freshwater flux following Eq (2)(DA FWF 2). The ensemble mean is shown as the

blue solid line, surrounded by one standard deviation shownas the light blue shade. The dashed blue (purple)

line shows the mean over the period 1850–2009 (1980–2009). The linear fit between 1980 and 2009 is shown

as the solid purple line.
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Model linear fit 1980-2009 trend in the observations = 19.0 x 103 km2 yr-1
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Observations linear fit
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Fig. 7. Yearly mean sea ice extent anomalies with regard to 1980–2009, for thesevenhindcast simulations

initialised on 1 January 1980 through data assimilation (see Table 1 for details). The model ensemble mean is

shown as the dark green line, surrounded by one standard deviation shown as the light green shade. Observations

(Comiso, 1999, updated daily) are shown as the black line. The green (black) dashed line shows the linear fit of

the model simulation (observations). The values of the trend indicated in each panel correspond to the ensemble

mean of the trends along with the ensemble standard deviation. Trends that are (non-)significant at the 99 %

level are shown in green (red).
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(f) HINDCAST_3.2
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(b) HINDCAST_2.1
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(c) HINDCAST_2.2
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(d) HINDCAST_2.3

Fig. 8. Trend in yearly mean sea ice concentration between 1980 and 2009, for thesevenhindcast simulations

initialised on 1 January 1980 through data assimilation (see Table 1 for details). Hatched areas highlight the

grid cells where the trend is not significant at the 99 % level.The shaded grey areas correspond to the land mask

of the ocean model.
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