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Abstract. Modeling of grounding line migration is essen-
tial to simulate accurately the behavior of marine ice sheets
and investigate their stability. Here, we assess the sensitivity
of numerical models to the parameterization of the ground-
ing line position. We run the MISMIP3D benchmark experi-5

ments using a two-dimensional shelfy-stream approximation
(SSA) model with different mesh resolutions and different
sub-element parameterizations of grounding line position.
Results show that different grounding line parameterizations
lead to different steady state grounding line positions as well10

as different retreat/advance rates. Our simulations explain
why some vertically depth-averaged model simulations devi-
ate significantly from the vast majority of simulations based
on SSA in the MISMIP3D benchmark. The results reveal that
differences between simulations performed with and with-15

out sub-element parameterization are as large as those per-
formed with different approximations of the stress balance
equations in this configuration. They also demonstrate that
the reversibility test is passed at relatively coarse resolution
while much finer resolutions are needed to accurately capture20

the steady-state grounding line position. We conclude that
fixed grid SSA models that do not employ such a parameteri-
zation should be avoided, as they do not provide accurate es-
timates of grounding line dynamics, even at high spatial res-
olution. For models that include sub-element grounding line25

parameterization, in the MISMIP3D configuration, a mesh
resolution finer than 2 km should be employed.

1 Introduction

Mapping of grounding lines, where ice detaches from the un-30

derlying bedrock and becomes afloat in the ocean, is possi-
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ble using satellite remote sensing with either visible imagery
(Bohlander and Scambos, 2007) or differential radar interfer-
ometry (Goldstein et al., 1993; Rignot et al., 2011b). Obser-
vations show that grounding lines have a dynamic behavior.35

This is particularly the case in the Amundsen Sea sector of
West Antarctica, where their migration inland reaches more
than 1 km/yr on Pine Island and Thwaites Glacier (Rignot
et al., 2011a). Accurate knowledge of grounding line posi-
tions as well as their evolution in time is therefore critical to40

understand ice sheet dynamics. Grounding lines are indeed
a fundamental control of marine ice sheet stability (van der
Veen, 1985; Hindmarsh and Le Meur, 2001), and they also
determine the shape of ice-shelf cavities, which affect ocean-
induced melting rates (Schodlok et al., 2012). Grounding45

line dynamics are strongly non-linear, with long episodes of
relative stability interrupted by significant retreat, this evolu-
tion being controlled, among other factors, by basal topogra-
phy (Weertman, 1974; Durand et al., 2009b). The Antarctic
ice sheet is surrounded by floating ice shelves of varying size,50

and modeling of this transition zone is therefore essential to
simulate the evolution of polar ice sheets in our changing cli-
mate.

However, accurate modeling of this transition zone re-
mains both a scientific and technical challenge. Three-55

dimensional (3D) full-Stokes (FS) models are required in or-
der to fully resolve the contact problem between the ice and
the underlying bedrock (Nowicki and Wingham, 2008; Du-
rand et al., 2009b,a; Favier et al., 2014). This approach is
computationally intensive and sensitive to model data, so it60

has been applied to synthetic geometries mainly and starts to
be applied for real glaciers (Favier et al., 2014). Alternative
approaches that have been widely used rely on the hydro-
static criterion to estimate the grounding line position: ice
shelves are assumed to float hydrostatically in ocean water65

(Huybrechts, 1990; van der Veen, 1985; Ritz et al., 2001).
Models often rely on fixed grids or meshes for which each
grid cell or element is either entirely floating or entirely
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grounded. This method limits the precision of the ground-
ing line position and simulations show a strong dependency70

on grid size. A fine mesh resolution is then required in the
grounding zone in order to accurately capture grounding line
migration and reduce numerical artifacts caused by model
discretization (Vieli and Payne, 2005; Katz and Worster,
2010). Using sub-grid parameterization, which tracks the75

grounding line position within the element, improves mod-
els based on hydrostatic equilibrium condition and reduces
their dependency on grid size (Pattyn et al., 2006; Glad-
stone et al., 2010a; Winkelmann et al., 2011). Another al-
ternative is to use moving grid or adaptive mesh refinement,80

so that the mesh or grid resolution follows the grounding
line transition zone (Goldberg et al., 2009; Cornford et al.,
2013). These methods overcome the difficulties associated
to grounding line discretization but lead to more complicated
frameworks and remain difficult to implement in parallelized85

architectures. Due to the high computational time associated
with fine resolution meshes or grids, most studies investi-
gating the impact of grounding line parameterization, mesh
resolution or stress balance approximation are performed
on one-dimensional (1D) flowline or two-dimensional (2D)90

flowband models (e.g., Vieli and Payne (2005); Pattyn et al.
(2006); Schoof (2007a,b); Katz and Worster (2010); Glad-
stone et al. (2010a); Pattyn et al. (2012)). They show the
strong dependency of model results on mesh resolution in
the grounding line transition zone. They also demonstrate95

that moving grid models explicitly tracking grounding line
position are able to reduce the dependency of results on mesh
resolution. Analyses on 2D planview or 3D models confirm
these results (Goldberg et al., 2009; Cornford et al., 2013).
Recent results using planview shallow models and finite dif-100

ferences (Feldmann et al., 2014) also show that including
grounding line sub-grid parameterization in shallow models
allows to capture grounding line reversibility at low resolu-
tions without including a flux correction.

Benchmark efforts, such as the Marine Ice Sheet Model In-105

tercomparison Project (MISMIP), that compare results from
a variety of ice flow models and spatial resolutions, have been
performed for both flow line (MISMIP) and planview (MIS-
MIP3D) models. They compare the sensitivity of modeled
grounding line migration to numerical implementation (Pat-110

tyn et al., 2012, 2013; Pattyn and Durand, 2013). Results
indicate that planview models need to include at least mem-
brane stress components to be able to capture the grounding
line position and that this position depends on the degree of
sophistication of the model. Results also emphasize the need115

to use spatial resolution finer than 500 m when relying on
fixed grid discretization and finer than 5 km when sub-grid
parameterizations are included in the MISMIP3D configura-
tions (Pattyn et al., 2013).

These conclusions are however drawn from a variety of120

models based on different softwares and different approx-
imations for the stress balance equations, with different
grounding line parameterizations, using either structured or

unstructured meshes that are either fixed or adapted with
time. It is therefore difficult to attribute the differences of the125

model results to either the approximation made in the stress
balance equations or to the parameterization adopted to cap-
ture the grounding line position. In the MISMIP3D experi-
ments for example, some results based on the shelfy-stream
approximation (SSA, MacAyeal, 1989) deviate significantly130

from the vast majority of SSA model results. The differences
in the grounding line positions between models based on the
SSA are either due to differences in grounding line parame-
terization or domain discretization.

In this study we assess the impact of different sub-element135

parameterizations for hydrostatic grounding line treatment
using a single ice flow model. Experiments are based on
the MISMIP3D configurations. We use the Ice Sheet System
Model (ISSM, Larour et al. (2012)) to solve the 2D shelfy-
stream equations with spatial resolutions varying between 5140

km and 250 m. We analyze the grounding line steady state
position, its evolution following a perturbation in basal fric-
tion and the reversibility of its evolution for the different
grounding line parameterizations. We conclude on the re-
quirements needed to accurately capture grounding line mo-145

tion and the impact of the underlying parameterization.

2 Model

2.1 Field equations

The 2D SSA (SSA, MacAyeal, 1989) is employed for both
grounded and floating ice, so membrane stress terms are in-150

cluded but all vertical shearing is neglected. Ice viscosity, µ,
is considered to be isotropic and to follow Glen’s flow law
(Cuffey and Paterson, 2010):

µ=
B

2ε̇e
n−1
n

(1)

where B is the ice viscosity, ε̇e the effective strain rate and
n= 3 Glen’s exponent.155

A non-linear friction law that links basal shear stress to
basal sliding velocity is applied on grounded ice:

τb =C|ub|m−1ub (2)

where τb is the basal shear stress, ub the basal sliding veloc-
ity, C the friction coefficient andm the sliding law exponent.
C is defined on each node and the friction coefficient there-160

fore varies linearly within an element. Thickness evolution
is dictated by mass conservation.

The position of the grounding line is determined by a
floatation criterion: ice is floating if its thickness, H , is equal
or lower than the floating height Hf defined as:165

Hf =−ρw
ρi
r, r < 0 (3)
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where ρi is the ice density, ρw the ocean density and r the
bedrock elevation (negative if below sea level). Grounding
line is therefore located where H =Hf :

H >Hf ice is grounded (4)
H =Hf grounding line position (5)170

H <Hf ice is floating (6)

2.2 Domain discretization

The domain is discretized with a 2D isotropic uniform un-
structured triangle mesh. Velocity and geometry fields are
computed on each vertex of the mesh using Lagrange P1175

(piecewise linear) finite elements. Element size varies be-
tween 5 km for the lowest resolution and 250 m for the high-
est resolution and is uniform within each mesh.

Grounding line position (Fig. A1a) is based on the hydro-
static equilibrium condition as described above and three dif-180

ferent techniques are used to parameterize its position. As the
same SSA equations are used on the entire domain to com-
pute the stress balance, the only difference between grounded
and floating ice is the presence or absence of basal friction.

In the first method, each element of the mesh is either185

grounded or floating: floatation criterion is determined on
each vertex of the triangle and if at least one vertex of the
triangle is floating, the element is considered floating and
no friction is applied. Otherwise, if the three vertices are
grounded, the element is considered grounded. This is the190

simplest approach used by fixed grid models to determine
grounding line positions (Vieli and Payne, 2005), in which
the grounding line is defined as the last grounded point. We
refer to this technique as no sub-element parameterization
(NSEP, Fig. A1b).195

In the second method, the floating condition is a 2D field
and the grounding line position is determined by the line
where H =Hf , so it is located anywhere within an element.
Some elements are therefore partly grounded and partly float-
ing. In this case the initial basal friction C is reduced to200

match the amount of grounded ice in the element as proposed
by Pattyn et al. (2006) and Gladstone et al. (2010a) but for a
2D element:

Cg =C
Ag

A
(7)

where Cg is the applied basal friction coefficient for the el-
ement partially grounded, Ag is the area of grounded ice of205

this element and A is the total area of the element. As all
fields and data are computed using piecewise linear function,
the grounding line position within each triangle is a straight
line. This technique is referred to as sub-element parameter-
ization 1 (SEP1, Fig. A1c) in the remainder of the paper.210

In the third method, the grounding line position is located
anywhere within an element as for SEP1, but the basal fric-
tion computed for partly grounded elements differs. We take

advantage of finite element properties to integrate the basal
friction only on the part of the element that is grounded. This215

can be done simply by changing the integration area from
the initial element to the grounded part of the element, over
which the basal friction is unchanged. This technique is re-
ferred to as sub-element parameterization 2 (SEP2, Fig. A1d)
in the remainder of the manuscript.220

In the fourth method, the sub-element parameterization
is based on the number of integration points. We test the
performance of this method by looking at the steady-state
grounding line position (see experiments description below)
for a spatial resolution of 1km. The finite element method225

consists of calculating integrals over each element using a
given set of integration points, also called Gaussian quadra-
ture (Zienkiewicz and Taylor, 1989). The number of integra-
tion points in each element depends on the degree of polyno-
mial functions being integrated, with more integration points230

required for polynomial functions of higher degree. In our
case, the basal friction goes from zero on the floating part
of the element to the value specified in the experiment sec-
tion, so this step function would require an infinite number
of integration points to be exact. An alternative to the two235

SEP described above is to increase the number of integration
points in the integrals and include basal friction for integra-
tion points whose thickness is higher than the floating height.
SEP3 only allows a finite number of grounding line positions
to be captured within the element contrary to the other two240

SEP. We tested this alternative solution on the 1 km mesh,
with integration orders going from 2 to 20, which is equiva-
lent to a number of integration points varying between 3 and
79. This technique is referred to as sub-element parameteri-
zation 3 (SEP3, Fig. A1e).245

Appendix A details the different descriptions of the stiff-
ness matrix associated to basal friction for all the sub-
element parameterizations.

3 Experiments

We reproduce the MISMIP3D setup (Pattyn et al., 2013) and250

run similar experiments to investigate the influence of spatial
resolution and grounding line parameterization on grounding
line position and migration. Ice flows over a bedrock with
a constant downward sloping bed that varies only in the x
direction. The bedrock elevation is defined as:255

b(x,y) =−100−x (8)

Ice viscosity, B, is uniform over the whole domain and
equal to 2.15×108 Pa s−1/3; the basal friction coefficient,
C, is also uniform for all grounded ice and equal to 107 Pa
m−1/3 s1/3, so on C is constant over each element except for
those containing the grounding line, where it varies linearly;260

the friction law exponent, m is equal to 1/3. The domain
is rectangular and stretches between 0 and 800 km in the x
direction and 0 and 50 km in the y direction. The boundary
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conditions applied are as follows: a symmetric ice divide is
considered at x= 0 so the velocity is equal to zero. Water265

pressure is applied at x= 800 km to model contact with the
ocean. There is a symmetry axis at y= 0 that represents the
centerline of the ice stream and a free slip condition for y=
50 km, so there is no flux advected through these surfaces
and the tangential velocity is equal to zero.270

Starting from a thin layer of ice of 10 m, a constant accu-
mulation ȧ of 0.5 m yr−1 is applied over the whole domain.
The marine ice sheet evolves until a steady state configura-
tion is reached. At each time step, we compute the ice veloc-
ity, its thickness, the new grounding line position and update275

the upper and lower surfaces.
This steady state configuration is then perturbed by chang-

ing the basal friction coefficient C. This parameter is ad-
justed spatially using a Gaussian bump such that:

C? =C

[
1−0.75 exp

(
− (x−xb)2

2x2
c

− (y−yb)2

2y2
c

)]
(9)

with C? the new friction coefficient, xb the grounding line280

position at y= 0 km in the steady state configuration, yb = 0,
xc = 150 km and yc = 10 km the spatial extent of the per-
turbation along the x and y directions. The model is run
forward in time for 100 years. The sliding friction is then re-
set to its initial uniform value and the model runs forward285

in time until a new steady state configuration is reached.
This experiment is designed to assess the ability of models to
provide reversible grounding line positions under simplified
conditions (Pattyn et al., 2013). The marine ice sheet theory
states that ice resting on a down sloping bed without lateral290

variations exhibits only one steady state grounding line po-
sition (Schoof, 2007b). MISMIP benchmark demonstrated
that failure to reproduce the reversibility test is often associ-
ated with coarse mesh resolution.

Steady state and reduced friction experiments are run with295

five different meshes, with spatial resolution ranging from
5 km to 250 m, for a number of elements varying between
2553 and 1 013 894 depending on the spatial resolution. The
first three grounding line parameterizations (NSEP, SEP1
and SEP2) are run for all mesh resolutions, resulting in a total300

of 15 simulations. The last grounding line parameterization
(SEP3) is only run to find the initial steady state grounding
line position for meshes of 5 km and 1 km resolution, with a
varying number of integration points (19 simulations).

4 Results305

We consider that steady state is reached when the rate of
change in ice thickness, grounding line position and ice ve-
locity are all respectively lower than 10−5 m/yr , 10−3 m/yr
and 10−5 m/yr2, respectively. It takes approximately 50,000
years to reach steady state. We need to ensure the Courant-310

Friedrichs-Lewy condition (CFL, Courant et al., 1967) for

all models, so meshes with finer resolution require smaller
time steps than the ones with coarser resolution. The initial
grounding line position for each of the 15 models is summa-
rized in Table A1. It varies between x= 188 km and x= 632315

km depending on the model resolution and grounding line
parameterization. In the case of NSEP, the grounding posi-
tion varies by several hundreds of kilometers (between 188
km and 558 km), while SEP1 and SEP2 lead to variations in
steady state grounding line positions of 50 km or less (be-320

tween 605 km and 632 km and between 550 km and 603 km
respectively for the SEP1 and SEP2). This spread in ground-
ing line positions is larger than in Feldmann et al. (2014).
Steady state grounding line positions at y= 0 km for all pa-
rameterizations and mesh resolutions are shown on Fig. A2.325

Grounding line is moving upstream as the mesh resolution
increases for SEP1, while it is moving downstream for NSEP
and SEP2. Steady-state grounding line positions found with
SEP3 are in good agreement with SEP2 for both 5 km and 1
km mesh resolutions. It varies between x= 540 and x= 497330

km, and x= 584 and x= 589 km for mesh resolutions of 5
and 1 km, depending on the integration order (see A5), which
is respectively within 10 km and 3 km of SEP2 for a similar
resolution when using enough integration points.

As for the domain configuration, the model parameteriza-335

tion and forcings do not vary in the y direction and we have
uy(x,0) = uy(x,50) = 0, the grounding line position should
therefore be a straight line parallel to the y axis. In practice,
this position slightly varies with y, especially since we use
an unstructured mesh. We define the grounding line span as:340

δGL= max(xgi)−min(xgi) (10)

where xgi are all grounding line positions for 0<y< 50 km.
The grounding line span is presented in Table A1 and pro-
vides a quantification of the spread of grounding line posi-
tions. δGL is about twice the size of the elements for NSEP
and less than half this size for SEP1 and SEP2.345

The perturbation experiment is performed to analyze the
reversibility of the grounding line position in a simplified
configuration. Fig. A3 shows that grounding line advances
along the glacier centerline as the basal friction is reduced in
this area, and retreats along the free slip boundary. Advance350

and retreat extents vary depending on grounding line parame-
terizations and mesh resolutions. Distances of advance along
the centerline and retreat along the free-slip boundary after
100 years for all 15 simulations are presented in Table A2.
Advances are more pronounced and retreats are reduced at355

low resolutions, except for SEP1 that exhibits similar ad-
vance and retreat for all mesh sizes. Both SEP1 and SEP2
present advance and retreat after 100 years that converged
toward 10 km and 6.5 km respectively at high resolution.

The updated steady state position reached after the pertur-360

bation experiment is identical to the initial steady state po-
sition (Fig. A3), except for NSEP simulations at low reso-
lution (more than 1 km resolution), so most simulations ex-
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hibit reversibility. The difference between the initial and final
grounding line position is less than 10 meters in all the cases365

where the two steady state grounding line positions superim-
pose on Fig. A3.

To analyze the motion of the grounding line during the
perturbation experiment, Fig. A4 presents the 100 year ad-
vance and first 100 year retreat of the grounding line position370

during the basal perturbation experiment for the different res-
olutions and grounding line parameterizations. Migration of
grounding line position for y = 0 and y = 50 km is shown
(one value every year). For NSEP (first column), grounding
line position advances and retreats in discrete steps that are375

linked to the element size. For both SEP1 and SEP2 (second
and third columns), the advance and retreat are continuous.
Grounding line advance at y= 50 km takes between 20 and
40 years to reach its most advanced position. In the case
of NSEP, the grounding position remains stable after the ad-380

vance, while for SEP1, SEP2 and NSEP at 250 m resolution,
it is followed by a small retreat. Grounding line retreat at
y = 0 km takes longer than the advance at y = 50 km and
is still evolving after 100 years in most cases, which shows
that the grounding line is still far from having reached a new385

steady state position.

5 Discussion

In this study, we investigate the influence of grounding line
parameterization on grounding line steady state position as
well as its dynamic response to a perturbation in basal fric-390

tion in the grounding line area. The three grounding line
parameterizations all show a dependence on mesh resolution
as well as convergence of the grounding line steady state po-
sition with finer mesh resolution. Convergence of grounding
line steady state position is achieved within a few kilome-395

ters for SEP1 and SEP2, while it has not fully converged for
NSEP. Even at 250 m resolution, grounding line position us-
ing NSEP is located several tens of kilometers upstream of
SEP1 and SEP2 grounding line position. This behavior is
also observed for the HSE model in Pattyn et al. (2013) that400

was also relying on ISSM and did not include sub-element
parameterization of grounding line position. The mesh res-
olution of this model around the grounding line was 200 m
and the grounding line steady state position is located at 545
km, which is about 50 km upstream of the other SSA mod-405

els and consistent with the results presented here. Indeed,
in the case of NSEP, the grounding line is located at the last
grounded point. Basal friction downstream of this point is set
to zero so the resistance from basal friction is reduced, and
ice flows faster. This leads to a thinner ice sheet and a simu-410

lated grounding line position upstream of the one computed
with models that include sub-element parameterization. It
is a coincidence that this position is similar to models that
include vertical shear, which reduces the effective ice viscos-
ity and also results in faster flow and grounding line position415

farther upstream (Pattyn et al., 2013). Results of the FPA2
model, also performed with an SSA model, NSEP and the
same 200 m resolution shows a similar behavior to a smaller
extent, with a grounding line position located around 580 km.

The results presented here show that proper grounding line420

parameterization is crucial for marine ice sheet simulations
as discrepancies of several tens of kilometers exist between
the different parameterizations and sub-element parameteri-
zation should be included. The steady state grounding line
positions using SEP1 and SEP2 are consistent with models425

presented in Pattyn et al. (2013). Differences between simu-
lations carried out with and without SEP are as large as those
performed with different stress balance approximations in
Pattyn et al. (2013), demonstrating the critical impact of SEP.
For example at 500 m resolution, the steady-state grounding430

line position varies between 522 km and 605 km for NSEP
and SEP1 respectively, so more than 80 km. In Pattyn et al.
(2013), the same grounding line position computed with FS
and hybrid L1L2 models (Hindmarsh, 2004) varies by less
than 10 km, and by up to 80 km between FS and SSA mod-435

els.
Some previous results on flowband models (Gladstone

et al., 2010a) exhibit unstable behavior in grounding line re-
treat in the case of NSEP. We did not experience this kind
of behavior and all simulations were stable and converged to440

a steady state position. Grounding line advance and retreat
was also continuous and located anywhere within the ele-
ment, with no sign of preferred position within the element
as observed in Gladstone et al. (2010a) when using SEP1
and SEP2. The second horizontal dimension of our model445

and the unstructured nature of our mesh may explain these
differences.

As expected, grounding line span, δGL, is higher than
model resolution for the NSEP while it is less than half of the
model resolution for SEP1 and SEP2 (see Table A1). Differ-450

ences in grounding line position between models based on a
500 m and 250 m mesh resolution is respectively 25 km, 0.5
km and 3.2 km for NSEP, SEP1 and SEP2. This suggests that
grounding line position has not converged for NSEP, while
the convergence error is 0.5 km and 3.2 km respectively for455

the SEP1 and SEP2, as defined in Gladstone et al. (2010a,b).
In the reversibility test, all models except NSEP at a res-

olution equal or higher than 1 km satisfy the reversibility
condition. Numerical requirement to satisfy the reversibil-
ity criterion is therefore a resolution below 1 km for NSEP;460

whereas all models based on sub-element parameterization
exhibit reversibility even when relying on a coarse mesh.
These results are consistent with Feldmann et al. (2014): re-
versibility is observed for grid resolutions lower than 2 km
for NSEP and with grid resolutions as low as 16 km when465

SEP is applied. The reversibility criterion is a however nec-
essary condition that provides insights in the numerical as-
pects of the marine ice sheet model and the simulations, but
this test can be passed at relatively low resolutions for which
steady-state grounding line positions are not accurate. It470
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therefore does not guarantee the accuracy of the numerical
treatment of the grounding line and sufficient mesh resolu-
tion, as suggested by the large number of our simulations that
verify the reversibility with different steady state grounding
line positions.475

If we compare SEP1 and SEP2, Fig. A2 shows that they
both converge towards the same position for fine mesh res-
olutions, but that positions at coarser resolutions are up-
stream of the “converged” position for SEP1, and down-
stream for SEP2. The dynamic advance is also slightly dif-480

ferent: grounding line advance at y= 0 km is faster and goes
farther for the SEP1. It is also associated to a larger retro-
grade retreat in the second part of the experiment, which is
especially pronounced at low resolutions. The grounding line
retreat at y= 50 km is also larger for SEP1 at low resolution,485

but both exhibit similar behaviors for resolutions finer than 2
km. A mesh resolution finer than 2 km should therefore be
employed to accurately capture dynamic behavior or marine
ice sheet in this configuration. SEP2 is a more “exact” so-
lution, as basal friction is integrated over the exact grounded490

part of the element, while SEP1 uses an area scaling of the
basal friction. In this experiment, the basal friction is uni-
form over the whole domain, so it is not surprising that SEP1
and SEP2 lead to similar results. We expect greater differ-
ences to appear in the case where basal friction varies over495

the domain, but this is beyond the scope of this paper.
SEP3 was tested only to find the steady-state position of

the grounding line on the 5 km and 1 km meshes. This
method only allows a finite number of grounding line posi-
tions to be captured within the element contrary to the other500

two SEP. We tested this solution with integration orders go-
ing from 2 to 20. Results in Fig. A5 show that increasing
the number of gauss points only have an impact on ground-
ing line position for coarse mesh resolutions. For the 1 km
mesh, integration with order of 4 or below leads to one posi-505

tion, and integration with order of 5 and above leads to a sec-
ond position; however, the grounding line position is within
3 km of the SEP2. For the 5 km mesh, the spread in ground-
ing line positions is much larger, with steady-state grounding
line positions varying by more than 50 km. If the integration510

order is greater than 12, however, these positions is located
within 10 km of the SEP2 position. Increasing the number
of integration points is therefore a simple solution to include
basal friction in a portion of the element in a finite element
framework, and provides results similar to other sub-element515

parameterizations if the integration order is sufficient. This
method should be further investigated using a larger range of
mesh resolutions to ensure convergence of the grounding line
position at finer mesh resolutions.

The results presented in this paper were all performed520

using a 2D SSA model and unstructured uniform isotropic
meshes. Refinement away from the grounding line is impor-
tant to accurately capture shear margins (Raymond, 1996) or
topography that varies over short distances, but should not be
uniform and be based, for example, on the Hessian of the ve-525

locity (Morlighem et al., 2010). Increasing mesh resolution
has a double impact on computational time. First, increasing
the number of degrees of freedom increases computational
time, mainly when solving the linear systems. Second, as
the elements are smaller, the time steps allowed in transient530

simulations in order to fulfill the CFL condition are reduced.
Fine mesh resolution is therefore necessary in critical areas
but alternatives less computationally intensive should also be
explored. Adding grounding line parameterizations is a sim-
ple improvement as grounding line positions are better cap-535

tured at no additional cost. Sub-element parameterization al-
lows grounding line position to be anywhere within an ele-
ment, but the shape of the grounding line is still constrained
by the mesh resolution: exact grounding line position within
an element remains a straight line if piecewise linear ele-540

ments are used. Mesh refinement and parameterizations are
therefore two methods that should be combined.

This study shows that different grounding line parameter-
izations lead to different grounding line steady state posi-
tions as well as different dynamic behaviors. Differences545

in model simulations performed with and without SEP are
as large as differences between models relying on different
ice flow approximations in the MISMIP3D results (Pattyn
et al., 2013), which demonstrate the importance of ground-
ing line parameterization. We expect our results to be similar550

for higher-order (HO) models (Blatter, 1995; Pattyn, 2003).
This is because HO models are similar to SSA (HO models
include vertical shear stress as well), and the grounding line
position is based on the hydrostatic condition in both cases.
Models that do not include sub-element parameterizations555

will need a significantly finer mesh resolution to converge,
and the grounding line position may likely be located further
upstream than those based on a sub-element parameteriza-
tion. Recent studies show that relying on full-Stokes in some
critical areas in the model domain is necessary (Hindmarsh,560

2004; Gudmundsson, 2008; Morlighem et al., 2010), and that
grounding line position is better resolved using a contact me-
chanics condition in this case (Nowicki and Wingham, 2008;
Durand et al., 2009b). This condition, however, is only eval-
uated on the edge or face on which the stress tensor is com-565

puted, and no SEP has yet been formulated for such models.
This may explain why a very fine resolution on the order of
tens of meters must be employed to model grounding line
dynamics with FS in some cases (Durand et al., 2009b).

6 Conclusions570

In this study, we used a two-dimensional shelfy-stream ap-
proximation with fixed unstructured meshes of varying reso-
lution and the MISMIP3D set-up to investigate the impact of
several grounding line parameterizations on grounding line
dynamics. We show that mesh refinement and grounding575

line parameterization both have a significant influence on
modeled grounding line positions, as well as advance and re-
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treat rates. Models that do not use sub-element parameteriza-
tions of grounding line position exhibit a steady state ground-
ing line position located at least several tens of kilometers580

further upstream than those computed with sub-element pa-
rameterizations, even at a high spatial resolution of 250 m.
Differences between simulations performed with and with-
out sub-element parameterization are as large as those per-
formed with different approximations of the stress balance585

in this configuration and the reversibility criterion is satisfied
at a much coarser resolution that the one required to reach
convergence for the steady-state grounding line position. We
therefore do not recommend using fixed mesh models that do
not rely on sub-element parameterization unless sensitivity590

to mesh resolution is thoroughly tested. All the sub-element
parameterizations tested converged towards the same results
at high resolution, and we suggest that mesh refinement in
grounding line areas should remain below about two kilo-
meter, as results with different sub-parameterizations are all595

similar at these resolutions in the simulations presented here.

Appendix A Description of basal friction integration

We detail here the stiffness matrices associated to basal fric-
tion on grounded ice for the different sub-element parame-
terizations. Let V be the space of kinematically admissible600

velocity fields and Φ= (φx,φy)∈V a kinematically admis-
sible velocity field. For any Φ∈V the stiffness matrix in the
case of NSEP is:

Kf =

∫
Γg

Cub ·ΦdΓ (A1)

where Γb is the lower surface of the ice sheet where ice is
grounded.605

Using a decomposition over the elements and using inte-
gration points to calculate the integral gives:

Kf =
∑
Eg

∑
g

Cub(g) ·Φ(g)Wg (A2)

where Eg are the grounded element, g the integration points
used for the integration andWg the weight associated to each
integration point.

For SEP1, the friction coefficient is affected by the
grounded area of each element, so the stiffness matrix is:610

Kf =
∑
Eg

∑
g

Cgub(g) ·Φ(g)Wg (A3)

where Cg , Eq. 7, is the applied basal friction coefficient
for elements partially grounded (Cg =C for elements com-
pletely grounded).

For SEP2, the friction is applies only on the grounded part
of the element, so the domain of integration is changed to Ẽg615

instead of Eg:

Kf =
∑
Ẽg

∑
g

Cub(g) ·Φ(g)Wg (A4)

where Ẽg corresponds exactly to the brown area on fig.A1d.
In the code, this is done creating sub-regions within each el-
ement partly grounded by determining the exact location of
the points where H =Hf and changing the integration do-620

main over these sub-regions.
For SEP3, the stiffness matrix is changed to:

Kf =
∑
Eg

∑
g

Cδ(g)ub(g) ·Φ(g)Wg (A5)

where δ(g) is evaluated at each integration point:

δ(g) =

{
1 if H >Hf

0 if H ≤Hf
(A6)
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Table A1. Initial grounding line position and span for the 15 simu-
lations.

GL Parameterization Resolution GL(y= 0 km) GL(y= 50 km) δGL

NSEP 5 km 187.5 km 188.4 km 5,009 m
NSEP 2 km 406.3 km 407.6 km 3,439 m
NSEP 1 km 481.2 km 480.3 km 2,000 m
NSEP 500 m 522.7 km 522.2 km 879 m
NSEP 250 m 558.4 km 558.2 km 440 m

SEP1 5 km 631.7 km 631.9 km 782 m
SEP1 2 km 609.8 km 610.2 km 670 m
SEP1 1 km 604.9 km 604.8 km 292 m
SEP1 500 m 605.0 km 605.0 km 148 m
SEP1 250 m 605.5 km 605.6 km 108 m

SEP2 5 km 550.3 km 551,1 km 1215 m
SEP2 2 km 575.0 km 574.8 km 429 m
SEP2 1 km 592.2 km 591.9 km 381 m
SEP2 500 m 599.1 km 599.1 km 170 m
SEP2 250 m 603.3 km 603.4 km 126 m

Table A2. Grounding line displacement during the perturbation ex-
periment for the 15 simulations.

GL Parameterization Resolution ∆GL(y= 0 km) ∆GL(y= 50 km)

NSEP 5 km 31.3 km -12.5 km
NSEP 2 km 18.8 km -2.1 km
NSEP 1 km 18.7 km -2.0 km
NSEP 500 m 15.6 km -2.6 km
NSEP 250 m 13.1 km -4.8 km

SEP1 5 km 9.6 km -7.1 km
SEP1 2 km 10.0 km -6.9 km
SEP1 1 km 9.8 km -6.5 km
SEP1 500 m 10.0 km -6.4 km
SEP1 250 m 10.1 km -6.4 km

SEP2 5 km 15.1 km -4.1 km
SEP2 2 km 12.1 km -5.0 km
SEP2 1 km 10.4 km -6.1 km
SEP2 500 m 10.6 km -6.2 km
SEP2 250 m 10.4 km -6.3 km
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Exact grounding line position

Sub-element Parameterization 1
(SEP1)

Sub-element Parameterization 2
(SEP2)

No Sub-element Parameterization
(NSEP)
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Sub-element Parameterization 3
(SEP3)

c

Exact grounding line

Grounded element with 
reduced friction

Grounded element
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Floating integration 
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Grounded integration 
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Fig. A1. Grounding line discretization. Grounding line exact location (a), no sub-element parameterization (NSEP, b), sub-element parame-
terization 1 (SEP1, c), sub-element parameterization 3 (SEP2, d) and sub-element parameterization 3 (SEP3,e).
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Fig. A2. Steady state grounding line position in y= 0 as a function of mesh refinement for NSEP (blue stars), SEP1 (green crosses) and
SEP2 (red circles).
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Fig. A3. Initial steady state grounding line positions in the (x,y) plane (black line), position 100 years after the basal perturbation is introduced
(red line) and new steady state position after the basal friction is reset to its initial value (blue line). Where black line is not visible, black and
blue lines superimpose. x and y axis have the same scale for all plots.
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Fig. A4. Time-dependent position of the grounding line along the symmetry axis (y= 0) and the free slip border (y= 50) during (respectively
light red and dark red) and after (respectively light teal and dark teal) the friction perturbation for coarse mesh resolutions. y axes have the
same scale for all simulations. x axes (time) is after the perturbation experiment (teal lines)
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