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Abstract 25 

Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even 26 

at stations many tens of kilometers inland from the grounding line.  These surveys suggest that 27 

ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude 28 

farther inland than tidal flexure of the ice stream alone.  Recent models exploring the role of tidal 29 

perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the 30 

ice stream margins either ignored or parameterized.  Here, we use two- and three-dimensional 31 

finite element modeling to investigate transmission of tidal stresses in ice streams and the impact 32 

of considering more realistic, three-dimensional ice stream geometries.  Using Rutford Ice 33 

Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses 34 

in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, 35 

exponential decay in the stress caused by resistance at the ice stream margins.  This behavior is 36 

independent of basal conditions beneath the ice stream and cannot be fit to observations using 37 

either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice 38 

stream from its lateral margins.  Our results suggest that a mechanism external to the ice stream 39 

is necessary to explain the tidal modulation of stresses far upstream of the grounding line for 40 

narrow ice streams.  We propose a hydrologic model based on time-dependent variability in till 41 

strength to explain transmission of tidal stresses inland of the grounding line.  This conceptual 42 

model can reproduce observations from Rutford Ice Stream. 43 

44 



 45 

1. Introduction 46 

1.1 Relevant Observations 47 

Observations from some Antarctic ice streams show tidally-modulated surface displacements 48 

extending many tens of kilometers inland of the grounding line (see Table 1 and associated 49 

references).   Geodetic and seismic observations that probe the interaction between ocean tides 50 

and ice stream motion include surface tilt (tiltmeters), differential position (synthetic aperture 51 

radar, InSAR), absolute position (altimetric surveys and global positioning system, GPS), and 52 

basal seismicity (see Table 1).  When such observations are found to fluctuate at tidal or near-53 

tidal frequencies, they can be used to estimate the spatial extent of ocean tidal influences on the 54 

flow of ice streams (see, for example, references described below). 55 

Surface tilt surveys quantify the maximum extent of the flexure of an ice body due to the 56 

tides (the “hinge line”).  For relevant ice streams (see Table 1), the hinge line is found between 57 

five and ten kilometers inland of the grounding line (e.g., Rignot, 1998).  Seismic studies on 58 

several Siple Coast ice streams correlate fluctuations in basal seismicity with the semidiurnal 59 

and/or fortnightly ocean tides, suggesting a link between ocean tidal loading and basal stress in 60 

these ice streams (Harrison and others, 1993; Anandakrishnan and Alley, 1997; Bindschadler and 61 

others, 2003; Wiens and other, 2008; Walter and others, 2011).  Furthermore, continuous GPS 62 

(CGPS) surveys on some Antarctic ice streams find surface velocities modulated at tidal 63 

frequencies (Rutford Ice Stream: Gudmundsson, 2006; 2007; Bindschadler Ice Stream: 64 

Anandakrishnan and others, 2003) or stick-slip motion correlated with extremes in tidal 65 

amplitudes (Whillans Ice Stream: Wiens and others, 2008; Winberry and others, 2009; 2014).     66 



However, not all Antarctic ice streams exhibit a strong connection between ocean tidal 67 

loading and ice stream flow.  CGPS observations on Pine Island Glacier, for example, show no 68 

tidal variability in surface motion at stations 55, 111, 169, and 171 km inland of the grounding 69 

line (Scott and others, 2009).  Ekström Ice Stream has an even tighter constraint on the spatial 70 

extent of tidal perturbations: CGPS recordings show no measurable motion at tidal frequencies 71 

only 1 km inland of the grounding line (Riedel and others, 1999; Heinert and Riedel, 2007).   72 

1.2 Previous Relevant Modeling 73 

Many models have been proposed to explain the influence that ocean tides have on the motion of 74 

some Antarctic ice streams (e.g., Anandakrishnan and Alley, 1997; Bindschadler and others, 75 

2003; Gudmundsson, 2006, 2007, 2011; Sergienko and others, 2009; Walker and others, 2012; 76 

Winberry and others, 2009).  Given that the Maxwell relaxation time (viscosity/elastic modulus) 77 

for ice is on the order of a few hours for tidal loads, these models generally model either elastic 78 

or viscoelastic transmission of ocean tidal stresses through the ice stream inland of the grounding 79 

line–referred to as “stress transmission” in this manuscript.   80 

We discuss several representative published models to highlight common assumptions 81 

made about the upstream transmission of tidal stresses.  A standard model for ice streams is a 82 

flow-line model–a two-dimensional (2D) cross section with transverse stresses either neglected 83 

or parameterized.  When basal shear stress is averaged over the length of the ice stream, the 84 

model reduces to the one-dimensional (1D) formulation of Bindschadler and others (2003) and 85 

Winberry and others (2009).  These models assume that tidal stress is uniformly distributed over, 86 

and completely supported by, the ice stream’s bed.  In this type of model, the distance inland to 87 

which a tidal stress propagates depends completely on the assumed length of the ice stream. 88 



Finite element analysis in 2D allows for flow-line models with increased complexity and 89 

more realistic geometries.  An applicable model of tidal stress propagation is that of 90 

Gudmundsson (2011).  This 2D flow-line model incorporates nonlinear ice viscoelasticity and a 91 

nonlinear basal sliding law.  In Gudmundsson’s (2011) analysis, the response of the modeled ice 92 

stream relates directly to the basal boundary condition.  Such a result is intuitive as lateral 93 

resistance from the ice stream’s margins is neglected, and thus the tidal load must necessarily be 94 

controlled by the basal rheology of the ice stream.  This type of model is attractive as the basal 95 

rheologies can be tuned to accurately match observations.  However, the fact that these models 96 

can be made to fit the observations does not demonstrate that lateral resistance in these ice 97 

streams is indeed negligible.  Note that a three-dimensional (3D) version of Gudmundsson’s 98 

model is currently in review and is publically available online for viewing (Rosier and others, 99 

2014).  This 3D model will be discussed in Sec. 6.1. 100 

Alternatively, Sergienko and others (2009) approximated an ice stream as a series of 101 

masses (blocks) connected elastically (by springs) and restrained laterally (by further springs) 102 

with a shear stress applied along a frictional basal contact.  Unlike the previous 2D models, this 103 

spring-block model does incorporate the lateral resistance of the ice margins. Sergienko and 104 

others (2009) note that a “tidal” load applied at one edge in this model diminishes with distance 105 

from the loaded block, but this stress decay is not explored in further detail.  We assume that this 106 

distance depends on the stiffness of the springs, both between the masses and as lateral restraints, 107 

as well as the magnitude of the basal friction imposed in the model.  However, there is no 108 

obvious relation between a physical length scale and the number of blocks and springs in the 109 

model.  Additionally, it is not clear if the decay of the tidal stress is caused by marginal or basal 110 

resistance in this model. 111 



2. Methodology 112 

In this manuscript, we present results from 2D and 3D models that explore the role that ice 113 

stream geometry plays in controlling transmission of tidal stresses.  We describe our models 114 

below and show them schematically in Fig. 2.  We then expand our homogeneous elastic models 115 

to incorporate shear-weakened margins (Sec. 4) and viscoelasticity (Sec. 5). 116 

We start with a 2D finite-element flow-line model of an elastic ice stream (Fig. 2A) to 117 

benchmark the computational models and to establish the extremes for stress transmission of an 118 

applied tidal load.  An underlying assumption of this 2D model is that the ice stream is infinite 119 

and uniform in the third dimension, such that there effectively are no lateral margins to the ice 120 

stream.  These simplified models allow us to establish “end member” behavior of an elastic ice 121 

stream by applying the extreme basal conditions of either a frozen (no slip) or a free-sliding (no 122 

shear traction) bed.  Additionally, we use these 2D models to investigate the role played by an 123 

ice shelf as an intermediary between the ocean tides and the grounded ice stream. 124 

Based on the intuition gained from these 2D models, we then explore a series of 3D 125 

models (Fig. 2B) to study the impact of resistive shearing at the lateral margins of the model on 126 

the inland transmission of an applied tidal load.  We first investigate the role that the overall 127 

geometry of the ice stream (i.e., ice stream width and thickness) has on the transmission of tidal 128 

stresses inland of the grounding line.  From these models, we find that including the lateral 129 

margins of the ice stream inherently limits the distances to which tidal stress are transmitted 130 

inland.  For narrow (channelized) ice streams, the inland transmission of a tidal load is found to 131 

be too small to be consistent with observations, even in the case of frictionless sliding at the bed 132 

(Sec. 3). 133 



In the second part of this paper, we consider two mechanisms for decoupling the model 134 

ice stream from its lateral margins.  First, we investigate the potential for “weakened” ice in the 135 

margins to reduce the lateral resistance to the inland transmission of a tidal stress (Sec. 4).  136 

Second, we investigate the effect that using a Glen-style viscoelasticity for ice may have on the 137 

transmission of tidal stresses inland of the grounding line (Sec. 5).  Modeling methodologies for 138 

these models are presented in their corresponding section. 139 

Comparing model results to tidally-modulated GPS data from Rutford Ice Stream, we 140 

establish that we cannot match observations using a model that assumes tidal loads are 141 

transmitted through the bulk of an ice stream, even after accounting for potential decoupling 142 

mechanism (Sec. 4 and 5).  We conclude with a model suggesting subglacial hydrology as a 143 

potential explanation for transmission of tidal stresses inland of the grounding line (Sec. 6.3).   144 

2.1 Model Construction 145 

Our calculations rely on the finite element modeling (FEM) software PyLith (Williams and 146 

others, 2005; Williams, 2006; Aagaard and others, 2007; 2008; 2011) for our numerical 147 

modeling. This open-source Lagrangian FEM code has been developed and extensively 148 

benchmarked in the crustal deformation community (available at www.geodynamics.org/pylith).  149 

PyLith solves the conservation of momentum equations with an associated rheological model.  150 

As we assume a quasistatic formulation (i.e., all inertial terms are dropped), the governing 151 

equations are: 152 

 ijji f=,σ  in V  

ijji Tn =σ  on ST  

0
ii uu =  on SU  

(1) 



where V is an arbitrary body with boundary conditions on surfaces ST and SU .  On ST , the 153 

traction 
ijji nσ  is set equal to the applied Neumann boundary condition Ti.  On  SU , the 154 

displacement iu is set equal to the applied Dirichlet boundary condition 0
iu .   155 

PyLith solves these governing equations using a Galerkin formulation of the spatial 156 

equations and an unconditionally stable method of implicit time-stepping for both an elastic and 157 

viscoelastic rheology (following the form of Bathe, 1995).  For model convergence, we select a 158 

tolerance of 1e-12 in the absolute residual of the iterative solver from the PETSc library (Balay 159 

et. al 1997, 2012a, 2012b) and a relative tolerance to the initial residual value of 1e-8.  Based on 160 

several experiments, these values are sufficiently conservative to ensure solution convergence 161 

without causing a prohibitive increase in computational time. 162 

2.1.1 Model Geometry 163 

For the models discussed here, the finite element model geometry is intentionally kept as simple 164 

as possible (Fig. 2).  2D models are considered with and without an ice shelf while the 3D 165 

models do not include an ice shelf.  As described in Appendix A, our 2D model results show that 166 

the ice shelf can be safely neglected as the ice shelf does not influence the length scale of stress 167 

transmission far inland of the grounding line. 168 

In our 2D models, we consider only the thickness (Z) to be limiting, while the model 169 

length (X) is not. We use a geometry long enough that changes to the length have a negligible 170 

effect on the model results (i.e., the X dimension is “pseudo-infinite”).  For our 3D models, only 171 

the thickness (Z) and width (Y) of the ice stream are limiting dimensions.  The length of the ice 172 

stream (X) and the widths of the non-streaming ice (Y) are large enough to be pseudo-infinite. 173 

We construct the FEM meshes using the software Trelis (available from 174 

http://www.csimsoft.com).  For the 2D models, we use linear isoparametric triangular elements 175 



while we use linear isoparametric quadrilateral elements for the 3D models.  We manually refine 176 

the meshes near regions of applied stresses, changes in boundary conditions, and material 177 

property variations.  In such locations the mesh spacing can be as small as 1 m, resulting in 178 

meshes with between 105 and 106 elements.  To ensure that the model results are independent of 179 

the meshing scheme, we check all model results against meshes that are uniformly refined by a 180 

factor of two.  We only present results from meshes that have less than a 0.1% change in 181 

displacement, 1st strain invariant, and 2nd deviatoric stress invariant upon this refinement in our 182 

elastic models and less than 1% in our viscoelastic models. 183 

2.1.2 Linear Elastic Rheology 184 

Our first models assume a linear isotropic elastic rheology for ice with the constitutive equation 185 

taking the familiar form of Hooke’s Law in three dimensions: 186 

 ( )jkiljlikklijijkl δδδδµδλδ ++=C  (2) 

We summarize model rheologic parameters, taken from Petrenko and Whitford (2002) and 187 

Cuffey and Paterson (2010), in Table 2.  We assume that the Poisson’s ratio is well known for 188 

ice (and thus is fixed) when exploring the ranges in values of the other elastic moduli.   189 

2.2. Applied Boundary Conditions 190 

This section describes the boundary conditions applied to our 2D and 3D models.  Given the 191 

models’ simplified geometries, it is convenient to refer to the edges (2D) or faces (3D) of the 192 

model domains by their normal vectors when describing the locations of applied boundary 193 

conditions.  For example, the right edge of the 2D model is the X+ edge and the top face of the 194 

3D model is the Z+ face. 195 



2.2.1 Two-Dimensional Models 196 

In our 2D models, we have two boundary conditions to consider: the basal condition of the ice 197 

stream and the loading condition of the ocean tides on the ice stream-ice shelf system. We 198 

explore two limiting basal boundary conditions: a frozen bed and a free-sliding bed.  The frozen 199 

bed condition is applied as a Dirichlet condition with zero displacements in all directions 200 

( 0== zx uu ) on the Z- edge of the ice stream.  The free-sliding bed condition has a mixed 201 

boundary condition applied to the Z- edge of the ice stream with zero vertical displacements 202 

( 0=zu ) and zero shear traction ( 0=xzσ ).   203 

 Tidal loading is applied as an edge-normal Neumann (stress) boundary condition with 204 

magnitude hgnormal ∆= ρσ , where ρ is the density of water, g is gravitational acceleration, and 205 

h∆  is the amplitude of the tide.  For models without an ice shelf, tidal loading is applied on the 206 

X+ edge of the model ice stream (i.e., vertical face above the grounding line).  For models with a 207 

portion of the model domain representing an ice shelf, the tidal loading condition is applied 208 

along the X+ and Z- edges of the model ice shelf.  At the basal node where the ice stream and ice 209 

shelf coincide (i.e., the model’s grounding line), the ice stream’s basal condition is applied.  Note 210 

that this approach does not apply a flotation condition to the ice shelf, and thus assumes that 211 

there is no grounding line migration. Appendix B discusses the implications of using this method 212 

to approximate tidal loading on an ice shelf.  213 

2.2.2 Three-Dimensional Model 214 

We have three boundary conditions to consider in our 3D models: the basal condition of the ice 215 

stream, the basal condition of the non-streaming ice, and the tidal loading condition.  Recall from 216 



Sec. 2.1.1, the geometry of the 3D models has a box-shaped ice stream in contact with non-217 

streaming ice on its Y+ and Y- faces (see Fig. 2B).   218 

The basal boundary condition applied to the ice stream is a 3D version of the earlier free-219 

sliding bed condition.  Along the Z- face of the ice stream, a mixed boundary condition is applied 220 

that has zero vertical displacements ( 0=zu ) and zero vertical shear tractions ( 0== yzxz σσ ).  221 

As will be discussed later, our 3D models do not currently incorporate basal friction beneath the 222 

ice stream. 223 

The basal boundary condition applied to the non-streaming ice is a 3D version of the 224 

earlier frozen bed condition.  Along the Z- face of the non-streaming ice, a Dirichlet condition is 225 

applied that fixes all displacements to zero ( 0=== zyx uuu ).  Along the Y+ and Y- edges of the 226 

Z- of the ice stream (i.e., the basal nodes shared by the ice stream and the non-streaming ice) the 227 

non-streaming ice’s basal boundary condition is applied. 228 

Similar to the 2D models, tidal loading is applied as a face-normal Neumann (stress) 229 

condition with magnitude hgnormal ∆= ρσ .  As our 3D models have no ice shelf (see Sec. 2.1.1 230 

and Appendix A), the tidal loading condition is applied to the X+ face of the ice stream and the 231 

non-streaming ice (i.e., on the face above the model’s grounding line).  For models using a linear 232 

elastic approximation for ice, we do not apply a time-varying load as the model solution must 233 

necessarily vary linearly with the magnitude of the applied stress.   234 

2.2.3 Gravity 235 

Due to the superposition property of a linear elastic model, we choose to neglect the effect of 236 

gravity as a body force by setting if  in Eqn. 1 equal to 0, effectively neglecting the background 237 

flow of the ice stream.   238 

3. Results 239 



PyLith calculates the stress tensor, strain tensor, displacement vector, and velocity vector at 240 

every node of the model mesh.  While we use results from close to forty models in this 241 

manuscript, we only show visualizations of representative results; however, we include tabulated 242 

results from all models.  To aid in comparing the magnitude of stress between models, we define 243 

an equivalent stress, eqτ , based on the Von Mises criterion.   eqτ  is defined in 2D and 3D as: 244 

 
2D: ( )[ ]22222 6

2
1

xyyyxxyyxxeq σσσσστ +++−=  

3D: ( ) ( ) ( ) ( )[ ]2222222 6
2
1

xzyzxyzzxxzzyyyyxxeq σσσσσσσσστ +++−+−+−=  

(3A) 

 

(3B) 

3.1 Two-dimensional Results 245 

We begin by considering the distribution of stress in the 2D models with free-sliding and frozen 246 

basal boundary conditions.  Figs. 3 and 4 present stress distributions for 1-km-thick models using 247 

each boundary condition with and without an ice shelf.  In these figures, we show longitudinal 248 

profiles of eqτ  taken at different depths.  It is convenient to define a stress decay length scale, Ltr, 249 

as the distance inland of the grounding line over which the amplitude of a tidal stress drops by an 250 

order of magnitude.  Table 3 summarizes Ltr for all stress components for the four models shown 251 

in Fig. 3 and Fig. 4.  Other model geometries considered, but not explicitly discussed here, 252 

include 2- and 3-km-thick models and models with elastic moduli one order of magnitude larger 253 

and smaller than the canonical value of 9.33 GPa (see Table 4 for a summary of 2D model 254 

results). 255 

 In the model with a free-sliding bed and no ice shelf (Fig. 3, right column), the axial 256 

stresses do not decay with distance from the grounding line.  Flexural stresses, only present in 257 

the model with an ice shelf (Fig. 3, left column), follow the expected functional form of a 258 



sinusoid multiplied by an exponential function (e.g., Turcotte and Schubert, 2002).  The first 259 

wavelength of this sinusoid can be seen in Fig. 3A, with a zero crossing approximately 2 km 260 

inland (i.e. left) of the grounding line.  After moving approximately 5 km inland of the 261 

grounding line, the two model ice streams attain approximately the same (constant) stress value 262 

independent of the presence or lack of an ice shelf.  For the model with a frozen bed (Fig. 4), 263 

flexural and axial stresses decay exponentially with distance inland of the grounding line with 264 

similar values of Ltr.   265 

 These 2D models provide an opportunity to investigate the role that the ice shelf plays in 266 

the transmission of tidal stress inland of the grounding line.  As the flexural stresses induced by 267 

an ice shelf decay rapidly with distance inland of the grounding line without affecting the decay 268 

of axial stress, we choose to neglect the ice shelf in the 3D models.  See appendix A for a full 269 

discussion of the ice shelf’s influence on these model results. 270 

3.2 Three-dimensional Results 271 

We now consider the decay of stress in a uniform 3D model, using a 1-km-thick and 10-km-wide 272 

ice stream as a representative model.  While not discussed here in detail, we also considered 273 

models with widths of 14, 20, 30, 40, and 50 km, thicknesses between 1 and 3 km, and elastic 274 

moduli one order of magnitude larger and smaller than the nominal 9.33 GPa value (see Table 5 275 

for a summary of 3D model results).   276 

Fig. 5 shows values of eqτ  taken along horizontal profiles at 10 m depth intervals 277 

(varying the Z coordinate) and a transverse spacing of 1 km (varying the Y coordinate).   We find 278 

that stress decays exponentially over approximately the same distance independent of the Y or Z 279 

coordinates chosen.  Thus, the model can be described using a single value of Ltr as shown.  As 280 

our uniform 3D model includes lateral restraint due to non-streaming ice, the stress decay 281 



behavior of the 3D model is unsurprisingly different from that of the 2D models, which do not 282 

include lateral resistance.   283 

Fig. 6 shows the full stress field (i.e., all six independent stress components) taken at the 284 

base of the representative 3D model described above. The longitudinal normal stresses ( xxσ ), 285 

transverse normal stresses ( yyσ ), and the shear due to the sidewalls ( xyσ ) are the largest stresses 286 

more than a few ice-thicknesses inland of the forced edge.  The vertical normal stress ( zzσ ) at the 287 

bed is also nonzero inland of the forced edge but is at least an order of magnitude smaller than 288 

the aforementioned stresses.  The vertical shear stress components ( xzσ  and yzσ ) are direct 289 

consequences of stress concentration at the transition from sliding to frozen basal boundary 290 

conditions, and decay rapidly with distance from both the lateral margins and the grounding line.   291 

3.3 Geometric Factors Influencing the Transmission of Tidal Stresses 292 

Our 2D and 3D results show that tidal stresses decay exponentially with distance inland of the 293 

grounding line when basal and/or lateral resistances act on our model ice stream.  We use Ltr as a 294 

direct measure of the distance that a tidal load influences the motion of an ice stream.  Note that 295 

we use a single value of Ltr estimated from eqτ to compare stress transmission between models 296 

and that this value of Ltr matches the largest Ltr calculated from the individual stress components 297 

(see Table 3).  To determine the influence that the choice of geometry and elastic moduli play in 298 

controlling Ltr, we explore homogeneous elasticity over a range of these parameters as tabulated 299 

in Table 4 for the 2D models and Table 5 for the 3D models. 300 

 In our 2D and 3D models, stresses vary proportionally to the magnitude of the applied 301 

stress, while displacements vary proportionally to the applied stress and inversely to the Young’s 302 

modulus.  Such results are expected from linear elasticity.  However, neither of these parameters 303 



has a pronounced effect on the decay of an applied stress as shown by the nearly constant Ltr 304 

between models with the same geometry. 305 

Modifying the geometry of the model affects the value of the stresses, displacements, and 306 

Ltr in a nonlinear fashion.  For the 2D models with a frozen bed, Ltr varies linearly with thickness.  307 

For the 2D models with a free-sliding bed, Ltr is infinite, independent of the ice thickness.  For 308 

the 3D models, Ltr increases with increasing thickness and width, but not in a strictly linear 309 

fashion for either.   310 

 Given these geometric dependencies, we find that the following empirical functional 311 

forms describe the relationship between the stresses, displacements, and model parameters.  For 312 

the 2D model with a frozen bed, we use: 313 

 
trL

hx

GL hzhzx
−

⋅∆⋅= 10),(),( σσ  

trL
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−

⋅
∆
⋅= 10),(),(  

(4) 

where GLσ  and GLu  are, respectively, the stress and displacement at the grounding line for a 1 314 

km thick model using the nominal value of 9.8 GPa for E with a 1 m ocean tide,  E  is the non-315 

dimensionalized Young’s modulus with respect to the canonical value,  h  is the non-316 

dimensionalized model thickness with respect to a 1 km reference value, and h∆  is the non-317 

dimensionalized tidal height with respect to a 1 m tide.  For the 3D models, we find the 318 

functional forms: 319 
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The implications of these results are that the stress distributions depend only on tidal loading and 320 

geometry.  As long as we assume homogenous elasticity, the stress state is independent of the 321 

elastic properties in the model, although this is not true for models with spatially variable elastic 322 

moduli, as discussed in the next section.  Ltr depends only on the model’s geometry.   323 

Models with widths between 10 and 50 km, summarized in Table 5 demonstrate that Ltr is 324 

roughly 1.2 to 1.5 times the ice stream width.  Additionally, Ltr increases only slightly as ice 325 

thickness is increased from 1 to 3 kilometers.  Thus, tidal stresses at a distance equivalent to two 326 

ice-stream-widths (2w) inland of the grounding line should be considerably reduced. 327 

3.4 Comparison to Rutford Ice Stream  328 

We now compare the observed decay of GPS surface displacements from Rutford Ice Stream to 329 

the decay of tidal stresses in a model ice stream that is 30 kilometers wide (a geometry 330 

approximating Rutford Ice Stream).  Recall that for linear elasticity, an exponential decay of 331 

stress will necessarily predict an exponential decay of displacement with the same decay rate, so 332 

such a comparison is permissible for linear elastic models.  The estimated Ltr for geometries 333 

approximating Rutford Ice Streams is 38.2 kilometers (flagged model in Table 5).   We note that 334 

our geometrically-simple model assumes that both margins are equally strong; in actuality, 335 

Rutford Ice Stream has one ice-ice interface and one ice-rock interface.  However, based on the 336 

velocity profile for Rutford Ice Stream (Joughin and others, 2006), the difference between 337 

Rutford’s lateral margins does not appear to strongly control the behavior of the ice stream as a 338 

whole, allowing us to make a first-order approximation of Rutford as having strong, non-339 

frictional boundary conditions on both lateral margins.  340 

Figure 7B demonstrates that the modeled decay is too severe to match the maximum 341 

observed displacement at GPS stations on Rutford Ice Stream inland of the grounding line (GPS 342 



data reported by Gudmundsson, 2007 and provided by H. Gudmundsson).  This result suggests 343 

that resistance from lateral margins of the ice stream, at least for a channelized one like Rutford 344 

Ice Stream, are sufficiently large to limit the inland transmission of a tidal load, even in the case 345 

of frictionless sliding.  In the next two sections, we consider potential mechanisms for 346 

decoupling the ice stream from its lateral margins. 347 

4. Weakening in the Ice Stream Margins 348 

In the previous section, we demonstrated that the lateral resistance from the shear margins of a 349 

channelized ice stream dampens the inland transmission of tidal stresses significantly.  However, 350 

as shear margins are locations of enhanced viscous strain (e.g., Dahl-Jensen and Gundestrup, 351 

1987; Echelmeyer and Zhongxiang, 1987; Paterson, 1991; Echelmeyer and others, 1994) and 352 

crevassing (e.g., Cuffey and Paterson, 2011), it is conceivable that ice stream margins are 353 

elastically more compliant than the central portion of the ice stream.  We now investigate the 354 

potential impact that such marginal compliance has on the inland transmission of tidal stress and 355 

find that substantial damage in the marginal ice is necessary to decouple the ice streams enough 356 

that the models reproduce observations of tidally-modulated ice motion. 357 

4.1 Methodology 358 

Theoretically, the damage is expected to reduce the effective Young’s modulus (e.g., Walsh, 359 

1965).  We parameterize the influence of cracks and crevasses using linear elastic continuum 360 

damage mechanics.  This approach modifies the elastic constitutive equation by multiplying the 361 

Young’s modulus with a damage term (see Murakami, 2012 and references therein): 362 

 ( )DE −
=

1
σε  (6) 

The damage parameter D can take a value between 0 (no damage) to 1 (complete plastic failure), 363 

and has the physical interpretation as the fraction of area that can no longer support a load due to 364 



the opening of void space in the damaged body.  For reference, Borstad and others (2012) find 365 

the threshold for calving in an ice shelf to be D=0.6±0.1, which is comparable to the value of 366 

damage calculated from viscous flow enhancement factors for an Antarctic ice stream (e.g., 367 

Echelmeyer and other, 1994) using a viscous implementation of damage (see Eqn. 7 below).   368 

We modify our 3D model to have a laterally variable Young’s modulus with two 369 

different patterns of variability (see inset in Fig. 2B): one with a step function drop in Young’s 370 

modulus at certain predetermined ice margin widths (“discrete margins”) and the other with a 371 

linear reduction of the Young’s modulus from the middle to the edges of the ice stream 372 

(“continuous margins”).  For both patterns, the elasticity profile is symmetric across the 373 

centerline of the ice stream, such that the natural transverse length is the ice stream half-width.  374 

For the discrete margin pattern, we evaluate a range of margin widths at 10% intervals between 375 

10% and 90% of the ice stream half-width.  The marginal ice in these models has a reduction in 376 

Young’s modulus by a factor of 10.  For the continuous margins model, we evaluate models with 377 

the Young’s modulus of the marginal ice reduced by factors of 10, 100, and 1000. 378 

4.2 Results 379 

Fig. 8 shows a representative distribution of the six stress components for a discrete margins 380 

model with weakened margins half of the ice stream half-width.  The longitudinal normal stress 381 

( xxσ ) is concentrated in the stronger ice at the center of the model, while the transverse normal 382 

( yyσ ) and the horizontal shear ( xyσ ) stresses are concentrated in the weaker marginal ice.  383 

Comparing these stresses to Fig. 6 and noting the differing longitudinal scales, it is clear that Ltr 384 

is larger in the model with compliant margins than in the homogenous elastic model.  385 

Additionally, as shown for the longitudinal normal stress ( xxσ ), Ltr is no longer constant 386 



throughout the model, as was the case for the homogeneous model.  For this manuscript, we use 387 

a width-averaged value of Ltr for comparison between different models with compliant margins. 388 

Fig. 9 shows the relative change in Ltr in models with marginal weakening compared to a 389 

homogeneous elastic model with the same geometry.  By interpolating between the results of our 390 

discrete margins models, we characterize Ltr as a function of the ratio of marginal width to ice 391 

stream width ( x̂ ).  Similarly, by interpolating between the results of our continuous margins 392 

models, we characterize Ltr as a function of the severity of marginal weakening, described by the 393 

ratio of the Young’ s modulus of the marginal ice to that of the central ice ( Ê ).  Figure 9 394 

demonstrates that the maximum increase to Ltr occurs when each shear margins are about 50% of 395 

the ice stream half-width and that Ltr increases as lateral margins become more compliant 396 

relative to the central ice stream.   397 

4.3 Viability of Lateral Weakening as a Decoupling Mechanism 398 

Fig. 9 also shows two contours that correspond to increases in  Ltr  necessary to reproduce 399 

observations of the semidiurnal and fortnightly tidal displacements at Rutford Ice Streams (a 400 

relative value of Ltr of 3.32 and 2.67, respectively).  As the shear margins for Rutford Ice Stream 401 

are on the order of 10% half-width (e.g., Joughin and others, 2006), we find the minimum values 402 

of Ê  needed to reproduce the observed values of Ltr to be 1995 (103.3) and 630 (102.8), 403 

respectively.  These values of Ê  correspond to linear damage parameters of D=0.9995 and 404 

D=0.998 (Eqn. 6).   405 

To add some physical meaning to these estimates of D, we compare these modeled values 406 

to the critical damage threshold values of D, commonly named DC, found in the literature.  DC is 407 

the linear damage value at which a material becomes sufficiently fractured to stop behaving as a 408 

single continuous body.  From laboratory experiments, DC has been estimated to be 0.45-0.56 for 409 



ice (Pralong and Funk, 2005; Duddu and Waisman, 2012).  From inverse modeling of the Larsen 410 

B Ice Shelf collapse using a viscous model with linear continuum damage, Borstad and others 411 

(2012) found DC for calving to be 0.6±0.1.  To compare DC with our model results, we must 412 

remember that the above values for DC are for nonlinear viscous flow, such that the 413 

“enhancement” value is governed by: 414 

 ( ) nDEn −−= 1  (7) 

Thus, the corresponding enhancements for the literature values of DC are between about 6 (for 415 

DC=0.45) and 37 (for DC=0.7) using the canonical power law exponent for Glen flow of n=3. 416 

Even the smallest necessary enhancement for our models has a value of 467.7 (102.67, for the 417 

fortnightly tide on Rutford Ice Stream), suggesting that the damage required to create sufficient 418 

marginal compliance to match observations is too high to be physically reasonable.  Thus, we 419 

find that incorporating damage in an ice stream’s shear margins is insufficient to bring model-420 

predicted estimates of Ltr into agreement with those found observationally from GPS stations on 421 

Rutford Ice Stream. 422 

5. Viscoelasticity 423 

We now investigate the potential for viscoelasticity to decouple the ice stream from its lateral 424 

margins and thus increase the inland transmission of a tidal load relative to a homogeneous 425 

elastic model.  As an ice stream’s margins are the location of large shear stresses, an ice stream 426 

with stress-dependent viscoelasticity should have reduced effective viscosity in these lateral 427 

margins.  The net result would be that deformation is concentrated near the lateral margins, 428 

decoupling of the ice stream from its margins and allowing for a longer inland transmission of a 429 

tidal stress. 430 

5.1 Methodology 431 



 432 

To incorporate viscoelasticity into our ice stream models, we change our rheology from the 433 

linear elastic model used previously (Eqn. 2) to a Glen-style viscoelastic model: 434 

 nA
E

σσε +=


  (8) 

where we take the nominal value n=3.  For the viscosity coefficient A, we present two models.  435 

The first is a homogenous viscous model, using the canonical value of A equal to the 0 ⁰C value 436 

(e.g. Cuffey and Paterson, 2010).  The second model uses the Arrhenius relationship for 437 

temperature-dependent viscosity from Cuffey and Paterson (2010, Eq. 3.35), along with a 438 

temperature profile chosen to match the empirical relation calculated from the Whillans Ice Plain 439 

in Engelhardt and Kamb, (1993).  The elastic moduli are the same as in the homogenous elastic 440 

models. 441 

Incorporating both viscoelasticity and nonlinearity into the constitutive law for ice 442 

introduces many additional modeling concerns in order to correctly describe the link between 443 

ocean tides and ice stream motion.  As we cannot use superposition in a model with stress-444 

dependent viscosity, we apply the down-glacier (i.e., deviatoric) component of the gravitational 445 

body force to the model.  In the finite element formulation, we apply the horizontal component 446 

of gravity ( αsingghoriz =  where α  is the surface slope) as a time-constant acceleration acting 447 

on the entire ice body.  We choose to apply only the down-glacier component of gravity out of 448 

convenience, as using the full gravitational body force would require us to apply a pre-stress to 449 

the model to cancel out the vertical component of the full gravitational body force, or the model 450 

would compress when gravity was “turned on” at time 0. 451 

 For models using a viscoelastic rheology for ice, we apply a sinusoidally varying tide of 452 

magnitude hg∆ρ  at a range of tidal periods.  See Appendix C for a discussion of the impact this 453 



tidal loading condition has on a viscoelastic model.  We use three main tidal constituents (i.e., 454 

the semidiurnal, diurnal, and fortnightly tides) in our forcing functions for the viscoelastic 455 

models.  For simplicity, we approximate the tidal periods of these tidal constituents as 12 hours, 456 

24 hours, and 14 days, respectively.  Of course, the three tidal constituents cannot strictly be 457 

separated due to the nonlinearity of the viscous deformation, and research by Gudmundsson 458 

(2006; 2007; 2011) and Rosier and others (2014) suggests that fortnightly variability in ice 459 

stream motion is a consequence of the nonlinear interaction of the semidiurnal ocean tides acting 460 

on basal friction beneath the ice stream.  Given that our models neglect basal friction and thus 461 

cannot reproduce an apparent fortnightly tidal signal due to basal friction, we opt instead to focus 462 

our modeling efforts on identifying the relationship (if any) between forcing frequency and Ltr.  463 

To this end, we model the individual tidal frequencies rather than a more accurate combined tidal 464 

loading function.  To ensure that the model is appropriately “spun-up” (e.g., Hetland and Hager, 465 

2005), we only present results that have been run long enough such that the detrended, 466 

oscillatory motion is consistent over consecutive tidal cycles. 467 

A final consideration is the strong temperature dependence of the ice viscosity (e.g., 468 

Weertman, 1983; Hooke and Hanson, 1986; Paterson, 1994; Cuffey and Paterson, 2011).  The 469 

temperature dependence of the viscosity coefficient, from Cuffey and Paterson (2011), is: 470 
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where T is measured in Kelvin (K).  Antarctic ice streams have been observed to have a strong 471 

temperature gradient from the base to the surface (e.g., Engelhardt and others, 1990; Engelhardt 472 

and Kamb, 1993; 1998; Engelhardt 2004a/b), with some ice stream beds up to 20 K warmer than 473 



the ice stream’s surface.  We adopt an empirical fit of temperature data from Whillans Ice 474 

Stream as the temperature profile in all models.  The temperature gradient of such a temperature 475 

profile is defined by Engelhardt and Kamb (1993) as: 476 

 ∫ −−− +=
y

tyy
b dteeauleq

dz
dT

0

222

κ
λ  (10) 

where lzy /= , aHl /2κ= , bq  is the basal temperature gradient, a is the accumulation rate, u is 477 

the ice stream horizontal velocity, κ  is the thermal diffusivity, H is the ice stream thickness, and 478 

λ  is the temperature gradient in air.  All values of these parameters, except model geometries, 479 

are taken from Engelhardt and Kamb (1993).  In solving for the temperature profile, we set the 480 

basal temperature equal to the pressure melting point of ice, -0.7 °C.   481 

5.2 Results 482 

Our primary interest in modeling stress-dependent viscoelasticity is to determine if this rheology 483 

results in substantial decoupling of the ice stream from its lateral margins.  Based on our 484 

estimates of tidal stress decay at Rutford Ice Stream, viscoelasticity would need to increase our 485 

model’s Ltr by between a factor of two to four to match the field observations of Gudmundsson 486 

(2007; 2008; 2011).  Due to the sinusoidal tidal loading function, we fit stress profiles along the 487 

modeled ice stream’s length with: 488 

 ( )ϕωσ += tzyxAxx sin),,(  (11) 

where A is the stress amplitude as a function of x, y, and z, ω  is the tidal frequency of the applied 489 

tide, and ϕ  is the phase delay.  As with our elastic models, we observe an exponential decay of 490 

tidal stress inland of the grounding line.  We can use the distance dependence of A to calculate 491 

Ltr for a given model.  Figure 10 shows the values of Ltr, stress, and phase delay for a 492 

representative model (1-km-thick and 10-km-wide) using a semidiurnal tide.   493 



In addition to the three tidal frequencies, we also explore different tidal loading 494 

conditions (simple vs. full, see Appendix C) and viscosities (homogeneous vs. temperature-495 

dependent) in our models. The modeled values of Ltr for these viscoelastic models are 496 

summarized in Table 6.  From this table, we see that incorporating the more realistic 497 

temperature-dependent viscosity results in an increase in Ltr by less than 50% for all tidal 498 

frequencies. 499 

5.3 Viability of Viscoelasticity as a Decoupling Mechanism 500 

The shear margins have a reduced effective viscosity compared to the central ice (Fig. 11).  This 501 

viscosity contrast reflects the stress distribution induced by the background (gravitational) flow 502 

and does not vary notably over a tidal cycle.  This result suggests that the background flow, even 503 

for low driving stresses, controls the effective viscosity in our models with stress-dependent 504 

viscosity.  While beyond the scope of this paper, such a result suggests that the viscoelastic 505 

response of an ice stream to a tidal load can be approximated using linear viscoelasticity if the 506 

ice stream is modeled using a spatially-variable effective viscosity that accounts for the 507 

background gravitational stress in the ice stream.   508 

However, even a large contrast in viscosity between the shear margins and central ice 509 

stream fails to cause a substantial increase in Ltr.  While ice is expected to be less viscous in the 510 

shear margins, the marginal ice’s viscosity is too large for substantial viscous deformation over a 511 

tidal cycle.  The smallest effective viscosities in our temperature-dependent models are on the 512 

order of 1e14 Pa·s in the (warmer) ice at the base of the ice stream’s shear margins.  This 513 

minimum viscosity is about two orders of magnitude larger than the linear viscosity found for 514 

laboratory ice (e.g., 1e12 Pa·s, from Jellinek and Brill, 1956).   515 



Additionally, the shortest Maxwell time for the modeled ice stream is about 104 seconds 516 

(~ 3 hours), again in the warm ice at the base of the shear margins.  As mentioned above, even 517 

here the ice stream’s response is primarily elastic.  Only when the model is forced with longer-518 

period oscillations (e.g., the fortnightly tide) does adding ice viscoelasticity to the model increase 519 

Ltr by a meaningful amount due to viscous deformation in the ice stream.  However, as 520 

mentioned previously, the fortnightly tidal signal observed at Rutford Ice Stream is likely the 521 

results of nonlinear interactions between different semidiurnal tides (Gudmundsson, 2006; 2007; 522 

2011; Rosier and others, 2014), so the calculated increase in Ltr for the fortnightly tide may not 523 

be representative of real-world conditions.  Ultimately, the temperature-dependence of ice 524 

viscosity and the low temperatures in the majority of the ice stream cause the ice’s response to a 525 

tidal stress to be predominantly elastic, even in the shear margins. 526 

6. Discussion 527 

St. Venant’s Principle states that the influence of an applied concentrated load on an elastic body 528 

is negligible at great distances away from the applied load (e.g., Goodier, 1942; Timoshenko and 529 

Goodier, 1982).  For instance, Goodier (1942) demonstrates that an axially forced block, when 530 

restrained from below, has a stress field that is only important close to the forced edge.  531 

Additionally, Goodier establishes the same conclusion when the block is fixed from both above 532 

and below.  These two cases are identical to our 2D model with a frozen base and a 2D version 533 

(in map view) of our 3D ice stream model, respectively.  Timoshenko and Goodier (1982) 534 

provide an explicit form of the stress solution for similar, albeit not identical, models.  In their 535 

article 24, they describe the expectation of exponential decay of stress with distance away from a 536 

point load applied to the opposite edges of a beam.  Thus, it should not be a surprise that we find 537 

an exponential decay of stresses in these ice stream models.   538 



Previous models for tidal influences on ice stream motion also found an exponential 539 

decay of stress with distance inland of the grounding line (e.g., Anandakrishnan and Alley, 1997; 540 

Sergienko and others, 2009).  Our 2D model results represent extremes of Anandakrishnan and 541 

Alley’s (1997) model.  The frozen bed model corresponds to Anandakrishnan’s and Alley’s 542 

model with either a zero-thickness viscous layer or an infinitely viscous ( ∞≈η ) layer.  The 543 

sliding bed model corresponds to Anandakrishnan and Alley’s model with an infinitely weak 544 

( 0≈η ) viscous layer.  As the two-layer models of Anandakrishnan and Alley have the additional 545 

free parameter of till viscosity, Anandakrishnan and Alley’s (1997) models can constrain till 546 

viscosity using Ltr or constrain Ltr using till viscosity, but not both simultaneously.  Additionally, 547 

the lack of lateral restraint in the model allows for the physically unrealistic case of infinite 548 

stress-transmission.  The same issue is present in the flow-line models discussed in Sec. 1.2.  Our 549 

model results suggest that the assumption of negligible lateral resistance is not reasonable for 550 

channelized ice streams. 551 

Of the published models considered earlier, Sergienko and others (2009) is the only study 552 

to explicitly account for lateral resistances.  Removing the basal drag condition from Sergienko 553 

and others’s model results in a 1D approximation of our 3D models.  However, the lack of a 554 

clear length scale for the elastic springs in Sergienko and others’s model prevents us from 555 

directly applying this model to constrain Ltr.  As our finite element modeling shows, the presence 556 

of non-sliding lateral margins and a frozen bed basal boundary condition both result in 557 

exponential decay of a tidal load with distance inland of the grounding line.  Thus over the stick-558 

slip cycle in Sergienko and others’s paper, we expect that the stress-transmission would cycle 559 

between a thickness-controlled value when stuck and a width-controlled value when slipping. 560 



In our 3D models, ice stream width is the primary geometric control on Ltr.  In 561 

comparison, ice stream thickness only has a minor effect on Ltr, causing a 5-10% change in Ltr 562 

per added kilometer of ice thickness.  Extending these results, models with a realistic geometry 563 

will only vary substantially from the equivalent box model approximation if the real ice stream’s 564 

width changes dramatically along the flow direction.  The width of Rutford Ice Stream does not 565 

change significantly through the region with CGPS observations. 566 

 We have also shown that introducing variability in the elastic moduli can have a 567 

pronounced effect on Ltr.  However, the precise change in Ltr depends on the choice of damage 568 

parameter and the shear margin size.  Generally, increasing the damage (and thus elastic 569 

compliance) in the ice stream margins increases the value of Ltr.  However, in order to use 570 

marginal damage to increase Ltr to a value large enough to match observations, we must choose a 571 

damage coefficient significantly higher than that proposed for calving in the ice shelf (D ~ 0.99 > 572 

0.6 ±0.1).  The ice stream is almost certainly not more damaged than its calving ice shelf, as 573 

otherwise having a cohesive ice shelf would be impossible.  This suggests that marginal damage 574 

alone does not sufficiently decouple the ice stream from its lateral margins. 575 

 Similarly, the viscoelastic models presented here demonstrate that the reduction in 576 

marginal viscosity due to flow-induced shear is insufficient to dramatically increase Ltr through 577 

the ice stream.  While Ltr increases slightly by using a temperature-dependent viscosity instead of 578 

homogeneous elasticity, this increase in Ltr is too small to rectify the model results with the 579 

observations from Rutford Ice Stream.  For comparison, the change in Ltr from viscoelasticity is 580 

comparable to the change in Ltr due to increasing compliance in the lateral margins for physically 581 

realistic damage parameters. 582 

6.1 Rutford Ice Stream 583 



Fig. 7B shows that the mechanisms of extreme-but-physically-reasonable damage, 584 

viscoelasticity, and both mechanisms combined linearly cannot increase modeled values of Ltr to 585 

match observed tidally-modulated ice motion from Rutford Ice Stream.  We now briefly compare 586 

our model results to other tidally-modulated models of Rutford Ice Stream. 587 

In the 2D models of Gudmundsson (2007; 2011), the surface velocity perturbations on 588 

Rutford Ice Stream due to the ocean tides are reproduced to a good approximation when both a 589 

basal sliding law and ice viscoelasticity control the propagation of the tidal load inland of the 590 

grounding line.  However, these models do not account for the exponential decay of tidal stresses 591 

inland of the grounding line caused by the ice stream’s lateral margins. As stated above, we find 592 

that including the lateral margins results in a value of Ltr too small to be consistent with tidally-593 

modulated observations from Rutford Ice Stream. 594 

While the 3D modeling of Rosier and others (2014) qualitatively agrees with our results, 595 

there is quantitative disagreement in how these results apply to Rutford Ice Stream.  In particular, 596 

our 30-km-wide model of Rutford Ice Stream (with geometry based on imagery presented in 597 

Joughin and others, 2006) finds that tidal stresses decay more rapidly inland of the grounding 598 

line than observed in tidally-modulated GPS data (Fig. 7B).  Rosier and others’ (2014) 64-km-599 

wide model finds a smaller Ltr at short tidal periods and a moderately larger Ltr at long tidal 600 

periods than our model.  Moreover, we find that using temperature-dependent viscosity causes 601 

our model to behave more elastically than viscously over a range of tidal periods and thus using 602 

a temperature-dependent viscosity is necessary to avoid overestimating Ltr.  In contrast, Rosier 603 

and others (2014) uses a constant (relatively low) viscosity in their models.   604 

Our results suggest that these other models of Rutford Ice Stream are overestimating the 605 

inland transmission of tidal stresses.  When geometric and rheological restrictions on Ltr are 606 



included, the implicit assumption in these and our models—that stress is transmitted through the 607 

bulk of the ice stream either elastically or viscoelastically—is shown to be inconsistent with the 608 

observations from Rutford Ice Stream. 609 

6.2 Other Ice Stream Geometries 610 

Generally, the models presented here demonstrates that channelized ice streams, even under the 611 

favorable conditions of frictionless beds, enhanced marginal shear, and viscoelastic flow, fail to 612 

reproduce the inland extent of tidal stresses observed in nature.  These models draw into question 613 

the hypothesis that the observed influence of ocean tides on ice stream motion is fundamentally 614 

an elastic process.  However, we have only considered a very specific range of ice stream 615 

geometries so far: ice streams that have relatively narrow widths and strong ice-ice interfaces on 616 

the lateral margins.   617 

At least two other Antarctic ice streams have observations of tidally-modulated surface 618 

displacements (Bindschadler Ice Stream and Whillans Ice Plain).  For these ice streams, the 619 

assumption of ice-ice interfaces is appropriate, but using a narrow (channelized) ice stream 620 

geometry is a poor approximation of these wide ice streams, which can have nearly equal widths 621 

and lengths.  Our results show that models with increasing width still exhibit exponential decay 622 

of tidal stresses, albeit over a longer distance than narrow ice streams due to the width-623 

dependence of Ltr.  However, when Ltr is normalized by ice stream width, we see from Table 5 624 

that Ltr/width does not seem to depend directly on the ice stream width.  Thus, these results for 625 

channelized ice streams may also approximately describe the stress behavior of wider ice 626 

streams.  Note that in cases where an ice stream’s width is comparable to its length (e.g., 627 

Whillans Ice Plain), these results suggest that a tidal load might be transmitted over a large 628 

portion of the ice stream.   629 



However, real ice streams are neither frozen nor frictionlessly sliding over their beds; 630 

frictional sliding is known to play a major role in determining the ice stream’s total flow (e.g., 631 

Weertman, 1957; 1964; Engelhardt and Kamb, 1998; Hughes, 1998; Cuffey and Paterson, 2010).  632 

However, since we assume frictionless sliding, the values of Ltr for the 3D models should be 633 

taken as maximum values and thus applying a frictional sliding law would only serve to reduce 634 

Ltr.  As demonstrated by Rosier and others (2014), adding basal friction can reduce the value of 635 

Ltr substantially.  However, the modeling of ice streams with a similar width and length as well 636 

as the addition of a frictional basal sliding law are beyond the scope of the present study.  637 

6.3 An Alternative Mechanism for the Transmission of Tidal Stresses 638 

We conclude that a process external to the ice stream is required for ocean tidal loads to impact 639 

glacier flow far inland of the grounding line for channelized ice streams.  While not explored in 640 

great detail here, our preferred hypothesis is that the ocean tides perturb the subglacial 641 

hydrologic network.  Because the basal traction beneath these fast-moving ice streams must be 642 

small in order to encourage sliding and because these Antarctic ice streams are underlain by 643 

water-logged tills (e.g., Alley et al, 1986; Smith, 1997; Engelhardt and Kamb, 1998; Tulaczyk 644 

and others, 2000a; Adalgeirsdottir and others, 2008; Raymond Pralong and Gudmundsson, 645 

2011), the fluid pressure within the subglacial till is likely sufficient to cause the till to either 646 

deform plastically or at least to weaken in a highly-nonlinear fashion.  Our hypothesis is that the 647 

oscillations in ocean tidal height (i.e., hydrostatic pressure) expressed in till pore pressures can 648 

move the onset of weakened till inland and seaward over the course of a tidal cycle.  As 649 

imagined in Fig. 12, when the onset of till weakening is pushed inland, the ice stream at a given 650 

point should increase velocity as a longer portion of the glacier is effectively decoupled from the 651 

bed.  The opposite is true when the onset of till weakening moves towards oceanwards.  652 



Furthermore, as the tidal fluid pressure perturbation should decay with distance inland of the 653 

grounding line, the effect is expected to be most pronounced near the grounding line.    654 

To derive an analytical form for this conceptual model, we start by following the 2D, 655 

flow-line approach of Gudmundsson (2007), and assume that the basal velocity of the ice stream 656 

is a nonlinear function of the basal stress: 657 

 n
bb Au τ=  (12) 

where A is a rheological coefficient, and 1≠n .  We then assume that bτ  is also modulated by an 658 

effective normal stress,  pe −= 0σσ  (where p is the local fluid pressure) through a Coulomb-659 

type rheology for Antarctic till (e.g., Tulaczyk, 2000).  If the connectivity of the till is high (i.e., 660 

infinitely fast), then the fluid pressure in the till is: 661 

 )(),( 0 tghptxp ρ+=  (13) 

where h(t) is the tidal height at the grounding line.  If instead the connectivity is low enough that 662 

there is a resistance to flow, then one might expect the fluid pressure to instead be: 663 

 )/(),( 0 Uxtghptxp −+= ρ  (14) 

where U is the flow velocity for a turbulent flow through (a channelized) subglacial till (after 664 

Manning, 1891; Tsai and Rice, 2010): 665 
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where k is the Nikuradse roughness height for the till, R is the radius of the flow channel, and H 666 

is the head in the flow channel.  In either case, the basal stress is: 667 

 )/(0 Uxtghff beb −−== ρτστ  (16) 

where f  is the friction angle, which is typically 6.0≤f .  If we define the basal velocity bu  by 668 

Eq. (12), then the current model’s form, with infinitely high connectivity, is exactly equivalent to 669 



the model of Gudmundsson (2007) except that Gudmundsson’s constant K is replaced with f, 670 

despite Gudmundsson's model being a viscoelastic model of stress transmission and this model 671 

being a hydrologic model without stress transmission.  For the case of finite connectivity, the 672 

turbulent flow velocity U takes the place of the viscoelastic relaxation speed of Gudmundsson 673 

(2011).   674 

In this hydrologic model, we have essentially replaced the elastic and viscoelastic 675 

material parameters of Gudmundsson (2007; 2011) with till material and fluid flow parameters.  676 

If we take reasonable values of 0005.0
10

5
4 ==
m

m
dx
dH , mk 1.0= , and mR 1.0= , we find that 677 

smU /2.0≈ .  Taking 2.0≈f , the observations from Rutford Ice Stream can be explained using 678 

our hydrologic model as well as the viscoelastic model of Gudmundsson (2011), but without the 679 

problems of elastic stress transmission discussed in the earlier sections of this paper.  A more 680 

precise evaluation of this hydrologic model, such as including the effect of the decay of fluid 681 

pressure perturbation upstream, is beyond the scope of this paper, but could provide a method for 682 

constraining basal friction and hydrologic connectivity using the observed decay of tidal stresses 683 

on Antarctic Ice Streams. 684 

7. Conclusions 685 

From our modeling, we find: 686 

1) For models supported either at the bed or at the margins, an axially applied tidal load 687 

decays exponentially with distance inland of the grounding line.  Furthermore, for a 688 

reasonable elastic or viscoelastic model, this decay is too severe to transmit stresses 689 

far enough inland to explain surface observations from Rutford Ice Streams, an 690 

archetypical narrow ice stream. 691 



2) The ice shelf and the resulting flexural stresses are important close to the grounding 692 

line, but can be neglected when considering the effects of tidal-loading many tens of 693 

kilometers inland of the grounding line. 694 

3) An ice stream with compliant lateral margins transmits tidal stresses farther inland 695 

than a homogeneous elastic ice stream in a nonlinear fashion.  Using a linear damage 696 

mechanics model, we find that we would need damage resulting in upwards of a 697 

99.9% reduction in Young’s modulus to rectify model results with observations.  698 

4) A Glen-style viscoelastic rheology using canonical values and a realistic temperature 699 

profile does not change the inland transmission of stress in a meaningful fashion. 700 

Our modeling demonstrates the importance of an ice stream’s lateral margins control on 701 

the behavior of an ice stream under the influence of a tidal load.  We are unable to reproduce 702 

observations of inland transmission of tidal stresses from Rutford Ice Stream using a reasonable 703 

set of elastic or viscoelastic parameters when the finite width of the ice stream is included in our 704 

models.   705 

Since we could not match observations using an elastic or viscoelastic 3D model of a 706 

tidally-loaded ice stream, we present a 2D flow-line model for the inland transmission of a tidal 707 

perturbation through the fluid pressure in subglacial till.  Using reasonable material parameters, 708 

we demonstrated that this model can reproduce the modeling results of Gudmundsson (2011) for 709 

Rutford Ice Stream’s tidally modulated motion without the transmission of tidal stress through 710 

the ice stream itself.  Thus, we conclude that for narrow (channelized) ice streams like Rutford 711 

Ice Stream, the observed influence of ocean tides on the motion of ice streams can be caused by 712 

the tidal modulation of the subglacial hydrologic network rather than the direct transmission of 713 

tidal stresses through the bulk of an ice stream. 714 



Appendix A: Importance of the Ice Shelf 715 

Since the Antarctic ice streams discussed in this manuscript have a connected ice shelf, we now 716 

consider the role that the ice shelf plays as an intermediary between the ocean tides and the 717 

grounded ice stream.  Recall the 2D model results shown in Fig. 3 and Fig. 4 for models with and 718 

without an ice shelf.  For a given basal condition, variations between the two model results must 719 

be due to the presence of the shelf as all other boundary conditions are kept constant (see Sec. 720 

2.2).   721 

 For 2D models with a frozen bed, the presence of an ice shelf has two effects.  First, there 722 

are flexural stresses introduced by the ice shelf that are limited to approximately two ice-723 

thicknesses of the grounding line.  Second, the overall magnitude of stresses in the ice stream is 724 

elevated compared to models without an ice shelf.  However, neither effect changes Ltr between 725 

the two models.  The presence of an ice shelf in these models affects the magnitude, but not the 726 

decay, of non-flexural tidal stresses inland of the grounding line.  727 

For 2D models with a free-sliding bed, the flexural stresses decay to inconsequential 728 

levels about six ice-thicknesses inland of the grounding line.  Beyond this point, the stress state 729 

of the ice stream is identical to the stress state for a model with axial loading only.  In the 730 

absence of basal resistance, the presence of an ice shelf does not affect the magnitude or decay of 731 

non-flexural tidal stresses within the grounded ice stream. 732 

 The general results that flexural stresses only perturb the stress field near the grounding 733 

line is consistent with real-world observations that limit ice flexure to ten kilometers inland of 734 

the grounding line (Table 1).  Additionally, as described by Appendix B, the constant-stress 735 

condition used in our models to represent the ocean tide overestimates flexural stress by almost a 736 

factor of four compared to a more realistic floating condition, suggesting that flexural stresses 737 



may decay to inconsequential values over shorter distance than predicted by our models.  Based 738 

on our models and observational data, tidally-induced flexural stresses are not expected to be 739 

sizable components of the tidal stresses found far inland of the grounding line, and thus can be 740 

neglected in our 3D models. 741 

However, our models show that the presence of an ice shelf can influence the magnitude 742 

of non-flexural tidal stresses seen inland of the ice stream’s grounding line for models with basal 743 

resistance.  As described earlier, the addition of an ice shelf to the model with a frozen bed 744 

increases the equivalent (tidal) stress throughout the ice stream by about an order of magnitude 745 

compared to a model without an ice shelf (Fig. 4).  This increased stress magnitude is not seen in 746 

models with a free-sliding bed (Fig. 3).  As ice streams have little basal resistance, we expect our 747 

3D models will behave more like the free-sliding bed than the frozen-bed end-member 2D model.  748 

We do not expect the presence of an ice shelf in our 3D models to influence the magnitude of 749 

non-flexural tidal stresses inland of the grounding line.  Ultimately, as our 2D models show that 750 

the ice shelf does not change Ltr for a given model and is unlikely to change the magnitude of the 751 

non-flexural stresses inland of the grounding line, we choose to neglect the ice shelf in our 3D 752 

models. 753 

Appendix B: Analysis of the Flotation Condition for a One-Dimensional Ice Shelf 754 

As shown in Fig. 2, we apply normal tractions to the X+ and Z- edges of the model ice shelf to 755 

simulate the stress due to a change in tide height.  First, we consider the axial load of the tide on 756 

the ice shelf's X+ edge.  A 1D analog is a bar that is axially compressed by a constant stress.  757 

Take the bar as fixed at the unforced end.  By the compatibility condition: 758 

 0=xδ
δσ  (B1) 

The stress and strain in such a model must be constant throughout the bar; that is, the stress 759 



transmission is infinite. 760 

 Second, we consider the flotation condition on the ice shelf (i.e., the stress applied to the 761 

Z- edge of the ice shelf).  We take a 1D analog using a Bernoulli-Euler beam subjected to a 762 

distributed load coupled to the beam deflection by a flotation condition.  This approach is similar 763 

to the methodology of Reeh and others (2000).  The governing equation of such a model is: 764 

 
( )whg

x
wEI W −∆= ρ

δ
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where Wρ  is the density of water, g is gravitational acceleration, w is the (vertical) deflection of 765 

the beam, is the Young’s modulus of ice, ( )3
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
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=  is the second moment of area for the 766 
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The solutions of Eqn. B2 for multiple ice shelf lengths are shown in Fig. B1.  The 769 

primary result is that, for a one meter tide and an ice thickness of one kilometer, increasing the 770 

length of the beam beyond five kilometers no longer influences the stresses at the grounding line 771 

suggesting that we only need to consider a shelf several ice-thicknesses long in our finite element 772 

models.   773 

 Additionally, we model a linearly thinning ice shelf (through the modification of I, using 774 

( )[ ]
3

10012






 −−⋅






=

L
XhhhwI  where the thickness linearly changes from 0h to 1h ) and find that 775 

this only has a small influence on the stress and deflection throughout the shelf.  The effects of 776 

ice shelf thinning will not be considered further.   777 

Lastly, we model the results for a simpler, uncoupled stressing condition.  In Fig. B1, the 778 



red dashed line corresponds to a constant loading function equal to hgW ∆ρ  (the “constant 779 

loading function”).  This simpler condition overestimates the stress and deflection over the 780 

model domain compared to the more correct flotation condition.  However, as the boundary 781 

condition is decoupled from the deflection w, we can directly use this constant loading as a 782 

“pseudo-flotation” condition on the Z- edge of our finite element ice shelf.  The result of this 783 

simplification is that the flexural stresses induced by the ice shelf will be overestimated at the 784 

grounding line in our 2D finite element models. 785 

Appendix C: Viscoelastic Tidal Loading 786 

Following the rationale of Cuffey and Paterson, 2011 (and references therein), the full stress 787 

balance for an ice stream/shelf system should involve balancing the hydrostatic pressure at the 788 

edge of the ice shelf and that of the ocean.  Since the ice shelf is floating, there is a net “pull” on 789 

the ice stream due to excess pressure in the ice shelf compared to that of the ocean.  As ice 790 

viscosity is stress-dependent, we need to account for this end stress in our models to accurately 791 

model the viscous deformation in the ice stream.  However, our viscoelastic models are more 792 

numerically tractable with a simple oscillatory tidal condition based solely on the change in 793 

ocean tidal height because a larger stable time step is allowed and model convergence is faster.  794 

Thus, we compare the model output for these two tidal loading conditions, referred to as “full” 795 

and “simple,” to determine if our simple tidal condition adequately approximates the full tidal 796 

condition.  We find that having the more complex full tidal condition changes Ltr by only about 797 

20%, far below the factor of two to four change necessary to match observations.  We use this 798 

result as justification for using the more numerically favorable simple tidal condition.   799 

C.1 Full Tidal Loading Condition 800 



In addition to the oscillatory load of the ocean tide, there are other stresses at the grounding line 801 

that a full tidal loading condition needs to consider.  These stresses include: the hydrostatic 802 

pressure of the flowing ice, the hydrostatic pressure of the static ocean water, and the flexural 803 

stress imposed on the grounding line due to the vertical motion of the ice shelf.  Figure C1 shows 804 

a schematic picture of the interaction of these stresses on an ice stream at neutral, high, and low 805 

tides. 806 

 First consider that the hydrostatic pressures of the ice and the water.  For the ice, the 807 

hydrostatic stress at a depth z is ( )zHg II −ρ , where Iρ  is ice density, g is gravitational 808 

acceleration, and IH  is the ice thickness.  For the water, we first use the condition that an ice 809 

stream is neutrally buoyant at the grounding line to find that the average water level of the ocean 810 

is ( )WIIT HH ρρ−= 1 , where Wρ  is the density of water.  This flotation condition is used to 811 

find that hydrostatic pressure of the ocean at THz ≤≤0  is ( )zHg TW −ρ .  However, this stress 812 

balance occurs across the edge of the ice shelf, not at the grounding line.  By assuming that 813 

viscous deformation of the ice shelf is negligible, the results from our 2D shelf models (Sec. 3.1) 814 

allow us to move this stress balance to the grounding line. 815 

 To account for the bending stress from ice flexure, we use the simple beam theory 816 

presented in Appendix B.  From this simple model for flexure, we expect that the flexural stress 817 

at the grounding line will be on the order of a few 100 kPa at a maximum (with the exact value 818 

dependent on the ice thickness and the geometry of the ice shelf).   819 

 The full load applied at the grounding line is the sum of these stresses.  Figure C1 shows 820 

a graphical representation of these tidal loads described by Eqn. C1: 821 
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 where flexσ  is the maximum amplitude of flexural stress induced at the grounding line.  For a 822 

reasonable tidal loading, the maximum force comes from the static “pull,” which is on the order 823 

of 1 MPa at the base of a 1 km thick ice stream, while the flexural stress is a few 100 kPa and the 824 

change in tidal weight is a few 10 kPa.  825 

C.2 Simple Tidal Loading Condition 826 

For the simple loading condition, we apply the variable portion of the ocean tidal load as a 827 

normal traction to the grounding line.  Mathematically, this condition is: 828 

 )(thgWapplied ∆= ρσ  (C2) 

This is identical to the approach taken in our linear elastic models, except that the applied stress 829 

is time-variable.  The time-dependence of this condition is described in Sec. 5.1. 830 

C.3 Stress Transmission Comparison 831 

Fig. C2 shows a comparison between the tidally-induced yyσ  component of stress for a map 832 

view of the base of a model with the full (left) and simple (right) loading conditions taken at a 833 

peak in stress response.  We first note that overall, the stress field is remarkably similar between 834 

the full and simple loading conditions.  The only major difference occurs in the portion of the ice 835 

stream near the grounding line, where the full loading condition has higher stress values than 836 

those of the simple loading model.  Such an increase in the value of the stress near the grounding 837 

line in the full model is not surprising as the value of the applied load is larger in this model than 838 

with the simple loading condition.  However, farther inland, the stresses in the models are nearly 839 

indistinguishable.  The increased stress at the grounding line causes an increase in Ltr for the full 840 



tidal loading model of approximately 20%, suggesting that the hydrostatic “pull” on the ice 841 

stream edge and ice shelf flexure do not influence ice viscosity enough to significantly change 842 

the value of Ltr.   843 

 As the difference between Ltr in the models explored here is only about 20%, we feel safe 844 

in neglecting the full tidal loading condition in our viscoelastic models.  In order to match 845 

observations with our models, Ltr needs to increase by a factor of two to four from the elastic 846 

models (see Sec. 3.4).  Given the other model simplifications and assumptions, the slight gain in 847 

model accuracy is not worth the increase complexity (and thus computation time) of using the 848 

full loading condition. 849 

850 
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 994 

Table 1 995 

 996 

Table 1. Spatial extent of observations suggested to display tidal modulation of ice stream 997 

motion and ice flexure from selected ice streams across Antarctica.  Superscript numbers denote 998 

the following references: 1-Anandakrishnan and others. [2003]; 2-Brunt and others. [2010]; 3-999 

Heinert and Riedel [2007]; 4-Anandakrishnan and Alley [1997]; 5-Scott and others. [2009]; 6-1000 

Rignot [1998]; 7-Gudmundsson [2006]; 8-Gudmundsson [2007]; 9-Stephenson [1984]; 10-Weins 1001 

and others. [2008]; 11-Winberry and others. [2009]; 12-Walter and others. [2011]; 13-Winberry 1002 
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 Tidally-Modulated Observations Ice Flexure 

Region Extent 

(km) 

Method Extent 

(km) 

Method 

Bindschadler  80+ GPS1 ~10 Altimetry2 

Ekstrom  < 3 GPS3 ~5 Tilt3 

Kamb  85+ Seismicity4 ~10 Altimetry 2 

Pine Island  < 55 GPS5 ~5 SAR6 

Rutford 40+ GPS7,8 5+ Tilt9 

Whillans Ice Plain ~100 GPS & Seismicity10,11,12,13 ~10 Altimetry 2 

Whillans Ice Stream ~300 Seismicity14 N/A Altimetry 2 



Table 2 1005 

Parameter Symbol Value 

Young’s modulus E 9.33 GPa 

Poisson’s ratio+ ν 0.325 

Shear modulus* G 3.52 GPa 

Bulk modulus* K 8.90 GPa 

Density (at 0 ⁰C) + ρ 917 kg/m3 

Viscosity coefficient (at 0°C) + A 5.86x10-6 MPa-3s-1 

Stress exponent+ n 3 

Table 2. Elastic and viscous parameters used to define the ice properties in our finite element 1006 

model.  Values of elastic parameters except for density are taken from Petrenko and Whitford 1007 

(2002) using data from Gammon and others (1983a; 1983b).  Viscous parameters are taken from 1008 

Cuffey and Paterson (2010). Temperature-dependent viscosity coefficients are not summarized 1009 

here but can be found in Cuffey and Paterson (2010).  Parameters marked with an asterisk (*) 1010 

denote quantities that are derived from the other moduli and material properties.  Parameters 1011 

marked with a plus (+) are fixed through all models. 1012 

1013 



 1014 

Table 3 1015 

Fixed Base Sliding Base 

Condition Component Ltr (km) St. Dev. Condition Component Ltr (km) St. Dev. 

Shelf X 2.586 0.004 Shelf X 1.304 9.049* 

 Y 2.619 0.095  Y 1.101 0.013 

 XY 2.590 0.015  XY 1.078 1.4e-5 

Axial Only X 2.517 0.023 Axial Only X ∞  N/A 

 Y 2.618 0.068  Y N/A N/A 

 XY 2.616 0.018  XY N/A N/A 

Table 3. Length scales for the transmission of tidal stress (Ltr) for the two-dimensional models 1016 

shown in Fig. 3 and Fig. 4.  See text for description of how the parameters are estimated.  All  1017 

but one of the cases have low standard deviations.  In the marked case (*), the standard deviation 1018 

is large since the value of xσ  falls to zero near the (vertical) center of the ice stream, causing Ltr 1019 

to vary significantly near these locations.  Near the top and bottom of the ice stream, the values 1020 

of Ltr in the xσ  are consistent with the values for the other stress components. 1021 

1022 



Table 4 1023 

Thickness (km) Young’s modulus (GPa) Ltr (km) 

1 0.933 2.53 

2 0.933 5.07 

3 0.933 7.60 

1 9.33 2.53 

2 9.33 5.07 

3 9.33 7.60 

1 93.3 2.53 

2 93.3 5.07 

3 93.3 7.60 

Table 4. Ltr for 2D models with a zero-displacement basal condition.  Note that Ltr values are 1024 

linear with thickness and independent of Young’s modulus.1025 



 1026 

Table 5 1027 

Thickness (km) Width (km) Young’s modulus (GPa) Ltr (km) Ltr / Width 

1 10 0.933 12.2 1.22 

1 10 9.33 12.7 1.27 

1 10 93.3 12.7 1.27 

2 10 9.33 13.6 1.36 

3 10 9.33 15.0 1.50 

1 14 9.33 17.5 1.25 

2 14 9.33 18.4 1.31 

3 14 9.33 19.6 1.40 

1 20 9.33 24.6 1.23 

2 20 9.33 25.6 1.28 

3 20 9.33 26.7 1.34 

2 30 9.33 38.2* 1.27 

2 40 9.33 52.2 1.31 

2 50 9.33 69.1 1.38 

Table 5. Ltr for 3D models with uniform Young’s moduli.  Like the 2D models, Ltr is effectively 1028 

independent of Young’s modulus, but increases with increasing thickness and width of the ice 1029 

stream.  The model indicated with (*) is representative of Rutford Ice Stream.1030 



 1031 

Table 6 1032 

Tide Applied Force Viscosity Ltr (km) 

Semidiurnal Full Temp. 14.4 

Semidiurnal Simple Temp. 16.4 

Semidiurnal Simple Homog. 33.0 

Diurnal Full Temp. 13.1 

Diurnal Simple Temp. 12.8 

Diurnal Simple Homog. 29.2 

Fortnightly Simple Temp. 17.7 

Fortnightly Simple Homog. 44.4 

Table 6. Summary of the transmission length scale for tidal forces, in kilometers, for our 1033 

viscoelastic models.  The viscosity column refers to whether the viscosity model is homogeneous 1034 

(homog.) or temperature-dependent (temp.).  We include the homogeneous models only for 1035 

completeness since we consider the temperature-dependent models to be more physically 1036 

representative of a real-world ice stream.  The applied force describes the nature of the tidal 1037 

loading applied in the model, as is described in Appendix C. 1038 

1039 



 1040 

Figure Captions 1041 

Figure 1.  Map of Antarctica indicating locations of the ice streams discussed in this paper (BIS-1042 

Bindschadler Ice Stream, EIS-Ekstrom Ice Stream, KIS-Kamb Ice Stream, PIG-Pine Island 1043 

Glacier, RIS-Rutford Ice Stream, WIP-Whillans Ice Plain, WIS-Whillans Ice Stream, MIS-1044 

Mercer Ice Stream).   1045 

Figure 2.  Schematics of the models used in this paper.  Inset boxes show options used in each 1046 

model.  For the 2D models, these options are either a frozen ( 0== zx uu ) or free-sliding 1047 

( 0=zu ) basal condition with or without an ice stream.  For the 3D models, we use the same 1048 

model geometry with variable rheologies: homogeneous linear elasticity, marginal regions of 1049 

variable elasticity, or Glen-style viscoelasticity. 1050 

Figure 3.  Distributions of stress for a 2D model with a free-sliding basal condition.  Panel A 1051 

shows profiles of longitudinal eqσ  profiles at a depth interval of 10 m, while panel B shows the 1052 

logarithm of the absolute value of the three in-plain stress components ( xσ , yσ , and xyσ ) for the 1053 

entire 2D model domain.  The columns show model results with (left) and without (right) an ice 1054 

shelf.  In these frictionless models, axial stress does not decay with distance and flexural stress 1055 

rapidly decays near the grounding line.  Ltr is the stress transmission length scale as defined in 1056 

Sec. 3.1. 1057 

Figure 4. Stress distributions for a 2D model with a frozen basal condition.  The panels are the 1058 

same as in Fig. 3.  Stress at the grounding line is higher in the model with an ice shelf than 1059 

without a shelf, but Ltr is the same between the two model setups. 1060 

Figure 5. Stacked equivalent stress ( eqτ ) profiles for three different locations in a 3D 1061 

homogeneous elastic model 10 km wide and a 1 km thick.  The inset shows the locations of the 1062 



three profiles in map view.  For each location, 101 lines are stacked, taken at 10 m depth 1063 

intervals.  For the center and quarter lines, there is very little difference in stress value with 1064 

depth, while for the edge of the ice stream, the stress value changes with depth by about an order 1065 

of magnitude.  However, independent of lateral position (center, quarter, or edge), Ltr is the 1066 

same.   1067 

Figure 6. Representative stress distribution along the base of a 3D model with homogeneous 1068 

elasticity, showing the six unique stress components.  The streaming portion of the model has a 1069 

width of 10 km and a thickness of 1 km.  Ltr is drawn in the xxσ , yyσ , and xyσ  stress 1070 

components where Ltr is easiest to observe. 1071 

Figure 7. Diagrams comparing GPS tidal displacement amplitudes to modeled displacement 1072 

amplitudes. Circles show the data taken from observation on Rutford Ice Stream (Rutford data 1073 

courtesy of H. Gudmundsson). The error on the approximated tidal displacement amplitudes is 1074 

two centimeters (roughly the size of the symbol). The slopes of the modeled surface 1075 

displacements are taken from models approximating Rutford Ice Stream, as flagged in Table 5. 1076 

The upper panel shows the normalized tidal amplitudes, while the lower panel shows the true 1077 

amplitude values.  Figure 7A shows the distance dependence of the equivalent stress calculated 1078 

from linear, homogeneous elastic model results, while Fig. 7B shows the equivalent stress 1079 

calculated using models accounting for elastic damage in the shear margins (dashed) and 1080 

temperature-dependent viscoelasticity (dotted).   1081 

Figure 8. Representative stress distribution for a model with the same geometry as Fig. 6, but 1082 

with ice margins that are 25% of the ice stream width.  These margins are a factor of 10 more 1083 

compliant than the central ice.  Variable Ltr is highlighted in the xxσ  component of stress. 1084 



Figure 9. Dependence of Ltr on the relative Young’s modulus of the margins ( Ê ) and the relative 1085 

margin width ( x̂ ) for a discrete margin model relative to the homogeneous elastic model.  1086 

Colored contours show the relative increase in Ltr compared to a homogeneous linear elastic 1087 

model 1ˆ( =E ).  The two bold contours correspond to the conditions necessary to single-handedly 1088 

explain the observations of the Rutford fortnightly tidal signal (2.67) and the Rutford semidiurnal 1089 

tidal signal (3.32). 1090 

Figure 10. Model results for a temperature-dependent viscoelastic model forced by a semidiurnal 1091 

tide.  Panel A shows the calculated values of Ltr for depth profiles of the stress.  The average 1092 

value of Ltr is 12.81±0.001 km.  Panel B shows the value of the longitudinal normal stress (𝜎𝜎𝑦𝑦𝑦𝑦) 1093 

as a function of horizontal coordinate. Panel C shows the fitted phase shift 𝜑𝜑 as a function of 1094 

horizontal coordinate. In panels B and C, the dashed lines correspond to the 95% confidence 1095 

interval values of the fit.  1096 

Figure 11. Effective viscosity of semidiurnal models taken at the base of the homogeneous 1097 

viscosity model.  The streaming domain of the ice stream is 10 km wide (-5 km to +5 km).  Note 1098 

that the shear margins have substantially reduced viscosity relative to the central ice. 1099 

Figure 12. Schematic view of our hydrology hypothesis at neutral, high, and low tidal 1100 

amplitudes, respectively.  The triangles represent GPS stations on the surface of the ice stream 1101 

and ice shelf.  The brown layer represents the subglacial till.  Maximum extent of highly-1102 

weakened till is shown as a vertical line, and should vary in position with changes in the ocean 1103 

tidal amplitude.  When the maximum extent of highly-weakened till is farther inland, the GPS 1104 

stations move faster relative to a neutral position since more of the ice is streaming.  Conversely, 1105 

when the maximum extent of highly-weakened till is closer to the grounding line, the relative 1106 

velocity of the GPS stations is lower than at a neutral tide. 1107 



Figure B1. Results of the 1D flexural beam approximation of a floating ice shelf.  The upper 1108 

figure shows the beam deflection while the lower section shows the stress at the upper edge of 1109 

the beam.  See text in appendix B for a description of the governing equations and boundary 1110 

conditions for the models shown.   1111 

Figure C1. Schematic diagrams of the full tidal forcing condition at a neutral, high, and low tide.  1112 

The tidal stress will be the extensional/compressional stress due to the difference in hydrostatic 1113 

pressure at the edge of the ice shelf (shown in the graph on the right of the figure) and the 1114 

flexural stresses due to the presence of the ice shelf.  HI is the distance between the surface of the 1115 

ice shelf and the surface of the ocean. 1116 

Figure C2. Comparison of the value of the longitudinal normal stress ( xxσ ) for the full tidal 1117 

forcing condition (left) and the partial tidal forcing condition (right) at peak tidal amplitude.  The 1118 

full condition has a higher normal stress at the grounding line and a slightly more rapid decay of 1119 

the stress due to the inclusion of the flexural stress.  Once inland of the grounding line by five to 1120 

ten kilometers, the stress-transmission length scales are comparable between the two forcing 1121 

conditions. 1122 
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Figure C2
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