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Abstract

Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice
streams. Data from Whillans Ice Plain, Rutford Ice Stream, and other Antarctic ice
streams show periodicity in flow velocity at periods similar to those of ocean tides at
geodetic stations many tens of kilometers inland from the grounding line. These data5

suggest that ocean tidal stresses can perturb ice stream motion at distances about
an order of magnitude farther inland than tidal flexure of the ice stream alone. Re-
cent models exploring the role of tidal perturbations in basal shear stress are primarily
two-dimensional, with the impact of the ice stream margins either ignored or param-
eterized. Here, we use two- and three-dimensional finite element modeling to investi-10

gate transmission of tidal stresses in ice streams and the impact of considering more
realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-
world comparison, we demonstrate that the assumption that elastic tidal stresses in
ice streams propagate large distances inland fails for channelized glaciers due to an
intrinsic, exponential decay in the stress due to resistance at the ice stream margins.15

This behavior is independent of basal conditions beneath the ice stream and cannot
be fit to observations using either elastic or nonlinear viscoelastic rheologies without
nearly complete decoupling of the ice stream from its lateral margins. Our results sug-
gest that a mechanism external to the ice stream is necessary to explain the tidal
modulation of stresses far upstream of the grounding line for narrow ice streams. We20

propose a hydrologic model based on time-dependent variability in till strength to ex-
plain transmission of tidal stresses inland of the grounding line. This conceptual model
reproduces observations from Rutford Ice Stream.
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1 Introduction

1.1 Relevant observations

Observations from Antarctica show tidally modulated surface displacements on some
ice streams extending many tens of kilometers inland of the grounding line (see Ta-
ble 1 and associated references). Geodetic and seismic observations that probe the5

interaction between ocean tides and the motion of ice streams include surface tilt of ice
streams as estimated by tiltmeters, synthetic aperture radar (InSAR) and altimetric sur-
veys, surface motion of ice streams from global positioning system (GPS) surveys and
surface recordings of basal seismicity beneath ice streams (see Table 1 and Fig. 1).

Surface tilt surveys quantify the maximum extent of the flexure of an ice body due to10

the tides (the “hinge line”), and find that the hinge line is found between five and ten
kilometers inland for all ice streams in Table 1 (e.g., Rignot, 1998). Seismic studies on
several Siple Coast ice streams correlate fluctuations in basal seismicity to the semidi-
urnal and/or fortnightly ocean tides, suggesting a link between ocean tidal loading and
basal stress in these ice streams (Harrison et al., 1993; Anandakrishnan and Alley,15

1997; Bindschadler et al., 2003; Wiens et al., 2008; Walter et al., 2011). Continuous
GPS (CGPS) surveys on some Antarctic ice streams find surface velocities modulated
at tidal frequencies (Rutford Ice Stream: Gudmundsson, 2006, 2007; Bindschadler Ice
Stream: Anandakrishnan et al., 2003), while other surveys find stick-slip motion that
aligns with the extremes of tidal amplitudes (Wiens et al., 2008; Winberry et al., 2009).20

However, not all Antarctic ice streams show measurable tidal modulation of sur-
face displacements upstream of their hinge lines. CGPS observations on Pine Island
Glacier, for example, show no tidal variability in surface motion at stations 55, 111, 169,
and 171 km inland of the grounding line (Scott et al., 2009). Ekström Ice Stream has
an even tighter constraint on the spatial extent of tidal perturbations: CGPS record-25

ings only one kilometer inland of the grounding line show no measurable component
of motion at tidal frequencies (Riedel et al., 1999; Heinert and Riedel, 2007).
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1.2 Previous relevant modeling

Many models have been proposed to explain the influence that ocean tides have on
the motion of some Antarctic ice streams (e.g., Anandakrishnan and Alley, 1997; Bind-
schadler et al., 2003; Gudmundsson, 2006, 2007, 2011; Sergienko et al., 2009; Walker
et al., 2012; Winberry et al., 2009). Given that the Maxwell relaxation time for ice is5

on the order of hours for tidal loads, these models call on either elastic or viscoelastic
transmission of tidal loading stresses through the ice stream to drive the observed ice
motions.

We discuss several representative published models to highlight the assumptions
made about the upstream transmission of tidal stress. A flow-line model assumes that10

all transverse stresses are negligible, reducing the glacier model to a two-dimensional
cross section. A flow-line model for an ice stream, governed by the assumption that
a weak frictional resistance supports any tidal loading, is only appropriate far from the
lateral margins of an ice stream such that any resistance from these margins can be
neglected. When simplified into one dimension, such a model reduces to the spatially15

averaged shear stress formulation of Bindschadler et al. (2003) and Winberry et al.
(2009). These models assume that tidal stress is uniformly distributed over the entire
ice stream, being completely supported by the ice stream’s base. The result is that
the length-scale of the transmission of stress depends completely on the length and/or
thickness of the ice stream assumed in the problem.20

Finite element analysis in two-dimensions allows for flow-line models with increased
complexity and realistic geometries. The two most applicable models of tidal stress
propagation are those of Gudmundsson (2011) and Walker et al. (2012). Both are two-
dimensional flow-line models incorporating nonlinear viscoelasticity and a nonlinear
basal sliding law. In these analyses, the response of the modeled ice stream relates25

directly to the basal boundary condition. This result is intuitive as any resistance due
to the lateral margins of the ice is neglected (being a flow-line model) and thus the
model ice stream’s response to a tidal load can only be controlled by assumed rheo-
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logical character of the stream’s bed alone. These models are attractive as the basal
rheologies can be tuned to accurately match observations. However, the fact that these
models can be made to fit the observations does not demonstrate that the lateral resis-
tance in these ice streams is indeed negligible. Note that a three-dimensional version
of Gudmundsson’s model is currently in review and is publically available online for5

viewing (Rosier et al., 2014).
Alternatively, Sergienko et al. (2009) approximated an ice stream as a series of

masses (blocks) connected elastically (by springs) and restrained laterally (by further
springs) with a shear stress applied along a frictional basal contact. Unlike the flow-line
models, this spring-block model incorporates the lateral resistance of the ice margins.10

Sergienko et al. (2009) note that a “tidal” load applied at one edge in this model dimin-
ishes with distance from the loaded block, but this stress decay is not explored in fur-
ther detail. We assume that this distance depends on the stiffness of the springs, both
between the masses and as lateral restraints, as well as the magnitude of the basal
friction imposed in themodel. However, there is no obvious relation between a physical15

length scale and the number of blocks and springs in the model, and it is not clear if
the decay of the tidal stress is caused by marginal or basal resistance.

2 Methodology

We present results from two-dimensional (2-D) and three-dimensional (3-D) elastic and
viscoelastic models that explore the role that ice stream geometry plays in controlling20

transmission of tidal stresses. We describe our models below and show them schemat-
ically in Fig. 2.

We begin with a two-dimensional elastic flow-line model (Fig. 2a) using finite-
elements both to benchmark the computational models and to determine the expected
range of stress transmission for the modeled ice stream. As with all flow-line models,25

the underlying assumption is that the ice stream is infinite and uniform in the third
dimension, such that there effectively are no lateral margins to the ice stream. These
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simplified models allow us to establish “end member” behaviors of an elastic ice stream
with the extreme basal conditions of either a fully frozen (no slip) or a freely sliding
(no shear traction) bed. Additionally, we use these 2-D models to investigate the role
played by an ice shelf as an intermediary between the ocean tides and the grounded
ice stream (see Appendix A).5

Based on the intuition gained from these 2-D models, we then explore a series of 3-D
models (Fig. 2b) to study the impact of resistive shearing at the lateral margins of the
model on the upstream transmission of an applied tidal load. We first investigate the
role that the overall geometry of the ice stream (i.e. ice stream width and thickness) has
on the transmission of tidal stresses inland of the grounding line. From these models,10

we find that including the lateral margins of the ice stream inherently limits the inland
distances to which tidal stress are transmitted to values too small to be consistent with
observations, even in the case of frictionless sliding at the bed.

In the second part of this paper, we consider two physically-motivated mechanisms
for decoupling the model ice stream from its lateral margins. First, we consider a model15

with more compliant ice in the margins to investigate the role that “weakened” ice in the
margins may have on stress transmission. Second, we modify the rheological model to
a Glen-style viscoelastic constitutive law to investigate the role that viscoelasticity may
play in the transmission of tidal stresses inland of the grounding line.

We compare the modeling results to tidally-modulated GPS data from Rutford Ice20

Stream, finding that we cannot match observations using a model based around the
transmission of a tidal load through an ice stream’s bulk. We close with a hydrological
model that demonstrates that the transmission of tidal information far inland of an ice
stream’s grounding line can occur through a process external to the ice stream itself.

2.1 Model construction25

Our calculations rely on the finite element analysis software PyLith (Aagaard, 2013a,
b) for our numerical modeling. This open-source Lagrangian FEM code has been de-
veloped and extensively benchmarked in the crustal deformation community (available
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at www.geodynamics.org/cig/software/pylith). PyLith solves the conservation of mo-
mentum equations with an associated rheological model. As we assume a quasistatic
formulation (i.e., all inertial terms are dropped), the governing equations are:

σ i j ,j = fi in V

σ i jnj = Ti on ST

ui = u0
i on SU

(1)

5

where V is an arbitrary body with boundary condition surfaces on ST and SU. On ST,
the traction σ i jnj i equals the applied Neumann boundary condition Ti . On SU, the

displacement ui is set equal to the applied Dirichlet boundary condition u0
i .

PyLith solves these equations using a Galerkin formulation of the spatial equation
and an unconditionally stable method of implicit time-stepping for both an elastic and10

viscoelastic rheology (following the form of Bathe, 1995). For model convergence, we
select a tolerance of 10−12 in the absolute residual of the iterative solver from the
PETSc library (Balay et. al 1997, 2012a, b) and a relative tolerance to the initial residual
value of 10−8. Based on several experiments, these values are sufficiently conservative
to ensure solution convergence without causing a prohibitive increase in computational15

time.
Due to the superposition property of a linear elastic model, we choose to neglect

the effect of gravity as a body force, setting fi equal to 0, effectively neglecting the
background flow of the ice stream. For the nonlinear viscoelastic models, we cannot
use superposition and thus we apply the down-glacier component of the gravitational20

body force, equal to gsinα where α is the surface slope. We choose to apply only the
down-glacier component of gravity out of convenience, as a using the full gravitational
body force would require us to apply a pre-stress to the model cancel out the vertical
component of the full gravitational body force anyways, or the model would compress
when gravity was “turned on” at time 0.25

Our basal boundary condition is either a Dirichlet condition with zero-displacement in
all directions (“frozen”) or a free-slip condition with no vertical displacements and zero
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shear traction (“free sliding”). For reasons discussed later, we do not investigate the
case of frictional sliding along the ice stream’s bed. The tidal stress change is applied
as a normal force of magnitude equal to the hydrostatic pressure (ρg∆h where ∆h is
the amplitude of the tide) to the vertical edge at the modeled grounding line, effectively
removing the ice shelf from the models. Neglecting the ice shelf is justifiable as the5

presence of a shelf only perturbs the stresses in the ice stream near the grounding
line, while we focus on stresses far inland of the grounding line. See Appendix A for
an extended discussion of the impact of the ice shelf on these models. Additionally, for
the linear elastic models, we do not explicitly apply a time varying load as the model
solutions must necessarily vary linearly with the magnitude of the applied load. For the10

viscoelastic models, we apply a simple sinusoidally varying tide of magnitude ρg∆h at
a range of tidal periods (see Appendix B for a full description).

We construct the FEM meshes using the software Cubit (proprietary code from cu-
bit.sandia.gov). For the 2-D models, we use linear isoparametric triangular elements,
while in the 3-D modeling we use linear isoparametric quadrilateral elements. We man-15

ually refine the meshes near regions of applied stresses, changes in boundary condi-
tions, and material property variations. In such locations the mesh spacing can be as
small as 1 m, resulting in meshes with between 105 and 106 elements. To ensure that
the model results are independent of the meshing scheme, we check all model results
against meshes that are uniformly refined. We only present results from meshes that20

have less than a 0.1 % change in displacement, 1st strain invariant, and 2nd deviatoric
stress invariant upon this refinement in the elastic models and less than 1 % in the
viscoelastic models.

We begin with a linear, isotropic elastic model for ice that takes the familiar form of
Hooke’s Law in three dimensions:25

Ci jkl = λδi jδkl = µ
(
δikδj l +δi lδjk

)
(2)

We summarize model rheologic parameters, taken from Petrenko and Whitford (2002)
and Cuffey and Paterson (2010), in Table 2. We assume that the Poisson’s ratio is well
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known for ice (and thus is fixed) when exploring the ranges in values of the other elastic
moduli. We also consider a Glen-style Maxwell viscoelastic rheology:

ε̇ =
σ̇

E
+Aσn (3)

where we take the canonical value n = 3. For the viscosity coefficient A, we present5

two models. The first is a homogenous viscous model, using the canonical value of A
equal to the 0 ◦C value (e.g. Cuffey and Paterson, 2010). The second model uses the
Arrhenius relationship for temperature-dependent viscosity from Cuffey and Paterson
(2010, Eq. 3.35), along with a temperature profile chosen to match the empirical rela-
tion calculated from the Whillans Ice Plain in Engelhardt and Kamb (1993). The elastic10

moduli are the same as in the homogenous elastic models.

3 Results

Our finite element formulation calculates the full stress and strain tensors, as well as
displacement and velocity vectors at every node of the model mesh. While we ran
close to forty models, we only show representative figures (Figs. 3, 4, 6, 8, 10, and15

11); however, we present tabulated results from all models (in Tables 4–6). To aid in
comparing the magnitude of stress between models, we define an equivalent stress,
τeq, based on the Von Mises criterion. τeq is defined in 2-D and 3-D as:

2-D : τ2
eq =

1
2

[
(σxx −σyy )2 +σ2

xx +σ2
yy +6σ2

xy

]
(4a)

3-D: τ2
eq =

1
2

[
(σxx −σyy )2 + (σyy −σzz)2 + (σxx −σzz)2 +6

(
σ2

xy +σ2
yz +σ2

xz

)]
(4b)20

3.1 Two-dimensional results

First, we consider the distribution of stress from the 2-D models with free sliding and
frozen basal boundary conditions – shown in Figs. 3 and 4, respectively. We show
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results for models with an ice shelf included explicitly as well as models with only
axial forcing. For each model, we show longitudinal profiles of τeq taken at different
depths. It is convenient to define a stress decay length, Ltr, as the distance inland of
the grounding line over which the tidal stress drops by an order of magnitude. Table 3
summarizes Ltr for all stress components for the four models shown in Figs. 3 and 4.5

In the model with a sliding bed and axial forcing only (Fig. 3, right column), the axial
stresses do not decay with distance from the grounding line. Flexural stresses, only
present in the ice shelf case (Fig. 3, left column), follow the expected functional form
of a sinusoid multiplied by an exponential function (e.g., Turcotte and Schubert, 2002).
The first wavelength of this sinusoid can be seen in Fig. 3a, with a zero crossing ap-10

proximately 2 km inland (i.e. left) of the grounding line. After approximately 5 km inland
of the grounding line, the two model ice streams attain approximately the same con-
stant stress value. For the model with a frozen bed (Fig. 4), flexural and axial stresses
decay exponentially with distance inland of the grounding line with similar decay rates.

These 2-D models provide an opportunity to investigate the role that the ice shelf15

plays in the transmission of tidal stress inland of the grounding line. As the flexural
stresses in Figs. 3 and 4 decay rapidly with distance inland of the grounding line without
affecting the nature of the stress decay (or lack thereof) in the model farther inland than
the first few ice stream thicknesses, we neglect the ice shelf in the 3-D models (see
Appendix A for a full discussion of the ice shelf’s role in these models).20

3.2 Three-dimensional results

We now consider the stress decay in a uniform 3-D model. For example, we take hor-
izontal profiles at 10 m depth intervals and a transverse spacing of 1 km in one model
ice streams that is 10 km wide and 1 km thick using boundary conditions shown in
Fig. 2b. The values of τeq as a function of vertical and transverse position across the25

ice stream model are shown in Fig. 5. We find that stress decays exponentially at
approximately the same rate regardless of the Y or Z coordinates chosen. The behav-
ior of the 3-D model is clearly different from that of the similar free-sliding 2-D model
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as the stresses decay with distance inland of the grounding line. Figure 6 shows the
full basal stress field of a representative 3-D uniform model using the six independent
stress components. The longitudinal normal stresses (σxx), transverse normal stresses
(σyy ), and the shear due to the sidewalls (σxy ) are the largest stresses beyond a few
kilometers inland of the forced edge. The vertical normal stress (σzz) at the bed is also5

nonzero inland of the forced edge but is at least an order of magnitude smaller than the
aforementioned stresses. The other shear stress components (σxz and σyz) are direct
consequences of stress concentration at the transition from sliding to frozen ice at the
base, and decay rapidly with distance from both the margins and the grounding line.

3.3 Geometric factors influencing the transmission of tidal stresses10

As seen in models with a resistance at a boundary, stresses resulting from tidal loading
decay exponentially with distance inland of the grounding line. We use Ltr as a direct
measure of the distance that a tidal load influences the motion of an ice stream. Note
that we generally estimate Ltr using τeq as this definition of Ltr matches the longest Ltr
of the individual stress components (see Table 3) while allowing us to have a single15

parameter to compare between models.
To determine the influence that the choice of geometry, form of loading, and value

of elastic moduli play in controlling Ltr, we explore models varying these three param-
eters, assuming homogenous elasticity. Ltr for many different combinations of these
parameters are tabulated in Table 4 for the 2-D models and in Table 5 for the 3-D20

models.
In all models, stresses vary linearly with the magnitude of the applied load, while

displacements vary proportionally to the applied load and the inversely to the Young’s
modulus. Such results are expected from linear elasticity. However, neither of these
parameters has any effect on the nature of the stress decay (as evidenced by the25

nearly constant Ltr).
Modifying the geometry of the model ice streams affects the value of the stresses

and displacements throughout the model in a nonlinear fashion, due to the differences
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in distance from the fixed and forced edges in the model. The choice of geometry also
impacts the value of Ltr. For the 2-D models (with a frozen bed), Ltr varies linearly with
thickness. For the 3-D models, Ltr increases with increasing thickness and width, but
not in a strictly linear fashion for either.

Given the geometric dependencies described above, we find that the following em-5

pirical functional forms describe the relationship between the stresses, displacements,
and model parameters very well. For the 2-D model, we use:

σ (x,z) = σGL(h,z) ·∆h ·10−x h
Ltr

u(x,z) = uGL(h,z) · ∆h
E

·10−x h
Ltr

(5)

Where σGL and uGL are respectively the stress and displacement at the grounding line10

for a 1 km-thick model with a one meter tidal load using the canonical value of 9.8 GPa
for E , E is the non-dimensionalized Young’s modulus with respect to the canonical
value, h is the non-dimensionalized model thickness with respect to a 1 km reference
value, and ∆h is the non-dimensionalized tidal height with respect to a 1 m tide. For the
3-D models, we adopt the functional forms:15

σ (x,y ,z) = σGL(y ,z,h,w) ·∆h ·10
−x

Ltr(h,w)

u(x,y ,z) = uGL(y ,z,h,w) · ∆h
E

·10
−x

Ltr(h,w)
(6)

The implications of these results are that the stress distributions depend only on model
loading and geometry, and are independent of the elastic properties in the model as
long as we assume homogenous elasticity (this second conclusion is not true for mod-20

els with spatially variable elastic moduli, as discussed in the next section).
From Table 5, we see that Ltr is roughly between 1.2 and 1.5 times the ice stream

full width and only increases slightly with increasing ice stream thickness in the 3-D
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models. Thus, tidal stresses at a distance equivalent to two ice stream widths inland
of the grounding line should be considerably reduced. Real ice streams are obviously
neither frozen nor sliding frictionlessly over their beds; frictional sliding plays a major
role in determining the ice stream’s total flow (e.g., Weertman, 1957, 1964; Engelhardt
and Kamb, 1998; Hughes, 1998; Cuffey and Paterson, 2010). However, as we assume5

frictionless sliding, the values of Ltr for the 3-D models should be taken as maximum
values and thus moving to a frictional model would only serve to reduce Ltr. Thus, these
models imply that the motion of a channelized elastic ice stream should not be tidally-
modulated farther inland than about two ice widths from the grounding line – a result
contrary to observations of Gudmundsson (2006, 2007, 2011) from Rutford Ice Stream10

(as shown in Fig. 7a). Given the important role of marginal support of any given ice
stream, we also consider potential mechanisms for decoupling the ice stream from its
lateral margins, thus increasing the length-scale for the transmission of a tidal stress.

4 Weakening in the ice stream margins

In the previous section, we demonstrated that the resistance from the shear margins15

of a channelized ice stream damps the tidal stresses significantly and that decay of
tidal stresses is independent of the Young’s modulus for the case of a homogenous
medium. However, as shear margins are locations of enhanced viscous flow (e.g.,
Dahl-Jensen and Gundestrup, 1987; Echelmeyer and Zhongxiang, 1987; Paterson,
1991; Echelmeyer et al., 1994) as well as crevassing, it is conceivable that ice stream20

margins are elastically more compliant than the central portion of the ice stream. We
now investigate the potential impact that such marginal compliance has on the trans-
mission of tidal stress.

Theoretically, the presence of damage is expected to reduce the ice’s effective
Young’s modulus (e.g., Walsh, 1965). We parameterize the influence of cracks and25

crevasses using linear elastic continuum damage mechanics. Such a mechanism di-
rectly modifies the elastic modulus, mapping directly into the linear elastic constitutive
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equation as (please see Murakami, 2012 and references therein):

ε =
σ

E (1−D)
(7)

The damage parameter D can take a value between 0 (no damage) to 1 (complete plas-
tic failure), and has the physical interpretation as the fraction of area that can no longer5

support a load due to the opening of void space in the damaged body. For reference,
Borstad et al. (2012) find the threshold for calving in the ice shelf to be D = 0.6±0.1,
similar to the value of damage calculated from viscous flow enhancement factors for
an Antarctic ice stream (e.g., Echelmeyer and other, 1994) using a viscous implemen-
tation of damage (see Eq. (8) below). Our modeling, described below, suggests that10

to match observed stress transmission length-scales requires damage in the marginal
ice sufficient to reduce the outer Young’s modulus (EL) to between 10 and 1000 times
more compliant than the central ice (EH ).

We modify our 3-D model to have a laterally variable Young’s modulus with two differ-
ent patterns of variability (see inset in Fig. 2b): one with a step function drop in Young’s15

modulus at certain predetermined ice margin widths (“discrete margins”) and another
with a linear reduction of the Young’s modulus from the middle of the ice stream to the
edge of the stream ice (“continuous margins”). For the latter margin pattern, we evalu-
ate a range of margin widths at 10 % intervals between 10 % and 90 % of the ice stream
half-width. Also note that in models with discrete margins, we only model a reduction20

in modulus by a factor of 10.
Figure 8 shows a representative distribution of the six stress components for the

discrete margin model with ice margins chosen to be 1/4 of the ice stream width. The
longitudinal normal stress (σxx) is concentrated in the stronger ice at the center of the
model, while the transverse normal (σyy ) and the horizontal shear (σxy ) stresses are25

concentrated in the weaker marginal ice. Comparing the stresses in Fig. 6, and noting
the differing longitudinal scales, it is clear that Ltr is larger in the model with compliant
margins than the homogenous elastic model. Additionally, as shown for the longitudinal
normal stress (σxx), Ltr is no longer constant throughout the model, as was the case
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for a uniform model. We use a width-averaged value of Ltr for comparison between
different models.

Figure 9 shows the modeled increase in Ltr relative to a uniform model as a function
of margin-widths and marginal damage parameter. Note that we base the margin-width
relationship based on the discrete margins models while we use the continuous mar-5

gins models to characterize the marginal damage relationship. Figure 9 demonstrates
that the maximum increase to Ltr occurs when the shear margins are about 50 % of the
ice stream half-width (25 % of the ice stream full-width) and when the lateral margins
are substantially more compliant than the central ice stream. This figure also shows the
two contours in margin size-compliance ratio space that would be sufficient to match10

the values of Ltr found for compliant margins models approximating observations of the
semidiurnal and fortnightly tidal displacements at Rutford Ice Streams. In these cases,
the minimum values of D are found to be: 0.988 for the fortnightly Rutford tide and
0.996 for the semidiurnal Rutford tide. However, as the shear margins for Rutford Ice
Stream are on the order of 10 % full-width (e.g., Joughin et al., 2006), the values of D15

necessary to match Ltr would be even nearer to 1.0.
To add some physical meaning to these estimates of D, we compare these modeled

values to the critical damage threshold values of D, commonly named DC, found in
the literature. DC is the linear damage value at which a material becomes sufficiently
fractured to stop behaving as a single continuous body. From laboratory experiments,20

DC has been approximated from between 0.45–0.56 for ice (Pralong and Funk, 2005;
Duddu and Waisman, 2012). From analysis and numerical inverse modeling of a con-
tinuum damage mechanical viscous model of the Larsen B Ice Shelf collapse, Borstad
et al. (2012) found the value of DC for calving to be 0.6±0.1. To compare DC with
our model results, we must remember that the above values for DC are for nonlinear25

viscous flow, such that the “enhancement” value is governed by:

En = (1−D)−n (8)
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Thus, the corresponding enhancements are between about 6 (for 0.45) and 37 (for 0.7)
using the canonical power law exponent for Glen flow of n = 3. Even the smallest nec-
essary enhancement has a value of 467.7 (102.67, for the fortnightly tide on Rutford Ice
Stream), suggesting that the damage required to have sufficient marginal compliance
to match the values of Ltr is too high to be physically reasonable. Thus, we find that5

a damage-based marginal compliance model is insufficient to bring model-predicted
estimates of Ltr into line with those found observationally from GPS stations on Rutford
Ice Stream.

5 Viscoelasticity

We now investigate the potential for viscoelasticity to decouple the ice stream from10

its lateral margins and thus increase the transmission length-scale of a tidal load. As
an ice stream’s margin is the location of large shear stresses, a stress-dependent vis-
coelasticity will necessarily have reduced viscosity in the ice stream margins. The net
result would be the decoupling of the ice stream from its margins by concentrating
deformation near the margins, allowing for a longer transmission of a tidal stress per-15

turbation.
Incorporating both viscoelasticity and nonlinearity into the constitutive law for ice

introduces many additional modeling concerns in order to correctly describe the link
between ocean tides and ice stream motion. A model with stress-dependent viscosity
should not neglect background flow stresses within the ice stream. In our models, we20

apply the downhill (i.e., deviatoric) portion of the gravitational driving stress. In the finite
element formulation, we apply the horizontal component of gravity, with a magnitude of
ghoriz = gsinα, as a time-constant acceleration acting on the entire ice body. We then
apply the tidal loading as in our linear elastic models; see Appendix B for a discussion
the tidal loading condition in the context of our viscoelastic models.25

As viscous deformation is a time-dependent process, these viscoelastic models must
explicitly account for the time-variability of a tidal loading condition. We use three main
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tidal constituents (i.e., the semidiurnal, diurnal, and fortnightly tides) as forcing func-
tions in our nonlinear viscoelastic finite element models. For simplicity, we approximate
the tidal periods of these tidal constituents as 12 h, 24 h, and 14 days, respectively. As
a reminder, the three tidal constituents cannot strictly be separated due to the nonlin-
earity of the viscous deformation, and research by Gundmundsson (2006, 2007, 2011)5

suggests that fortnightly variability in ice stream motion is a consequence of the non-
linear interaction of the semidiurnal ocean tides. However, modeling the response of
an ice stream model to a single tidal component is more straightforward and provides
an estimate of the expected change in stress-transmission as a function of the tidal
forcing period. To ensure that the model is appropriately “spun-up” (e.g., Hetland and10

Hager, 2005), we only present results that have been run long enough such that the
detrended, oscillatory motion is consistent over consecutive tidal cycles.

A final consideration is the strong temperature dependence of the ice viscosity (e.g.,
Weertman, 1983; Hooke and Hanson, 1986; Paterson, 1994; Cuffey and Paterson,
2011). The temperature dependence of the viscosity coefficient, from Cuffey and Pa-15

terson (2011), is:

A = 3.5×10−25 exp

(
−6×104

8.314
·
[

1
T
− 1

263

])
Pa−3 s−1 for T < 263K

A = 3.5×10−25 exp

(
−1.39×105

8.314
·
[

1
T
− 1

263

])
Pa−3 s−1 for T > 263K

(9)

where T is measured in degrees Kelvin. Antarctic ice streams have been observed
to have a strong temperature gradient from base to surface (e.g., Engelhardt et al.,20

1990; Engelhardt and Kamb, 1993, 1998; Engelhardt, 2004a, b), with some ice stream
beds up to 20 K warmer than the ice stream’s surface. We adopt an empirical fit of
temperature data from Whillans Ice Stream as the temperature profile in all models.
The temperature gradient of such a temperature profile is defined by Engelhardt and
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Kamb (1993) as:

dT
dz

= qbe
−y2

+
λaul
κ

e−y2

y∫
0

e−t2
dt (10)

where y = z/l , l = 2κH/a, qb is the basal temperature gradient, a is the accumula-
tion rate, u is the ice stream horizontal velocity, κ is the thermal diffusivity, H is the5

ice stream thickness, and λ is the temperature gradient in air. All values of these pa-
rameters, save for model geometries, are taken from Engelhardt and Kamb (1993). In
solving for the temperature profile, we set the basal temperature equal to the pressure
melting point of ice, −0.7 ◦C.

Our primary interest in modeling viscoelasticity is to determine if stress-dependence10

of viscosity results in a substantial decoupling of the ice stream from its lateral margins
due to the higher stress concentration along the lateral margins. Recalling our earlier
comparisons to the estimated tidal stress decay over Rutford Ice Stream, viscoelasticity
would need to increase the value of Ltr by between a factor of two to four to match the
field observations of Gudmundsson (2007, 2008, 2011). In order to find the correct15

amplitude and phase, we fit stress profiles along the modeled ice stream’s length with:

σyy = Asin(ωt+ϕ) (11)

where A is the stress amplitude, ω is the tidal frequency of the applied tide, and ϕ is the
phase delay. We then can use the distance dependence of A to calculate a value of Ltr20

because in all these oscillatory models, we observe an exponential decay of amplitude
with distance inland of the grounding line.

Figure 10 shows the values of Ltr, stress, and phase delay for a representative model
using a semidiurnal tide. The modeled stress transmission length-scales for these vis-
coelastic models are summarized in Table 6. From this table, we see that incorporating25

a temperature-dependent viscosity increases Ltr by less than 50 % for all tidal frequen-
cies – insufficient to match the observations.
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Despite the lack of a substantial increase in Ltr, the shear margins have a substan-
tially reduced viscosity when compared to the central ice as shown by Fig. 11. This
viscosity contrast is found to be essentially independent of the tidal forcing, suggest-
ing that the background flow, even for very low driving stresses, is large enough that
the tidal forcing does not strongly perturb the effective ice viscosity. While beyond the5

scope of this paper, such a result suggests that the nonlinear viscoelastic response
of an ice stream to a tidal load can be approximated as a linear viscoelastic effect
as long as the ice stream is modeled with a spatially-variable effective linear viscosity
parameterizing the effect of the ice’s background flow on the ice’s viscosity.

However, even the large drop in viscosity within the shear margins fails to cause10

a substantial increase in Ltr. The simplest explanation is that while the ice is less vis-
cous in the shear margins, the overall value of the viscosity is still too large to promote
substantial viscous deformation. When compared with approximations of linear ice vis-
cosities, the smallest viscosities in these models are about two orders of magnitude
larger than those found for the solid response of laboratory ice (e.g., 1×1012 Pa · s,15

from Jellinek and Brill, 1956). The smallest Maxwell time for the modeled ice stream is
about 104 s (∼ 3 h) in the warm ice at the base of the shear margin; however, even here
the model ice stream responds primarily as an elastic material. Only when the model is
forced with significantly longer period oscillations (e.g., the fortnightly tide, with a period
of ∼ 106 s) does the viscoelasticity of the ice stream influence the stress-transmission20

length-scale in a non-negligible fashion. As these models are temperature-dependent,
the higher viscosity in the body of ice stream causes the ice response to be more
elastic in nature, even in the shear margins.

6 Discussion

St. Venant’s Principle states that the influence of an applied concentrated load on an25

elastic body is negligible at great distances away from the applied load (e.g., Goodier,
1942; Timoshenko and Goodier, 1982). For instance, Goodier (1942) demonstrates
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that an axially forced block, when restrained from below, has a stress field that is only
important local to the edge of the applied load. Additionally, Goodier establishes the
same conclusion when the block is fixed from both above and below. These two cases
are identical to our 2-D model with a fixed base and the 2-D version (in map view)
of our 3-D ice stream model, respectively. Timoshenko and Goodier (1982) provide5

an explicit form of the stress solution for similar, albeit not identical, models. In their
article 24, they describe the expectation of exponential decay of stress with distance
away from a point load applied to the opposite edges of a beam. Thus, it should not be
a surprise that we find an exponential decay of stresses in these ice stream models.

As mentioned in the introductory section, previous models for the transmission of10

tidal stresses in ice streams suggest that there is an exponential decay of stress with
distance inland of the grounding line (e.g., Anandakrishnan and Alley, 1997; Sergienko
et al., 2009). We first compare our results to those of Anandakrishnan and Alley (1997);
our 2-D model results represent extremes of Anandakrishnan and Alley’s model. The
frozen bed model corresponds to Anandakrishnan’s and Alley’s model with either15

a zero-thickness viscous layer or an infinitely viscous (η ≈∞) layer. The sliding bed
model corresponds to Anandakrishnan and Alley’s model with an infinitely weak (η ≈ 0)
viscous layer. As the two-layer models of Anandakrishnan and Alley have the additional
free parameter of till viscosity, these models can either constrain the viscosity of the
viscous till layer using the transmission length of stress, or constrain the transmission20

length of stress using the till viscosity, but not both simultaneously. Additionally, the
lack of lateral restraint in the model allows for the physically unrealistic case of infi-
nite stress-transmission. The same issue is present in all the flow-line models, and as
such, the two-dimensional assumption of negligible lateral resistance is not physically
realistic for channelized ice streams.25

Of the published models considered earlier, Sergienko et al. (2009) is the only study
to explicitly account for lateral resistances. Removing the basal drag condition from
Sergienko et al.’s model results in a 1-D approximation of our 3-D modeling. However,
the lack of a length-scale relationship for the elastic springs in Sergienko et al.’s model
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prevents us from directly applying this model to constrain a stress-transmission length-
scale. As our finite element modeling shows, the presence of non-sliding lateral mar-
gins and a zero-sliding basal condition both result in exponential decay of a tidal load
with distance inland of the grounding line. Thus over the stick-slip cycle in Sergienko
et al.’s paper, we expect that the stress-transmission would cycle between a thickness-5

controlled value when stuck and a width-controlled value when slipping.
In our 3-D models, ice stream width is the primary geometric control on Ltr, with ice

stream thickness having only a minor role (∼ 5–10 % change per kilometer of thick-
ness). Extending these results, models with a realistic geometry will only vary sub-
stantially from the equivalent box model approximation if the real ice stream’s width10

changes dramatically along the flow direction. The width of Rutford Ice Stream does
not change significantly through the region with CGPS observations.

We have shown that introducing variability in the elastic moduli can have a pro-
nounced effect on Ltr. However, the precise change in Ltr depends on the choice a dam-
age parameter and the shear margin size. Generally, increasing the damage (and thus15

elastic compliance) in the ice stream margins increases the value of Ltr. If we want to
model marginal damage that will increase Ltr to a value large enough to match obser-
vations, we must choose a damage coefficient significantly higher than that proposed
for calving in the ice shelf (D ∼ 0.99 > 0.6±0.1). The ice stream is almost certainly
not more damaged than its calving ice shelf, as otherwise having a cohesive ice shelf20

would be impossible.
Similarly, the viscoelastic models presented here demonstrate that the reduction in

model viscosity due to the flow-induced shear is insufficient to dramatically perturb
the state of stress within an ice stream. While Ltr increases slightly for models with
temperature-dependent viscosity, such an increase falls far below that necessary to25

rectify the model results with the observations from Rutford Ice Stream, for all three tidal
frequencies investigated here. For comparison, the change in Ltr from viscoelasticity is
comparable to the change in Ltr due to increasing compliance in the lateral margins for
physically realistic damage parameters.
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6.1 Rutford ice stream

We now compare the observed decay of GPS surface displacements from Rutford Ice
Stream to our modeled decay of stresses predicted using a geometry approximating
Rutford Ice Stream. Recall that for linear elasticity, an exponential decay of stress will
necessarily predict an exponential decay of displacement with the same decay rate, so5

such a comparison is strictly true for linear elastic models, and is approximate for vis-
coelastic models. The estimated Ltr for geometries approximating Rutford Ice Streams
is 38.2 km (flagged model in Table 4). We note that our geometrically-simple model
assumes that both margins are equally strong; in actuality, Rutford Ice Stream has one
ice–ice interface and one ice–rock interface. However, based on the velocity profile for10

Rutford Ice Stream (Joughin et al., 2006), the difference between Rutford’s lateral mar-
gins does not appear to strongly control the behavior of the ice stream as a whole, al-
lowing us to make a first-order approximation of Rutford as having strong, non-frictional
boundary conditions on both lateral margins.

Figure 7b demonstrates that the decay is too severe to match the maximum ob-15

served displacement at stations inland of the grounding line (GPS data reported Gud-
mundsson, 2007 and was provided by H. Gudmundsson). This figure shows that the
mechanisms of extreme-but-physically-reasonable damage, viscoelasticity, and both
mechanisms combined linearly cannot modify the modeled values of Ltr to match the
observed tidal deformation magnitudes. The implicit assumption in our models – that20

stress is transmitted through the bulk of the ice stream either elastically or viscoelasti-
cally – is not consistent with the observations from Rutford Ice Stream.

In the 2-D model of Gudmundsson (2011, “RIS flow-line model”), the surface velocity
perturbations on Rutford Ice Stream due to the ocean tides are reproduced to good
approximation when both a basal sliding law and ice viscoelasticity control the propa-25

gation of the tidal load inland of the grounding line. The results presented in this paper
differ from those of the RIS flow-line model due to the following modeling differences:
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1. Gudmundsson (2007) justifies the implicit neglect of the lateral margins in the RIS
flow-line model by approximating the inland stress transmission of a tidal load as
being at least four times the ice stream width, based on a stress transmission
relationship developed for the vertical communication of stress through an ice
stream in Gudmundsson (2003). Our modeling find that the lateral margins of the5

ice stream induce an exponential decay of a tidal load, and that a tidal stress falls
by an order of magnitude over a distance of between 1.2 and 1.5 times the ice
stream width.

2. In the models presented here, the ice stream width is the primary control on the
value of Ltr, while in the RIS flow-line model, the basal resistance, ice thickness,10

and ice rheology are the controlling factors in the inland transmission of a tidal
stress. As discussed above, we find that even in a frictionless model, the ice
stream’s width is a stronger control on the stress state of an ice stream than the
ice thickness and ice rheology.

3. Gudmundsson (2011) implies that the flexural stress of the tides is the flow-15

controlling tidal stress. In all of our 2-D models, flexural stress decays within a few
ice thicknesses of the grounding line – a result that matches observations of ice
flexure (Stephenson, 1984; Rignot, 1998; Heinert and Riedel, 2007; Brunt et al.,
2010).

4. Our modeling attempts to decouple the modeled ice stream from its lateral mar-20

gins using shear-weakened ice and/or viscoelasticity were unable to rectify the
model with the RIS flow-line model. To match the RIS flow-line model, our model
would need to be decoupled from its lateral margins to such an extent that the
model would exhibit deformation only along the extreme margins of the ice stream
(i.e., “plug-like” deformation). InSAR surface velocities of Rutford Ice Stream25

(Joughin et al., 2006) do not show this “plug-like” pattern, suggesting strongly
that such large-scale decoupling is not occurring.
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6.2 Other ice stream geometries

Generally, the models presented here demonstrates that channelized ice streams, even
under the favorable conditions of frictionless beds, enhanced marginal shear, and vis-
coelastic flow, fail to reproduce the length-scale of stress transmission observed in
nature. Therefore, the models presented here draw into question the hypothesis that5

the observed influence of ocean tides on ice stream motion is universally an elas-
tic process. However, we only consider a very specific range of ice stream geome-
tries here: ice streams that have relatively narrow widths and strong ice–ice interfaces
on the lateral margins. Two other Antarctic ice streams have observations of tidally-
modulated surface displacements (Bindschadler and Whillans Ice Streams). For these10

ice streams, the assumption of ice–ice interfaces is appropriate but using channelized
ice stream geometry is a poor approximation, as these ice streams have nearly equal
widths and lengths near the grounding line. Broadly, our results are sufficient to demon-
strate that a wider ice stream should have a larger stress transmission length-scale
than a narrower ice stream. Nevertheless, the underlying geometric constrains on an15

ice stream impose exponential stress decay even for wide ice streams. Thus, these
results may also approximately describe the stress behavior of wide ice streams in
addition to channelized ice streams. However, the use of more appropriate ice stream
geometries for ice streams with a similar width and length is beyond the scope of this
paper.20

6.3 An alternative mechanism for the transmission of tidal stresses

We conclude that for channelized ice streams, a process external to the ice stream is
required for the impact of ocean tidal loads to extend far inland of the grounding line.
While not explored in great detail here, our preferred hypothesis is that the ocean tides
perturb the nature of streaming through the subglacial hydrologic network. Since the25

basal traction beneath these fast-moving ice streams must be small in order to en-
courage sliding and since these Antarctic ice streams are underlain by water-logged
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tills (e.g., Alley et al., 1986; Smith, 1997; Engelhardt and Kamb, 1998; Tulaczyk et al.,
2000a; Adalgeirsdottir et al., 2008; Raymond Pralong and Gudmundsson, 2011), the
fluid pressure within the subglacial till is likely sufficient to cause the till to deform plas-
tically, or at least highly nonlinearly. Our hypothesis is that the change in ocean tidal
height, coupled with the tidal migration of till pore pressures, can move the onset of5

highly weakened till inland and seaward over the course of a tidal cycle. As demon-
strated by Fig. 12, when the onset of till weakening is pushed inland, the ice stream at
a given point should increase velocity as a longer portion of the glacier is unresisted
basally. The opposite is true when the onset of till weakening moves towards the ocean.
Furthermore, as the magnitude of the fluid pressure perturbation due to the ocean tide10

should decay with distance inland of the grounding line, the effect is expected to be
most pronounced near the grounding line.

To derive an analytical form for this conceptual model, we start by following the 2-D,
flow-line approach of Gudmundsson (2007), and assume that the basal velocity of the
ice stream is a nonlinear function of the basal stress:15

ub = Aτnb (12)

where A is a rheological coefficient, and η 6= 1. We now assume that τb is also mod-
ulated by an effective shear stress, σe = σ0 −p (where p is the local fluid pressure)
through a Coulomb-type rheology, the expected model for Antarctic till (e.g., Tulaczyk,20

2000). If the connectivity of the till is high (i.e., infinitely fast), then the fluid pressure is:

p(x,t) = p0 +ρgh(t) (13)

where h(t)is the tidal height at the grounding line. If instead the connectivity is low
enough that there is a resistance to flow, then one might expect the fluid pressure to25

instead be:

p(x,t) = p0 +ρgh(t−x/U) (14)

2143

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/8/2119/2014/tcd-8-2119-2014-print.pdf
http://www.the-cryosphere-discuss.net/8/2119/2014/tcd-8-2119-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
8, 2119–2177, 2014

Modeling the elastic
transmission of tidal

stresses to great
distances

J. Thompson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where U is the flow velocity for a turbulent flow through (a channelized) subglacial till
(after Manning, 1891; Tsai and Rice, 2010):

U =
1

0.038×k1/6
R2/3

(
dh
dx

)1/2

(15)

where k is the Nikuradse roughness height for the till and R is the radius of the flow5

channel. In either case, for till rheology, the basal stress is:

τb = fσe = τb0 − f ρgh(t−x/U) (16)

where f is the friction angle, which is typically f ≤ 0.6. If we define the basal veloc-
ity ub by Eq. (12), then the current model’s form, with infinitely high connectivity, is10

exactly equivalent to the model of Gudmundsson (2007) except that Gudmundsson’s
constant K is replaced with f . In particular, this conceptual model achieves the same
large fortnightly variability in velocities with forcing only at semidiurnal periods M2 and
S2. Furthermore, for the case of finite connectivity, the turbulent flow velocity U takes
the place of the viscoelastic relaxation speed of Gudmundsson (2011). We have es-15

sentially replaced the elastic and viscoelastic material parameters of Gudmundsson
(2007, 2011) with till material and fluid flow parameters. If we take reasonable val-
ues of dh

dx = 5m
104 m

= 0.0005, k = 0.1m, and R = 0.1m, we find that U ≈ 0.2ms−1. Tak-
ing f ≈ 0.2, the observations from Rutford Ice Stream can be explained using our hy-
draulic model as well as the viscoelastic model of Gudmundsson (2011), but without the20

problems of elastic stress transmission discussed in the earlier sections of this paper.
A more precise evaluation of this hydraulic model, such as including the effect of the
decay of fluid pressure perturbation upstream, is beyond the scope of this paper, but
could provide method for constraining basal friction and hydrologic connectivity using
the observed decay of tidal stresses on Antarctic Ice Streams.25
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7 Conclusions

From our modeling, we find:

1. For models supported either at the bed or at the margins, an axially applied tidal
load decays exponentially with distance inland of the grounding line. Furthermore,
for a reasonable elastic or viscoelastic model, this decay is too severe to transmit5

stresses far enough inland to explain surface observations from several Antarctic
ice streams.

2. The ice shelf and the resulting flexural stresses are relevant only local to the
grounding line, and can be safely neglected for problems of stress transmission
many tens of kilometers inland of the grounding line.10

3. Having compliant lateral margins in an ice stream can increase the distance to
which stresses transmit, but this occurs in a highly nonlinear fashion. Using a lin-
ear damage mechanics model, we find that we would need damage resulting in
upwards of a 99.9 % reduction in Young’s modulus to rectify model results with
observations.15

4. A Glen-style viscoelastic rheology using canonical values and a realistic tempera-
ture profile does not change the transmission of stress in any meaningful fashion
when the temperature dependence of ice is taken into account.

Our modeling demonstrate the importance of approaching the tidal loading on an ice
stream as a three-dimensional problem due to the stress support provided by the lat-20

eral margins of the ice stream to a tidal load. We cannot find a reasonable set of elastic
or viscoelastic parameters, homogenous or otherwise, that can reproduce the obser-
vations of tidal stresses from Rutford Ice Stream when we include the finite width of the
ice stream in our models.

As we could not match observations using an elastic or viscoelastic model for the25

transmission of tidal stresses, we presented a 2-D, flow-line model for the transmission
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of a tidal perturbation inland of the grounding line through the fluid pressure within
subglacial till. Using reasonable material parameters, we demonstrated that this model
can reproduce the modeling results of Gudmundsson (2011) for Rutford Ice Stream’s
tidally modulated motion, but without the need to rely on stress transmission through
the bulk of the ice stream. Thus, we conclude that for channelized ice streams such as5

Rutford Ice Stream, and perhaps for other tidally-modulated ice streams as well, stress
transmission through the subglacial hydrologic network is the most-likely mechanism
for the tidal modulation of ice stream motion at great distances inland of the grounding
line.

Appendix A10

Importance of the ice shelf

As all of the ice streams that display far-field tidal effects have a connected ice shelf, we
now consider the role that the ice shelf plays as the intermediary between the ocean
tides and the grounded ice stream. Recall the two-dimensional model results shown in
Figs. 3 and 4 for models both with and without an ice shelf. For a given basal condition,15

any variation between the two model results must be due to the presence of the shelf
alone.

For the model with a frozen base, the presence of an ice shelf has two effects. First,
there is a perturbation to the stress field near the grounding line (about two kilometers
inland at most), due to flexural stresses introduced by the ice shelf. Second, the overall20

magnitude of stresses in the ice stream is elevated compared to models with only axial
loading as there is an overall increase in the magnitude of the loading applied in the
model. This effect does not change Ltr. Thus for ice with no basal sliding, including an
ice shelf affects the magnitude, but not the nature of the stress field, far inland of the
grounding line.25
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For the two-dimensional model with basal sliding, stresses due to ice flexure decay to
inconsequential levels 5–7 km inland of the grounding line. Beyond this point, the stress
state of the ice stream is identical to the stress state for a model with axial loading only.
Thus, for an ice stream with no basal resistance, the ice shelf does not influence the
modeled results farther inland than less than the first ten kilometers of grounded ice.5

The general results that flexural stresses only perturb the stress field near the
grounding line is consistent with the observations of ice flexure transmission of ten
kilometers or less, as summarized in Table 1. Additionally, the constant-loading shelf
condition overestimates flexural stress by almost a factor of four compared to a more
realistic floating condition (see Appendix C), meaning that flexural stresses may decay10

to small values over shorter distance than predicted here. These models reproduce the
observation that the flexural stresses, as induced by the presence of an ice shelf, are
not important far inland of the grounding line.

The basal condition beneath the ice stream determines the influence of the ice shelf
on the overall magnitude of the stress in the far-field ice stream. As ice streams have15

little basal resistance, the result that the overall stress magnitude is independent of
the ice shelf outside of the flexure zone is applicable as our interest is in the value of
stresses at many tens of kilometers inland of the grounding line, we can safely neglect
the ice shelf in these models without changing the transmission of tidal, non-flexural
stresses.20

Appendix B

Viscoelastic tidal loading

Following the rationale of Cuffey and Paterson (2011) (and references therein), the
stress balance for an ice stream/shelf system would involve balancing the hydrostatic
pressure at the edge of the ice shelf and that of the ocean. As the ice shelf is floating,25

there is a net “pull” on the ice stream due to the excess pressure in the ice shelf com-
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pared to that of the ocean. As ice viscosity is stress dependent, to be strictly accurate,
we need to account for this end stress in our models to accurately model the viscous
deformation in the ice stream. However, as the problem is more numerically tractable
with a simple oscillatory tidal condition based on the elastic loading condition, we com-
pare the model output for these two tidal loads (called “full” and “simple,” respectively).5

We find that having the more complex full tidal condition changes the length-scale for
stress-transmission decay, Ltr, by only about 20 %, far below the factor of 3–4 change
necessary to match observations. Thus, we use this as justification to use the more
numerically favorable simple tidal condition.

B1 Full tidal loading condition10

In addition to the oscillatory load of the ocean tide, there are three major tidally-
important stresses that a full tidal loading condition needs to consider. These stresses
are incorporated into the balance of: the hydrostatic pressure of the flowing ice, the
hydrostatic pressure of the static ocean water, and the flexural stress imposed on the
grounding line due to the vertical motion of the ice shelf. Figure B1 shows a schematic15

picture of the interaction of these stresses on an ice stream at neutral, high, and low
tides.

First consider that the hydrostatic pressure of the ice and the water. For the ice, the
value of the stress at a given depth is simply ρIg(HI − z). For the water, we first use
the flotation condition at the grounding line to find that the water rises to a height of20

HT = HI(1−ρI/ρW), which in turn leads to the definition of the hydrostatic pressure at
levels where water exists as: ρWg(HT − z). However, this stress balance occurs at the
edge of the ice shelf, not at the grounding line. We make use of the assumption that the
ice shelf behaves elastically, which, following the results from our 2-D shelf models in
Sect. 4, allows us to move this stress balance to the grounding line without any decay25

of these stress values.
To account for the bending stress from ice flexure, we use the same simple beam

theory presented in Appendix C. From this simple model for flexure, we expect that the
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flexural stress at the grounding line will be on the order of a few 100 kPa at a maximum
(the exact value depends on the ice thickness and the geometry of the ice shelf).

The full load applied at the grounding line is the sum of these three stresses: the
differential gravitational stress at the end of the ice stream, the flexural stress induced
by the floating ice shelf, and the change in water weight due to the tide. Figure B15

shows a graphical representation of these tidal loads, while Eq. (B1) shows the total
form of this loading:

σapplied =
{
−ρIg(HI − z) if z > HT
−ρIg(HI − z) +ρWg(HT − z) if z ≤ HT

}
(B1)

+ FTide(t)×
[
σflex∆h

(
z− 1

2
HI

)
+ρWg∆h

]
(B2)

10

where HI is the ice thickness, HT is the water level relative to the base of the ice stream,
FTide(t) is a unit tidal forcing as a function of time, and σflex is the maximum amplitude
of flexure for a unit tide. For a reasonable tidal loading, the maximum force comes from
the static “pull”, which is on the order of 1 MPa at the base of a one-kilometer-thick ice
stream, while the flexural stress is a few 100 kPas and the tidal weight is a few 10 kPas.15

B2 Simple tidal loading condition

For the simple loading condition, we apply the variable portion of the ocean tidal load
as a normal traction to the grounding line. Mathematically, this condition is:

σapplied = FTide(t)+ρWg∆h (B3)
20

This is identical to the approach taken in our linear elastic models, except that the
applied stress is time-variable.
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B3 Stress transmission comparison

Figure B2 shows a comparison between the tidally induced σyy component of stress
(as described in Sect. 3.3.1) for a map view of the base of a model with the full (left)
and simple (right) loading conditions taken at a peak in stress response. We first note
that overall, the stress field is remarkably similar between the full and simple loading5

conditions. The only major difference occurs in the portion of the ice steam near the
grounding line, where the full loading condition has elevated stress values than those
of the simple loading model. Such an increase in the value of the stress near the
grounding line in the full model is not surprising as the value of the applied load is
larger in this model than with the simple loading condition.10

However, beyond this point inland, the model stress states are nearly indistinguish-
able, suggesting strongly that neither the hydrostatic “pull” on the ice stream edge nor
the flexural stress due to the ice shelf bending viscosity of the ice stream near the
grounding line significantly enough to dramatically change the nature of the transmis-
sion of stress viscoelastically in the ice stream. Such results are keeping with the earlier15

observation and model results suggesting that tidal flexure is a stress that is only seen
locally to the grounding line. The similarity in the model results is reflected in the values
of Ltr calculated between these two models, which fall within 20 % of one another.

As the difference between model results in this case is only on the order of 20 %, we
feel safe in neglecting the full tidal loading condition for our purposes. In the current20

form of the problem, we are sensitive to changes in the value of Ltr that amount to
a factor of 3–4, and thus 20 % is far below the threshold of usefulness to justify the
increase complexity (and thus computation time) of running these models with the full
loading condition.
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Appendix C

Analysis of the flotation condition for a one-dimensional ice shelf

As shown in Fig. 2, we apply two tractions to a model ice shelf to simulate the stress
change on an ice shelf due to a change in tide height. First, we consider the axial load
of the tide on the ice shelf’s edge. A simple comparison is to look at the stress within5

an axial bar that is compressed axially with a constant stress. Take the bar to be fixed
at the unforced end. By the compatibility condition:

δσ/δx = 0 (C1)

the stress and strain in such a model must be constant throughout the bar. This corre-10

sponds to infinite stress transmission.
Second, we model the ice shelf as a Bernoulli-Euler beam subjected to a distributed

load, with this load coupled to the beam deflection by a flotation condition. This ap-
proach is similar to the methodology of Reeh et al. (2000). The governing equation of
such a model is:15

EI
δ4w
δx4

= ρWg (∆h−w) (C2)

where ρW is the density of water, g is gravitational acceleration, w is the (vertical) de-
flection of the beam, is the Young’s modulus of ice, I =

( w
12

)
· (h)3 is the second moment

of area for the ice shelf.20

The solution of this equation for multiple ice shelf lengths are found and shown in
Fig. C1. The primary result is that, for a one meter tide, a shelf of longer than five
kilometers no longer influences the stresses at the grounding line, meaning that for
our purposes, we only need to consider a shelf of five kilometers length in our finite
element modeling.25

Additionally, we model a linearly thinning ice shelf (through the modification of I ,
using I =

( w
12

)
·
(
[h0 − (h0 −h1)]XL

)3
where the thickness linearly changes from h0 to h1)
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and find that this only has a small influence on the stress and deflection throughout the
shelf. Thus these effects will not be considered further.

Lastly, we model the results for a simpler, uncoupled stressing condition. In Fig. C1,
the red dashed line corresponds to a constant loading function equal to ρWg∆h. This
simpler condition overestimates the stress and deflection over the model domain com-5

pared to the more correct flotation condition. However, as the boundary condition does
not depend on, and thus is decoupled from, the deflection w, we use this constant
loading as the ice shelf boundary “pseudo-flotation” condition in our finite modeling.
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Table 1. Spatial extent of tidal stress transmission and ice flexure from selected ice streams
across Antarctica. Superscript numbers denote the following references: 1 Anandakrishnan
et al. (2003); 2 Brunt et al. (2010); 3 Heinert and Riedel (2007); 4 Anandakrishnan and Alley
(1997); 5 Scott et al. (2009); 6 Rignot (1998); 7 Gudmundsson (2006); 8 Gudmundsson (2007);
9 Stephenson (1984); 10 Weins et al. (2008); 11 Winberry et al. (2009); 12 Walter et al. (2011);
13 Harrison et al. (1993).

Tidal Stress Transmission Ice Flexure
Region Extent (km) Method Extent (km) Method

Bindschadler 80+ GPS1 ∼ 10 Altimetry2

Ekstrom < 3 GPS3 ∼ 5 Tilt3

Kamb 85+ Seismicity4 ∼ 10 Altimetry2

Pine Island < 55 GPS5 ∼ 5 SAR6

Rutford 40+ GPS7,8 5+ Tilt9

Whillans Ice Plain ∼ 100 GPS and Seismicity10,11,12 ∼ 10 Altimetry2

Whillans Ice Stream ∼ 300 Seismicity13 N/A Altimetry2
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Table 2. Elastic and viscous parameters used to define the ice properties in our finite element
modeling. Values of elastic parameters except for density are taken from Petrenko and Whitford
(2002) using data from Gammon et al. (1983a, b). Viscous parameters are taken from Cuffey
and Paterson (2010). Temperature-dependent viscosity coefficients are not summarized here
but can be found in Cuffey and Paterson (2010). Parameters marked with (1) denote quantities
that are derived from the other moduli and material properties. Parameters marked with (2) are
fixed through all models.

Parameter Symbol Value

Young’s modulus E 9.33 GPa
Poisson’s ratio2 ν 0.325
Shear modulus1 G 3.52 GPa
Bulk modulus1 K 8.90 GPa
Density (at 0 ◦C) 2 ρ 917 kgm−3

Viscosity coefficient (at 0 ◦C) 2 A 5.86×10−6 MPa−3 s−1

Stress exponent2 n 3
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Table 3. Length-scales for the transmission of a tidal stress (Ltr) for the two-dimensional models
shown in Figs. 3 and 4. See text for description of how the parameters are estimated. All but
one of the cases have low standard deviations. In the marked case (∗), the standard deviation
is large as the value of σx falls to zero near the (vertical) center of the ice stream, causing Ltr
varying significantly near these locations. Near the top and bottom of the ice stream, the value
of Ltr in the σx is consistent with the values for the other stress components.

Fixed Base Sliding Base
Condition Component Ltr (km) St. Dev. Condition Component Ltr (km) St. Dev.

Shelf X 2.586 0.004 Shelf X 1.304 9.049∗

Y 2.619 0.095 Y 1.101 0.013
XY 2.590 0.015 XY 1.078 1.4×10−5

Axial Only X 2.517 0.023 Axial Only X ∞ N/A
Y 2.618 0.068 Y N/A N/A

XY 2.616 0.018 XY N/A N/A

2159

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/8/2119/2014/tcd-8-2119-2014-print.pdf
http://www.the-cryosphere-discuss.net/8/2119/2014/tcd-8-2119-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
8, 2119–2177, 2014

Modeling the elastic
transmission of tidal

stresses to great
distances

J. Thompson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Ltr for 2-D models with a zero-displacement basal condition. Note that Ltr values are
linear with thickness and independent of Young’s modulus.

Thickness Young’s Ltr
(km) modulus (GPa) (km)

1 0.933 2.53
2 0.933 5.07
3 0.933 7.60
1 9.33 2.53
2 9.33 5.07
3 9.33 7.60
1 93.3 2.53
2 93.3 5.07
3 93.3 7.60
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Table 5. Ltr for 3-D models with uniform Young’s moduli. Like the 2-D models, Ltr is effectively
independent of Young’s modulus, but increases with increasing thickness and width of the ice
stream. The model indicated with (∗) is representative of Rutford Ice Stream.

Thickness Width Young’s Ltr
(km) (km) modulus (GPa) (km)

1 10 0.933 12.2
1 10 9.33 12.7
1 10 93.3 12.7
2 10 9.33 13.6
3 10 9.33 15.0
1 14 9.33 17.5
2 14 9.33 18.4
3 14 9.33 19.6
1 20 9.33 24.6
2 20 9.33 25.6
3 20 9.33 26.7
2 30 9.33 38.2∗

2 40 9.33 52.2
2 50 9.33 69.1
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Table 6. Summary of the transmission length-scale for a tidal force, in kilometers, for our vis-
coelastic models. The viscosity column refers to whether the viscosity model is homogenous
(homog.) or temperature-dependent (temp.). We include the homogenous models only for com-
pleteness since we consider the temperature-dependent models to be more physically repre-
sentative of a real-world ice stream. The applied force describes the nature of the tidal loading
applied in the model, as is described in Appendix C.

Tide Applied Force Viscosity Ltr (km)

Semidiurnal Full Temp. 14.4
Semidiurnal Simple Temp. 16.4
Semidiurnal Simple Homog. 33.0
Diurnal Full Temp. 13.1
Diurnal Simple Temp. 12.8
Diurnal Simple Homog. 29.2
Fortnightly Simple Temp. 17.7
Fortnightly Simple Homog. 44.4
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Ross Ice
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Fig. 1. Map of Antarctica indicating locations of the ice streams discussed in this paper (BIS-
Bindschadler Ice Stream, EIS-Ekstrom Ice Stream, KIS-Kamb Ice Stream, PIG-Pine Island
Glacier, RIS-Rutford Ice Stream, WIP-Whillans Ice Plain, WIS-Whillans Ice Stream, MIS-Mercer
Ice Stream, SC-Siple Coast).
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Fig. 2. Schematics of the models used in this paper. Inset boxes show options used in each
model. For the two dimensional models, these are options are either a fixed (ux = uz = 0) or
sliding (uz = 0) basal condition, and either a pure axial loading condition or a shelf model. For
the three dimensional models, we use the same model set up with either a uniform Young’s
modulus across the ice stream or marginal regions of weakened Young’s modulus.
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Fig. 3. Distributions of stress for a two-dimensional model with frictionless basal sliding.
(A) Shows profiles of longitudinal σeq profiles at a depth interval of 10 m, while (B) shows
the logarithm of the absolute value of the three in-plain stress components (σx, σy , and σxy )
for the entire two-dimensional model domain. The left column for both panels shows a model
with an ice shelf; the right column for both panels shows a model with no ice shelf and only an
axial loading. In these frictionless models, axial stress does not decay with distance and flexural
stress rapidly decays near the grounding line. Ltr is the stress decay length, and is defined in
the main text.
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Fig. 6. Representative stress distribution along the base of a three-dimensional model with
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σxx, σyy , and σxy stress components where Ltr is easiest to observe.
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Figure 7. Diagrams comparing GPS tidal displacement amplitudes to modeled displacement amplitudes. Circles show the data taken 

from observation on Rutford Ice Stream (Rutford data courtesy of H. Gudmundsson). The error on the approximated tidal 

displacement amplitudes is two centimeters. The slopes of the modeled surface displacements are taken from models approximating 

the Rutford Ice Stream, as shown in Table 5. The upper panel shows the normalized tidal amplitudes, while the lower panel shows the 

true amplitude values.  Figure 7A shows the distance-dependence of the equivalent stress calculated from linear, homogenous elastic 

model results, while Fig. 7B shows the equivalent stress calculated using models accounting for elastic damage in the shear margins 

(dashed) and temperature-dependent viscoelasticity (dotted).   

Fig. 7. Diagrams comparing GPS tidal displacement amplitudes to modeled displacement am-
plitudes. Circles show the data taken from observation on Rutford Ice Stream (Rutford data
courtesy of H. Gudmundsson). The error on the approximated tidal displacement amplitudes
is two centimeters. The slopes of the modeled surface displacements are taken from models
approximating the Rutford Ice Stream, as shown in Table 5. The upper panel shows the nor-
malized tidal amplitudes, while the lower panel shows the true amplitude values. (a) Shows
the distance-dependence of the equivalent stress calculated from linear, homogenous elas-
tic model results, while (b) Shows the equivalent stress calculated using models accounting
for elastic damage in the shear margins (dashed) and temperature-dependent viscoelasticity
(dotted).
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Fig. 9. Young’s modulus and margin width space for the increase in Ltr for a discrete margin
model relative to the homogeneous elastic model. The two bolded contours correspond to the
conditions necessary to single-handedly explain the observations of the Rutford fortnightly tidal
signal (2.67) and the Rutford semidiurnal tidal signal (3.32).
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A

B

C

Figure	10

Fig. 10. Model results for a temperature-dependent viscoelastic model forced by a semidiurnal
tide. (A) Shows the calculated values of Ltr for depth profiles of the stress. The average value of
Ltr is 12.81±0.001 km. (B) Shows the value of the longitudinal normal stress (σyy ) as a function
of horizontal coordinate. (C) Shows the fitted phase shift ϕ as a function of horizontal coordi-
nate. In (B and C), the dashed lines correspond to the 95 % confidence interval values of the
fit.
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Figure 11

Fig. 11. Figure showing the basal effective viscosity of semidiurnal models for the homoge-
neous viscosity model. This figure demonstrates that the shear margins have substantially
reduced viscosity relative to the central ice.
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Fig. 12. Schematic view of our hydrology hypothesis at neutral, high, and low tidal amplitudes,
respectively. The triangles represent GPS stations on the surface of the ice stream and ice
shelf. The brown layer represents the subglacial till. Maximum extent of highly-weakened till is
shown as a vertical line, and should vary in position with changes in the ocean tidal amplitude.
Then the maximum extent of highly-weakened till is farther inland, the GPS stations move faster
relative to a neutral position as more of the ice is streaming. Furthermore, when the maximum
extent of highly-weakened till is closer to the grounding line, the relative velocity of the GPS
stations is smaller than at a neutral tide.
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Figure B1

Fig. B1. Schematic diagrams of the full tidal forcing condition at a neutral, high, and low tide.
The tidal stress will be the extensional/compressional stress due to the different in hydrostatic
pressure at the edge of the ice shelf (shown in the graph on the right of the figure) and the
flexural stresses due to the presence of the ice shelf. HI is the distance between the surface of
the ice shelf and the surface of the ocean.
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Figure	B2

Fig. B2. Comparison of the value of the longitudinal normal stress (σxx) for the full tidal forcing
condition (left) and the partial tidal forcing condition (right) at peak tidal amplitude. The full
condition has a higher normal stress at the grounding line and a slightly more rapid decay of
the stress due to the inclusion of the flexural stress. Once inland of the grounding line by five to
ten kilometers, the stress-transmission length-scales are comparable between the two forcing
conditions.
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Fig. C1. Results of the 1-D flexural beam approximation of a floating ice shelf. The upper
figure shows the beam deflection while the lower section shows the stress at the upper edge
of the beam. See text in appendix C for a description of the governing equations and boundary
conditions for the models shown.
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