
Responses to the First Anonymous Review of: 
“Independent evaluation of the SNODAS snow depth product using regional 

scale LiDAR-derived measurements” 
 
Overall Comments: 

(1) Specific deficiencies could be identified in the SNODAS model, in order to 
diagnose the sources of bias in the SNODAS output. 

Response: This avenue was discussed among the authors prior to submission, but it 
was ultimately decided to be beyond the scope of this paper to delve quantitatively 
into the inner workings of the model.  Future work is planned to identify specific 
shortcomings of the model for different local environmental variables such as 
elevation, vegetation cover, and slope/aspect by working with the NOHRSC analysts 
that work with the data assimilation aspect of SNODAS.  However, a thorough 
investigation of regional environmental variables such as weather patterns and long-
term climate fluctuations may require higher temporal resolution of the validation 
datasets (mentioned in #2).  Speculations as to the sources of bias within SNODAS 
will be added to the Discussion section. 
 We don’t have access to the source code so we aren’t able to test any of the 
specific output biases from SNODAS, but we have added more speculation within the 
Conclusions section. 
 
(2) The analysis could be bridged to additional years of data, either from SNOTEL 

or other sources in order to add an assessment of interannual model performance 
to the analysis (although I realize there are major limitations and challenges to 
this). 

Response: The SNOTEL network is much too sparse to perform an analysis of this 
scope and extent.  We will include text to outline the fact that SNODAS is considered 
a spatial average of conditions over a 1-km2 pixel, while the measurements that are 
used for assimilation are only representing one point within that pixel.  The major 
advantage of this LiDAR dataset was the data continuity of the snow depth changes 
over an area large enough to effectively assess a 1-km2 resolution snow model.  And 
with regards to other sources, there is simply no available independent data with 
which to make a valid comparison to SNODAS. 
 

 
Specific Comments 

(3) Page 3145 line 24: “. . .while an assimilation step give analysts the ability to 
decide every day whether to augment the model estimates. . .” I don’t know the 
details of the SNODAS assimilation approach, but this statement implies that 
there is manual intervention by analysts with respect to the use of observations 
and the assimilation is not standalone. Is this true? If so this raises a lot of 
potential ambiguities. 

Response: Yes, there is manual intervention by analysts.  All available nationwide 
electronic point data is used to adjust the estimates created by the downscaled NWPs 
and NOHRSC Snow Model (NSM).  Given the difficulty of keeping an automated 



sensor functional, the analysts must perform rigorous quality control on the data to 
make sure it can be used. 
 
(4) The Introduction is well written and thorough. But it’s not until the final 

paragraph of the section that objectives of the paper are referred to. I suggest 
moving this forward to near the beginning of the section to engage the reader 
earlier in the goals of this study. The objectives are not explicitly stated at any 
point in the introduction. 

Response:  Agreed.  Some of the Introduction was reorganized and some statements 
were added to more succinctly state the objectives of the paper. 
 
(5) Page 3150 paragraph 1: I like the hourglass approach to in situ sampling over a 

500 x 500 metre area. But were only ∼50 snow depth measurements made at 
each hourglass? This seems like a very small number. Calculating 
conservatively, a 500 x 500 metre hourglass is composed of over 2000 metres of 
linear sampling distance. 50 measurements equates to a snow depth 
measurement only every 40 metres. Does this capture the local scale variability? 
You have to walk the whole hourglass anyway, why not make more 
measurements? 

Response:  The manual measurement team was stretched fairly thin with the amount 
of ground they desired to cover and the number of people involved to make the 
measurements.  At the resulting resolution, the surveys definitely did not capture 
small-scale variability, but it must be remembered that the in situ sampling was not 
intended to support LiDAR validation.  Rather, the surveys were conducted to 
complement the POLSCAT airborne radar mission, which bore different goals for 
ground validation. 
 
(6) Page 3150 paragraph 2: Perhaps I’m missing something, but why is it 

‘paramount’ that no snow melt occurred between the two dates of LiDAR 
acquisition? You have produced a snow depth difference field from all three 
datasets, and the assessment is of delta depth. Given that the region was not 
snow free at the first date, it’s okay to have a negative change. 

Response: You are absolutely correct.  The way the text was written implied that no 
melt could have occurred in order to conduct this study using snapshots of snow 
distribution.  This is simply not the case.  What we intended to show by including the 
melt discussion and figure was that by using the routines already present within 
SNODAS we could rule out snow depth loss due to melt and sublimation as 
contributing factors to model bias with regards to this study.  This works to narrow 
down discrepancies between modeled and measured snow depth change to merely 
LiDAR error and the densification/compaction routines in SNODAS in all the regions 
where no melt occurred between the survey dates.  This portion of the manuscript will 
be rewritten considerably. 
 
(7) Page 3150 line 22: “…estimates of snow melt due to incoming solar radiation 

and sublimation…”. This statement requires clarification. Snow melt and 
sublimation are two different phase changes that will reduce the snow mass, and 



they are driven by different processes. 
Response: Yes, the text here was part of the melt discussion that will be rewritten.  
The routines within SNODAS that estimate melt incorporate the physics of 
sublimation due to wind and solar radiation.  Therefore, where model estimates of 
melt were negligible, we can narrow our focus to other processes (i.e. new snow 
density, densification, and compaction) that may have caused discrepancies between 
SNODAS and LiDAR. 
 
(8) Figure 5 is effective at showing the tendency for SNODAS to increasingly 

underestimate snow depth relative to the in situ measurements as snow depth 
increases. Figure 6 essentially shows a similar pattern for the LiDAR (although 
lower in magnitude). Why not combine these figures, using different symbols 
for the in situ vs. SNODAS and in situ vs. LiDAR results? This would provide a 
direct comparison relative to ground measurements, including the systematic 
bias over deeper snow. 

Response: This is a terrific suggestion.  A combination of Figures 5 and 6 condenses 
the information that both figures are conveying. 
 
(9) Page 3153 line 18: a +/- value of 13 cm is provided for the LiDAR data relative 

to the in situ measurements. But this is somewhat misleading as there is 
systematic bias in this comparison: LiDAR snow depth is always shallower than 
the hourglass measurements. Would it not be possible to bias correct the LiDAR 
estimates of snow depth based on these results? 

Response: For the twelve in situ sites, the upscaled 1-km2 LiDAR snow depth change 
is consistently 5-10 centimeters less than the upscaled manual measurements.  This 
does result in a negative bias, which can physically be explained by the combination 
of a few important factors. 

1. It can be assumed that the vast majority of the December LiDAR pulses 
completely penetrated the low-lying brush canopy layer all the way to the 
dirt/snow surface.  However, this also means a portion of the LiDAR pulses 
were not able to make it through the brush for a ground reflection, which 
would result in lower measurements of snow depth when differenced with the 
February surface. 

2. Snow survey probing teams are instructed to record measurements only when 
rock or wood causes a hard report, or when the probe tip is removed from the 
snow dirty, which could cause slight overestimates of snow depth. 

Consequently, the 5-10 cm underestimation in the LiDAR measurements is well 
within the vendor-recommended uncertainty and does not ultimately affect the final 
comparison to SNODAS in a strong manner. 
 
(10) Page 3154 line 15: Is it worth summarizing the regression results in a table? 

There is not much detail provided here. 
Response: The results were not included due to the fact that the LiDAR snow depth 
change was overwhelmingly the greatest cause in discrepancy between LiDAR and 
SNODAS.  The other predictor variables that were hypothesized to have an impact on 
SNODAS – LiDAR differences turned out to not be nearly as important as the actual 



snow depth change. 
 
(11) Figure 8: I suggest using different symbols for the points corresponding to each 

of the outlined areas in Figure 9. This would explicitly show which points come 
from which area. 

Response: Agreed.  Revealing each region specifically within the scatter plot better 
quantifies the results and strengthens the hypothesis of region-specific uncertainties. 

 
Editorial Comments 

(12) Drop ‘Independent’ from the title 
Response: The word ‘independent’ was included to highlight the fact that 100% non-
biased validation datasets for SNODAS are extremely rare, especially at the regional 
scale. 
 
(13) Page 3143 line 2: “...an important ecological component of Earth’s water cycle.” 

Not clear what is meant by ‘ecological component’. 
Response: Removed ‘ecological’ from the sentence. 
 
(14) Page 3143 line 5: 70% of the water supply to what geopolitical region? 
Response: 70% of the water supplied to populated regions of the Western U.S. 
originates in mountain snowpacks. 
 
(15) Page 3143 line 9: consider changing ‘hydrologic snow models’ to ‘distributed 

snow models’ 
Response: Added “Distributed...” to the start of the sentence 
 
(16) Page 3151 line 4: change ‘snow height’ to ‘snow depth’ 
Response: Changed “...model estimates of snow height change.” to “...ΔSNODAS” 
 
(17) Page 3152 line 10: the use of ‘substantiate’ seems odd here 
Response: Re-worded the sentence.  
 
(18) Page 3153 line 20: The relationship between SNODAS and LiDAR snow depth 

has a Rˆ2 (coefficient of determination) of 0.72, but note that this is described as 
‘correlation’ in the text which should be expresses as r not Rˆ2. 

Response: You’re correct.  We removed all instances where r2 is referred to as 
correlation and replaced with explanations of the independent and dependent 
variables. 
 
(19) Page 3155 line 9: provide a reference to the Figure 8 along with the mention of 

the ‘pink vertical stripe’. I would change ‘stripe’ to ‘shading’. 
Response: This was changed to shading. 

 
  



Responses to the Second Anonymous Review of: 
“Independent evaluation of the SNODAS snow depth product using regional 

scale LiDAR-derived measurements” 
 

Overall Comments: 
(1) I do not understand the comment “it is paramount that no snow melt occurred 

between the survey dates in order to properly assess the snow depth component 
of SNODAS using LiDAR estimates alone.” (p. 3150, l. 20-22). I can understand 
that snow accumulation is the primary phenomenon being examined, but why is 
it a problem if snow melt occurred during the 81-day span separating the 
measurements? In section 4 the integrative nature of the measurements is 
discussed (p. 3153, l. 21-24), and it does not seem to be an obvious problem if 
snow melt is another contributing process. 

Response: What we were aiming to accomplish by analyzing the melt estimates of 
SNODAS was to rule out the melt routines within the energy balance model as a 
contributing factor of uncertainty in the context of this study.  If we are confident that 
we know where melt occurred between the survey dates, then we can narrow down 
which processes control SNODAS uncertainty in different locations.  The wording 
was incorrect for the draft, and we are rewriting the discussion of melt in the 
SNODAS description section to convey this message. 
 
(2) SNODAS uses quantitative precipitation as its forcing, and assumes a constant 

bulk density for newly fallen snow. Therefore, SWE is the primary state variable 
produced by that system, while snow depth is derived as a function of SWE and 
snowpack density. This relationship is acknowledged (but with the positions of 
SWE and depth reversed) in the introduction (p. 3143, l. 14), but the following 
comment that “snow depth varies considerably more than bulk density over 
space” (p. 3143, l. 16-17) serves to diminish the importance of modeled snow 
density. However, this came back to me as I read the discussion of the in situ vs. 
SNODAS comparisons shown in Figure 5b (p. 3152, l. 14-19). SNODAS 
appears to underestimate snow depth when the observed snow is deep: is it 
possible that SNODAS overestimates compaction or initial density in these areas 
of high accumulation? 

Response:  While depths vary more than density over space, depths are also much 
more easily quantified over large extents and high spatial resolution, pointing to the 
power of the LiDAR data.  That comment is just saying that high-resolution 
information about depth is much more powerful than an equivalent resolution density 
knowledge.  You are correct that the method SNODAS uses to determine depth is 
based on getting the density right.  By comparing the modeled and measured depths 
we can quantify SNODAS uncertainty in different regions.  Yet we still do not have a 
good assessment of SNODAS ability to model SWE, other than the age-old 
streamflow measurements that do not explain how or why the model got it right or 
wrong. However, there is such a substantial amount of uncertainty in modeling 
snowpack compaction using densification models, that I agree those parts of the NSM 
could be a major source of uncertainty in the high accumulation regions. 
 



 
(3) I’m having a little trouble with the comparisons shown in Figure 8. Basically, the 

RMS difference between the in situ and LiDAR data is treated as a random error, 
but the data shown in Figure 6 depict a systematic error causing the datasets to 
differ, as discussed in section 4 (p. 3153, l. 3-18). I suppose the use of the RMS 
difference between the data sets means that neither is considered authoritative, 
and is a hedge against preferring one over the other. However, given that the 
LiDAR depths are systematically lower than the in situ depths, it seems more 
appropriate to treat the LiDAR data as negatively biased, and for example to 
depict the uncertainty associated with them as a more narrow range centered 
around a negative value. Perhaps this is not the ideal approach given that the 
difference between the two sets of observations seems somewhat proportional in 
nature (i.e., the slope of the line in Figure 6 is significantly less than 1.0), but 
further discussion of the choice to treat the RMS difference as a random error 
estimate seems warranted. 

Response: Though Figure 6 does show a systematic underestimation by the LiDAR, 
we believe that the magnitude of the bias (5cm @ shallow sites – 15cm @ deep sites) 
is well within the noise of the LiDAR data in the first place.  Additionally, the in situ 
measurements tend to undersample the variability of snow depths more and more as 
the mean snow depth increases, as shown in this modified Figure 6 below.  If we 
really want to quantify LiDAR biases using the twelve HG sites, we would have to 
only consider the LiDAR measurements exactly at the probed locations due to the 
inherent depth variability at short length scales.  However, the uncertainty of the 
reported manual measurement locations is ~7-10 meters due to the mapping-grade 
GPS receivers that were used at the time. 
 The scale difference between SNODAS pixels and probe measurements is very 
apparent in Figure 5a, as they display a very low correlation.  For a reason similar to 
the LiDAR/HG argument made above, the low correlation between SNODAS and 
HG stems from the undersampling of the HG surveys not only at the hillslope scale 
but at the regional scale as well.  SNODAS does a good job of representing coarse 
regional scale patterns over very large areas, but naturally has difficulty with the 
hillslope and micro scale variability that can have substantial effects on water storage.  
The main point of Figure 5a (which will be combined with Figure 6) was to show 
how difficult a task it is to evaluate such a large-scale snow model using sparse 
manual measurements, which up to this point has been the only technique available. 
 The slope of the best-fit line in Figure 6 can be explained by the undersampling of 
the manual measurements as the mean site snow depth increased.  The point to point 
comparison was performed only after averaging all ΔLiDAR pixels in a 10m radius 
surrounding the reported in situ measurement location, resulting in the large support 
discrepancy that was alluded to in the text. 

 
(4) The discussion for “region #1” (p. 3156, l. 5-19) suggests that SNODAS has 

failed to account for persistent snowpack sublimation in that region, which is 
certainly possible, even likely. However, the discussion implies that wind speeds 
that drive SNODAS and its simulation of snow sublimation are inaccurate 
because there are no nearby SNOTEL sites. I don’t find this convincing. I don’t 



see that the proximity of a SNOTEL would make any difference with respect to 
whether or not wind speeds are well represented in SNODAS forcing data in the 
area. Isn’t it possible that observed wind speeds are assimilated into the forcings 
used by the SNODAS model, since it uses NWP analyses as its primary forcing 
data, and that many of these come from observation stations other than SNOTEL 
sites? Perhaps the winds are well represented, but the SNODAS model 
nevertheless fails to simulate the extent of snow sublimation occurring in the 
region. 

Response: We will change this discussion of distance from SNOTEL sites, 
specifically, to distance from any station whatsoever.  The North Park region is a very 
sparsely instrumented area and there isn’t any other available forcing data to be 
found. However, I believe you are getting at the root of the main error source for 
SNODAS. Density modeling is the most likely explanation for model uncertainty 
given that estimating new snow density and snowpack compaction over time are the 
two most difficult processes to quantify by physically based models. 

 
(5) In the discussion for “region #3”, why does sub-kilometer scale heterogeneity of 

snow distribution cause SNODAS to underestimate, and not overestimate, snow 
accumulation (p. 3156, l. 10-12)? 

Response:  
 

 
Editorial Comments: 

(6) P. 3148, l. 1: organizeded -> organized 
(7) P. 3155, l. 22-23: the geographic location of the pixels are in a region -> the 

pixels are in a region 
  



Responses to James McCreight’s Comments on: 
“Independent evaluation of the SNODAS snow depth product using regional 

scale LiDAR-derived measurements” 
 

Overall Comments: 
(1) A comparison of SNOTEL and SNODAS is lacking which will greatly improve 

the context of the results. Because SNOTEL roughly governs SNODAS (via data 
assimilation), this context will provide substance for extended discussion. 

Response: This was an avenue that we considered early on, but abandoned it for two 
reasons.  1) SNOTEL is only a point measurement, and as such the assimilation of 
SNOTEL data into the model are only approximations for a larger area.  SNODAS 
estimates are considered to be approximations of the average conditions within a 1 
km grid cell.  2) We are simply comparing two snapshots of the snow conditions over 
a large area.  Since the LiDAR over flights only covered two SNOTEL sites 
(Columbine and Rabbit Ears), we would gain context about two wind-sheltered points 
within two pixels of the survey swath. 
 However, that is not to say that an analysis of SNOTEL and SNODAS would be 
inconsequential.  Further work examining a time series of SNOTEL and SNODAS 
could shed some light on how well the model is distributing the assimilated data over 
space.  We did look at SNOTEL depths and swe between the LiDAR flights and 
compared them to the SNODAS output over that time period, and we will consider 
adding another figure depicting the time series of snow depths for the two overlapped 
SNOTEL sites and their corresponding SNODAS pixels. 
 
(2) A discussion should more generally frame the results in terms of potential water 

yield. More importantly, what are the next steps for improving SNODAS using 
future LiDAR data sets similar to those in this paper? What aspect of the LiDAR 
acquisition will be key to get right next time? Are the LiDAR errors actually 
small enough for a comprehensive validation? This is important to consider 
because LiDAR snow depth is perhaps the best opportunity to understand and 
improve the SNODAS products or other, similar model estimates at large spatial 
scales. Could the LiDAR be assimilated? How much ground truth would be 
necessary to properly bias correct the LiDAR? Etc. 

Response: A main goal of this paper is to foster more discussion about how to 
effectively use LiDAR snow depth campaigns for model calibration and validation.  
Even so, we need to be more vigilant about data quality when collecting the data in 
the first place, and that quality can change drastically depending on who/what is 
collecting the data.  The question “Are the LiDAR errors actually small enough for a 
comprehensive validation?” is a very important one that we have struggled with over 
the entire course of this work.  Though not collected to specifically validate the 
LiDAR, the HG in situ surveys were a boon to the study and really added another 
dimension to the LiDAR, and it was our judgment that the RMSD between the 
LiDAR and HG snow depth change was a reasonable uncertainty estimate.  
Additionally, if we had noticed no trends whatsoever in the comparison of LiDAR + 
SNODAS (Figure 8), we likely could not have continued.  However, by quantifying 
the error for this particular survey and defining regions where SNODAS disagreed 



with the LiDAR, we felt that this study could be a first step in really nailing down 
some of the issues facing large-scale energy balance models.  All of this speaks to the 
importance of ground truthing remote sensing data. 
 

 
Specific Comments 

(3) Given the analysis in the paper, my lingering question is "why is SNODAS 
wrong?" Or, why is SNODAS right? 

Response:  After performing this comparison, we were extremely surprised at just 
how well SNODAS was able to predict snow depth change given that the primary 
goal of the model framework is to predict SWE.  The estimation of depth heavily 
relies on physically based assumptions about the density of new falling snow, and 
how that snow evolves and compacts over time. With that being said, the three 
regions containing the largest model/observation discrepancies are definitely the 
traditional ‘problem areas’ for snow models.  SNODAS is such a complex model 
framework that it is likely a combination of many small assumptions in the physics of 
the modeled processes that are causing particular physiographic locations to 
overestimate depth and other to underestimate.  Ideally, higher temporally resolved 
LiDAR flights at this scale and extent would allow for more of a concise evaluation 
of the shortcomings of SNODAS. 
 You are likely correct that SNODAS performs more poorly the further from an 
assimilation data point, and should be an entire publication in itself.  In fact, Region 2 
shows a stark contrast between ΔLiDAR and ΔSNODAS as the elevation decreases to 
the east of the Columbine SNOTEL.  Nevertheless, as of yet we can merely show the 
locations of the discrepancy and do some cursory hand waiving as to the causes.  We 
will include more discussion on this matter in the final manuscript. 
 
It will be impossible to answer this comprehensively because we don’t know the 
exact assumptions in SNODAS. To address comment 1 of reviewer 1: yes, there are 
"MODS" in SNODAS (at least this is generally believed). This is (still) fairly 
standard practice for operational products (e.g. Seo et al, 2009). New validation 
products, such as presented in this paper, will hopefully lead to comparisons of 
MODS assimilations and automated assimilation procedures and advance the science. 
The upshot of the MODS is ambiguity in how to improve the results. This will make 
for challenging speculation in the discussion. However, efforts along these lines could 
be a significant benefit to the community and help push the science forward. 
 
My thoughts on the initial question: 
a) SNODAS is going to be correct owing to SNOTEL observations 
b) It’s going to be wrong moving away from SNOTEL in space as (MODS) 
assumptions about variability break down. 
 
To me this explains why SNODAS is not simply biased, but the line of best fit 
intersects the 1:1 line. I’d guess that the intersection is roughly near the magnitude 
SNOTEL observations. That’s not going to be exactly true, but makes a reasonable 
story. I think this general idea is sketched on P3154 L3, but it deserves clarification 



and expansion along with the relationship of the SNOTEL observations to the results. 
There should be speculation about why the assumptions moving away from SNOTEL 
are likely wrong and how we might fix that. Wind is mentioned in passing. How 
about vegetation? Other differences in physiography with the assimilated SNOTEL 
observations? The entire regression analysis centered on page 3154 strongly suggests 
to me that the SNODAS assimilation/MODS (which are the errors away from 
SNOTEL) are not based on any of these explanatory variables which we commonly 
expect to govern snow depth. This may or may not be true, but it appears that such 
predictors are not the basis of the MODS. I currently know of now snow depth/SWE 
assimilation technique that actually uses such variables. So, it’s not really surprising. 
 
I know there are already multiple analyses of different products in this paper, but a 
comparison is needed of the SNOTEL and SNODAS used in the study. This will help 
to illuminate the above points. For the two SNOTEL locations in the LiDAR 
footprint, I would suggest also including the LiDAR spread and mean information for 
the SNODAS pixel and also for a, say, 10-15m radius centered on the SNOTEL. 
 
Also hindering interpretation of the results is that SNOTEL information is somewhat 
hard to see where it does exist in the paper. While it’s nice to see the SNOTEL 
positions overlaid, it makes it difficult to interpret the colored values in figs 2, 4, and 
9 at the location of the SNOTEL, which is of acute interest. This is challenging to fix 
and make obvious, and is part of the reason I suggest treating these comparisons in a 
separate figure. Improving the readability of this figure is needed to help with 
interpretation in the spatial context. I don’t have a great suggestion for how best to do 
this. Smaller symbols would help fix this, but be more difficult to see. Perhaps empty 
squares or diamonds centered on SNOTEL? Similarly the HG symbols can block the 
information that they overlay and make interpretation of the underlying values 
difficult. 
 
Figure 1 is very nice. My concern, again, is about promoting interpretability. Showing 
the ΔLidar in the figure detracts from our ability to use topography in that region as 
context for interpretation of results. I suggest removing it here and combining it with 
Figs 2 and 4, in this order 1, 4, 2 as panels of a single figure. I think being able to 
compare ΔLidar, ΔSNODAS, and ΔSNODAS-ΔLiDAR in the same figure is 
important to the interpretation. Flipping pages detracts from the interpretation. I’d 
also include SNODAS values in another panel in the same figure. This will help 
promote a coherent discussion where these things are easily compared. 
 
Also, would a vegetation figure (e.g. NLCD or MODIS) contribute to interpretation? 
 
As mentioned above, the results (the difference between LiDAR and SNODAS 
changes) should be put into the context of difference in potential water yield or 
potential energy balance effects. I’m talking about back of the envelope calculations 
with simple assumptions. Other suggestions for discussion questions were also 
offered above. 
 



The last thing I’m interested in, which maybe less relevant and more of my own pet 
interest, is the sub-grid distribution of ΔLiDAR for each SNODAS pixel, where the 
SNODAS value falls in the distribution, and trying to explain the variance using 
predictor variables. (OK, This could easily be a separate paper). 
 
(4) Horizontal error bars on figures 5 and 6 could place SNODAS more broadly 

within the measurement context. 
Response: Agreed. After combining figures 5 and 6, we will add error bars for the 

insitu measurement surveys.   
 
(5) (Same as reviewer 1, comment 7; P3153 L18) It nags at my conscience that 

you’re using ±13cm from RMSD as the error range for the LiDAR. I think a 
simple discussion (1 sentence?) justifying why this is appropriate would be 
helpful. My concern is that the errors are biased so that they are not symmetric 
about zero. If you plot the distribution of these errors, the mean is not zero. The 
assumption of ±13cm is similar to assuming 1 standard deviation of a mean-zero 
distribution? Also why is 1 standard deviation, or whatever exactly RMSD 
represents, appropriate? It’s not the same as 1 standard deviation if there’s a bias. 
The conclusions are somewhat dependent on this assumption, so it should be 
clearly argued. 

Response: We don’t believe that the sample size of just 12 in situ points where the 
LiDAR was analyzed provides enough spatial representation of the 750-km2 
study area to apply a bias correction.  With a bias on the order of the LiDAR 
uncertainty, we did not feel that the bias correction would largely affect the 
ΔSNODAS vs. ΔLiDAR comparison results. 

 
(6) (Same as reviewer 1, comment 3; P3150 L20) The argument about why melt 

being insignificant is lost on me. Why is this important? Clarification needed. 
Related to this, a time series "spaghetti-plot" of all the SNODAS pixels along 
with their mean would illuminate SNODAS behavior during the Δtime. 

Response: This analysis was intended to simply narrow down the processes that 
could be causing uncertainties in SNODAS.  By eliminating melt as a 
contributing factor, the focus turns to the densification, compaction, and new 
snow density routines within the NSM portion of SNODAS. 

 
(7) (Same as reviewer 1, comment 5; P3150 L22) Do you mean just change in depth 

(what I’m calling Δ) instead of melt? Sublimation doesn’t really cause melt; it 
probably has the opposite effect like sweat cools the body. 

Response: Yes these are two completely separate processes, and we removed any 
mention of sublimation from the text, since we did not perform an analysis on 
the sublimation products.  SNODAS treats processes affecting mass loss 
individually within the energy balance model, and melt and sublimation are 
modeled as individual products: sublimation due to wind, sublimation within the 
snowpack, and melt due to solar radiation. 

  
 



(8) (P3151 L19) The word "model" is a bit ambiguous. You could change to "its" or 
"SNODAS". 

Response: We changed this to “...SNODAS uncertainty.” 
 
(9) (P3152 L26) "...mean HG" wasn’t defined as "mean HG difference" previously. I 

assume that’s what you mean. Generally I’d suggest revising the notation to use 
deltas, it would be clearer: ΔLiDAR, ΔSNODAS, ΔHG. 

Response: This suggestion is great.  We will go back and change all the surface 
difference variables to include deltas. 

 
(10) (P3153 L21) Seems like bias and RMSE should be mentioned in this paragraph. 

It’s on the figure and important. 
Response:  
 
(11) (P3153 L21) "...potential explanatory physiographic variables" might be a better 

expression than "...potential physiographic parameters". 
Response: This change was applied.  Better refers to the regression method that we 

used. 
 
(12) (P3155 L6) This paragraph would benefit by starting with its final sentence. 
Response: This entire paragraph was rewritten. 
 
(13) (P3155 L17) SNOTEL used for assimilation are also in the trees, which affects 

solar radiation as well. This is a point that seems to be worth exploring or 
mentioning. 

Response: This point was added to the paragraph at the end. 
 
(14) (P3155 L22) "changed" is vague. Is "accumulated more snow" better? 
Response: We replaced “changed more than” with “accumulated more snow than”. 
 
(15) (P3156 L3) "over-distributing" is just vague. You could use more words if you 

think the point is important, but I’d just remove "over-". 
Response: Yes, it is vague so we removed “over-”. 

 
Reference: 
Seo, D. J., Cajina, L., Corby, R., & Howieson, T. (2009). Automatic state updating for 
operational streamflow forecasting via variational data assimilation. Journal of Hydrol- 
ogy, 367(3), 255-275. 
 
  



New and Revised Figures 
 

 
Fig. 1. Location of the CLPX-2 LiDAR footprint in Colorado, USA with nearby towns, SNOTEL sites, and 
IOP in situ hourglass (HG) measurement transect locations indicated. 

 
Figure 1 was modified to only show elevations on the location and feature map.  



 
Fig. 2. Estimates of snow depth change between December 3rd, 2006 and February 22nd, 2007 along with 
the six nearby SNOTEL sites used by SNODAS for data assimilation. (a) represents the 5-meter resolution 
LiDAR-derived snow depth change, ΔLiDAR, (b) shows the upscaled LiDAR estimates of snow depth 
change at the 1-km SNODAS resolution, and (c) is the difference in SNODAS estimates of snow depth, 
ΔSNODAS, on the dates of the LiDAR acquisitions, with the LiDAR footprint outlined for reference. 

Figs 2 & 4 and a portion of Fig 1 were combined as a panel figure for easier comparison.  
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Fig. 3. ΔSNODAS (blue circles) and ΔLiDAR (red crosses) snow depths evaluated over the centers of the 
twelve ΔHG measurement transects. The ΔLiDAR points were determined by averaging each reported 5 
meter resolution ΔLiDAR snow depth within a 10 meter radius of each reported HG measurement, then 
averaging again over each HG transect site. The ΔSNODAS estimates were the areal-weighted averages of 
the four nearest SNODAS pixels to the center of each HG transect site. 

Figures 5 and 6 were combined to create a more succinct figure. 
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