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Abstract

We present benchmark experiments to test the implementation of enthalpy and the cor-
responding boundary conditions in numerical ice sheet models. Since we impose several
assumptions on the experiment design, analytical solutions can be formulated for the pro-
posed numerical experiments. The first experiment tests the functionality of the boundary5

condition scheme and the basal melt rate calculation during transient simulations. The sec-
ond experiment addresses the steady-state enthalpy profile and the resulting position of
the cold–temperate transition surface (CTS). For both experiments we assume ice flow in
a parallel-sided slab decoupled from the thermal regime.

We compare simulation results achieved by three different ice flow-models with these10

analytical solutions. The models agree well to the analytical solutions, if the change in con-
ductivity between cold and temperate ice is properly considered in the model. In particular,
the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing
temperate-ice conductivity, as required from the physical jump conditions at the CTS.

1 Introduction15

Ice sheets and glaciers can be distinguished by their thermal structure into cold, temperate
and polythermal ice masses. While in cold ice the temperature is below the pressure melting
point, in temperate ice the pressure melting point is reached. In temperate ice the heat
generated by viscous deformation can not give rise to temperature changes, but will be used
for melting (Fowler, 1984; Blatter and Hutter, 1991). Thus temperate ice may contain a liquid20

water content (moisture). Polythermal ice masses contain both cold ice and temperate ice,
separated by the cold–temperate transition surface (CTS, Greve, 1997a, b). The large ice
sheets in Greenland and Antarctica show the polythermal structure of a Canadian-type
glacier, which are mostly cold except for a temperate layer at the base (Aschwanden et al.,
2012, and references therein). The liquid water inclusion in temperate ice makes this ice25

considerably softer than cold ice, resulting in a strong relationship between viscosity and
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moisture content (Duval, 1977; Lliboutry and Duval, 1985). The importance of this feature
for the ice dynamics is obvious especially for temperate ice at the base where stresses are
highest.

The enthalpy scheme presented in Aschwanden and Blatter (2009) and Aschwanden
et al. (2012) describes temperature and water content in a consistent and energy conserv-5

ing formulation. Changes in the enthalpy are caused by changes of temperature in the cold
ice part and by changes of the water content in the temperate ice part. The CTS position
is implicitly given as the level-set of the pressure melting point and can be derived from
the enthalpy field. Therefore, no restriction to the topology and shape of the CTS exists
and there is no need to track it as in front-tracking models (e.g. Hutter et al., 1988; Blatter10

and Hutter, 1991; Greve, 1997a, b). Compared to the front-tracking models neither jump
conditions nor kinematic conditions are required at the CTS.

The enthalpy scheme has already been used in model studies for the Greenland Ice
Sheet. In the “reference-implementation” of Aschwanden et al. (2012) the enthalpy scheme
was compared to a cold-ice scheme. A simplified version of the enthalpy scheme (regard-15

ing basal boundary conditions and ice rheology) was used to assess the effect of the initial
thermal regime on century-scale simulations (Seroussi et al., 2013). Thus far we are lack-
ing analytical solutions for thermo-mechanically coupled polythermal ice flow to test the
enthalpy implementations in ice sheet models.

Here, two numerical experiments for the enthalpy field are presented for which analyti-20

cal solutions exist. Similar to other studies on ice sheet modeling (Huybrechts et al., 1996;
Bueler et al., 2005; Pattyn et al., 2012) we aim to verify the enthalpy method by compar-
ing numerical solutions to analytical solutions under simplified boundary conditions. While
artificially constructed exact solutions require additional compensatory terms to be incorpo-
rated in the numerical model (e.g. Bueler et al., 2005, 2007), the proposed experiments are25

chosen in a way that numerical models should be able to perform them with no or only mi-
nor modifications of their source codes. Therefore it is ensured, that the models run through
the same model components and execute the same code for the proposed numerical ex-
periments and for real-world simulations.
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2 Theory

2.1 Governing equations

Compared to thermodynamics usage, the enthalpy described in Aschwanden et al. (2012)
is the specific internal energy. The work associated with changing the volume is not consid-
ered, since ice is assumed to be incompressible. The use of the name “enthalpy” is made5

to match other cryospheric applications (e.g. Notz and Worster, 2006). In the enthalpy ap-
proach temperature T and moisture ω are diagnostically computed from the modelled en-
thalpy field E (units: J kg−1). The following transfer rules are used

E(T,ω,p) =

{
ci(T −Tref), if E <Epmp

Epmp +ωL, if E ≥ Epmp,
(1)

10

where p is the pressure, Tref is a reference temperature (to have positive values for the en-
thalpy for typical temperatures in glaciers), and L the latent heat of fusion. The enthalpy of
the solid ice at the pressure melting point is defined as Epmp = Es(p) = ci(Tpmp(p)−Tref),
where Tpmp(p) = T0−βp is the pressure melting point temperature, β is the Clausius–
Clapeyron constant and T0 is the melting point at standard pressure (see Table 1 for pa-15

rameter values).
The enthalpy field equation of the ice-water mixture depends on whether the mixture is

cold (E <Epmp) or temperate (E ≥ Epmp):

ρi

(
∂E

∂t
+v · ∇E

)
=−∇ · qi + Ψ, (2)

with the ice density ρi, the ice velocity vector v = (vx,vy,vz), the conductive flux qi, and20

the heat source by internal deformation Ψ. The conductive flux in cold ice is represented by
Fourier’s law in enthalpy form with the conductivity Kc = ki/ci. In temperate ice the conduc-
tive flux is composed of the sensible heat flux (caused by variations in the pressure melting
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point) and latent heat flux, thus

qi =−

{
Kc∇E, if E <Epmp

ki∇Tpmp(p) +K0∇E, if E ≥ Epmp.
(3)

At the present state, K0 is poorly constrained. To test the sensitivity of the models on this
parameter, different values have been used according to Table 1.5

2.2 Boundary conditions

At the upper ice surface the enthalpy is prescribed from the surface temperature with zero
moisture content corresponding to a Canadian-type polythermal glacier (cf. Blatter and Hut-
ter, 1991). In the following description of the basal conditions T ′(p) = T −Tpmp(p) +T0 =
T +βp is the temperature relative to the melting point, Hw is the basal water layer thick-10

ness, and nb is the outward pointing normal vector. The type of basal boundary condition
(Neumann or Dirichlet) is time dependent. The decision chart for local conditions given in
Aschwanden et al. (2012, Fig. 5) need to be evaluated at every time step. The chart en-
compasses four different situations:

Cold base (dry): if the glacier is cold at the base and without a basal water layer (i.e. E <15

Epmp and Hw = 0), then

Kc∇E ·nb = qgeo. (4)

The geothermal flux is the only source of heat as basal sliding and therefore frictional
heating is forbidden for ice with temperatures below the pressure melting point. The
geothermal flux is assumed to be constant, thus changes of the heat storage in the20

underlying bedrock cannot affect the basal heat budget of the ice.

Temperate base: if the glacier is temperate at the base without an overlying temperate ice
layer, but with melting conditions at the base (i.e. E ≥ Epmp, Hw > 0 and ∇T ′ ·nb <
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β/Kc), then

E = Epmp. (5)

This condition applies to basal ice maintained at the enthalpy of the pressure melting
point, when the geothermal flux and frictional heating (caused by sliding) exceed the
heat flux away from the base into the ice. In this case the remaining heat is used for5

melting.

Temperate ice at base: if the glacier is temperate at the base with an overlying temperate
ice layer (i.e. E ≥ Epmp, Hw > 0 and ∇T ′ ·nb = β/Kc), we let

K0∇E ·nb = 0. (6)

The proposed insulating Neumann boundary condition suppresses the diffusive en-10

thalpy flux into the temperate ice layer even in the case of K0 6= 0. In this case the
energy at the base is balanced by the basal melt rate calculation.

Cold base (wet): if the glacier is cold, but has a liquid water layer at the base that is re-
freezing (i.e. E <Epmp and Hw > 0), then

E = Epmp. (7)15

It is assumed here that the subglacial water is at the pressure melting point and the
heat stored in the water layer does not allow the basal enthalpy to be below the pres-
sure melting point (continuity of temperature). As a consequence, the refrozen ice has
a zero water content.

Note that, in addition to the temperate base condition, E ≥ Epmp, it is necessary to check20

if there is a temperate layer of ice above, ∇T ′ ·nb = β/Kc.

6
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Since we are dealing with polythermal glaciers, melting of ice or refreezing of liquid water
at the base plays a role. The calculated melting/refreezing rate, ab (units: m s−1 ice equiva-
lent), obeys

ab =
Fb− (qi− qgeo) ·nb

Lρi
, (8)

with the frictional heating Fb due to basal sliding, the heat flux in the ice qi, and the geother-5

mal flux qgeo entering the ice at the base.
Although explicit boundary conditions for CTS are not required in the enthalpy scheme,

they are used to evaluate the numerical results and to derive analytical solutions later in
the text. According to Greve (1997b) melting, freezing and parallel flow conditions must
be distinguished depending on the CTS velocity. The enthalpy method allows for all three10

conditions in general. However the basal boundary conditions used in Aschwanden et al.
(2012) only permit melting conditions, as Eq. (6 inhibits the increase of enthalpy towards
the CTS. Further, the numerical models applied here do not allow a discontinuous enthalpy
solution in case of freezing or parallel flow conditions (ω > 0 at the CTS).

In case of melting conditions at the CTS, the total enthalpy flux (advective and diffusive)15

at both sides of the CTS must be equal

ρvE+ +Kc∇E+ ·n+
CTS = ρvE−−K0∇E− ·n−CTS, (9)

where the superscripts “+” and “−” denote the cold and the temperate side of the interface,
respectively, and n+

CTS and n−CTS are the normal vectors pointing toward the CTS. This is
based on the general assumption that the total heat flux leaving a representative volume20

through a particular face must be identical to the flux entering the next representative vol-
ume through the same face.

At the CTS, ice at its pressure melting point and without any moisture flows into the
temperate layer. Hence, the enthalpy is continuous at the CTS

E+ = E−. (10)25

7
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Assuming a horizontal CTS and according to Eqs. (9) and (10), the enthalpy derivative at
the CTS is discontinuous in the given case of Kc 6=K0:

Kc
∂E

∂z

∣∣∣∣+ = K0
∂E

∂z

∣∣∣∣− . (11)

The condition further implies, that for K0→ 0 the enthalpy gradient on the cold side of the
CTS (+) vanishes.5

3 Numerical models

The numerical models used here are all three-dimensional flow models including a thermal
component for ice. They all allow the evolution of the ice thickness, although this is not
applied here.

3.1 TIM-FD3 (finite differences)10

In the Thermocoupled Ice-flow Model (TIM-FD3, Kleiner and Humbert (2014)) the relevant
equations are discretised using finite-differences in terrain-following (sigma) coordinates.
For the advective terms in Eq. (2) the hybrid difference scheme of Spalding (1972) is used.
This scheme switches between the second-order central-difference scheme and the first-
order upwind-difference scheme according to the local cell Peclet number. It allows stable15

numerical solutions for the advection dominated transport in the temperate ice layer.
The conductive terms in Eq. (2) are discretised using second-order central-difference

scheme for the second derivative, where the conductivities are evaluated midway between
the grid nodes (e.g. Greve and Blatter, 2009, chap. 5.7.3). The transport due to sensible
heat flux in the temperate layer Γ =∇ · (ki∇Tpmp(p)) =−β∇ · (ki∇p) is assumed to be20

small and considered as a source term in the model. The time stepping is performed using
a semi-implicit Crank–Nicolson scheme with a constant time step.

Special attention is required for the diffusion term, since the conductivity is discontinuous
at the CTS. The most straightforward procedure for obtaining the interface conductivity

8
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would be to assume a linear variation of the conductivity between nodes (arithmetic mean).
However, this approach cannot handle the abrupt changes of conductivity at the CTS. We
use the harmonic mean of the conductivities, as suggested by Patankar (1980, chap. 4.2.3)
not only at the CTS but for all conductivities evaluated between grid nodes.

3.2 ISSM (finite element)5

The open source Ice Sheet System Model (ISSM; https://issm.jpl.nasa.gov/) is applied here.
A detailed model description can be found e.g. in Larour et al. (2012). It now implements
the entire set of field equations and boundary conditions of the enthalpy formulation pre-
sented by Aschwanden et al. (2012). Since Seroussi et al. (2013), the implementation has
been completed by adding the basal boundary condition and basal melting rate scheme as10

described in Aschwanden et al. (2012, Fig. 5).
The enthalpy field equation is discretized using a finite-element method with linear ele-

ments. The steady-state equation and implicit time stepping scheme, respectively, give rise
to a nonlinear system. It is solved using a parallelized solver. The numerical scheme can
be stabilised using artificial diffusion or streamline upwind diffusion. For best comparison to15

the respective analytical solutions no numerical stabilization has been used here. Jumps in
heat conductivity at the CTS are being accounted for by taking a volume-weighted harmonic
mean of the heat conductivities over the element, cf. Patankar (1980).

3.3 COMice (finite element)

Numerical solutions are obtained using the COMice model (Rückamp et al., 2010) that is20

based on the commercial finite-element software COMSOL Multiphysics© (www.comsol.
com). The domain is approximated by a structured triangular mesh with vertical equidis-
tant layers. Enthalpy (Eq. 2) is solved with first-order Lagrange elements stabilized with
streamline diffusion. The time derivatives are discretized using the implicit backward Euler
scheme. An adaptive time stepping method according to Hindmarsh et al. (2005) controls25

9
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the chosen time step with respect to a given tolerance. We apply Newton’s method to solve
the resulting system of nonlinear algebraic equations at each time step.

The step of the conductivity fromKc(E) toK0 at the CTS is implemented using Comsol’s
built-in operator circumcenter(expr):

K(E) =

{
Kc, if circumcenter(E)<Epmp

K0, else.
(12)5

The operator interpolates the enthalpy solution to the circumcentre of the mesh element to
which the point belongs. In doing so, circumcenter(E) is constant on each triangle and
discontinuous along the edges. Therefore the conductivity jump is located on a mesh edge.
This implementation shows better and faster convergence compared to other tested meth-10

ods like a Heaviside function or a smoothed Heaviside function as used in the COMSOL
implementation of Aschwanden and Blatter (2009) to compute the conductivity jump at the
CTS. For post-processing, the CTS position is linearly interpolated between nodes.

4 Experiment description

4.1 Experiment A: parallel sided slab (transient)15

The simulation set-up is designed to test the implementation of the basal decision chart for
boundary conditions and melting rates (Aschwanden et al., 2012, Fig. 5). Depending on the
different thermal situations that occur at the base, the numerical code may have to switch
between Neumann and Dirichlet boundary conditions for the enthalpy and the correspond-
ing basal melt rate calculation. The main idea of this set-up is to test the reversibility during20

transient simulations. The conservation of water volume is also addressed here. An initially
cold ice body that runs through a warmer period with an associated built up of a liquid water
layer at the base must be able to return to its initial steady state. This requires refreezing
of the liquid water at the base. To test this behaviour we assume a simple heat conducting
block of ice.25

10
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A parallel sided slab of ice of constant thickness H is considered. The surface is par-
allel to the bed and has a constant inclination γ = 0◦ to guarantee |v|= 0 and Ψ = 0. To
make the set-up basically vertical 1-D, in order to be able to consider only vertical heat
transport, we impose periodic boundary conditions at the sides of the block. Hence the hor-
izontal extension does not play a role. The geothermal flux qgeo at the base is constant. All5

parameters and their values are listed in Table 1.
The model run is as follows:

Initial phase (I): starting under cold conditions with an imposed surface temperature of
Ts = Ts, c =−30 ◦C and an isothermal initial temperature field T (0,z) = Ts, c the sim-
ulation is run for 100 ka.10

Warming phase (II): the surface temperature is switched to Ts = Ts, w =−10 ◦C and the
simulation is continued for another 50 ka.

Cooling phase (III): the surface temperature is switched back to the initial value of Ts =
Ts, c and the simulation is continued for further 150 ka.

Since Ψ is zero, a temperate layer of ice at the base will not form and cold ice conditions15

hold everywhere inside the ice. The ice thickness and vertical alignment of the block is held
constant over time although a significant water layer can be build up during the warming
phase. Further, the water is stored at the base and no restriction of the maximum water
layer thickness is applied.

4.2 Experiment B: polythermal parallel sided slab (steady state)20

To test the numerical solution for enthalpy in a vertical ice column with ice advection, we
apply the “Slab with Melting Conditions at the CTS” set-up with a known analytical solution
forK0 = 0kg m−1 s−1 (Greve and Blatter, 2009, chap. 9.3.6). However, the knowledge about
latent heat flux in temperate ice is poorly constrained as laboratory experiments and field
observations are scarce. We vary the values of K0 to highlight the effect on the resulting25

polythermal structure.
11
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Similar to Experiment A, a parallel sided slab of constant ice thickness H and a constant
surface and bed inclination γ in the x-direction is considered (Table 1). Ice flow is decoupled
from the thermal quantities by using a constant flow rate factor A. The velocity throughout
the ice column is prescribed as:

vx(z) =
A(ρg sinγ)3

2
(H4− (H − z)4), (13)5

vy(z) = 0, (14)

vz(z) =−a⊥s = const. (15)

Note that this set-up is not mass conservative, as there is no process considered that bal-
ances the accumulation rate required for a constant ice thickness. For simplicity we do not10

account for ice thickness evolution. The geothermal flux qgeo is set to zero and basal sliding
is neglected (Fb = 0). Strain heating Ψ = 4µε̇2

eff is the only source of heat, where µ and ε̇eff

are the viscosity and the effective strain rate. The Glen-Steinemann power-law rheology
(Glen, 1955; Steinemann, 1954) for the deformation of ice is used, thus

µ=
1

2
A−1/3ε̇

−2/3
eff , (16)15

ε̇eff =
1

2

∂vx
∂z

=A(ρg sinγ)3(H − z)3. (17)

The strain heating is largest at the base and reaches ∼ 2.6× 10−3 W m−3.
According to the assumptions in Greve and Blatter (2009, p. 246) the enthalpy conductiv-

ity K0 in the temperate ice is zero, and the enthalpy flux at the cold site of the CTS (Eq. 11)20

must vanish. The CTS in this experiment is uniquely determined because the vertical veloc-
ity is downward. At the ice surface (z =H) the enthalpy is prescribed corresponding to the
surface temperature Ts =−3◦C and zero water content. At the ice base (z = 0) one of the
boundary conditions given in Eqs. (4)–(7) holds depending on the basal thermal conditions.
All simulations start from a constant enthalpy corresponding to a temperature of −1.5◦C25

and zero water content. An analytical solution for the steady state enthalpy profile based
12
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on the solution of Greve and Blatter (2009) is given in Appendix A2. The solution leads to
a CTS position of approx. 19m above the bed. The conductivity ratio CR =K0/Kc varies
from CR = 10−1 to 10−5 for TIM-FD3 and COMice and to 0 for ISSM, respectively for this
set-up. The simulations are performed on vertically equidistant layers using different vertical
resolutions ∆z = (10.0,5.0,2.0,0.5) m.5

Note that in both experiments outlined above no frictional heating at the base occurs.
Drainage of moisture that exceeds a certain limit to the base needs to be considered, when
a coupling of moisture to the ice viscosity is used, but is also ignored in this study. The
implementation of a basal hydrology model is beyond the scope of this study, hence basal
water is accumulated at the place of origin with no restriction to the water layer thickness.10

5 Results

5.1 Experiment A

The set-up does not allow for a temperate ice layer and therefore enthalpy variations are
given only by temperature variations. The simulated basal temperatures, basal melt rates
and the basal water layer thicknesses over time are shown in Fig. 1.15

As heat conduction is the only process of heat transfer, the vertical enthalpy profiles are
linear in the steady states, which are reached at the end of each phase. At the steady
states of the initial (I) and the cooling (III) phase the total vertical temperature gradient is
given by the geothermal flux at the base and Eq. (4). This leads to the basal temperature
of T (I, III)

b = Ts, c +Hqgeo/ki =−10 ◦C and zero melting at the base, revealed by all three20

models (|∆T |< 5× 10−2 ◦C).
In the warming phase (II) the basal temperature reaches the pressure melting point after

a few thousand years and a basal water layer develops based on the basal melt rates. At the
end of this phase temperatures reach the steady state (|∆T |< 5× 10−2 ◦C) and the basal
melt rates can be calculated based on the steady state temperature gradient between the25

13
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surface and the base according to Eq. (8) as

a(II)
b =

1

ρwL

(
qgeo + ki

Ts, w−Tpmp

H

)
. (18)

For this setting the basal melt rate is a(II)
b = 3.12× 10−3 m a−1 water equivalent (w.e.). The

models agree well with Eq. (18) as shown in Fig. 1 (|∆a(II)
b |< 10−5 m a−1 w.e.).

Phase III can be separated into two different parts: phase IIIa where the base is tem-5

perate because of the remaining basal water layer from phase II, and phase IIIb, where all
subglacial water is refrozen and the base returns to cold conditions. As long as a basal
water layer exists, the basal temperature is kept at pressure melting point independent of
the applied surface temperature and temperature profile according to Eq. (7). At the end
of phase IIIa, the basal melt rates can therefore be found by replacing Ts, w with Ts, c in10

Eq. (18). Due to the low surface temperature refreezing conditions arise and reach steady
state values of a(IIIa)

b =−1.84× 10−3 m a−1 w.e. at the end of this phase as shown by the
model solutions (|∆a(IIIa)

b |< 10−5 m a−1 w.e.).
Since we do not have included neither a hydrology model nor a reasonable upper limit for

the subglacial water layer thickness, it is free to reach arbitrary thicknesses. That, in turn, is15

an advantage of the set-up, as we want to observe the system behaviour over longer time
periods. The simulations lead to a maximum water layer thickness of ∼ 130 m that occurs
a few thousand years after the end of the warming phase (II). A realistic liquid water layer
thickness of about 2 m would vanish in a few time steps and would not allow for steady state
considerations at the end of IIIa.20

We have chosen phase IIIa to compare not only the quasi steady state solutions of the
models at the end of each phase, but also the transient behaviour of the models compared
to the analytical solution. For the comparison we use the basal melt rate instead of the
temperature profile, since the correct melt rate requires a correct temperature profile and is
easier to compare. In Fig. 2 the simulated basal melt rates for the first 20 ka of phase IIIa25

are compared to the analytical solution given in Appendix A1.

14
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After∼ 1000 years the cold signal from the surface reaches the base and melting starts to
decrease until the temperature gradient in the overlying ice does not allow for further melting
and refreezing sets in. All models agree well with the analytical solution. The COMice solu-
tion is sometimes slightly below the analytical solution because of the very large time steps.
The transition between melting and freezing occurs after ∼ 4684.7 years in the analytical5

solution. Model simulations show this transition at a comparable modelled time.
All model results clearly reveal reversibility: after the whole simulation period of 300 ka,

the models return to the initial steady state at the end of phase I.

5.2 Experiment B

Here, model results of the steady state simulations of experiment B are compared to the10

analytical solution given in Appendix A2. For TIM-FD3 and COMice the steady state is
assumed after 1000 model years, while in ISSM a thermal steady state solver is applied.
The final steady state CTS positions for all simulations are shown in Fig. 3.

For the maximum value of temperate ice conductivity (CR = 10−1) and the highest verti-
cal resolution (∆z = 0.5 m) the models result in a CTS position slightly below 36 m. In these15

simulations the thickness of the temperate ice layer is almost doubled compared to the re-
sults achieved by using the smallest value of temperate ice conductivity (CR = 10−5) with
the same vertical resolution. The CTS positions decrease with decreasing CR and converge
to the analytical solution. The models have approximately the same spread for the different
vertical resolutions. The spread of the CTS position is smallest for CR = 10−3 independent20

of the applied model. Compared to ISSM, TIM-FD3 and COMice implementations do not
allow for solving the case K0 = 0 as in the analytical solution.

The steady state enthalpy profiles and the corresponding temperature and moisture pro-
files are shown in Fig. 4 together with the analytical solution given in Appendix A2. The
profiles are shown for the lowest (10 m) and highest (0.5 m) vertical resolution and the low-25

est conductivity ratio CR = 10−5 used by all models. The results of all models agree well
with the analytical solution for high resolutions. At coarser resolutions the simulated en-

15
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thalpy profiles differ noticeably from the analytical solution. In the following we compare
enthalpy differences as ∆E = Eanalytic−Esimulated.

In the ISSM simulation with the coarsest resolution (∆z = 10 m), the enthalpy differs from
the analytical solution by ∼ 1720 J kg−1 close to the CTS. This results in an temperature
difference of∼ 0.9 ◦C in the cold-ice part. TIM-FD3 and COMice reveal also a lower enthalpy5

at the cold side of the CTS compared to the analytical solution, but only to a minor extent
(TIM-FD3: ∼ 0.2 ◦C, COMice: ∼ 0.1 ◦C). Note, the analytical solution only holds for K0 = 0,
thus small differences are expected here.

As the method chosen for interpolating heat conductivities in ISSM strongly favours the
lower value, a quasi isolating layer thicker than in the analytical solution is artificially created.10

Thus, heat flux into the upper cold ice column decreases, and that column cools. Vice
versa, excess heat is accumulated in the lower temperate ice column, such that this part of
the ice column heats up. The result is a negative temperature and positive water fraction
offset. It scales with vertical mesh resolution, but stays detectable even on the highest mesh
resolution tested here.15

In the TIM-FD3 simulation with the coarsest resolution (∆z = 10 m), the enthalpy differ-
ence ∆E is largest at the base (∼ 2530 J kg−1). As the base is temperate, this difference
in the enthalpy corresponds to a difference in the basal water content of ∼ 0.8%. With
this resolution the temperate ice layer needs to be resolved within the lowermost three
grid points. The slope in the profile is caused by second order one-sided discretisation20

(e.g. Payne and Dongelmans, 1997) of the basal boundary condition (Eq. 6) in TIM-FD3.
Compared to the FE models neither strain heating nor transport of heat is considered for
basal grid nodes.

With increasing vertical resolution the maximum deviation from the analytical solution
decreases for all models. For the highest resolution (∆z = 0.5 m) and CR = 10−5 the max-25

imum differences are ∼ 150 J kg−1, ∼ 100 J kg−1, and ∼ 10 J kg−1 for TIM-FD3, ISSM and
COMice, respectively. The differences remain positive, thus the enthalpy is slightly under-
estimated. Only ISSM is able to perform the experiment with K0 = 0 as in the analytical
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solution, but the maximum enthalpy difference does not further decrease. As expected from
Eq. (11) all models show small enthalpy gradients at the cold side of the CTS.

The observed order of accuracy measured as the root-mean-square deviation (RMSD)
to the analytical solution has been obtained in the series of vertical mesh refinements from
∆z = 10m to 0.5m and is shown in Figure 5. The models TIM-FD3 and ISSM show approx-5

imately first-order convergence as ∆z→ 0, while in COMice the RMSD drops only for ∆z
below 2 m. The finite difference discretisation scheme in TIM-FD3 is formally second-order
accurate in space (and time) and the finite element models ISSM and COMice use linear
basis functions, thus one would expect second-order convergence as ∆z→ 0 for smooth
problems. However, this is not the case here, since the observed order of accuracy depends10

on the strength of discontinuities (conductivity ratio between cold and temperate ice) and
on the CTS implementation details.

6 Discussion

All three models are able to run the time dependent experiment A and agree with the ana-
lytical solutions in terms of absolute values, timing and reversibility. However, not all types15

of basal boundary conditions have been tested here. Since the absence of strain heating
suppresses the formation of a temperate ice layer at the base, the insulating boundary
condition (Eq. 6) could not be tested.

Beside the test of the implementation of the boundary conditions, this experiment ad-
dresses the importance of a basal water layer. Although the surface temperature changes,20

the basal temperature is kept at pressure melting point as long as a basal water layer exists.
The amount of water at the base is crucial for the temperatures in the ice, because it acts as
an energy buffer. It slows down the response of basal temperatures to surface cooling. The
water layer thicknesses simulated here are unrealistic high compared to conditions under
real ice masses. More realistic simulations would require a subglacial hydrology model, but25

this is beyond the scope of this paper.
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Experiment B addresses whether the models are able to reproduce the steady state an-
alytical solution for certain polythermal conditions including advection, diffusion and strain
heating. The models agree well with the analytical solution for K0→ 0, if the vertical res-
olution is high. All models meet the transition conditions for the melting CTS, although no
explicit boundary conditions are implemented. An adequate treatment of the abrupt change5

of conductivity at the CTS in the numerical discretisation scheme is required to achieve
this behaviour. The usage of an arithmetic mean (TIM-FD3) or a Heaviside as well as
a smoothed Heaviside function (COMice) for the conductivity jump leads to oscillations in
the enthalpy solution that are visible e.g. in a time varying CTS position. Consequently, no
steady state solution is reached under these conditions. The harmonic mean approach of10

Patankar (1980, chap. 4.2.3) for the conductivity (TIM-FD3 and ISSM) leads to a continuous
heat flux at the CTS and violates the condition of Eq. (11) (non-continuous). Nevertheless,
the harmonic mean strongly favours the lower conductivityK0 for small ratios CR =K0/Kc

and this leads to the apparent jump in ∂E/∂z.
TIM-FD3 tends to underestimate the water content at the base of a temperate ice layer.15

This would result in stiffer ice at the base. In typical applications of the model the vertical
layers are not equidistant as in this study, but refined towards the base. We therefore expect
only a minor influence on the velocity field. ISSM simulations underestimate the tempera-
ture in the cold part accompanied by an overestimation of the water content in the basal
temperate layer at coarse resolution. Implications for the overall stiffness are hard to obtain.20

Ice would deform more in the temperate part at the base, but less in the cold part above.
The understanding of moisture transport in the temperate ice is poor. If the latent heat

flux can be represented as in Aschwanden et al. (2012), then it is crucial to consider the
assumption made on the chosen value of K0. Simulations with a relatively high value of K0

would lead to a much thicker temperate ice layer in contrast to simulations where K0 ≈ 0.25

Stable numerical solutions could be obtained for temperate ice diffusivities in the chosen
range ofK0 ≈ 10−4 to 10−8 kg m−1 s−1 and 0 for ISSM. The lower bound is therefore several
magnitudes lower, than K0 = 10−4 kg m−1 s−1 as the lowest value possible for a stable so-
lution in Aschwanden and Blatter (2009). If one assumes a vanishing latent heat flux in the
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temperate part of a glacier, we would recommend to use a value of K0 ≈ 10−6 kg m−1 s−1

(CR = 10−3). For this value the CTS positions of all models are close to the analytical solu-
tion and show the smallest spread with varying vertical resolutions (Fig. 3).

The evolution equation for the enthalpy field is similar to the temperature evolution equa-
tion already implemented in thermomechanically-coupled ice sheet models. Therefore an5

enthalpy scheme allows one to convert so-called ’cold-ice’ models into polythermal ice
models with only minor modifications, but with the restriction of melting conditions at the
CTS. The question whether exclusive melting conditions at the CTS are valid in an ice
sheet is not conclusive. At least simulations of the Greenland Ice Sheet based on a two-
layer front-tracking scheme performed with the polythermal ice model SICOPOLIS indicate10

that freezing conditions are relatively rare (Greve, 1997a, b). In the most recent version of
SICOPOLIS the enthalpy scheme by Aschwanden et al. (2012) and a modified version of
this scheme have been implemented as conventional one-layer enthalpy scheme and one-
layer melting CTS scheme, respectively (Blatter and Greve, 2014). Thus comparisons to
the two-layer front-tracking scheme can be performed for continental scale ice sheets in the15

future.
The dynamics of glaciers, ice caps and ice sheets are strongly linked to the description

of the rheology of temperate ice and its uncertainties. Besides the limited knowledge on the
rheology of temperate ice, the current experimentally-based relationship for the flow rate
factor is only valid for water contents up to 1 % (Duval, 1977; Lliboutry and Duval, 1985).20

However, actual water contents found in temperate and polythermal glaciers are sometimes
substantially larger (up to 5 %, Bradford and Harper, 2005). The advantage of deriving the
water content by solving numerically for the enthalpy is limited by the use of a flow rate factor
with a restricted validity range. Consequently, deformation experiments with temperate ice
are urgently needed.25
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7 Conclusions

The proposed numerical experiments provide tests for the enthalpy implementation in nu-
merical ice sheet models. All models applied here (TIM-FD3, ISSM, COMice) are able to
perform these experiments successfully and agree to the analytical solutions. The enthalpy
scheme determines the cold–temperate transition surface (CTS) and the vertical enthalpy5

profile in a polythermal glacier correctly without the need of tracking the CTS explicitly and
applying additional conditions at this internal boundary. This is in particular the case for
high vertical resolution for all three models. TIM-FD3 and COMice also perform well for low
vertical resolution, while the ISSM solution show a significant enthalpy difference to the an-
alytical solution although the analytical CTS position is meet. There is a clear need for an10

empirical determination of the temperate ice conductivity K0 and an improved description
of the temperate ice rheology.

Appendix A: Analytical solutions

A1 Basal melt rate in Experiment A

To derive the basal melt rate for phase (IIIa) of Experiment A it is assumed that the tempera-15

ture is in steady-state at the end of the warming phase (II). For this set-up Eq. (2) simplifies
to the one-dimensional form

ρi
∂E

∂t
=

∂

∂z

(
Kc

∂E

∂z

)
. (A1)

We have only cold ice conditions in the interior of the ice body and Kc as well as ρi are
constants. Based on the transfer rules in Eq. (1), Eq. (A1) can be written as an evolution20

equation for the temperature:

∂T

∂t
= κ

∂2T

∂z2
and κ=

ki

ρici
. (A2)
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We determine the evolution of T (z, t) starting from the initial condition (steady state tem-
perature profile of phase II)

T (z,0) = T0(z) = Tpmp + (Ts, w−Tpmp)z/H (A3)

and Dirichlet conditions at the upper and lower surface

T (H,t) = Ts, w and T (0, t) = Tpmp. (A4)5

The basal temperature is kept at pressure melting point by the basal water layer (Eq. 7).
Solutions of the heat equations can be found by separation of variables and Fourier analysis
and require homogeneous boundary conditions. Therefore, the temperature deviation Θ is
used instead of T , thus:

T (z, t) = Teq(z) + Θ(z, t), (A5)10

where the steady state profile for this set-up is again a linear

Teq(z) = Tpmp + (Ts, c−Tpmp)z/H. (A6)

Substitution of Eq. (A5) into Eq. (A2) and application of the steady state solution Teq(z)
implies that Θ(z, t) satisfies the homogeneous heat equation

∂Θ

∂t
= κ

∂2Θ

∂z2
(A7)15

with homogeneous Dirichlet boundary conditions,

Θ(0, t) = Θ(H,t) = 0 for t > 0 (A8)

and the initial condition

Θ(z,0) = T0(z)−Teq(z) for 0≤ z ≤H. (A9)
21
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The solution of Eqs. (A7)–(A9) for Θ can be obtained using the method of separation of
variables and leads to (e.g. Dubin, 2003):

Θ(z, t) =
∞∑
n=1

Ane
λnt sin

nπz

H
, where λn =−κ

(nπ
H

)2
. (A10)

Setting t= 0 the Fourier coefficients An can be found by matching the initial condition
Eq. (A9)5

Θ(z,0) =
∞∑
n=1

An sin
nπz

H
= T0(z)−Teq(z), (A11)

thus for the Fourier sine series, the coefficients An are determined as

An =
1

H

H∫
0

(T0(z)−Teq(z))sin
nπz

H
dz. (A12)

Inserting the initial condition (Eq. A3) and the steady state profile (Eq. A6) into Eq. (A12)
leads to10

An = (−1)n+1 2(Ts, w−Ts, c)

nπ
. (A13)

Based on the analytical solution of the temperature profile (Eq. A10) the basal melt rate
(Eq. 8) is

ab =
qgeo− qi

ρL
=

1

ρL

(
qgeo + k

∂T

∂z

∣∣∣∣
z=0

)
, (A14)

where15

∂T

∂z

∣∣∣∣
z=0

=
∂Teq(z)

∂z

∣∣∣∣
z=0

+
∂Θ(z, t)

∂z

∣∣∣∣
z=0

=
Ts, c−Tpmp

H
+
∞∑
n=1

nπ

H
Ane

λnt.

(A15)
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The sum is evaluated up to n= 25 to produce the analytical solution shown in Fig. 2.

A2 Analytical solution Experiment B

The following derivation of the analytical solution to experiment is a modification of the
derivation of the “parallel-sided polythermal slab” provided by Greve and Blatter (2009).
Under the assumptions given there and the variable transform z = ζH , the enthalpy field5

Eq. (2) reduces to

D∂
2E

∂ζ2
+M∂E

∂ζ
=−K (1− ζ)4 , if E <Epmp (A16)

M∂E

∂ζ
=−K (1− ζ)4 , else. (A17)

Here,10

D =
Ki

ρ
, M=Ha⊥s , K =

2A

ρ
(ρg sinγ)4H6. (A18)

LetE+ be a solution of Eq. (A16) andE− a solution to Eq. (A17). Then the enthalpy solution
for the entire ice column is given by E = E−I[0,ζm) +E+I[ζm,1], where ζm is the position of
the CTS.

At the CTS the continuity condition for the enthalpy Eq. (10) holds and due to the neglect15

of water conductivity in temperate ice the right hand side of Eq. (11) is zero. A solution E+

to Eq. (A16) is given by a solution to the homogeneous differential equation Eh associated
to Eq. (A16) and a particular solution Ep:

E+ = Eh +Ep, with (A19)

Eh(ζ) = c1 e
−Mζ/D + c2, and (A20)20

Ep(ζ) =
5∑

k=1

akζ
k. (A21)
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The coefficients a1, . . . ,a5 of Ep can be found by balancing powers in Eq. (A16), cf. Greve
and Blatter (2009). The three remaining unknowns, c1, c2 and ζm, can now be derived from
the conditions at the CTS (Eqs. 10 and 11) and the given surface enthalpy. Inserting E+

yields:

Es = c1e
−M/D + c2 +

5∑
k=1

ak (A22)5

Epmp = c1e
−Mζm/D + c2 +

5∑
k=1

akζ
k
m (A23)

0 =−c1
M
D
e−Mζm/D +

5∑
k=1

kakζ
k−1
m . (A24)

With c1 from Eq. (A24), c2 from Eq. (A22), Eq. (A23) becomes an implicit definition for ζm,
whose root can be determined using a numerical solver. Then c1 and c2 follow accordingly.10

A solutionE− for the temperate ice part can be found by integrating the temperate version
of Eq. (A17) directly. E− is then fully determined by Eq. (11):

E−(ζ) = Epmp +
K

5M
(
(1− ζ)5− (1− ζm)5

)
. (A25)
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Table 1. Used constants and model parameters.

Quantity Value Units

Seconds per year, spy 31 556 926 s a−1

Gravitational acceleration, g 9.81 m s−2

Density of ice, ρi 910 kg m−3

Density of water, ρw 1000 kg m−3

Reference temperature, Tref 223.15 K
Melting point at
standard pressure, T0 273.15 K
Specific heat capacity, ci 2009.0 J kg−1K−1

Thermal conductivity, ki 2.1 W m−1K−1

Experiment A:a

Ice thickness, H 1000 m
Geothermal flux, qgeo 0.042 W m−2

Latent heat of fusion, L 3.34× 105 J kg−1

Clausius–Clapyron constant, β 7.9× 10−8 K Pa−1

Moisture mass diffusivity, K0 ki/ci× 10−1 kg m−1 s−1

Experiment B:b

Ice thickness, H 200 m
Geothermal flux, qgeo 0.0 W m−2

Latent heat of fusion, L 3.35× 105 J kg−1

Clausius–Clapyron constant, β 0.0 K Pa−1

Rate-factor, A 5.3× 10−24 Pa−3 s−1

Moisture diffusion coefficient, K0 ki/ci× 10−1

...
ki/ci× 10−5 kg m−1 s−1

a Aschwanden et al. (2012).
b Greve and Blatter (2009).
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Figure 1. Results for Experiment A simulated with TIM-FD3 (blue), ISSM (red) and COMice (black)
overlay each other. Phases I to III are described in the main text. The warming phase II is shaded in
grey.
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Figure 2. Simulation results compared to the analytical solution (thick solid grey line) for phase IIIa
in Experiment A. TIM-FD3 as blue solid line, ISSM as red dashed line, and COMice as black filled
circles.
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Figure 3. Comparison of simulated steady state CTS positions for different values of the temperate
ice conductivity in Experiment B. The different models are shown as: TIM-FD3 (blue), ISSM (red)
and COMice (black). Results of different models are slightly shifted on the x axis to not overlay each
other. The dashed black line indicates the CTS position of the analytical solution derived for K0 = 0.
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Figure 4. Simulated steady state profiles of the enthalpy, E, the temperature, T , and the water
content, ω for TIM-FD3 (blue), ISSM (red) and COMice (black) compared to the analytical solution
(gray). ζ = z/H is the normalised vertical coordinate. The vertical resolution is ∆z = 10 m (upper
row) and ∆z = 0.5 m (lower row), CR =K0/Kc = 10−5. In the lower row the model results overlay
the analytical solution.
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Figure 5. The root-mean-square deviation (RMSD) of the model results to the analytical solution
(Experiment B) for different vertical grid resolutions ∆z. Model results for TIM-FD3 (blue crosses),
ISSM (red triangles) and COMice (black circles) are obtained for the lowest conductivity ratio CR =
K0/Kc = 10−5 applied to all models.
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