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Abstract	  10	  
Arctic	  sea	  ice	  thickness	  distributions	  from	  models	  participating	  in	  the	  World	  Climate	  11	  
Research	  Programme	  Coupled	  Model	  Intercomparison	  Project	  Phase	  5	  are	  evaluated	  12	  
against	  observations	  from	  submarines,	  aircraft	  and	  satellites.	  While	  it’s	  encouraging	  that	  13	  
the	  mean	  thickness	  distributions	  from	  the	  models	  are	  in	  general	  agreement	  with	  14	  
observations,	  the	  spatial	  patterns	  of	  sea	  ice	  thickness	  are	  poorly	  represented	  in	  most	  15	  
models.	  	  The	  poor	  spatial	  representation	  of	  thickness	  patterns	  is	  associated	  with	  a	  failure	  of	  16	  
models	  to	  represent	  details	  of	  the	  mean	  atmospheric	  circulation	  pattern	  that	  governs	  the	  17	  
transport	  and	  spatial	  distribution	  of	  sea	  ice.	  	  The	  climate	  models	  as	  a	  whole	  also	  tend	  to	  18	  
underestimate	  the	  rate	  of	  ice	  volume	  loss	  from	  1979	  to	  2013,	  though	  the	  multi-‐model	  19	  
ensemble	  mean	  trend	  remains	  within	  the	  uncertainty	  of	  that	  from	  the	  Pan-‐Arctic	  Ice	  Ocean	  20	  
Modeling	  and	  Assimilation	  System.	  These	  results	  raise	  concerns	  regarding	  the	  ability	  of	  21	  
CMIP5	  models	  to	  realistically	  represent	  the	  processes	  driving	  the	  decline	  of	  Arctic	  sea	  ice	  22	  
and	  to	  project	  the	  timing	  of	  when	  a	  seasonally	  ice-‐free	  Arctic	  may	  be	  realized.	  23	  

1.	  Introduction	  24	  
 The last four decades have seen a remarkable decline in the spatial extent of Arctic sea ice at 25	  
the end of the melt season. Based on sea ice concentrations from the National Snow and Ice Data 26	  
Center (NSIDC) Sea Ice Index [Fetterer et al., 2002), the linear trend for September, as 27	  
calculated over the 1979 through 2013 period, stands at -14.0% dec-1, or -895,300 km2 dec-1. The 28	  
downward trend has been linked to a combination of natural climate variability and warming that 29	  
is a response to increasing concentrations of atmospheric greenhouse gases [e.g. Notz and 30	  
Marotzke, 2012; Stroeve et al., 2012a]. Extent recorded for September 2012 (the record low in 31	  
the satellite era) was only 50% of values recorded in the late 1970s to early 1980s. Volume 32	  
losses are even greater showing 80% decline in between September 1979 and 2012 according to 33	  
the Pan-Arctic Ice Ocean Assimilation System (PIOMAS). While September ice extent 34	  
rebounded in 2013, partly a result of anomalously cool summer conditions [e.g. Stroeve et al., 35	  
2014], it was still the 6th lowest in the satellite record.  36	  
 Coupled global climate models (GCMs) consistently project that if greenhouse gas 37	  
concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice 38	  
cover, that is, sea ice will become a seasonal feature of the Arctic Ocean [e.g. Stroeve et al., 39	  
2007; 2012b], presenting both challenges and opportunities to Arctic residents, government 40	  
agencies and industry. While GCMs can provide useful projections of when a seasonally ice-free 41	  
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Arctic Ocean may be realized, confidence in these projections depends on their ability to 42	  
reproduce features of the present-day climate. Stroeve et al. [2012b] found that models 43	  
participating in the World Climate Research Programme Coupled Model Intercomparison Project 44	  
Phase 5 (CMIP5) are more consistent with observations than those from the previous CMIP3 45	  
effort, with 67% of the models (or 16 out of 24) having a 1953-1995 mean September ice extent 46	  
falling within the minimum and maximum bounds of observed values. However, historical trends 47	  
from 85% of the model ensemble members examined remain smaller than observed, and the 48	  
spread in simulated extent between different models remains large.  49	  
 Realistically simulating the past and future evolution of the Arctic’s floating sea ice cover is 50	  
one of the most challenging facets of climate modeling. Simulating the sea ice thickness 51	  
distribution has emerged as a key issue. While it follows that climate models with an overly thick 52	  
initial (early 21st century) ice cover will tend to lose their summer ice later than models with 53	  
initially thinner ice given the same climate forcing [e.g. Holland et al. 2010], the ice thickness 54	  
distribution strongly determines surface heat fluxes, impacting on both the ice mass budget and 55	  
ice loss rate, which is in turn a major driver of Arctic amplification - the outsized rise in lower-56	  
tropospheric air temperatures over the Arctic Ocean compared to lower latitudes [Serreze et al., 57	  
2009]. 58	  
 A major difficulty in evaluating thickness distributions in GCMs is the lack of consistent 59	  
observations spanning a sufficiently long time period. It was not until 2003 that temporally-60	  
limited (autumn and spring) near-Arctic-wide estimates of thickness became available from 61	  
NASA's Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System 62	  
(GLAS). Prior to ICESat, information was largely limited to data from upward looking sonars on 63	  
board British and U.S. submarines collected during the 1980s and 1990s, mainly covering the 64	  
region near the pole as well as several moorings providing time series in fixed locations 65	  
[Lindsay, 2010]. The first European Remote Sensing satellite (ERS-1) included a radar altimeter 66	  
that provided fields of estimated sea ice thickness up to latitude 81.5oN, but only for the 1993 to 67	  
2001 period [Laxon et al., 2003]. Since the failure of ICESat in 2009, additional sea ice thickness 68	  
measurements have become available from airborne flights as part of NASA’s Operation 69	  
IceBridge program. Arctic-wide coverage has since resumed, starting in 2010 from the radar 70	  
altimeter on-board the European Space Agency’s CryoSat-2. Together, these data provide a 71	  
valuable source of information for the validation of spatial patterns of sea ice thickness. In 72	  
addition, satellite and in-situ observations have been used to provide validation of sea ice 73	  
reanalysis systems such as PIOMAS, which in turn may provide a consistent record of thickness 74	  
and volume for comparison with climate model long-term trends [Schweiger et al., 2011].  75	  
 This paper examines biases in contemporary Arctic sea ice thickness and ice volume from the 76	  
CMIP5 models making use of all of these data sets. Model thicknesses are evaluated for the 77	  
whole of the Arctic Ocean and on a regional basis depending on data coverage. Since radar 78	  
measurements are influenced by snowmelt, and IceBridge data are only available in March, we 79	  
focus on spring (e.g. March) estimates of ice thickness. Modeled ice volume spanning the 1979 80	  
to 2013 period is further evaluated against volume estimates simulated from PIOMAS [Zhang 81	  
and Rothrock, 2003] for the months of March and September.  82	  
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2.	  Methodology	  83	  

2.1	  Evaluation	  framework	  84	  
 We evaluate models using three criteria: 1) how well they replicate the statistical distribution 85	  
of observed mean sea ice thickness fields based on aggregating all available data across the 86	  
Arctic for each observational data set; 2) how well they replicate the observed spatial pattern of 87	  
sea ice thickness; and 3) how well they replicate the best estimate of trends in sea ice volume. 88	  
The first two evaluations make use of the thickness records from in-situ moorings, and 89	  
submarine, aircraft- and satellite-borne instruments introduced in the previous section. This 90	  
record is not sufficiently homogeneous to evaluate thickness or volume trends, which is why we 91	  
also make use of the PIOMAS record. PIOMAS assimilates sea ice concentration, sea surface 92	  
temperature and ice velocity. While PIOMAS is a model and sensitive to the atmospheric 93	  
reanalysis used, estimates of thickness compare well with in-situ observations, submarines, 94	  
airborne measurements, and from satellites [Zhang and Rothrock, 2003; Schweiger et al., 2011; 95	  
Lindsay et al., 2012; Laxon et al., 2013].  96	  
 A further difficulty in our model evaluation, amplified by the piecemeal nature of the ice 97	  
thickness record, is that individual years in CMIP5 model time do not correspond with the same 98	  
years in the observational record. Imprints of intrinsic natural climate variability in the 99	  
observational record (such as that associated with the phase of the North Atlantic Oscillation) 100	  
will likely be out of phase with natural variability in the model simulations. Thus, discrepancies 101	  
in modeled ice thickness can either be due to model biases or natural climate variability. Ideally, 102	  
climatologies of modeled sea ice thickness need to be compared with observed climatologies that 103	  
are of similar length and long enough (e.g., 30 years) to average out most of the natural 104	  
variability.   105	  
 Monthly mean fields of sea ice thickness for 92 ensemble members of 33 climate models 106	  
from the CMIP5 archive were downloaded from the Earth System Grid of the Program for 107	  
Climate Model Diagnosis and Intercomparison data portal (PCMDI) (http://cmip-108	  
pcmdi.llnl.gov/cmip5/). The archive consists of both atmosphere-ocean global climate models 109	  
(AOGCMs) and Earth System Models (ESMs), the latter which incorporate interactive 110	  
biogeochemical cycles into AOGCMs. Both the historical (1850-2005) and future Representative 111	  
Concentration Pathway (RCP) 4.5 (2006-2100) emission scenarios were processed and the same 112	  
number of ensembles for both emission scenarios were used. RCP4.5 is a medium-mitigation 113	  
scenario that stabilizes CO2 at ~650 ppm at the end of the century [e.g. Thompson et al., 2011], 114	  
corresponding to a radiative forcing of 4.5 Wm-2 by 2100. It is perhaps a conservative scenario 115	  
given current emission rates. A listing of the models used can be found in Table 2. 116	  
 Monthly mean thickness fields for the 1981 to 2010 period were calculated for every 117	  
ensemble member. For models having more than one ensemble member, mean thickness fields 118	  
from each ensemble for a given model were averaged to form a single ensemble average. Spatial 119	  
resolutions vary considerably from high-resolution ocean modelling grids to coarse grids with a 120	  
roughly 1 degree-by-1-degree spacing. To enable comparisons between models and the 121	  
observations, mean thickness fields were regridded to the 100 km Equal Area Scaleable Earth 122	  
(EASE) grid [Brodzik and Knowles, 2002] using a drop-in-the-bucket approach. The 100 km 123	  
resolution corresponds to resolution of the coarser model grids.     124	  
 To compare aggregate mean thickness (evaluation criterion 1), frequency distributions were 125	  
derived for each model using the regridded mean fields. Separate distributions were produced for 126	  
each observed thickness field so that model thicknesses could be extracted corresponding to the 127	  
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coverage of each of the observed thickness data sets. For example, only grid cells with 128	  
thicknesses from both IceBridge and the model were used when evaluating how well the models 129	  
represent the aggregate thickness distribution during the IceBridge time-period. Regridded model 130	  
fields were also used to evaluate spatial thickness patterns (criterion 2). To ensure that model 131	  
ensemble members can be used for validation of spatial patterns, it is important to first assess the 132	  
natural variability of the sea ice thickness spatial patterns within the models. For models with 133	  
five or more ensemble members, we evaluated the variability in spatial patterns and Arctic-wide 134	  
mean thickness from 1981 to 2010 [Figure 1]. As expected, higher variability is the rule over the 135	  
North Atlantic near the sea ice margin. Three of the models (CCSM4, EC-EARTH and 136	  
HadCM3) stand out because of high local variability, such as in the Beaufort Sea sector in 137	  
CCSM4. Two of these models (CCSM4 and EC-EARTH) incorporate an ice-thickness 138	  
distribution (ITD) framework. It could be that models that resolve the statistical sub-grid scale 139	  
distribution of ice thickness produce grid-cell thicknesses  more strongly influenced by natural 140	  
variability than models without ITD. However, for the models evaluated, variability is less than 141	  
8% of the mean over the Arctic Ocean as a whole. In addition, spatial pattern correlations 142	  
between individual ensembles within a model are above 0.9 (and mostly above 0.98) (not 143	  
shown). This suggests that the fragmented observational record offers an opportunity to compare 144	  
characteristics of the thickness patterns, which are less impacted by natural variability.  145	  
 To evaluate criterion 3 (trends in ice volume using PIOMAS records), March ice volume was 146	  
calculated for each model ensemble member corresponding to the domain of the PIOMAS 147	  
estimates. Unlike thickness, ice volume was calculated on the native model grid. Ice thickness in 148	  
the CMIP5 archive is given as the grid cell mean including ice-free portions of the grid cell. 149	  
Grid-cell ice volume is simply the product of the mean grid-cell thickness and grid-cell area. 150	  
Grid cell volumes were summed for the PIOMAS domain, to give a time series of monthly mean 151	  
ice volume. 152	  

2.2	  Data:	  Observations	  153	  
As previously introduced, the observed record of sea ice thickness is based on a combination 154	  

of in-situ, submarine, aircraft and satellite data. Although records are available from 1975 155	  
through the present, no one data source is spatially or temporally continuous over the whole of 156	  
this period, making the construction of a homogenous time series from observations alone 157	  
impossible. To provide a long-term picture, estimates of ice thickness from different sources 158	  
must be combined. We provide gridded fields at two resolutions on the EASE grid (25- and 100-159	  
km) that facilitate comparisons with both PIOMAS (distributed at 25-km spatial resolution) and 160	  
the CMIP5 mean thickness fields (100-km resolution). 161	  

Unclassified sonar data from U.S. Navy and U.K. Royal Navy submarine missions provide 162	  
the earliest estimates, starting in 1975 and ending in 1993. Ice thickness estimates from 163	  
submarines and other platforms have been collated and processed into a consistent format by R. 164	  
Lindsay at the University of Washington Polar Science Center to produce the Unified Sea Ice 165	  
Thickness Climate Data Record (CDR) [Lindsay, 2010]. The most recent version of the 166	  
submarine data was obtained from the University of Washington, Polar Science Center. An 167	  
archive version of the CDR, which is updated annually, is also hosted by NSIDC [Lindsay, 168	  
2013].  Submarine sonars provide measurements of ice draft (the depth of ice below sea level). 169	  
Rothrock and Wenshahan [2007] document the conversion of ice draft into thickness. Briefly, ice 170	  
thickness is derived from draft estimates using Archimedes principle with assumed ice, snow and 171	  
water densities, and the depth of snow on the ice. In most cases, snow depth is unknown and the 172	  
Warren snow climatology [Warren et al., 1998] is used. Rothrock and Wenshahan [2007] 173	  
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estimate an average thickness bias from the sonar data compared to direct observations of 0.29 174	  
m. We subtracted this bias from the submarine data set prior to comparison with the CMIP5 175	  
model output. Following Schweiger et al., [2011], we only use data from US cruises because the 176	  
processing history for UK cruise data is uncertain. Submarine cruises are designated as spring or 177	  
summer. We use spring cruises, defined as occurring between March and June. Most cruises 178	  
provide data for the central Arctic Ocean, away from the shallow continental shelves.  179	  

Upward Looking Sonar (ULS) instruments on bottom-anchored moorings in the Eastern 180	  
Beaufort Sea, Beaufort Gyre and Chukchi Sea provide further estimates of ice thickness.  181	  
Moorings in the Eastern Beaufort Sea and Chukchi Sea are maintained by the Institute of Ocean 182	  
Sciences [Melling and Riedel, 2008]. Data records start in 1990 and end in 2005. Moorings in the 183	  
Beaufort Gyre region are maintained and data made available by the Beaufort Gyre Exploration 184	  
Project based at the Woods Hole Oceanographic Institution (http://www.whoi.edu/beaufortgyre).  185	  
ULS on moorings also measure ice draft. The most recent versions of these in-situ ice draft 186	  
estimates were also obtained from the Polar Science Center. Thickness was calculated from in-187	  
situ ice drafts using the same method as applied to the submarine data.  188	  

Unlike submarine sonar, satellite and aircraft radar and laser altimeters measure the height of 189	  
bare-ice, snow-covered ice and snow surfaces above the ocean surface, depending on instrument 190	  
characteristics and surface conditions. By identifying leads between the ice floes, the freeboard 191	  
(the height of the snow or ice surfaces above sea level) can be derived. Ice freeboard is converted 192	  
to ice thickness using Archimedes principle in a similar way as the conversion of submarine ice 193	  
draft to ice thickness, using estimates or assumptions of snow and ice density and snow depth. 194	  

Laxon et al. [2003] retrieved ice thickness from the 13.8 GHz radar altimeter onboard the 195	  
ERS-1 satellite and assessed changes in Arctic sea ice thickness from 1993 to 2001 up to latitude 196	  
81.5oN. The winter sea ice area covered by ERS-1 is about 3.08 106 km2 and includes the 197	  
Beaufort, Chukchi, East Siberian, Kara, Laptev, Barents and Greenland seas. ERS-1-derived ice 198	  
thickness is provided as a single mean field averaged from 1993 to 2001 for the month of March 199	  
on a 0.1o latitude by 0.5o longitude grid.  200	  

ICESat, with its laser altimeter, provided the first thickness data set to cover almost the entire 201	  
Arctic Ocean. Thicknesses are derived based on the methodology described by Kwok et al. 202	  
[2009]. The ICESat archive provides five years (2004-2009) of gridded fields at 25 km 203	  
resolution. Estimates of thickness extend up to 86oN. Kwok et al. [2009] estimate an uncertainty 204	  
of 0.5 m for each 25 km grid cell. Operation IceBridge is an ongoing airborne laser altimeter 205	  
mission aimed at bridging the gap between ICESat and the follow-on ICESat-2 scheduled to 206	  
launch in 2017. IceBridge provides individual tracks of ice thickness, generally confined to the 207	  
western Arctic Ocean during March and April from 2009 to present [Kurtz et al., 2012a]. 208	  
Coverage is sparse in the early years of the program but subsequently improves. Each IceBridge 209	  
track gives ice thickness estimates at 40 m spacing. Thickness retrievals are detailed by Kurtz et 210	  
al. [2012b]. Finally, CryoSat-2 thickness estimates are derived using a satellite radar altimeter 211	  
with coverage extending up to 88oN. We use the preliminary thickness product produced by the 212	  
Alfred Wegner Institute (www.meereisportal.de/cryosat). Data are available for 2011 through 213	  
2013 on the EASE-2 25-km grid [Brodzik et al, 2012]. 214	  

Ice thickness is also measured using a combination of airborne electromagnetic (EM) 215	  
induction instruments and laser altimeter [Haas et al, 2009]. The instrument package is flown 216	  
above the sea ice surface by helicopter. The EM instrument is used to detect the distance 217	  
between the instrument and ice-water interface. The laser altimeter provides the height of the 218	  
snow or ice surface. The difference between the two measurements provides the combined snow-219	  
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ice thickness. Ice thickness can be obtained using information about snow thickness and density.  220	  
EM derived ice thicknesses are available for the central and western Arctic Ocean between 2002 221	  
and 2012. These data are also included in the Unified Sea Ice Thickness CDR and were obtained 222	  
from the Polar Science Center. 223	  

All satellite-derived ice thickness fields were regridded as needed from their original gridded 224	  
format to 25-km and 100-km EASE grids using a drop-in-the-bucket averaging. This provides a 225	  
mean 1993-2001 thickness field from ERS-1, a yearly field for each of the five ICESat years 226	  
(spring 2004 to 2009) and each of the three CryoSat years (2011 to 2013). Period-of-record mean 227	  
fields from ICESat and CryoSat were additionally calculated, by first averaging on their native 228	  
grids and then regridding to 25- and100-km resolution.   229	  

The in-situ mooring data, Airborne EM, IceBridge and submarine sonar track data needed to 230	  
be handled differently. For comparison with CMIP5, all observed thickness estimates within 70 231	  
km of a 100 km EASE grid box center were averaged to give a grid cell mean thickness. To 232	  
provide the best coverage to compare with modeled thickness distributions, all thickness 233	  
estimates for all years were used to calculate a single average field for the period of record. Grids 234	  
of IceBridge and submarine data at 25-km spatial resolution were additionally produced for 235	  
individual years by combining multiple flight lines and cruise tracks in a single year. Since the 236	  
time-periods of coverage vary, composites of ice thickness from IceBridge and submarine data 237	  
are based on a range of times during the observational intervals and do not exactly correspond to 238	  
monthly averages. This will introduce a temporal sampling error when making comparisons 239	  
between the observations from these data sets and the monthly CMIP5 model and PIOMAS 240	  
output.   241	  

Along with temporal sampling problems, the various thickness records have a range of biases 242	  
due to differences in sensor types and retrieval approaches. Radar and laser technologies use 243	  
different wavelengths and footprints, and different techniques have been used to estimate snow 244	  
depth and snow and ice density, which in turn impacts ice thickness retrievals. This creates 245	  
additional challenges  as differences in snow and ice density and snow depth values used can 246	  
lead to large biases in ice thickness [e.g. Zygmuntowska et al., 2014]. For example, for multiyear 247	  
ice,  Kwok et al. [2009] use a density of 925 kg m-3 while and Laxon et al. [2013] use 882 kg m-3. 248	  
According to Kurtz et al. [2014], this could lead to a thickness difference of 1.1m for a typical 249	  
multiyear ice floe of 60 cm snow-ice freeboard with a 35 cm deep snow cover. Similarly, given 250	  
an ICESat freeboard of 0.325 m with an estimated 0.25 m of snow (density 300 kg m-3) atop the 251	  
ice (density of 900 kg m-3), we would compute a sea ice thickness of 1.5 m. Yet if there had been 252	  
only 0.15 m of snow, the ice would be 2.2 m thick, a change of 0.70 m or 46% of the original 253	  
estimate. 254	  

At present, there is no long-term sea ice thickness data set that applies these parameters in a 255	  
consistent manner regardless of which instrument is used. It is nevertheless encouraging that all 256	  
of the records show similar spatial patterns of ice thickness [Figure 2: left column], which while 257	  
lending confidence to the data, also demonstrates persistence of the general spatial pattern of 258	  
Arctic sea ice thickness from 1979 to present. Mean thicknesses are greater along the northern 259	  
coasts of the Canadian Arctic Archipelago and Greenland where there is an onshore component 260	  
of ice motion resulting in strong ridging. Mean thicknesses are lower on the Eurasian side of the 261	  
Arctic Ocean where there is a persistent offshore ice motion and ice divergence, leading to new 262	  
ice growth in open water areas. When viewed for the Arctic as a whole, the combined records 263	  
show a decline through time in ice thickness, although this must be tempered by differences in 264	  
physical assumptions used to retrieve thickness [Zygmuntowska et al., 2014]. 265	  
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2.3	  PIOMAS	  Ice	  Thickness	  Patterns	  and	  Volume	  266	  
 Since there is not a long-term consistent ice thickness data set with which to evaluate ice 267	  
volume trends, we assess CMIP5 volume trends from 1979 to 2013 against estimates from 268	  
PIOMAS [Zhang and Rothrock, 2003]. PIOMAS assimilates observed sea ice concentrations, ice 269	  
motion and sea surface temperatures into a numerical model to estimate ice volume on a 270	  
continuous basis. The model is forced at the surface by data from the National Centers for 271	  
Environmental Prediction (NCEP) atmospheric reanalysis.  272	  
 Schweiger et al. [2011] found that PIOMAS ice thickness estimates agree well with those 273	  
from ICESat [Kwok et al., 2009] and with in-situ and Airborne EM observations from the sea ice 274	  
thickness CDR. They established uncertainty estimates for PIOMAS ice volume and trends, and 275	  
concluded that PIOMAS provides useful estimates of changes in ice volume. Comparisons were 276	  
made for all months in the year. Laxon et al. [2013] compared concatenated time series of 277	  
ICESat and CryoSat data and found that derived trends agree within the established uncertainty 278	  
limits from PIOMAS, further arguing that PIOMAS is useful for climate model evaluation. 279	  
 In this paper, our focus is on representation of March ice thickness and volume. It is, 280	  
therefore, useful to assess PIOMAS for this period in particular. We include data from ERS-1 281	  
and IceBridge, which have not been used in previous comparison studies. To this end, the middle 282	  
column of Figure 2 (center column) shows the PIOMAS thickness estimates corresponding to 283	  
the five observational thickness data sets used in this study. The right hand column of Figure 2 284	  
shows corresponding scatter plots between PIOMAS and the observations for each individual 285	  
year of the observations (plotted as different colors for each year of data, except for the in-situ 286	  
CDR, which includes 29 years of data, and ERS-1, which was provided as mean field over the 287	  
entire time-period). The CDR data in the top scatter plot includes thicknesses from in-situ 288	  
moorings, United States submarines and Airborne EM. Statistics are summarized in Table 1.  289	  
 The observed thickness patterns and magnitudes generally compare well with those 290	  
simulated by PIOMAS, providing further confidence that PIOMAS can be used to assess the 291	  
CMIP5 volume trends during winter. However, the scatter plots reveal a general negative (too 292	  
thin) thickness bias in PIOMAS for higher thickness values (found near the Canadian 293	  
Archipelago and north of Greenland). The reverse tends to be true for areas of thin ice. In 294	  
addition, PIOMAS tends to have a tongue of thicker ice (~2.5m) that stretches out across the 295	  
Arctic Ocean to the Chukchi and East Siberian seas. The observations typically do not depict  296	  
this feature, especially the ICESat record. PIOMAS also underestimates the ice thickness in the 297	  
East Greenland Sea. The underestimation of thick ice and overestimation of thin ice by PIOMAS 298	  
was previously noted in Schweiger et al. [2011]. In general the mean errors are smallest with 299	  
respect to the submarine and ICESat data and are largest for the IceBridge, CryoSat and ERS-1 300	  
data.	  301	  
 Based on data comparisons and sensitivity studies, Schweiger et al. [2011] estimate an upper 302	  
bound for the uncertainty of decadal PIOMAS trends of 1x103 km3 dec-1. Given the large 303	  
observed volume trend of 2.8x103 km3 dec-1 in March, PIOMAS is a suitable tool for assessing 304	  
long-term trends CMIP5 models. Daily ice volume estimates at 25 km spatial resolution from 305	  
PIOMAS were averaged to create monthly means of ice volume over the 1979 to 2013 record to 306	  
compare with the CMIP5 output. 307	  
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3.	  Results	  308	  

3.1	  Ice	  Thickness	  	  309	  
 We first compare observed and CMIP5 mean sea ice thickness fields averaged over the areas 310	  
of coverage corresponding to each of the different remotely-sensed data sets [Figure 3]. The 311	  
median spring thickness from each data set is shown as a solid red line, together with the 10th 312	  
and 90th percentiles (green lines) and the interquartile range (grey shading).  313	  
Ice thicknesses from the 33 individual CMIP5 models are presented as box and whisker plots 314	  
based on data for model years 1981 to 2010, where the boxes represent the interquartile range in 315	  
thickness (25th to 75th percentiles), the whiskers the 10th and 90th percentiles, and the horizontal 316	  
bars and asterisks within each box define the median and mean, respectively. As mentioned 317	  
earlier, the 1981 to 2010 averaging time-period for CMIP5 is somewhat arbitrary as we cannot 318	  
expect the natural variability in the models to be in phase with observed natural variability. This 319	  
comparison therefore only reflects how well the long-term mean thickness fields in the models 320	  
compare to the different observational data sets, such that if the spread of the observations for a 321	  
given platform/instrument falls within the spread for a given model, we conclude the model 322	  
captures the thickness. If the spread does not overlap, then there is a bias. We may additionally 323	  
expect that the trend in thickness should be captured in the distributions of model thickness if 324	  
one exists in those models.  325	  
 In general, the thickness distributions from the models overlap those from each remotely-326	  
sensed data set. There are exceptions. Several models have negative biases in comparison to the 327	  
in situ, ERS-1 and IceBridge data sets, with means below the 10th percentile of the observations. 328	  
A negative bias with respect to the in situ and ERS-1 data is not surprising as these observations 329	  
sample from a thicker ice regime than the more recent two decades. However, some models that 330	  
show a negative bias compared to the in situ and ERS-1 data also show a negative bias with 331	  
respect to the IceBridge data (e.g. BCC-CSM1, CanCM4, CanESM2, CNRM-CM5, the GFDL 332	  
models, MIROC ESM, MIROC-ESM-CHEM, MIROC4h, the MPI models and MRI-CGCM3), 333	  
suggesting that the models are underestimating in regions of thick ice north of Greenland and the 334	  
Canadian Archipelago sampled by the IceBridge flights.  335	  
 The CMIP5 models show the best agreement with the ICESat and CryoSat observations. The 336	  
ICESat and CryoSat statistics integrate more regions of thin ice along with the thick ice regions 337	  
north of Greenland and the Canadian Archipelago, resulting in overall smaller mean thickness 338	  
values compared to the other data sets. The coverage is also from a time period of significant ice 339	  
thinning throughout most of the Arctic Ocean [e.g. Kwok and Rothrock, 2009; Kwok et al., 2009; 340	  
Laxon et al., 2013]. In comparison with ICESat, all but two models (CESM1-WACCM and 341	  
FGOALS-g2) have  a mean thickness within the 10th and 90th percentiles of the observed value. 342	  
Mean thicknesses during the CryoSat period are slightly smaller than for ICESat, resulting in 343	  
eight models (CESM-CAM5, CESM1-WACCM, CSIRO-MK3-6-0, EC-EARTH, FGOALS-g2, 344	  
IPSL-CM5A-MR, MIROC5, NorESM1-M) having mean thicknesses above the 90th percentile 345	  
from CryoSat. 346	  
 Given the limited temporal coverage of each observational data set, these comparisons 347	  
should be regarded as a qualitative assessment. On the other hand, the fairly long PIOMAS 348	  
record (30 years) brings the advantage of a long and reasonably homogenous data record to 349	  
compare with the model data. The bottom of Figure 3 compares CMIP5 modeled ice thicknesses 350	  
with PIOMAS estimates over the same 1981 to 2010 time-period. All but six models (CESM1-351	  
WACCM, EC-EARTH, FGOALS-g2, IPSL-CM5A-LR, MIROC5, and NORESM1-M) have 352	  
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mean March ice thickness values falling between the 10th and 90th percentiles of the PIOMAS 353	  
values, and 70% (23) have mean thicknesses within the PIOMAS interquartile range (i.e. gray 354	  
shading).  355	  
 This good agreement with PIOMAS must be tempered by recognition of the pronounced 356	  
inter-model spread in ice thickness aggregated across the Arctic Ocean and large differences in 357	  
the spatial patterns of thickness [Figure 4]. Few models capture the pattern of thin ice close to 358	  
the Eurasian coast and several additionally fail to place the thickest ice along the Canadian 359	  
Arctic Archipelago and northern coast of Greenland (i.e. both ACCESS models, BCC-CSM1, 360	  
CanCM4, CanESM2, CSIRO-Mk3, FIO-ESM, both GISS models, HadCM3, INMCM4, 361	  
MIROC-ESM-CHEM). Instead, many models show a ridge of thick ice north of Greenland and 362	  
across the Lomonosov Ridge towards the East Siberian shelf, with thinner ice in the 363	  
Beaufort/Chukchi and the Kara/Barents seas. As a whole, the models tend to overestimate ice 364	  
thickness over the central Arctic Ocean and along the Eurasian coast and underestimate ice 365	  
thickness along the North American coast and north of Greenland and the Canadian Archipelago. 366	  
 An analysis of spatial pattern correlations and root-mean-square error (RMSE) of ice 367	  
thickness between CMIP5 models and ICESat observations documents serious model 368	  
shortcomings. Spatial pattern correlations are less than 0.4 for all but three models (CCSM4, 369	  
MIROC5 and MRI-GCGM3) [Figure 5 (left)] and RMSE values generally exceed 0.7 m [Figure 370	  
5 (right)]. These spatial pattern correlations are significantly smaller than those between 371	  
ensembles from the same model, suggesting that the poor correlations cannot be explained by 372	  
natural variability but rather a bias within the models. Interestingly, the spatial correlations in 373	  
thickness between the CMIP5 models and PIOMAS are generally higher than those between the 374	  
CMIP5 models and the ICESat data (not shown). The reason for this is that both PIOMAS and 375	  
many of the CMIP5 models have a spurious tongue of fairly thick ice extending across the Arctic 376	  
Ocean towards the Chukchi and East Siberian seas.  377	  
 Kwok [2011] previously attributed deficiencies in ice thickness fields in the CMIP3 models 378	  
to their inability to simulate the observed pattern of sea level pressure and hence surface winds. 379	  
For example, if a model fails to produce a well-structured Beaufort Sea High (BSH) in the 380	  
correct location north of Alaska, this will adversely affect the Beaufort Gyre ice drift and hence 381	  
the thickness pattern. Models with overly thick ice offshore of Siberia suggest the presence of a 382	  
strong anticyclonic drift that extends close to the coast, allowing ice to pile up on the upwind 383	  
side. However, the presence of thick ice on the Siberian side could also be a result of a higher 384	  
frequency of occurrence of a specific atmospheric circulation anomaly pattern.  385	  
 We directly evaluated the annual mean sea level pressure fields and the associated surface 386	  
geostrophic wind fields in the CMIP5 models [Figure 6] against fields from four different 387	  
atmospheric reanalysis. Note that correlations between the reanalysis themselves range between 388	  
0.91 and 0.99 [Table 3]. In general, most models feature a closed BSH, though in some it is not 389	  
well-defined (e.g. MPI-ESM-LR), is shifted towards the pole (e.g. CanCM4, CSIRO-Mk3-6-0, 390	  
MIROC-ESM), or towards the eastern Arctic (e.g. IPSL-CM5A-LR). Models that do not feature 391	  
a closed BSH (e.g. bcc-csm1-1, CCSM4, CESM1-WACCM, FGOALS-g2, FIO-ESM, IPSL-392	  
CM5A-MR, MIROC-ESM-CHEM and NorESM1) generally also have poor spatial thickness 393	  
pattern correlations and large RMSEs (Figure 4). The exception is CCSM4. While CCSM4 394	  
shows good spatial pattern correlation in ice thickness and the lowest RMSE of all the models 395	  
(computed with respect to ICESat), the mean sea level pressure pattern does not feature a closed 396	  
BSH and the mean flow fails to capture the Beaufort Gyre and the Transpolar Drift Stream. 397	  
Thus, while part of the failure of models to capture the observed thickness distribution can be 398	  
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explained in terms of biases in the surface wind fields, this is not always the case. This points to 399	  
additional issues such as near surface vertical stability that affects the surface wind stress, sea ice 400	  
rheology, ocean heat fluxes and the ice thickness itself as this affects ice mobility.   401	  

3.2	  Ice	  Volume	  402	  
 Recent studies suggest that because of thinning, sea ice volume is declining faster than ice 403	  
extent [e.g. Schweiger et al. 2011]. Ice volume is also a more important climate indicator than 404	  
extent through its direct connection with the sea ice energy budget. The rates of ice volume loss 405	  
for March and September calculated over the 1979 to 2013 period from PIOMAS are -9.9% and 406	  
-27.9% dec-1, respectively.  407	  
 The CMIP5 multi-model ensemble mean March ice volume averaged over this period agrees 408	  
well with PIOMAS, and remains within 1 standard deviation (1σ) throughout the 1979-2013 409	  
time-period [Figure 7]. When viewed as a group, this indicates that the models realistically 410	  
capture the last three decades of changes in Arctic ice volume, assuming that PIOMAS provides 411	  
a good representation of these changes. However, while we find good agreement between 412	  
PIOMAS ice volume and the CMIP5 multi-model ensemble mean, ice volume varies 413	  
substantially between different models. Average March ice volume ranges from around 18,000 414	  
km3 (CanESM2) to 48,000 km3 (CESM1-WACCM) [Figure 7 – dashed lines]. Additionally, as 415	  
noted earlier, few models correctly capture the observed spatial pattern of thickness. Given the 416	  
wide range of CMIP5 model results, the close match of the ensemble average with the PIOMAS 417	  
average is somewhat puzzling. We speculate that modeling groups participating in the CMIP5 418	  
collection may each individually be working to construct and tune their models to match 419	  
observed historical ice extent and thicknesses. If the effort or success by these groups is 420	  
randomly distributed, then a close match of the ensemble mean volume and PIOMAS volume, 421	  
which assimilates observed sea ice concentrations and is tuned to thickness observations, would 422	  
be expected.   423	  
 To evaluate CMIP5 ice volume further, volume trends were computed using linear least 424	  
squares with a test statistic that combines the standard error of both the model and the 425	  
observation and accounts for the effects of temporal autocorrelation. This approach, which 426	  
follows Santer et al. [2008], was previously used by Stroeve et al. [2012a] to examine ice extent 427	  
trends in both the CMIP3 and CMIP5 models and how those trends compared to the observed 428	  
trend. As in Stroeve et al. [2012a], the null hypothesis is that the CMIP5 volume trends are 429	  
consistent with those from PIOMAS. Ice volume trends during March from individual ensemble 430	  
members range between -0.49x103 km3 dec-1 (INMCM3) to -4.28x103 km3 dec-1 (MIROC5) as 431	  
assessed over the period 1979 to 2013 [Table 2 and Figure 8]. The corresponding PIOMAS 432	  
trend is shown in gray shading for one (dark gray) and two standard deviations (light gray). Note 433	  
that the gray shading does not represent the uncertainty in the PIOMAS volume estimates, which 434	  
Schweiger et al. [2011] estimate to be 1x103 km3. Therefore, the uncertainty in PIOMAS could 435	  
be larger than we show.  436	  
 While all model trends are negative, 10 ensemble members have trends that are 437	  
insignificantly different from zero (i.e. 2σ of the trend overlaps with zero). Neglecting ensemble 438	  
members with trends indistinguishable from zero, 36 of the remaining ensemble members have 439	  
mean March volume trends slower, and two faster (IPSL-CM5A-LR and MIROC5) than the 2σ 440	  
uncertainty of the PIOMAS trend. Nevertheless, the majority of the ensemble member trends 441	  
cannot be considered incompatible with PIOMAS.  442	  
 Finally, several ensembles show pronounced interannual variability in ice volume, with 443	  
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periods of increasing volume not captured by PIOMAS (not shown). Interannual variability in 444	  
the ensembles likely reflects variability in atmospheric forcing. Averaging together the 445	  
individual ensemble means from each model yields a multi-model ensemble mean trend in 446	  
March ice volume of -1.95 103 km3 dec-1 (or -6.8% dec-1 relative to the 1979-2013 mean). This is 447	  
smaller than the PIOMAS rate of decline of -2.79 103 km3 dec-1 (or -10.3% dec-1) but remains 448	  
within 2σ uncertainty of that value.  449	  
 It is important to recognize that the difference in trends between PIOMAS and CMIP5 450	  
ensemble members can arise from systematic errors in the PIOMAS or CMIP5 models, 451	  
uncertainties in the atmospheric reanalysis or that the trend in the PIOMAS time series includes 452	  
significant contributions from natural climate variability. For example, Day [2012] attribute 453	  
about 0.5 to 3.1% of the 1979 to 2010 September sea ice extent trend to changes in the Atlantic 454	  
Meridional Overturning Circulation. The range of trends for individual models summarized  in 455	  
Table 2 indicates that natural variability maybe a strong contributor to ice volume trends over the 456	  
last 35 years. However, the models themselves seem to strongly vary in the amount of natural 457	  
variability in their integrations. The CSIR0-MK3-6-0 trends range from -3.19 to -0.67 103 km3 458	  
dec-1 between its 10 ensemble members while HadCM3 features a substantially smaller range (-459	  
2.34 and -1.01 103 km3 dec-1) for its 10 ensemble members. This makes the identification of 460	  
model biases or the filtering of models based on how well they represent observed trends 461	  
difficult.  462	  

4.	  Conclusions	  463	  
 Evaluating model skill is important given the large role that the model projections play in 464	  
framing the debate on how to address global environmental change. While the CMIP5 models 465	  
more accurately hindcast sea ice extent than the CMIP3 models [e.g. Stroeve et al., 2012a], 466	  
trends from most models remain smaller than observed, lending concern that a seasonally ice-467	  
free Arctic state may be realized sooner than suggested by such models. Here we have evaluated 468	  
sea ice thickness and volume from 33 CMIP5 models through comparisons with observed 469	  
records of sea ice thickness and ice volume simulated by PIOMAS. We find that the CMIP5 470	  
models show a general thinning and reduction in ice volume over the period of observations. The 471	  
CMIP5 ensemble mean ice volume trend over the 1979-2013 is smaller but within the 472	  
uncertainties of the PIOMAS values. Although the Arctic-wide ensemble mean ice volume and 473	  
trend is strikingly similar to the PIOMAS sea ice volume and trend, there are large variations 474	  
among models.  475	  
 Furthermore, while mean thickness and volume for the Arctic Ocean as a whole appears well 476	  
represented by many of the models, spatial patterns of sea ice thickness are poorly represented. 477	  
Many models fail to locate the thickest ice off the coast of northern Greenland and the Canadian 478	  
Arctic Archipelago and thinner ice over the East Siberian Shelf. Part of the explanation lies in  479	  
deficiencies in representing the details of the prevailing atmospheric circulation over the Arctic 480	  
Ocean. This is a critical failure as projections of ice extent are strongly related to the initial ice 481	  
thickness pattern distribution [e.g. Holland et al., 2010; e.g. Holland and Stroeve, 2011]. 482	  
Moreover, Holland and Stroeve [2011] suggest that the variance of September sea ice extent 483	  
anomalies explained by the winter-spring ice thickness increases as the ice-cover thins and 484	  
transitions towards a seasonal ice cover. Thus as ice thins, the ability of models to represent the 485	  
spatial thickness distribution, may become more relevant 486	  
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 Several techniques have been advanced in the literature to sub-select models based on 487	  
different metrics of model performance during the historical time-period, with the aim of  488	  
reducing uncertainty as to when an ice-free Arctic may be realized [e.g. Wang and Overland, 489	  
2009, 2012; Boe et al., 2009; Massonnet et al., 2012]. It is clear from our study that even if a 490	  
model captures the seasonal cycle in extent, or trends in extent and/or volume, the model may 491	  
still poorly represent the prevalent atmospheric circulation patterns and thickness distributions. 492	  
Indeed, we show that a model may get the trend in ice volume or ice extent reasonably correct, 493	  
yet fail to locate the thickest ice north of Greenland and the Canadian Archipelago. Only two 494	  
models capture both the spatial pattern of sea ice thickness and the general pattern of 495	  
atmospheric circulation (MIROC5 and MRI-CGCM3), further reducing confidence in the 496	  
veracity of future projections based on CMIP5 climate models. The fact that both models display 497	  
rather different trends in ice volume (-3.6 103 km3 dec-1 and -1.15 103 km3 dec-1 respectively) 498	  
does not bode well for constraining climate models based on sea ice thickness patterns alone.    499	  
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Table 1. Mean ice thickness bias, root-mean-square error estimate and correlation between 593	  
PIOMAS modeled ice thickness and thicknesses from different remotely-sensed data sets.  594	  
Observations Mean Error (m) RMSE (m) Correlation (r) 
In Situ and 
Submarine 

-0.15 0.78 0.70 

ERS-1 -0.36 0.55 0.70 
ICESat  0.20 0.50 0.68 
IceBridge -0.47 0.56 0.47 
CryoSat-2 -0.37 0.81 0.38 
  595	  
 596	  
Table 2. Linear trends in Arctic sea ice volume for March based on the period 1979 to 2013 from 33 597	  
CMIP5 models and PIOMAS. For models with more than one ensemble member, the mean trend is given 598	  
along with the range in trend (in parenthesis). Trends are listed as km3 per decade. Trends statistically 599	  
different from 0 at 95 and 99% significance are denoted by + and ++, respectively. 600	  

Modeling Center (or Group) Model Name	   Trend	  
(103 km3/decade)	  

Range of Trends	  Number of 
Ensembles	  

Commonwealth Scientific and 
Industrial Research Organization and 
Bureau of Meteorology, Australia 

ACCESS-0 -1.77++ 
 

11 

ACCESS-3 -2.16++   

Beijing Climate Center, China 
Meterological Administration 

BCC-CSM1-1	   -1.83++	    1	  

Canadian Centre for Climate Modelling 
and Analysis 
 

CanCM4	   -0.94++	   (-1.23 to -0.68)	   9	  
CanESM2	   -1.03++	   (-1.15 to -0.74)	   5	  

National Center for Atmospheric 
Research 
 

CCSM4	   -2.37++	   (-2.79 to -1.49)	   6	  
CESM1-CAM5	   -3.13++	   (-3.18 to -3.08)	   2	  
CESM1-WACCM -3.26++ (-3.63 to -3.00) 3 

Centre National de Recherches 
Meteorologiques/Centre Europeen de 
Recherche et Formation Avancee en 
Calcul Scientifique 

CNRM-CM5	   -2.34++	    1	  

Commonwealth Scientific and 
Industrial Research Organization in 
collaboration with Queensland Climate 
Change Centre of Excellence 

CSIRO-Mk3-6-0	   -2.09++	   (-3.19 to -0.67)	   10	  

EC-EARTH consortium EC-EARTH	   -2.21	    1	  
LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 
and CESS, Tsinghua University 

FGOALS-g2	   -3.39++	    1	  

The First Institute of Oceanography, 
SOA, China 

FIO-ESM -1.25++ (-1.36 to -0.99) 3 

NOAA Geophysical Fluid Dynamics 
Laboratory 

GFDL-CM3	   -1.68++	    1	  
GFDL-ESM2G	   -1.63++	    1	  
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 GFDL-ESM2M	   -0.75	    1	  
NASA Goddard Institute for Space 
Studies 

GISS-E2-R	   -2.54++	   (-3.20 to -1.77)	   3	  
GISS-E2-H -1.28++ (-1.40 to -0.81) 5 

Met Office Hadley Centre 
 
 
 

HadCM3	   -1.72++	   (-2.34 to -1.01)	   10	  
HadGEM2-AO	   -2.32++	    1	  
HadGEM2-CC	   -2.92++	    1	  
HadGEM2-ES	   -2.26++	    1	  

Institute for Numerical Mathematics INMCM4	   -0.49	    1	  
Institut Pierre-Simon Laplace 
 

IPSL-CM5A-LR	   -2.90++	   (-3.85 to -2.31)	   4	  
IPSL-CM5A-MR	   -2.48++	    1	  

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo) and National Institute for 
Environmental Studies 
 

MIROC-ESM	   -0.96++	    1	  
MIROC-ESM-CHEM	   -1.76++	    1	  
MIROC4h	   -1.95++	   (-2.34 to -1.27)	   3	  
MIROC5	   -3.63++	   (-4.28 to -2.98)	   2	  

Max-Planck-Institut fur Meteorologie MPI-ESM-LR	   -1.37++	   (-1.66 to -0.85)	   3	  
MPI-ESM-MR -2.48++ (-2.37 to -0.92) 3 

Meteorological Research Institute MRI-CGCM3	   -1.15	    1	  
Norwegian Climate Centre NorESM1-M	   -2.41+	    1	  
 Multi-model Mean	   -1.95++	    27	  
 PIOMAS	   -2.79++	     

	  601	  
	  602	  
	  603	  
	  604	  
	  605	  
	   	  606	  
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Table 3. Spatial correlations between observed mean annual sea level pressure from four 607	  
different reanalysis data sets and from the CMIP5 models. Ranks of correlations are given in 608	  
parentheses, running lowest to highest. Because of difficulties in reducing surface pressures to 609	  
sea level, pressures over Greenland have been screened out. Correlations between the 610	  
different reanalysis are also included as well as whether or not the models represent a closed 611	  
Beaufort Sea High (BSH). 612	  

Model ERA-
Interim 

MERRA CFSR NCEP Closed 
BSH? 

1. ACCESS1-0 0.89 (26) 0.93 (28) 0.86 (25) 0.82 (21) Y 
2. ACCESS1-3 0.89 (28) 0.94 (29) 0.86 (27) 0.82 (23) Y 
3. bcc-csm1-1 0.76 (12) 0.74 (10) 0.73 (13) 0.71 (14) N 
4. CanCM4 0.69 ( 4) 0.74 ( 9) 0.65 ( 3) 0.61 ( 3) Y 
5. CanESM2 0.72 ( 7) 0.77 (12) 0.67 ( 8) 0.63 ( 7) Y 
6. CCSM4 0.62 ( 4) 0.51 ( 1) 0.66 ( 6) 0.70 (12) N 
7. CESM1-CAM5 0.93 (32) 0.89 (26) 0.93 (33) 0.91 (33) Y 
8. CESM1-WACCM 0.82 (18) 0.83 (19) 0.80 (17) 0.77 (17) N 
9. CNRM-CM5 0.73 ( 8) 0.79 (14) 0.67 ( 7) 0.63 ( 6) Y 
10. CSIRO-Mk3-6-0 0.58 ( 3) 0.67 ( 4) 0.52 ( 3) 0.47 ( 3) Y 
11. EC-EARTH 0.92 (31) 0.94 (31) 0.89 (30) 0.86 (28) Y 
12. FGOALS-g2 0.43 ( 1) 0.52 ( 2) 0.36 ( 1) 0.31 ( 1) N  
13. FIO-ESM 0.54 ( 2) 0.60 ( 3) 0.49 ( 2) 0.44 ( 2) N 
14. GFDL-CM3 0.87 (24) 0.88 (24) 0.85 (22) 0.82 (22) Y 
15. GFDL-ESM2G 0.75 (10) 0.82 (16) 0.70 (10) 0.65 ( 8) Y 
16. GFDL-ESM2M 0.76 (13) 0.82 (17) 0.71 (11) 0.66 (10) Y 
17. GISS-E2-R 0.81 (15) 0.84 (17) 0.78 (14) 0.74 (14) Y 
18. GISS-E2-H 0.87 (25) 0.88 (23) 0.84 (21) 0.81 (20) Y 
19. HadCM3 0.63 ( 5) 0.72 ( 7) 0.58 ( 4) 0.53 ( 4) Y 
20. HadGEM2-AO 0.94 (33) 0.97 (33) 0.92 (32) 0.88 (29) Y 
21. HadGEM2-CC 0.89 (27) 0.94 (30) 0.86 (23) 0.81 (19) Y 
22. HadGEM2-ES 0.90 (29) 0.95 (32) 0.87 (28) 0.83 (25) Y 
23. inmcm4 0.86 (21) 0.84 (21) 0.86 (24) 0.83 (26) Y 
24. IPSL-CM5A-LR 0.83 (20) 0.78 (13) 0.84 (20) 0.83 (24) Y 
25. IPSL-CM5A-MR 0.81 (16) 0.73 ( 8) 0.83 (18) 0.84 (27) N 
26. MIROC4h 0.78 (14) 0.83 (18) 0.74 (14) 0.70 (11) Y 
27. MIROC5 0.80 (15) 0.86 (22) 0.76 (15) 0.71 (15) Y 
28. MIROC-ESM 0.73 ( 9) 0.73 ( 9) 0.69 ( 9) 0.66 ( 9) Y 
29. MIROC-ESM-
CHEM 

0.75 (11) 0.71 ( 5) 0.73 (12) 0.71 (13) N 

30. MPI-ESM-LR 0.86 (23) 0.89 (25) 0.83 (19) 0.81 (18) Y  
31. MPI-ESM-MR 0.91 (30) 0.90 (27) 0.90 (31) 0.88 (30) Y 
32. MRI-CGCM3 0.86 (22) 0.79 (15) 0.87 (29) 0.89 (31) Y 
33. NorESM1-M 0.82 (19) 0.71 ( 46 0.86 (26) 0.89 (32) N 
      
ERA-Interim 1.00 (37) 0.96 (35) 0.99 (36) 0.97 (35)  
MERRA 0.96 (34) 1.00 (37) 0.94 (34) 0.91 (33)  
CFSR 0.99 (36) 0.94 (33) 1.00 (3) 0.99 (36)  
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NCEP 0.97 (35) 0.91 (28) 0.99 (35) 1.00 (37)  
 613	  
	  614	  
  615	  
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 616	  
Figure 1. Variability of thicknesses in seven models is attached. The values are coefficient of 617	  
variability (stddev/average). This is a normalized measure of variability so that variability can be 618	  
compared spatially and between models. 619	  
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 620	  
Figure 2.  Comparison of submarine, ERS-1, ICESat, IceBridge and CryoSat-2 sea ice 621	  
thickness fields (left column), for each campaigns period of record, with ice thickness fields 622	  
simulated by PIOMAS (middle column) and corresponding scatter plots (right column). PIOMAS 623	  
fields are the average March thicknesses for the same periods as corresponding observed 624	  
records. In the scatter plots, individual years are shown in different colors, except for ERS-1, 625	  
which was provided as a mean field for the entire time-period. 626	  
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627	  
Figure 3. Comparison of thickness distributions between five observational data sets, PIOMAS 628	  
and 33 individual CMIP5 models. Model results are presented as box and whisker plots from 629	  
1981 to 2010, where the boxes represent the interquartile range (25th to 75th percentiles) and 630	  
the horizontal bars and asterisks within each box define the median and mean, respectively. 631	  
The median spring thicknesses from each observational data set and PIOMAS are shown as a 632	  
solid red line, together with the 10th and 90th percentiles (green lines) and the interquartile 633	  
range (grey shading).  634	  
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 635	  
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 636	  
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Figure 637	  
4. Spatial patterns of sea ice thickness from 1981 to 2010 from 33 CMIP5 models and PIOMAS. 638	  
  639	  
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 640	  
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 641	  
Figure 5. Spatial pattern correlations (top) and root-mean-square error (RMSE) (bottom) of ice 642	  
thickness in 27 CMIP5 models and ICESat. Filled and hollow circles indicate correlations that 643	  
are significant at the 99% and 95% level. 644	  

645	  
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 646	  
647	  
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 649	  
Figure 6. Mean annual sea level pressure and geostrophic wind from 27 CMIP5 models 650	  
and from ERA-Interim spanning 1981-2010.  Contour interval is 1 hPa.  Near-surface 651	  
geostrophic wind is used as a proxy for sea ice motion and is shown by red 652	  
vectors.  Vector length is proportional to wind speed.  Vectors are curved tangent to the 653	  
instantaneous flow.  654	  
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 655	  
Figure 7.  Change in Arctic sea ice volume as shown from the CMIP5 ensemble and 656	  
from PIOMAS for the period 1979 to 2012, for March. Grey shading shows the ±1 657	  
standard deviation of CMIP5 ensemble. Upper and lower pecked lines show maximum 658	  
and minimum ice volume of the model ensemble. Multi-model ensemble mean ice 659	  
volume is shown as the black line. 660	  

661	  
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 662	  
Figure 8. March ice volume trends from 1979 to 2013 for all 92 individual CMIP5 model 663	  
ensembles as well as the multi-model ensemble mean (shown in black) with confidence 664	  
intervals (vertical lines). The 1σ and 2σ confidence	  intervals	  of	  PIOMAS trends are 665	  
shown in dark gray shading (1σ) and light gray shading (2σ). 666	  
 667	  
 668	  


