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Abstract:  22 

In this study we analyzed the relations between terrain characteristics and snow depth 23 

distribution in a small alpine catchment located in the central Spanish Pyrenees. Twelve field 24 

campaigns were conducted during 2012 and 2013, which were years characterized by very 25 

different climatic conditions. Snow depth was measured using a long range terrestrial laser 26 

scanner and analyses were performed at a spatial resolution of 5 m. Pearson’s r correlation, 27 

multiple linear regressions (MLRs) and binary regression trees (BRTs) were used to analyze 28 

the influence of topography on the snow depth distribution. The analyses were used to 29 

identify the topographic variables that best explain the snow distribution in this catchment, 30 

and to assess whether their contributions were variable over intra- and inter-annual time 31 

scales. The topographic position index (index that compares the relative elevation of each cell 32 

in a digital elevation model to the mean elevation of a specified neighborhood around that cell 33 

with a specific shape and searching distance), which has rarely been used in these types of 34 

studies, most accurately explained the distribution of snow. The good capability of TPI to 35 

predict snow distribution has been observed in both, MLRs and BRTs, for all analyzed days. 36 

Other variables affecting the snow depth distribution included the maximum upwind slope, 37 

elevation, and northing. The models developed to predict snow distribution in the basin for 38 

each of the 12 survey days were similar in terms of the explanatory variables. However, the 39 

variance explained by the overall model and by each topographic variable, especially those 40 

making a lesser contribution, differed markedly between a year in which snow was abundant 41 

(2013) and a year when snow was scarce (2012), and also differed between surveys in which 42 

snow accumulation or melting conditions dominated in the preceding days. The total variance 43 

explained by the models clearly decreased for those days on which the snowpack was thinner 44 

and more patchily. Despite the differences in climatic conditions in the 2012 and 2013 snow 45 

seasons, similarities in snow distributions patterns were observed which are directly related 46 

with terrain topographic characteristics.47 
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1. Introduction 49 

Assessing the snow distribution in mountain areas is important because of the number of 50 

processes in which snow plays a major role, including erosion rates (Pomeroy and Gray, 51 

1995), plant survival (Keller et al., 2000; Wipf et al., 2009), soil temperature and moisture 52 

(Groffman et al., 2001), and the hydrological response of mountain rivers (Bales and 53 

Harrington, 1995; Barnett et al., 2005; Liston, 1999; Pomeroy et al., 2004). As mountain areas 54 

are highly sensitivity to global change (Beniston, 2003), snow accumulation and melting 55 

processes are likely to be subject to marked changes in coming decades, affecting all 56 

processes influenced by the presence of snow (Caballero et al., 2007; López-Moreno et al., 57 

2011, 2012b; Steger et al., 2012). For these reasons, much effort has been devoted to 58 

understanding the main factors that control the spatial and temporal dynamics of snow (Egli et 59 

al., 2012; López-Moreno et al., 2010; Mott et al., 2010; Schirmer et al., 2011). 60 

One of the main difficulties in snow studies is obtaining reliable information of the variables 61 

that describe snow distribution, including snow depth (SD), snow water equivalent (SWE) 62 

and snow covered area (SCA). Manual measurements have traditionally been used to provide 63 

information on the distribution of snowpack, with different sampling strategies having been 64 

applied at various spatial scales (Jost et al., 2007; López-Moreno et al., 2012a; Watson et al., 65 

2006). However, manual sampling is not feasible for large areas because of the time involved, 66 

especially when SWE measurements are also acquired. In the last decade the use of airborne 67 

laser scanners (ALS) (Deems et al., 2006) and terrestrial laser scanners (TLS) (Prokop, 2008), 68 

both of which are based on LiDAR (light detection and ranging) technology, have provided 69 

for major advances in obtaining data on the SD distribution at unprecedented spatial 70 

resolutions. These developments have enabled studies of several factors that in the past have 71 

been only marginally considered, including scaling issues (Fassnacht and Deems, 2006; Mott 72 

et al., 2011; Schirmer and Lehning, 2011; Trujillo et al., 2007), the detailed dynamics of snow 73 
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accumulation and ablation (Grünewald et al., 2010; Schirmer et al., 2011; Scipión et al., 74 

2013), and snow transport processes (Mott et al., 2010). In addition, the high density 75 

measurements provided by LiDAR technologies are a valuable resource for detailed 76 

investigation of the linkage between snow distribution and topography. In the past, this 77 

linkage has mostly been studied using manual measurements, and hence with generally 78 

limited spatial and temporal resolution (López-Moreno et al., 2010). 79 

Previous studies have highlighted the marked control of topography on snow distribution in 80 

mountain areas (Anderton et al., 2004; Erickson et al., 2005; Lehning et al., 2011; Mott et al., 81 

2013), and the importance of vegetation and wind exposure (Erxleben et al., 2002; Trujillo et 82 

al., 2007). The most commonly used approach has been to develop digital elevation models 83 

(DEM) that describe the spatial distribution of elevation, from which other terrain variables 84 

are derived such as slope, terrain aspect, curvature, wind exposure or sheltering, and potential 85 

solar radiation. This enables to analyze the linear or non-linear relation of these variables to 86 

punctual SD or SWE values to be established (Grünewald et al., 2010; Schirmer et al., 2011). 87 

Various statistical methods have been applied for this purpose, including linear regression 88 

models (Fassnacht et al., 2003; Hosang and Dettwiler, 1991), generalized additive models 89 

(GAM) (López-Moreno and Nogués-Bravo, 2005), and binary regression trees (BRT) 90 

(Breiman, 1984) which have been widely applied in a diversity of regions (Elder et al., 1991; 91 

Erxleben et al., 2002; McCreight et al., 2012). 92 

The extent to which topographic variables explain snow distribution can change during the 93 

snow season; the variability of terrain characteristics can drive processes related to the spatial 94 

variability of snow accumulation (snow blowing, terrain curvature) (Lehning et al., 2008), or 95 

affect the energetic exchange between terrain and the snowpack (temperature, incoming solar 96 

radiation), so the importance of topographic variables is modified during the season (Molotch 97 

et al., 2005). In addition, during a snow season the terrain changes markedly (is smoothed) by 98 

snow accumulation (Schirmer et al., 2011). However, few studies have systematically 99 
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analyzed the intra- and inter-annual persistence of the relation between snow distribution and 100 

topography. Recent studies have assessed whether the influence of topography is constant 101 

among different years; e.g. the similarities observed at the end of the accumulation season 102 

(Schirmer and Lehning, 2011; Schirmer et al., 2011), or the consistent fractal dimensions in 103 

two analyzed years (Deems et al., 2008); in both cases there was a relation with the dominant 104 

wind direction, which highlights the predictive ability of topographic variables. 105 

The main focus of this study was to assess the influence of topography on the spatial 106 

distribution of snowpack and its evolution over time. The high temporal and spatial density of 107 

the data set collected during the study enabled analysis of the main topographic factors 108 

controlling snow distribution, and assessment of whether topographic control of the snowpack 109 

varied during the snow season and between years having very contrasting climatic conditions. 110 

For this purpose, we conducted 12 surveys over 2012 (6) and 2013 (6) in a small mountain 111 

catchment representing a typical subalpine environment in the central Spanish Pyrenees, and 112 

obtained high resolution SD measurements using LIDAR technology with a TLS. 113 

2. Study area and snow and climatic conditions 114 

The Izas experimental catchment (4244N, 025W) is located in the central Spanish 115 

Pyrenees (Fig. 1). The catchment is on the southern side of the Pyrenees, close to the main 116 

divide (Spain–France border), in the headwaters of the Gallego River valley, and ranges in 117 

elevation from 2000 to 2300 m above sea level. The catchment is predominantly east-facing, 118 

with some areas facing north or south, and has a mean slope of 16. There are no trees in the 119 

study area, and the basin is mostly covered by subalpine grasslands dominated by Festuca 120 

eskia and Nardus stricta, with rocky outcrops in the steeper areas. Flat, concave and convex 121 

areas occur in the basin. 122 

The climatic conditions are influenced by the proximity of the Atlantic Ocean, with the 123 

winters being humid compared with zones of the Pyrenees more influenced by Mediterranean 124 
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conditions. The mean annual precipitation is 2000 mm, of which snow accounts for 125 

approximately 50% (Anderton et al., 2004). The mean annual air temperature is 3 C, and the 126 

mean daily temperature is < 0 C for an average of 130 days each year (del Barrio et al., 127 

1997). Snow covers a high percentage of the catchment from November to the end of May.  128 

The two years analyzed in the study represent climatic extremes during recent decades. 129 

Severe drought occurred during 2012, leading to snow accumulation well below the long-term 130 

average. The thickness of the snowpack, measured at the automatic weather station (AWS, 131 

Fig. 1), during winter in this year was less than the 25th percentile of the available historical 132 

data series of this AWS (1996–2011) (Fig. 2). Only at the end of spring did late snowfall 133 

events increase the amount of snow, but this rapidly melted. The opposite occurred in 2013, a 134 

year in which the deepest snowpack and the longest snow season of recent decades were 135 

recorded. Winter and spring in 2013 were extremely humid, with temperatures mostly 136 

between the 25th and 75th percentiles of the AWS historical series. SD accumulation was 137 

very high between February and June (exceeding the 75th percentile). In some areas of the 138 

basin snow lasted until late July, which is one month longer than in most of the preceding 139 

years for which records are available. Regarding net solar radiation data (short wave), no 140 

measurements were available before December 2011, However the annual evolution has been 141 

tracked on Figure 2 (bottom) showing a clear increase of incoming solar radiation while snow 142 

season advance, with high variability due to meteorological factors.  143 

3. Data and methods 144 

3.1. Snow depth measurements 145 

During the study period high resolution SD maps (Fig. 3) were generated using a long range 146 

TLS (Riegl LPM-321), which enables safe acquisition of SD information with short 147 

acquisition times from remote areas, compared with measurements obtained manually. This 148 

technique has been extensively tested (Prokop et al., 2008; Revuelto et al., 2014; Schaffhauser 149 
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et al., 2008), and systematically applied to the study of snow distribution in mountain terrain 150 

(Egli et al., 2012; Grünewald et al., 2010; Mott et al., 2013; Schirmer et al., 2011). In a 151 

previous study the mean absolute error in the most distant areas of the catchment was less 152 

than 10 cm (Revuelto et al., 2014), which is consistent with errors reported in previous studies 153 

(Grünewald et al., 2010; Prokop, 2008; Prokop et al., 2008; Schaffauser et al., 2008). 154 

TLS provides high resolution three dimensional information on the terrain. Nevertheless, 155 

error sources need to be considered because they can have large effects on the measurements. 156 

To reduce the influences of TLS instability (originated by small displacements of the tripod 157 

because TLS vibrations while it is operating), which leads to misalignment with reference 158 

points; and atmospheric change, a well-defined protocol must be applied. The protocol 159 

applied in this study for generating high resolution SD maps with a 1 m cell size was 160 

described by Revuelto et al., (2014). This protocol is based on the following main points: data 161 

collection; which includes experimental setup design and information acquisition by the 162 

scanning procedure; and data processing, when data is filtered, quality checked and the SD 163 

maps generated. Mainly, the methodology was based on differences between DEMs obtained 164 

with snow coverage in the study area and a DEM taken at 18 July 2012, when the catchment 165 

had no snow cover. Twelve SD maps at a spatial resolution of 5 m were generated for the 166 

2012 and 2013 snow seasons (Fig. 3). In each year three surveys were undertaken from 167 

February to April (2012: 22 February, 2 April, 17 April; 2013: 17 February, 3 April, 25 168 

April), and three were undertaken from May to June when dominated intense melting 169 

conditions (2012: 2, 14 and 24 May; 2013: 6, 12 and 20 June). The average SD and SCA, and 170 

the maximum SD are shown in Table 1. It shows that much lower SD and SCA were observed 171 

in 2012 compared to 2013. 172 

3.2. Digital elevation model and topographic variables 173 

From the two scan stations located in the study area (Fig. 1), 86% of the total area of the 174 

catchment was surveyed using the TLS. DEMs of 1 m grid size were initially obtained from 175 
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point clouds of varying density in different areas, but always with a minimum of 1 point/m2 176 

(Revuelto et al., 2014). Some of the predictor variables cannot be calculated where data gaps 177 

occur in the DEM (e.g. the topographic position index), and others require a DEM with a 178 

greater surface than the area scanned during the study (e.g. to calculate the potential solar 179 

radiation, including the shadow effect from surrounding topography, or to calculate the 180 

maximum upwind slope parameter, it is included topographic information for distances up to 181 

1200 m from the exterior limit of the DEM obtained with the TLS). Thus, a DEM having a 5 182 

m grid-size, available from the Geographical National Institute of Spain (Instituto Geográfico 183 

Nacional, www.ign.es), was combined with the snow-free DEM obtained using the TLS 184 

resampled from 1 m to 5 m resolution (the empty raster of the Geographical National Institute 185 

was used for the resampling, averaging all values within each cell). The 1 m grid-size SD 186 

maps were also resampled to 5 m to enable matching of the two different data sources. 187 

To characterize the terrain characteristics, eight variables were derived from the final DEM, 188 

including: (i) elevation (Elevation or Elev.), (ii) slope (Slope), (iii) curvature (Curvature or189 

Curv.), (iv) potential incoming solar radiation under clear sky conditions (Radiation or Rad.), 190 

(v) easting exposure (Easting or East.), (vi) northing exposure (Northing or North.), (vii) the 191 

topographic position index (TPI) and (viii) maximum upwind slope (Sx). 192 

Elevation was obtained directly from the DEM, while the other variables were calculated 193 

using ArcGIS10.1 software. This software calculates Slope as the maximum rate of change in 194 

value from a specific cell to that of its neighbors (15 x 15 m window size), and Curvature is 195 

determined from the second derivative of the fitted surface to the DEM in the direction of 196 

maximum slope of the terrain for the neighbors cells (15 x 15 m window size too). Radiation 197 

was obtained using the algorithm of Fu and Rich (2002) and reported in Wh/m2 based on the 198 

average conditions for the 15-day period prior to each snow survey. This algorithm calculates 199 

the potential incoming solar radiation (short wave) under clear sky conditions, which may 200 

strongly differ from the real radiation as a consequence of cloud cover. This measure provided 201 
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the relative difference in the extraterrestrial incoming shortwave solar radiation among areas 202 

of the catchment for a given period under given topographical conditions (Fassnacht et al., 203 

2013). In this way, Radiation can be considered as a good proxy of the spatial distribution of 204 

incoming solar energy within the study area. Easting and Northing exposure were calculated 205 

directly as the sine and cosine, respectively, of the angle between direction north and terrain 206 

orientation or aspect. It provided information on the east (positive)/west (negative) exposure 207 

and the north (positive)/south (negative) exposure. 208 

The TPI provides information on the relative position of a cell in relation to the surrounding 209 

terrain at a specific spatial scale. Thus, this index compares the elevation of each cell with the 210 

average cell elevation at specific radial distances as follows (De Reu et al., 2013; Weiss, 211 

2001): 212 

��� � �� � �̅      (1)  213 

�̅ � 	

�
∑ ���∈
       (2) 214 

Where zo is the elevation of the cell in which TPI is calculated and �̅ is the average elevation 215 

of surrounding cells obtained from (2) for a radial distance R. For each pixel the TPI was 216 

calculated for 5, 10, 15, 25, 50, 75, 100, 125, 150 and 200 m radial distances (scale factors). 217 

For specific wind directions, the maximum upwind slope parameter, averaged for 45 º upwind 218 

windows (�����; Winstral et al., 2002) provided information on the exposure or sheltering of 219 

individual cells at various distances, resulting from the topography. Rather than considering 220 

the contribution for the dominant wind directions (Molotch et al., 2005), ����� (Sx further on)221 

values for eight directions were selected and directly related to the SD. The directions were: 222 

0 for north (N), 45 for northeast (NE), 90 for east (E), 135 for southeast (SE), 180 for 223 

south (S), 225 for southwest (SW), 270 for west (W), and 315 for northwest (NW). For Sx, 224 

the searching distances (Winstral et al., 2002) considered were 100, 200, 300 and 500 m. 225 

These distances were selected to enable assessment of the range at which Sx exhibited greatest 226 
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control on SD dynamics, as has occurred in previous studies (Schirmer et al., 2011; Winstral 227 

et al., 2002). 228 

3.3. Statistical analysis 229 

The 12 SD maps at 5 m spatial resolution were related to each of the topographic variables 230 

considered (including the 40 Sx combinations, and the 9 distances for TPI). The large number 231 

of cells for which SD data were available enabled robust correlations between topography and 232 

snow distribution to be obtained, and provided a very large data set for training and validating 233 

the SD distribution models. 234 

Pearson’s r coefficients were obtained between SD and each topographic variable. Using the 235 

whole data set, each variable was correlated, for all available points, with the SD value for the 236 

specific survey day. Given the large amount of data for surveys, the degrees of freedom for 237 

correlation analyses were very high and hence they can account for statistically significant 238 

correlations even with very low correlation coefficients. Moreover, the use of a very dense 239 

data set of observations may have associated problems derived from spatial autocorrelation 240 

(Koenig, 1999). For reducing effects derived from spatial autocorrelation we followed a 241 

Monte Carlo procedure, in which 1000 random samples of 100 SD cases were extracted from 242 

the entire data set (an average of 20,000 SD measurements for each day) and correlated with 243 

topographic variables for assessing significance. A threshold 95% confidence interval ( < 244 

0.05) was used to assess the significance of correlations (r = +/– 0.197, based on 100 cases). 245 

The spatial scales of Sx and TPI for which SD showed a higher correlation; 200 m and 25 m 246 

respectively, were selected for further analysis (not presented in the manuscript). 247 

To assess the explanatory capacity when all topographic variables were considered 248 

simultaneously, two statistical models were used: (1) multiple linear regressions (MLRs) and 249 

(2) binary regression trees (BRTs). A wide variety of regression analyses for interpretation of 250 

much more complex spatial data are available with greater capacity than MLRs and BRTs to 251 

deal with spatial autocorrelation issues and the non-linear nature of the relationship between 252 
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predictors and the response variable (Beale et al., 2010). However, in this study we used 253 

MLRs and BRTs because these methods have been and are still widely used in snow studies, 254 

and because both enable to isolate accurately the weight of each independent variable within 255 

the model, which was the main objective of this research, rather than deriving models with 256 

maximum predictive capacity. Prior to run the models a principal component analysis (PCA) 257 

was applied to the entire data set for detecting correlations between independent variables that 258 

could originate multicolinearity in MLR and BRT. This analysis (not shown) grouped the 259 

topographic variables in three components, showing that TPI and Curvature are highly 260 

correlated with PCA component one, and also Northing and Radiation (but in this case with 261 

opposite signs) presented high correlation with component two of the PCA. TPI and Northing262 

showed both higher correlations with their respective components and in general higher 263 

Pearson’s r coefficients with SD than Curvature and Radiation (see result section). Therefore 264 

Curvature and Radiation were discarded as predictors in MLR and BRT analyses. 265 

(1) Multiple linear regression estimates the linear influence of topographic variables on SD. 266 

Despite its simplicity and the rather limited capability under nonlinear conditions (López-267 

Moreno et al., 2010), MLR was used to quantify the relative contribution of each variable 268 

to the entire SD distribution model. SD was calculated from the topographic variables at 269 

a specific location and day. The threshold for a variable to enter in the model was set at 270 

< 0.05. Beta coefficients (obtained dividing the standardized units of the coefficients by 271 

the mean value of each variable) were used to compare the weight of each variable within 272 

the regression models. As a first step, a reduced data set (1,000 cases) was randomly 273 

extracted to avoid an excessive number of observations that may lead to spurious 274 

identification of statistically significant predictor variables. A stepwise procedure was 275 

used to obtain these variables from the random extraction. The variables determined for 276 

each survey were used to obtain the final model, but using the entire data set (except 277 

5,000 cases for model validation), forcing variables entrance in models.  278 
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(2) Binary regression trees have been widely used to model snowpack distribution from 279 

topographic data (Erxleben et al., 2002; Molotch et al., 2005). These are nonparametric 280 

models that recursively split the data sample, based on the predictor variable that 281 

minimizes the square of the residuals obtained (Breiman, 1984). One BRT was created 282 

for each sampling date. The BRTs were run until a new split was not able to account for 283 

1% of the explained variance, or when a node had less than 500 cases; a maximum of 15 284 

terminal nodes was set to reduce tree complexity. As there were no over-fitting problems 285 

associated with sample size, 15,000 cases were used to grow the trees and 5,000 cases 286 

were used for validation. By scaling the explained variance of each variable introduced 287 

into each BRT (based on the % of the total explained variance by the BRT), we were able 288 

to compare the relative importance of each topographic variable between the different 289 

models. 290 

Coefficients of determination (r2) and Willmott’s D statistic were used to assess the ability of 291 

each model to predict SD over an independent random sample of 5,000 cases. Willmott´s D 292 

was determined using equation (3) (Willmott, 1981): 293 

� � 	1 � ∑ �����������
∑ �|�����|�|�����|������

       (3) 294 

where N is the number of observations, Oi is the observed value, Pi is the predicted value, and 295 

�� is the mean of the observed values. The index ranges from 0 (minimum) to 1 (maximum 296 

predictive ability). 297 

4. Results 298 

4.1. Single correlations 299 

Table 2 shows the correlation between SD and Sx for the eight wind directions at a distance of 300 

200 m (identified as the best correlated searching distance in previous analysis). Despite 301 

differences in magnitude, the correlations for surveys carried out at the beginning of the 302 

season (22 February 2012 and 17 February 2013) in each year showed that SD was clearly 303 



13 

affected by N and NW wind directions. The contribution of N and NW wind directions is 304 

clearly evident for the surveys on 17 February 2013 (Figure 4, where wind roses with average 305 

wind speeds and direction, for the 15 day period before each survey are presented), when 306 

greater SD was recorded in the leeward slopes from a northerly direction (Fig. 3, northerly 307 

areas of the maps). In the two years of the study a correlation with W and SW wind directions 308 

was observed to increase progressively during the snow season (Fig. 4 and Table 2 309 

correlations). In 2013 this phenomenon was less marked because of the greater SD 310 

accumulation at the beginning of the snow season accompanied with NW direction winds, 311 

which resulted in only moderate changes in the Sx for the most strongly correlated wind 312 

directions. It was also observed that in both study years once the snow had started to melt (the 313 

last three surveys in each season) the snow distribution did not change in relation to Sx314 

directions. The best correlated Sx directions for each survey are in good agreement with wind 315 

roses main directions (Fig. 4). These directions for survey days are: 315º for 22 Feb. 2012, 316 

270º for 02 and 17 April 2012 and 225º for the three surveys in May 2012; in 2013, 315º was 317 

the best correlated direction for 17 Feb., and 270º for the other five surveys of the snow 318 

season. 319 

Correlations between the best correlated Sx direction for each day and SD were compared 320 

with correlations between SD and the other topographic variables (Table 3). This showed that 321 

Sx had one of the greatest coefficient of correlation with SD (range 0.22–0.56). The 322 

correlations were higher during the accumulation periods, especially in the 2013 snow season, 323 

with a reduction in correlations values occurring during the melt period at the end of each 324 

snow season. 325 

The TPI at 25 m showed the highest correlation with SD for the 12 sampled days. During 326 

2012 the mean correlation values ranged from –0.32 to –0.58 for those surveys during which 327 

snow accumulation dominated in the days preceding the surveys. The r values were closer to 328 

the significance level for the surveys where the preceding days were dominated by melting 329 
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conditions (14 and 24 May). In 2013, the TPI was more highly correlated with SD than in 330 

2012, with Pearson’s r coefficients < –0.6 for all survey days. Curvature also had a high 331 

correlation with SD, and similar to TPI with a 25 m searching distance was significantly 332 

correlated on all the survey dates, but unlike the TPI, the correlation of Curvature with SD did 333 

not decrease during the snowmelt periods. The significant correlations of TPI and Curvature334 

with SD highlight the importance of terrain curvature on the SD distribution. The importance 335 

of terrain curvature at different scales for SD distribution is clearly evident in Figure 3, which 336 

shows that higher SD values were usually found for concave areas, which showed snow 337 

presence until the end of each snow season. 338 

The correlation between Elevation and SD varied among survey days (Table 3). The 339 

correlations were usually positive, but only statistically significant (or approaching 340 

significance) for days when melting dominated (the last two surveys in 2012 and 2013). Slope 341 

was relatively weakly correlated with SD during the 2012 snow season. In 2013 the 342 

correlation was greater, and was statistically significant for all days. Similarly to Elevation, 343 

the correlation between Slope and SD was variable between the two study years, and showed 344 

a similar temporal pattern to Easting, probably because of the presence of steeper areas on the 345 

east-facing slopes. 346 

The correlation between Northing and SD was rarely statistically significant, highly variable 347 

and contributed to explaining SD in a very different ways in 2012 and 2013. In 2012 no 348 

correlation between SD and Northing was found during the accumulation period, but during 349 

the melting period a slight positive correlation was observed, as snow remained longer on 350 

north-facing slopes. The 2013 snow season started with a large precipitation event dominated 351 

by strong winds from a northerly direction, leading to high levels of snow accumulation on 352 

the south-facing slopes. This explains the strong and statistically significant negative 353 

correlation of SD with Northing for 17 February 2013. This event influenced the rest of the 354 

season (as evident in Table 2 for 2013), but a progressive decrease in its influence was 355 
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evident for the following survey days. Radiation had an almost opposite influence on SD to 356 

that observed for Northing. During the melting period, for each year, the Pearson’s r 357 

correlation between SD and Radiation was negative, indicating a thinner snowpack on the 358 

most irradiated slopes. This relation was statistically significant at the end of the 2013 snow 359 

season. However, during the accumulation period in 2013 statistically significant and positive 360 

correlations were observed with Northing and Radiation, which are connected to the strong 361 

snow redistribution by winds from N-NW directions.  362 

4.2. Multiple Linear Regression and Binary Regression Tree models 363 

Figure 5 shows the Willmott’s D values and the coefficients of determination (r2) obtained in 364 

the comparison of observed and predicted values using MLRs and BRTs for a data set 365 

reserved for validation (5000 cases). The MLRs produced r2 values ranging from 0.25 to 0.65 366 

and Willmott’s D values ranging from 0.60 to 0.88, while the BRTs produced r2 values 367 

ranging from 0.39 to 0.58 and Willmott´s D values ranging from 0.72 and 0.85. For both 368 

methods the relations between the observed and predicted values was stronger for 2013. 369 

Accuracy decreased at the end of the snow season, when the snowpack was mostly patchy 370 

across the basin; this was particularly the case for the end of the 2012 season. Overall, the 371 

performance of the MLRs was more variable than that of the BRTs, which were more 372 

constant amongst the various snow surveys. For those days on which the models were most 373 

accurate in predicting SD variability, the MLRs showed slightly better scores than the BRTs. 374 

However, for days on which the accuracy between predictions and observations was lower, 375 

the BRTs provided better estimates than the MLRs. For 2012, slightly better results were 376 

obtained using MLRs, while the opposite occurred in 2013. Nevertheless, only large 377 

differences in the accuracy of each model were evident by the end of 2012 snow season, in 378 

the two last surveys, which were characterized by thin and patchy snowpack.  379 

As shown for single correlations, the TPI variable explained most of the variance in MLR 380 

models developed for all analyzed days (Table 4). The contribution of the other variables 381 
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varied markedly among surveys, particularly when the two years were compared. In most 382 

cases, Elevation was the second most important variable explaining the SD distribution in 383 

2012, followed by Sx and Slope. The other variables made a much smaller contribution, or 384 

were not included in the models. The contribution of Elevation was much less in 2013, and it 385 

was not included in three of the six surveys, whereas in 2012 it was included in all surveys. 386 

For the entire 2013, Sx was the second most important variable, followed by Easting, which 387 

had an almost negligible influence in 2012. Northing was only included in the models for the 388 

surveys carried out during periods dominated by snow accumulation, and was not included in 389 

the models during the periods dominated by melting. 390 

Figure 6 shows two examples of BRTs, obtained for the days 2 May 2012 (upper panel) and 3 391 

April 2013 (bottom panel), which accounted for the largest amount of snow accumulation in 392 

both years. The variable TPI determined the first branching point, and this occurred in the 393 

majority of the trees obtained (not shown). After the first branching, other variables were 394 

significant in the model, including Sx and TPI for 2 May 2012,and Sx and Northing for 3 395 

April 2013, demonstrating the importance of these variables in the subsequent branching of 396 

the trees. 397 

The relative importance (scaled from 0 to 100) of each topographic variable in each BRT is 398 

shown in Table 5. This shows that TPI was the first most important variable explaining SD 399 

for all survey days. For the 2012 snow season, TPI explained more than 67% of the total 400 

explained variance in all BRTs, and 75% during the accumulation period (the first three 401 

surveys). Thus, for most of the survey days the variance explained by the other variables was 402 

< 30%. Besides TPI was in all cases the first split variable (which accounted from a 23 to a 403 

30% of the explained variance), with a critical value that ranged from -0.67 m to -0.43 m and 404 

an average value of -0.54 m. The second most important variable explaining the SD 405 

distribution in 2012 differed amongst survey days. Thus, Sx was the second most influential 406 

variable during May (except for 24 May 2012), following the largest snowfall in the season 407 
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(which occurred the 1 May 2012), and Elevation was the most important variable in the other 408 

surveys during 2012. Northing also had an evident influence during the two first surveys of 409 

the year, but subsequently had minimal explanatory capacity, as was the case for all the other 410 

variables. In 2013 TPI was also the main contributor to the total explained variance, 411 

exceeding 50% for almost all survey days, and approaching or > 70% during the snowmelt 412 

period. For this year, also TPI was the first split variable in nearly all BRT, with critical 413 

values ranging from -0.47 m to -0.15 m and an average value of -0.28 m; except for the 13 414 

Feb. 2013, in which Sx was the first split variable. The influence of Sx was more important in 415 

2013 than in the previous year. At the beginning of 2013 the contribution of Sx to the total 416 

explained variance was almost 46%, and remained > 20% for the rest of the snow season. An 417 

exception was the last survey, when melting dominated and its effect declined to 12%. When 418 

snow was not mobilized for long periods by wind (no changes on the best correlated wind 419 

direction of Sx are observed), the SD distribution was more dependent on variables related to 420 

terrain curvature (TPI and Curvature). During 2013, Elevation contributed approximately 5% 421 

to the total explained variance during the entire snow season. Northing made a significant 422 

contribution to the model (14.7%) only one day (3 April 2013), and a smaller contribution on 423 

the following survey day (25 April 2013). When included in the BRTs, the other variables 424 

(Easting, Radiation) made minor contributions to the total explained variance. 425 

Figure 7 shows the mean contribution of each topographic variable versus the coefficient of 426 

variation from the twelve surveys for the different statistical approaches considered in this 427 

study (Pearson´s r coefficients, beta coefficients of the MLRs and the contribution to the 428 

explained variance for each BRT). Clearly, TPI is the most important variable to explain the 429 

snow distribution in the catchment, but it is also the variable that exhibits a lower variability 430 

between the different surveys (CV<0.2). Besides it has been introduced as predictor for MLRs 431 

and BRTs in all studied days. Sx is the next variable in importance to explain snow 432 

distribution, being introduced as predictor in the majority of the modelled days (11 and 10 out 433 
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of 12 days for MLRs and BRTs respectively). It shows a low temporal variability when 434 

correlation´s coefficients are calculated (CV=0.24), but the variability in its contribution to 435 

MLRs and BRTs increases noticeably, with CV values of 0.35 and 0.59 respectively. The rest 436 

of the variables show a much lower mean contribution for explaining snow distribution and a 437 

high temporal variability in their explanatory role. Lower CV values are observed for MLRs, 438 

ranging the majority between 0.3 and 0.4, than for BRTs models, ranging the majority 439 

between 0.4 and 0.8.  440 

5. Discussion  441 

The distribution of snow in mountain areas is highly variable in space and time, as shown for 442 

Izas experimental catchment during two consecutive years. Many meteorological and 443 

topographic parameters affect the snow distribution and its evolution through time with 444 

different weights subjected to several factors. In this context, we demonstrated that terrain 445 

characteristics significantly affect SD distribution in a subalpine catchment. Also we have 446 

showed that its effect evolved during the snow accumulation and melting periods over two 447 

years having highly contrasting climatic conditions and snow accumulation amounts 448 

Many studies have analyzed the spatial distribution of SD in mountain areas considering both, 449 

intra- and inter- annual variability of the topographic control on the snowpack distribution 450 

(Anderton et al., 2004; Erickson et al., 2005; López-Moreno et al., 2010; McCreight et al., 451 

2012). Other researches have also focused their attention in long-term inter-annual snow 452 

distribution analyses (Jepsen et al., 2012; Sturm and Wagner, 2010; Winstral and Marks, 453 

2014). The results of these previous works have highlighted the difficulties in fully explaining 454 

the distribution of snow in complex mountainous terrain. In addition, results differ among 455 

studies, and suggest that different variables govern the distribution of snowpack among areas 456 

as consequence of their different characteristics and geographical settings. These differences 457 

include surface extension, the altitudinal gradients, the importance of wind redistribution, the 458 
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presence or absence of vegetation and the topographic complexity as concluded by 459 

Grünewald et al., (2013) in a study where seven study sites across the world were considered. 460 

Most of the topographic variables investigated in this study have been included in previous 461 

studies, including Elevation, Slope, Radiation, Curvature and Sx. Other variables, in 462 

particular TPI, have received little attention in previous research (López-Moreno et al., 2010). 463 

We showed that TPI at a scale of 25 m had the greatest capacity to explain the SD distribution 464 

in the study catchment. Curvature (which refers to a smaller spatial scale of terrain curvature 465 

when compared with TPI) is also highly correlated with the SD distribution, but not as much 466 

as TPI. This reinforces the importance of considering terrain curvature at various scales for 467 

explaining the SD distribution in mountain environments. The correlation between snowpack 468 

and the TPI decreased during melting periods, whereas the correlation with Curvature469 

remained constant. This suggests that snow accumulates more in small deep concavities, but 470 

is shallower at the end of the season in wider concave areas that were identified by the 25 m 471 

TPI scale. This effect was evident at the end of the snow season, when snow was present only 472 

in deep concavities, as shown in Figure 3. To explain the snow distribution, Anderton et al. 473 

(2004) compared the relative elevation of a cell with the terrain over a 40 m radius, and 474 

observed that this had a major role on SD distribution, what sustain curvature importance at 475 

different scales.  476 

The maximum upwind slope (Sx; Winstral et al., 2002) has also been identified as a key 477 

variable explaining snow distribution, improving the results obtained when it is introduced 478 

into models. Our results, 200 m searching distance for Sx, is comparable with those of other 479 

studies that have shown that the optimum searching distance for correlating Sx with the SD 480 

distribution is 300 m (Schirmer et al., 2011), which is not a large difference for the considered 481 

distances in this work reaching 500 m. As it is observed from the reported wind information, 482 

Izas experimental catchment has W-NW dominant wind direction what is consistent with the 483 

best correlated Sx directions. For this reason, the Sx preferred direction for each date was 484 
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selected, and showed that there were intra-annual shifts in the most highly correlated 485 

direction. The change in the most important Sx direction was similar between the 2012 and 486 

2013 snow seasons; it started with a northerly component and evolved to a dominant westerly 487 

direction. We also found a decrease in the correlation between Sx and the snow distribution at 488 

the end of each snow season, when melting conditions dominated. This is consistent with the 489 

findings of previous studies (Winstral and Marks, 2002). 490 

Sx parameter takes into account sheltering effects with topographic origin in relation to wind 491 

directions. SD distribution maps show higher SD amounts in leeward slopes, located in E-SE 492 

slopes. TPI is not able to explain snow drifts, because this index considers the topographic 493 

characteristics in all directions. Nevertheless, terrain characteristics at the study site in relation 494 

to SD distribution have shown a higher importance of TPI when compared to Sx. The most 495 

plausible explanation accounting for this result is that the basin has a rather reduced size, 496 

shows the same general aspect (SE facing) and topography is relatively gentle. Under such 497 

conditions, during wind blowing events snow is accumulated in all wide concavities of the 498 

basin (represented by TPI) independently of its specific location. Nonetheless, wind 499 

redistribution will be affected by a combination of local topography and main wind 500 

directions; which makes necessary to consider the Sx parameter. As it has been observed, this 501 

effect lasts in time until the melting season is advanced. 502 

Only for two days (22 February 2012 and 2 April 2012) there was no contribution (or it was 503 

minor) of Sx to explain SD distribution, according to BRTs and MLRs. On these days 504 

Northing was introduced into the models, and was found to explain some of the variance of Sx505 

from northerly direction, the best correlated direction for these days (Table 2). 506 

Although Elevation has been found to largely explain the snow distribution in areas having 507 

marked altitudinal differences (Elder et al., 1998; Erxleben et al., 2002; Molotch and Bales, 508 

2005), in our study no strong association was found between SD and Elevation, with 509 

significant correlations occurring only during the snowmelt period. This is because of the low 510 
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elevation range of the study area (300 m). During the accumulation period the entire 511 

catchment is generally above the freezing height. However, during spring the 0C isotherm 512 

shifts to higher elevations, which may lead to different melting rates within the basin. Despite 513 

the relatively weak correlation between Elevation and SD, this variable was introduced as a 514 

predictor in the MLRs and BRTs for most of the days analyzed. Similarly, López-Moreno et 515 

al. (2010) reported that elevation was of increasing importance as the grid size increased. 516 

Anderton et al. (2004) also informed about the importance of elevation to explain snowpack 517 

distribution in the same study area. The results of the present study suggest the increase in 518 

importance of Elevation at the end of the snow season, and particularly when it is considered 519 

in combination with other topographic variables in MLR and BRT models. 520 

Slope has a weak explanatory capacity for snow distribution, probably because the slope in 521 

most of the catchment is not steep enough to trigger gravitational movements including 522 

avalanches and slushes during the snowmelt period, which could thin the snowpack on the 523 

steepest slopes (Elder et al., 1998). Most likely, some of Slope explanatory capacity is 524 

included on Radiation explanatory capacity, because it affects solar light incident angle, 525 

besides the steeper areas of the catchment are in south facing zones. Nevertheless quantifying 526 

such kind of effects is highly difficult due to the high complexity of SD dynamic in mountain 527 

terrain.  528 

Radiation, Northing and Easting showed no close correlation with the snowpack distribution; 529 

their relationships with SD were variable over time, with statistically significant correlations 530 

occurring on some days and only weak correlations on other days. The results suggested that 531 

Radiation and Northing (which showed almost opposite patterns) may be related to SD for 532 

two different reasons. During the accumulation period in 2013 heavy snowfalls associated 533 

with northerly winds led to the accumulation of deep snow on south-facing areas (more 534 

irradiated), whereas during the snowmelt period the greater exposure of the southern slopes to 535 

solar energy led to a positive (negative) correlation with Northing (Radiation). This 536 



22 

phenomenon was also observed by López-Moreno et al. (2013), using a physically-based 537 

snow energy balance model in the same study area. Moreover, the high and opposite 538 

correlation between Northing and Radiation obtained in PCA results (not shown in the 539 

manuscript), was showing a potential problem of multicollinearity. Thus, only Northing was 540 

considered for MLRs and BRTs (the same occurred with TPI and Curvature, being only 541 

considered in statistical models the TPI). Although Northing did not show a significant 542 

correlation with SD during accumulation periods; when the surveys were closer to the 543 

snowmelt period, the negative correlation of this variable with SD was more evident, possibly 544 

due to the increase of the difference in the energetic exchange between sun exposed and 545 

shaded areas. The importance of Northing in MLR models, combined with the contribution of 546 

Easting during the accumulation period may be related to the high snow redistribution 547 

originated by wind directions from N- NW directions. Therefore terrain aspect relation with 548 

SD distribution (considered with Northing and Easting) in winter is tightly related to the 549 

accumulation patterns resulting from wind redistribution, whereas in spring they were 550 

associated with the unequal distribution of solar radiation, which leads to higher melting rates 551 

on the most irradiated slopes, what has shown better explanatory capacity than Radiation at 552 

Izas Experimental catchment.  553 

The MLRs and BRTs provided reasonably high accuracy scores when observed and predicted 554 

SD data were compared. The scores were comparable, and in some cases better, to values 555 

reported in previous researches using similar methods. As an example, Molotch et al., (2005) 556 

reported r2 values between 0.31 and 0.39 using BRT; and Winstral et al., (2002), who 557 

considered different number of terminal nodes of BRT, obtained an optimal tree size of 16 558 

nodes data set with an r2 value close to 0.4. Moreover results presented here were obtained 559 

from a separate data set, and data used to create the models were not considered for testing, 560 

thanks to the large available data set. One reason for the improvement may be the use of the 561 

TPI as a SD predictor, as this variable has not been considered in previous studies. 562 
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Nevertheless, it should be noted that the study sites considered in other studies, could differ in 563 

terms on complexity of terrain, and also in SD accumulation amounts. For the 12 survey days 564 

the TPI had the greatest explanatory capacity in both approaches. However, based on 565 

comparison of the different dates and surveys, the other variables made more varying 566 

contributions, as a result of the different roles they play during the snow accumulation and 567 

melting periods, and the wind conditions during the main snowfall events. The models had 568 

less capacity to explain spatial variability of the snowpack when the snow was thinner and 569 

patchy. The BRT and MLR approaches were consistent with respect to error estimates. The 570 

results obtained using each approach were comparable, so the trends in the variable ranking 571 

with both models for each survey day were similar. Only during conditions of snow scarcity 572 

did the BRT approach demonstrate better capability to relate SD to topography. This is 573 

probably a consequence of the greater capacity of BRTs to take account of the nonlinear 574 

response of the snowpack to topography, and the occurrence of sharp thresholds typical of 575 

days when the snowpack is patchy (López-Moreno et al., 2010; Molotch et al., 2005). 576 

Despite model results differ between survey days and years, the most important variable, TPI, 577 

is always present in the models and their contribution to the total explained variances show 578 

very low CV values. Other variables with an also important role to explain SD distribution 579 

(i.e. Sx) are included in most of the models as predictors showing their influence on snowpack 580 

distribution, although their contribution to the final models changes noticeably amongst 581 

different surveys. Moreover for 2012 and 2013 a consistent inter-annual distribution of the 582 

snowpack in the catchment is observed; the areas of maximum SD and the location of snow 583 

free zones were consistent between both years of the study, and more importantly there is a 584 

strong consistency of the effect of topography on SD. This spatial consistency of snowpack 585 

has implications for soil dynamics and plant cycles, because some parts of the basin will tend 586 

to remain free of snow cover during longer periods favoring the presence of temporary frozen 587 

soils, and reducing the isolation effect of snowpack to the plants (Keller et al., 2000; Pomeroy 588 
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and Gray, 1995). Besides, it suggests that the information acquired from TLS during several 589 

years could be useful to design long-term monitoring strategies of SD in the basin based on 590 

few manual measurements in representative points according their terrain characteristics.  591 

6. Conclusions 592 

The TPI at a 25 m searching distance was the best topographic variable, and the most 593 

persistent in time, for explaining SD distribution in the Izas experimental catchment. This 594 

suggests the importance of including this index in future snow studies, and the need to 595 

establish the best searching distance for relating this variable to SD distribution at other study 596 

sites. The maximum upwind slope (Sx) at a searching distance of 200 m was also an important 597 

variable explaining the SD distribution, but its influence varied markedly between years and 598 

surveys, depending of the specific wind conditions during and after main snowfall events. 599 

Nevertheless, Sx has shown a similar evolution pattern for the best correlated direction in the 600 

two analyzed snow seasons. The influence of the other topographical variables on the spatial 601 

distribution of SD was lower, and showed higher intra- and inter-annual variability. The total 602 

variance explained by BRTs and MLRs clearly decreased for periods on which the snowpack 603 

was thinner and more patchily. The results from BRTs and MLRs models were consistent in 604 

terms of variables importance ranking, and the explanatory capacities of the main variables 605 

were similar for all surveys. Except TPI, that showed very low coefficient of variations for the 606 

two approaches, the variability of the contribution of each topographic variable for the 607 

different surveys was noticeably lower for MLRs than for BRTs. 608 
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9. Tables789 

790 

Table 1: Summary statistics of the snowpack distribution and the snow covered area of the 791 

basin. Note that snow covered area is expressed as a % of the total area surveyed by the TLS, 792 

and the mean SD is the average of all SDs not including zero values. 793 

794 

Snow season 2012 Snow season 2013
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

Mean 
SD 
(m) 

0.72 0.58 0.60 0.97 0.71 0.70 2.98 3.22 2.53 2.28 2.09 1.61 

Max 
SD 
(m) 

5.5 3.8 5.3 6.1 4.4 4.3 10.9 11.2 10.1 9.6 8.9 7.9 

SCA 
(%) 67.2 33.5 94.1 98.8 30.9 18.9 98.8 100.0 96.3 86.4 77.1 67.0 
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795 

Table 2: Pearson’s r coefficients between SD and Sx, calculated for the eight studied wind 796 

directions over the survey days. * marks those correlations that were statistically significant 797 

(<0.05) in at least the half of the samples (500 out of 1000 samples) from the Monte Carlo 798 

approach, and bold r coefficients represent the best correlated Sx direction for a specific 799 

survey day. 800 

801 

Snow season 2012 Snow season 2013 
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06 

Sx 0º 0.19 0.13 0.09 -0.11 0.06 -0.01 0.51* 0.40* 0.31* 0.23* 0.22* 0.20*
Sx 45º 0.15 -0.02 0.00 -0.16 -0.08 -0.09 0.36* 0.25* 0.17 0.12 0.12 0.12 
Sx 90º 0.12 -0.14 -0.07 0.11 -0.11 -0.03 -0.15 -0.15 -0.10 -0.09 -0.09 -0.10

Sx 135º 0.02 -0.05 0.05 0.26* 0.01 0.11 -0.27* -0.19 -0.10 -0.06 -0.06 -0.06 
Sx 180º 0.02 0.14 0.15 0.38* 0.17 0.21* -0.19 -0.08 0.02 0.08 0.08 0.12 
Sx 225º 0.12 0.29* 0.26* 0.44* 0.32* 0.23* 0.06 0.18 0.26* 0.29* 0.29* 0.31* 
Sx 270º 0.20* 0.33* 0.34* 0.26* 0.27* 0.21* 0.48* 0.52* 0.49* 0.45* 0.42* 0.43* 
Sx 315º 0.22* 0.26* 0.27* 0.01 0.22* 0.12 0.56* 0.50* 0.41* 0.34* 0.32* 0.33*
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802 

Table 3: Pearson’s r coefficients between SD and the topographic variables. * marks those 803 

correlations that were statistically significant (<0.05) in at least the half of the samples (500 804 

out of 1000 samples) from the Monte Carlo approach, and bold r coefficients represent the 805 

best correlated topographic variable for a specific survey day.806 

807 

Snow season 2012 Snow season 2013 
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06 

Elev. 0.09 0.26* 0.16 0.10 0.29* 0.19 0.09 0.18 0.13 0.18 0.21* 0.26*
Slope 0.06 0.18 0.02 -0.03 0.20* 0.03 0.25* 0.27* 0.20* 0.20* 0.21* 0.26* 
Curv -0.44* -0.45* -0.47* -0.49* -0.41* -0.37* -0.39* -0.40* -0.40* -0.39* -0.38* -0.38*

North -0.06 0.00 0.04 0.19 0.07 0.11 -0.38* -0.27* -0.19 -0.09 -0.06 -0.11 
East. 0.09 0.21* 0.13 0.13 0.13 0.11 0.25* 0.26* 0.27* 0.22* 0.18 0.14 
Rad 0.05 0.04 -0.06 -0.22* -0.12 -0.11 0.36* 0.21* 0.10 -0.09 -0.12 -0.23* 

TPI 25 -0.56* -0.46* -0.54* -0.58* -0.40* -0.32* -0.66* -0.68* -0.68* -0.66* -0.63* -0.61* 
Sx  0.22* 0.33* 0.34* 0.44* 0.32* 0.23* 0.56* 0.52* 0.49* 0.45* 0.42* 0.43*
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Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

TPI -0.69 -0.53 -0.60 -0.59 -0.48 -0.40 -0.78 -0.72 -0.73 -0.80 -0.74 -0.72
Sx 0.11 0.28 0.26 0.20 0.16 0.36 0.31 0.43 0.37 0.38 0.31

Elev. 0.09 0.22 0.34 0.27 0.27 0.35 0.14 0.08 0.13
Slope -0.25 -0.29 -0.24 -0.21 -0.21 -0.10 -0.14 -0.16 -0.09 -0.15
North -0.22 0.13 -0.16 -0.12 -0.11 -0.11
East. 0.10 0.29 0.25 0.25 0.31 0.23 0.20

r2 0.45 0.31 0.40 0.47 0.33 0.25 0.65 0.63 0.60 0.60 0.57 0.51

808 

Table 4: Multiple linear regression beta coefficients for each independent variable and 809 

sampled day.810 

811 
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Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

TPI 83.2 78.8 75.0 71.7 74.0 66.9 49.1 56.4 64.4 71.2 69.9 77.5
Sx 4.6 12.7 13.4 10.8 45.9 23.1 23.0 21.8 20.1 12.5

Elev. 5.7 6.8 13.2 9.1 8.2 15.2 5.0 5.7 5.0 3.3 5.9 5.4
Slope 1.7 5.4 5.7 6.5 3.2 7.0 2.1
North 9.3 8.1 1.5 1.3 14.7 4.3 2.4 2.9 3.6
East. 1.2 1.3 1.1 1.0

r2 0.56 0.42 0.52 0.54 0.46 0.39 0.58 0.56 0.55 0.54 0.53 0.51
812 

Table 5: Contribution of the various topographic variables to the explained variance of SD 813 

distribution in the binary regression tree models for 2012 and 2013. Values have been 814 

rescaled from 0 to 100. 815 

816 

817 

818 
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10. Figures  832 

833 

Figure 1: Location of the Izas experimental catchment, and the digital elevation model 834 

showing the positions of the scan stations and the automatic meteorological station. The two 835 

images in the bottom part of the figure, from Scan Station 1, show the terrain characteristics 836 

with (1) and without snow cover (2). 837 

838 



38 

839 

Figure 2: Daily average temperature, snow depth and net solar radiation (short wave) at the 840 

automatic weather station (AWS) for the 2012 (left) and 2013 (right) snow seasons. The 841 

continuous lines represent the daily values for 2012 and 2013, and the dashed lines show the 842 

25th and 75th percentiles of historical daily series (1996–2011). The vertical dashed lines 843 

show the TLS survey days. Note that during some surveys no snow was present at the AWS, 844 

but some areas of the Izas experimental catchment were covered by snow. 845 

846 
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847 



40 

Figure 3: Spatial distribution of snow depth in the Izas experimental catchment in the surveys 848 

undertaken in 2012 and 2013. 849 

850 

Figure 4: Wind roses from the automatic weather station placed at the catchment obtained for 851 

a 15 day period. 852 
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853 

Figure 5: Willmott’s D and r2 values between the observed and predicted SD, based on the 854 

multiple linear and binary regression models for all survey days. 855 

856 
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857 

Figure 6: Binary regression tree obtained for 2 May 2012(top) and 3 April 2013 (bottom). 858 

The final nodes (with ellipses) show the predicted SD in the zone having the specified terrain 859 

characteristics. At each branch point, one topographic variable is considered; if the value is 860 

less than the specified value, the left branch is selected, but if it is equal to or greater than the 861 

specified value, the right branch is selected. 862 

863 

864 

865 

866 
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867 

Figure 7: Mean contribution of topographic variables to models and Pearsons’r coefficients 868 

versus the coefficients of variation for all considered surveys. Upper panel shows Pearson’s r 869 

coefficients; middle panel shows beta coefficients of the Multiple Linear Regression; and the 870 

bottom panel shows the contribution to the explained variance to the Binary Regression Trees. 871 

Each graph point is accompanied with its variable, and in the case of MLR and BRT, in 872 

brackets the number of days in which each variable was included in models. 873 


