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Abstract:  22 

In this study we analyzed the relations between terrain characteristics and snow depth 23 

distribution in a small alpine catchment located in the central Spanish Pyrenees. Twelve field 24 

campaigns were conducted during 2012 and 2013, which were years characterized by very 25 

different climatic conditions. Snow depth was measured using a long range terrestrial laser 26 

scanner and analyses were performed at a spatial resolution of 5 m.  Pearson’s r correlation, 27 

multiple linear regressions and binary regression trees were used to analyze the influence of 28 

topography on the snow depth distribution. The analyses were used to identify the 29 

topographic variables that best explain the snow distribution in this catchment, and to assess 30 

whether their contributions were variable over intra- and inter-annual time scales. The 31 

topographic position index (index that compares the relative elevation of each cell in a digital 32 

elevation model to the mean elevation of a specified neighborhood around that cell with a 33 

specific shape and searching distance), which has rarely been used in these types of studies, 34 

most accurately explained the distribution of snow accumulation. Other variables affecting the 35 

snow depth distribution included the maximum upwind slope, elevation, and northing. The 36 

models developed to predict snow distribution in the basin for each of the 12 survey days 37 

were similar in terms of the explanatory variables. However, the variance explained by the 38 

overall model and by each topographic variable, especially those making a lesser contribution, 39 

differed markedly between a year in which snow was abundant (2013) and a year when snow 40 

was scarce (2012), and also differed between surveys in which snow accumulation or melting 41 

conditions dominated in the preceding days. The total variance explained by the models 42 

clearly decreased for those days on which the snow pack was thinner and more patchily. 43 

Despite the differences in climatic conditions in the 2012 and 2013 snow seasons, similarities 44 

in snow distributions patterns were observed which are directly related with terrain 45 

topographic characteristics.46 

Keywords: snow depth distribution, snowpack evolution, topography, mountains, cold region 47 
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1. Introduction 48 

Assessing the snow distribution in mountain areas is important because of the number of 49 

processes in which snow plays a major role, including erosion rates (Pomeroy and Gray, 50 

1995), plant survival (Keller et al., 2000; Wipf et al., 2009), soil temperature and moisture 51 

(Groffman et al., 2001), and the hydrological response of mountain rivers (Bales and 52 

Harrington, 1995; Barnett et al., 2005; Liston, 1999; Pomeroy et al., 2004). As mountain areas 53 

are highly sensitivity to global change (Beniston, 2003), snow accumulation and melting 54 

processes are likely to be subject to marked changes in coming decades, affecting all 55 

processes influenced by the presence of snow (Caballero et al., 2007; López-Moreno et al., 56 

2011, 2012b; Steger et al., 2012). For these reasons, much effort has been devoted to 57 

understanding the main factors that control the spatial and temporal dynamics of snow (Egli et 58 

al., 2012; López-Moreno et al., 2010;; Mott et al., 2010; Schirmer et al., 2011). 59 

One of the main difficulties in snow studies is obtaining reliable information of the variables 60 

that describe snow distribution, including snow depth (SD), snow water equivalent (SWE) 61 

and snow covered area (SCA). Manual measurements have traditionally been used to provide 62 

information on the distribution of snowpack, with different sampling strategies having been 63 

applied at various spatial scales (Jost et al., 2007; López-Moreno et al., 2012a; Watson et al., 64 

2006). However, manual sampling is not feasible for large areas because of the time involved, 65 

especially when SWE measurements are also acquired. In the last decade the use of airborne 66 

laser scanners (ALS) (Deems et al., 2006) and terrestrial laser scanners (TLS) (Prokop, 2008), 67 

both of which are based on LiDAR (light detection and ranging) technology, have provided 68 

for major advances in obtaining data on the SD distribution at unprecedented spatial 69 

resolutions. These developments have enabled studies of several factors that in the past have 70 

been only marginally considered, including scaling issues (Fassnacht and Deems, 2006; Mott 71 

et al., 2011; Schirmer and Lehning, 2011; Trujillo et al., 2007), the detailed dynamics of snow 72 

accumulation and ablation (Grünewald et al., 2010; Schirmer et al., 2011; Scipión et al., 73 
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2013), and snow transport processes (Mott et al., 2010). In addition, the high density 74 

measurements provided by LiDAR technologies are a valuable resource for detailed 75 

investigation of the linkage between snow distribution and topography. In the past, this 76 

linkage has mostly been studied using manual measurements, and hence with generally 77 

limited spatial and temporal resolution (López-Moreno et al., 2010). 78 

Previous studies have highlighted the marked control of topography on snow distribution in 79 

mountain areas (Anderton et al., 2004; Erickson et al., 2005 Lehning et al., 2011; Mott et al., 80 

2013), and the importance of vegetation and wind exposure (Erxleben et al., 2002; Trujillo et 81 

al., 2007). The most commonly used approach has been to develop digital elevation models 82 

(DEM) that describe the spatial distribution of elevation, from which other terrain variables 83 

are derived such as slope, terrain aspect, curvature, wind exposure or sheltering, and potential 84 

solar radiation. This enables to analyze the linear or non-linear relation of these variables to 85 

punctual SD or SWE values to be established (Grünewald et al., 2010; Schirmer et al., 2011). 86 

Various statistical methods have been applied for this purpose, including linear regression 87 

models (Fassnacht et al., 2003; Hosang and Dettwiler, 1991), generalized additive models 88 

(GAM) (López-Moreno and Nogués-Bravo, 2005), and binary regression trees (BRT) 89 

(Breiman, 1984) which have been widely applied in a diversity of regions (Elder et al., 1991; 90 

Erxleben et al., 2002; McCreight et al., 2012;) 91 

The extent to which topographic variables explain snow distribution can change during the 92 

snow season; the variability of terrain characteristics can drive processes related to the spatial 93 

variability of snow accumulation (snow blowing, terrain curvature) (Lehning et al., 2008), or 94 

affect the energetic exchange between terrain and the snowpack (temperature, incoming solar 95 

radiation), so the importance of topographic variables is modified during the season (Molotch 96 

et al., 2005). In addition, during a snow season the terrain changes markedly (is smoothed) by 97 

snow accumulation (Schirmer et al., 2011). However, few studies have systematically 98 

analyzed the intra- and inter-annual persistence of the relation between snow distribution and 99 
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topography. Recent studies have assessed whether the influence of topography is constant 100 

among different years; e.g. the similarities observed at the end of the accumulation season 101 

(Schirmer and Lehning, 2011; Schirmer et al., 2011), or the consistent fractal dimensions in 102 

two analyzed years (Deems et al., 2008); in both cases there was a relation with the dominant 103 

wind direction, which highlights the predictive ability of topographic variables. 104 

The main focus of this study was to assess the influence of topography on the spatial 105 

distribution of snowpack and its evolution over time. The high temporal and spatial density of 106 

the dataset collected during the study enabled analysis of the main topographic factors 107 

controlling snow distribution, and assessment of whether topographic control of the snowpack 108 

varied during the snow season and between years having very contrasting climatic conditions. 109 

For this purpose, we conducted 12 surveys over 2012 (6) and 2013 (6) in a small mountain 110 

catchment representing a typical subalpine environment in the central Spanish Pyrenees, and 111 

obtained high resolution SD measurements using LIDAR technology using a TLS. 112 

2. Study area and snow and climatic conditions 113 

The Izas experimental catchment (4244N, 025W) is located in the central Spanish 114 

Pyrenees (Fig. 1). The catchment is on the southern side of the Pyrenees, close to the main 115 

divide (Spain–France border), in the headwaters of the Gallego River valley, and ranges in 116 

elevation from 2000 to 2300 m above sea level. The catchment is predominantly east-facing, 117 

with some areas facing north or south, and has a mean slope of 16. There are no trees in the 118 

study area, and the basin is mostly covered by subalpine grasslands dominated by Festuca 119 

eskia and Nardus stricta, with rocky outcrops in the steeper areas; flat, concave and convex 120 

areas occur in the basin. 121 

The climatic conditions are influenced by the proximity of the Atlantic Ocean, with the 122 

winters being humid compared with zones of the Pyrenees more influenced by mediterranean 123 

conditions. The mean annual precipitation is 2000mm, of which snow accounts for 124 
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approximately 50% (Anderton et al., 2004). The mean annual air temperature is 3C, and the 125 

mean daily temperature is < 0C for an average of 130 days each year (del Barrio et al., 126 

1997). Snow covers a high percentage of the catchment from November to the end of May  127 

The two years analyzed in the study represent climatic extremes during recent decades. 128 

Severe drought occurred during 2012, leading to snow accumulation well below the long-term 129 

average. The thickness of the snowpack, measured at the automatic weather station (AWS, 130 

Fig. 1), during winter in this year was less than the 25th percentile of the available historical 131 

data series of this AWS (1996–2011) (Fig. 2). Only at the end of spring did late snowfall 132 

events increase the amount of snow, but this rapidly melted. The opposite occurred in 2013, 133 

which was a year in which the deepest snowpack and the longest snow season of recent 134 

decades were recorded. Winter and spring in 2013 were extremely humid, with temperatures 135 

mostly between the 25th and 75th percentiles of the AWS historical series. Snow depth 136 

accumulation was very high between February and June (exceeding the 75th percentile); in 137 

some areas of the basin it lasted until late July, which is one month longer than in most of the 138 

preceding years for which records are available. 139 

3. Data and methods 140 

3.1. Snow depth measurements 141 

During the study period high resolution SD maps were generated using a long range TLS 142 

(Riegl LPM-321), which enables safe acquisition of SD information with short acquisition 143 

times from remote areas, compared with measurements obtained manually. This technique 144 

has been extensively tested (Prokop et al., 2008; Revuelto et al., 2014; Schaffhauser et al., 145 

2008), and systematically applied to the study of snow distribution in mountain terrain (Egli 146 

et al., 2012; Grünewald et al., 2010; Mott et al., 2013; Schirmer et al., 2011). In a previous 147 

study the mean absolute error in the most distant areas of the catchment was less than 10cm 148 
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(Revuelto et al., 2014), which is consistent with errors reported in previous studies 149 

(Grünewald et al., 2010; Prokop, 2008; Prockop et al., 2008; Schaffauser et al., 2008). 150 

TLS provides high resolution three dimensional information on the terrain Nevertheless, error 151 

sources need to be considered because they can have large effects on the measurements. To 152 

reduce the influences of TLS instability (originated by small displacements of the tripod 153 

because TLS vibrations while it is operating), which leads to misalignment with reference 154 

points; and atmospheric change, a well-defined protocol must be applied. The protocol 155 

applied in this study for generating high resolution SD maps with a 1m cell size was described 156 

by Revuelto et al., (2014). This protocol has these main points: data collection; which 157 

includes experimental setup design and information acquisition by the scanning procedure; 158 

and data processing, where data is filtered, quality checked and the SD maps generated. 159 

Mainly, the methodology was based on differences between DEMs obtained with snow 160 

coverage in the study area and a DEM taken at 18 July 2012, when the catchment had no 161 

snow cover. Twelve snow depth maps at a spatial resolution of 5m were generated for the 162 

2012 and 2013 snow seasons (Fig. 3). In each year three surveys were undertaken from 163 

February to April (2012: 22 February, 2 April, 17 April; 2013: 17 February, 3 April, 25 164 

April), and three were undertaken from May to June when dominated intense melting 165 

conditions  (2012: 2, 14 and 24 May; 2013: 6, 12 and 20 June). The average SD and SCA, and 166 

the maximum SD are shown in Table 1. It shows that much lower SD and SCA were observed 167 

in 2012 compared to 2013. 168 

3.2. Digital elevation model and topographic variables 169 

From the two scan stations located in the study area (Fig. 1), 86% of the total area of the 170 

catchment was surveyed using TLS. DEMs of 1m grid size were initially obtained from point 171 

clouds of varying density in different areas, but always with a minimum of 1point/m2 172 

(Revuelto et al., 2014). Some of the predictor variables cannot be calculated where data gaps 173 

occur in the DEM (e.g. the topographic position index), and others require a DEM with a 174 
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greater surface than the area scanned during the study (e.g. to calculate the potential solar 175 

radiation, including the shadow effect from surrounding topography, or to calculate the 176 

maximum upwind slope parameter, it is included topographic information for distances up to 177 

1200m from the exterior limit of the DEM obtained with the TLS). Thus, a DEM having a 5 178 

m grid-size, available from the Geographical National Institute of Spain (Instituto Geográfico 179 

Nacional, www.ign.es), was combined with the snow-free DEM obtained using the TLS 180 

resampled from 1 m to 5 m resolution (the empty raster of the Geographical National Institute 181 

was used for the resampling, averaging all values within each cell). The 1 m grid-size SD 182 

maps were also resampled to 5 m to enable matching of the two different data sources. 183 

To characterize the terrain characteristics, eight variables were derived from the final DEM, 184 

including: (i) elevation (Elevation), (ii) slope (Slope), (iii) curvature (Curvature), (iv) 185 

potential incoming solar radiation under clear sky conditions (Radiation), (v) easting exposure 186 

(Easting), (vi) northing exposure (Northing), (vii) the topographic position index (TPI) and 187 

(viii) maximum upwind slope (Sx). 188 

Elevation was obtained directly from the DEM, while the other variables were calculated 189 

using ArcGIS10.1 software. This calculates Slope as the maximum rate of change in value 190 

from a specific cell to that of its neighbors (10 m window size), and Curvature is determined 191 

from the second derivative of the fitted surface to the DEM in the direction of maximum slope 192 

of the terrain for the neighbors cells (10 m window size too). Radiation was obtained using 193 

the algorithm of Fu and Rich (2002) and reported in Wh/m2 meter based on the average 194 

conditions for the 15-day period prior to each snow survey. This algorithm calculates the 195 

potential clear sky radiation, which logically may strongly differ from the real radiation as a 196 

consequence of cloud cover. This measure provided the relative difference in the 197 

extraterrestrial incoming solar radiation among areas of the catchment for a given period 198 

under given topographical conditions (Fassnacht et al., 2013). Easting and Northing exposure 199 

were calculated directly as the sine and cosine, respectively, of the angle between direction 200 
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north and terrain orientation or aspect. It provided information on the east (positive)/west 201 

(negative) exposure and the north (positive)/south (negative) exposure. 202 

The TPI provides information on the relative position of a cell in relation to the surrounding 203 

terrain at a specific spatial scale. Thus, this index compares the elevation of each cell with the 204 

average cell elevation at specific radial distances as follows (De Reu et al., 2013; Weiss, 205 

2001): 206 

      (1)  207 

      (2) 208 

Where zo is the elevation of the cell in which TPI is calculated and  is the average elevation 209 

of surrounding cells obtained from (2) for a radial distance R. For each pixel the TPI was 210 

calculated for 5, 10, 15, 25, 50, 75, 100, 125, 150 and 200 meters radial distances (scale 211 

factors). 212 

For specific wind directions, the maximum upwind slope parameter, averaged for 45º upwind 213 

windows (Sx dash; Winstral et al., 2002) provided information on the exposure or sheltering 214 

of individual cells at various distances, resulting from the topography. Rather than 215 

considering the contribution for the dominant wind directions (Molotch et al., 2005), Sx dash 216 

(Sx further on) values for eight directions were selected and directly related to the SD. The 217 

directions were: 0 for north (N), 45 for northeast (NE), 90 for east (E), 135 for southeast 218 

(SE), 180 for south (S), 225 for southwest (SW), 270 for west (W), and 315 for northwest 219 

(NW). For Sx the searching distances (Winstral et al., 2002) considered were 100, 200, 300 220 

and 500m. These distances were selected to enable assessment of the range at which Sx221 

exhibited greatest control on SD dynamics, as has occurred in previous studies (Schirmer et 222 

al., 2011; Winstral et al., 2002). 223 

3.3. Statistical analysis 224 
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The 12 SD maps at 5 m spatial resolution were related to each of the topographic variables 225 

considered (including the 40 Sx combinations, and the 9 distances for TPI). The large number 226 

of cells for which snow depth data were available enabled robust correlations between 227 

topography and snow distribution to be obtained, and provided a very large dataset for 228 

training and validation of the SD distribution models. 229 

Pearson’s r coefficients were obtained between SD and each topographic variable. Using the 230 

whole dataset each variable was correlated, for all available points, against the SD value for 231 

the specific survey day. Given the large amount of data for surveys, the degrees of freedom 232 

for the correlation analyses were very high and hence it can inform of statistically significant 233 

correlations even with very low correlation coefficients. Moreover, the use of a very dense 234 

dataset of observations may have associated problems derived from spatial autocorrelation 235 

(Elsner and Schmertmann, 1994). For this reason we followed a Monte Carlo procedure, in 236 

which 1000 random samples of 100 SD cases were extracted from the entire dataset and 237 

correlated with topographic variables for assessing significance. A threshold 95% confidence 238 

interval (< 0.05) was used to assess the significance of correlations (r = +/– 0.197, based on 239 

100 cases).  The spatial scales of Sx and TPI for which SD showed a higher correlation; 200m 240 

and 25m respectively, were selected for further analysis (not presented in the manuscript). 241 

To assess the explanatory capacity when all topographic variables were considered 242 

simultaneously, two statistical models were used: (1) multiple linear regressions (MLRs) and 243 

(2) binary regression trees (BRTs). A wide variety of regression analyses for interpretation of 244 

much more complex spatial data are available with greater capacity than MLRs and BRTs to 245 

deal with spatial autocorrelation issues and the non-linear nature of the relationship between 246 

predictors and the response variable (Beale et al., 2010). However, in this study we used 247 

MLRs and BRTs because these methods have been and are still widely used in snow studies, 248 

and because both enable to isolate accurately the weight of each independent variable within 249 

the model, which was the main objective of this research, rather than deriving models with 250 
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maximum predictive capacity. Prior to run the models a principal component analysis (PCA) 251 

was applied to the topographic variables for detecting correlations between independent 252 

variables that could originate multicolinearity in MLR and BRT. This analysis (not shown) 253 

grouped the topographic variables in three components, from which it is observed that TPI254 

and Curvature are highly correlated, and also Northing and Radiation (but in this case 255 

inversely) presented almost identical correlations with the three identified components. As 256 

TPI and Northing showed higher correlations with their respective components and also show 257 

in general higher Pearson’s r coefficients with SD (see result section), the variables Curvature258 

and Radiation were discarded as predictors in MLR and BRT analyses. 259 

(1) Multiple linear regression estimates the linear influence of topographic variables on SD. 260 

Despite its simplicity and the rather limited capability under nonlinear conditions (López-261 

Moreno et al., 2010), MLR was used to quantify the relative contribution of each variable 262 

to the entire SD distribution model. SD was calculated from the topographic variables at 263 

a specific location for a given day. The threshold for a variable to enter in the model was 264 

set at < 0.05.  Beta coefficients (obtained dividing the standardized units by the 265 

coefficients by the mean value of each variable) were used to compare the weight of each 266 

variable within the regression models. Again, in order to avoid an excessive number of 267 

observations that may lead to spurious identification of statistically significant predictor 268 

variables, we first randomly extracted a reduced dataset (1000 cases) for selecting the 269 

topographic variables by means of a stepwise procedure. Once variables to be included 270 

for each survey were determined, they were used to obtain the final model, but using the 271 

entire data set (except 5000 cases for model validation), forcing variables entrance in 272 

models.  273 

(2) Binary regression trees have been widely used to model snowpack distribution from 274 

topographic data (Erxleben et al., 2002; Molotch et al., 2005). These are nonparametric 275 

models that recursively split the data sample, based on the predictor variable that 276 
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minimizes the square of the residuals obtained (Breiman, 1984). One BRT was created 277 

for each sampling date. The BRTs were run until a new split was not able to account for 278 

1% of the explained variance, or when a node had less than 500 cases; a maximum of 15 279 

terminal nodes was set, to reduce tree complexity. As there were no over-fitting problems 280 

associated with sample size, 15,000 cases were used to grow the trees and 5,000 cases 281 

were used for validation. By scaling the explained variance of each variable introduced 282 

into each BRT (based on the % of the total explained variance by the BRT), we were able 283 

to compare the relative importance of each topographic variable between the different 284 

models. 285 

Coefficients of determination (r2) and Willmott’s D statistic were used to assess the ability of 286 

each model to predict snow depth over an independent random sample of 5,000 cases. 287 

Willmott´s D was determined using equation (3) (Willmott, 1981): 288 

       (3) 289 

where N is the number of observations, Oi is the observed value, Pi is the predicted value, and 290 

 is the mean of the observed values. The index ranges from 0 (minimum) to 1 (maximum 291 

predictive ability). 292 

4. Results 293 

4.1. Single correlations 294 

Table 2 shows the correlation between SD and Sx for the eight wind directions at a distance of 295 

200 m (identified as the best correlated searching distance in previous analysis). Despite 296 

differences in magnitude, the correlations for surveys carried out at the beginning of the 297 

season (22 February 2012 and 17 February 2013) in each year showed that SD was clearly 298 

affected by N and NW wind directions. This was particularly evident in 2013, as the 299 

correlation values were higher for both days. The contribution of N and NW wind directions 300 

is clearly evident for the surveys on 17 February 2013 (Figure 4, were wind roses with 301 
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average wind speeds and direction, for the 15 day period before each survey are presented), 302 

when greater SD was recorded in the leeward slopes from a northerly direction (Fig. 3, upper 303 

areas of the maps). In the two years of the study a correlation with W and SW wind directions 304 

was observed to increase progressively during the snow season (Fig. 4 and Table 2 305 

correlations). In 2013 this phenomenon was less marked because of the greater SD 306 

accumulation at the beginning of the snow season accompanied with NW direction winds, 307 

which resulted in only moderate changes in the Sx for the most strongly correlated wind 308 

directions. It was also observed that in both study years once the snow had started to melt (the 309 

last three surveys in each season) the snow distribution did not change in relation to Sx310 

directions. When the best correlated Sx directions for each survey are compared with wind 311 

roses (Fig. 4) a good agreement is observed. These directions for survey days are: 315º for 22 312 

Feb. 2012, 270º for 02 and 17 April 2012, and 225º for the three surveys in May 2012; in 313 

2013, 315º was the best correlated direction for 17 Feb. and 270º for the other five surveys of 314 

the snow season 315 

Correlations between the most correlated Sx direction for each day and SD were compared 316 

with correlations between SD and the other topographic variables (Table 3). This showed that 317 

Sx had one of the greatest coefficient of correlation with SD (range 0.22–0.56). The 318 

correlations were higher during the accumulation periods, especially in the 2013 snow season, 319 

with a reduction in correlations values occurring during the melt period at the end of each 320 

snow season. 321 

The TPI at 25 m showed the highest correlation with SD for nearly all of the 12 sampled days. 322 

During 2012 the mean correlation values ranged from –0.32 to –0.58 for those surveys during 323 

which snow accumulation dominated in the days preceding the surveys. The r values were 324 

closer to the significance level for the surveys where the preceding days were dominated by 325 

melting conditions (14 and 24 May). In 2013, the TPI was more highly correlated with SD 326 

than in 2012, with Pearson’s r coefficients < –0.6 for all survey days. Curvature also had a 327 
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high correlation with SD, and similar to TPI with a 25 m searching distance was significantly 328 

correlated on all the survey dates, but unlike the TPI, the correlation of Curvature with SD did 329 

not decrease during the snowmelt periods. The significant correlations of TPI and Curvature330 

with SD highlight the importance of terrain curvature on the SD distribution. The importance 331 

of terrain curvature at different scales for SD distribution is clearly evident in Figure 3, which 332 

shows that higher SD values were usually found for concave areas, which showed snow 333 

presence until the end of each snow season. 334 

The correlation between Elevation and SD varied among survey days (Table 3). The 335 

correlations were usually positive, but only statistically significant (or approaching 336 

significance) for days when melting dominated (the last two surveys in 2012 and 2013). Slope 337 

was relatively weakly correlated with SD during the 2012 snow season. In 2013 the 338 

correlation was greater, and was statistically significant on some days. As with Elevation, the 339 

correlation between Slope and SD was variable between the two study years, and showed a 340 

similar temporal pattern to Easting, probably because of the presence of steeper areas on the 341 

east-facing slopes. 342 

The correlation between Northing and SD was rarely statistically significant, was highly 343 

variable, and contributed to explaining SD in a very different ways in 2012 and 2013. In 2012 344 

no correlation between SD and Northing was found during the accumulation period, but 345 

during the melting period a slight positive correlation was observed, as snow remained longer 346 

on north-facing slopes. The 2013 snow season started with a large precipitation event 347 

dominated by strong winds from a northerly direction, leading to high levels of snow 348 

accumulation on the south-facing slopes. This explains the strong and statistically significant 349 

negative correlation of SD with Northing for 17 February 2013. This event influenced the rest 350 

of the season (as evident in Table 2 in 2013), but a progressive decrease in its influence was 351 

evident for the following survey days. Radiation had an almost opposite influence on SD to 352 

that observed for Northing. During the melting period in each year the Pearson’s r correlation 353 
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between SD and Radiation was negative, indicating a thinner snowpack on the most irradiated 354 

slopes; the relation was statistically significant at the end of the 2013 snow season. However, 355 

during the accumulation period in 2013 statistically significant positive correlations were 356 

observed with Northing and Radiation, which are connected to the strong snow redistribution 357 

by winds from N-NW directions.  358 

4.2. Multiple Linear Regression and Binary Regression Tree models 359 

Figure 5 shows the Willmott’s D values and the coefficients of determination (r2) obtained in 360 

the comparison of observed and predicted values using MLRs and BRTs for a dataset 361 

reserved for validation (5000 cases). The MLRs produced r2 values ranging from 0.25 to 0.65 362 

and Willmott’s D values ranging from 0.60 to 0.88, while the BRTs produced r2 values 363 

ranging from 0.39 to 0.58 and Willmott´s D values ranging from 0.72 and 0.85. For both 364 

methods the relationship between the observed and predicted values was stronger for 2013. 365 

Accuracy decreased at the end of the snow season, when the snowpack was mostly patchy 366 

across the basin; this was particularly the case for the end of the 2012 season. Overall, the 367 

performance of the MLRs was more variable than that of the BRTs, which were more 368 

constant amongst the various snow surveys. For those days on which the models were most 369 

accurate in predicting SD variability, the MLRs showed slightly better scores than the BRTs. 370 

However, for days on which the accuracy between predictions and observations was lower, 371 

the BRTs provided better estimates than the MLRs. For 2012, slightly better results were 372 

obtained using MLRs, while the opposite occurred in 2013. Nevertheless, only large 373 

differences in the accuracy of each model were evident by the end of 2012 snow season, in 374 

the two last surveys, which were characterized by thin and patchy snowpack. In general, there 375 

was good agreement between the models for each survey day, so results obtained with each 376 

model could be compared. 377 

As shown for single correlations, the TPI variable explained most of the variance in MLR 378 

models developed for all analyzed days (Table 4). The contribution of the other variables 379 
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varied markedly among surveys, particularly when the two years were compared. In most 380 

cases, Elevation was the second most important variable explaining the SD distribution in 381 

2012, followed by Sx and Slope. The other variables made a much smaller contribution, or 382 

were not included in the models. The contribution of Elevation was much less in 2013, and it 383 

was not included in three of the six surveys, whereas in 2012 it was included in all surveys. 384 

For the entire 2013, Sx was the second most important variable, followed by Easting, which 385 

had an almost negligible influence in 2012. Northing was only included in the models for the 386 

surveys carried out during periods dominated by snow accumulation, and was not included in 387 

the models during the periods dominated by melting. 388 

Figure 6 shows two examples of BRTs, obtained for the days 2 May 2012 (upper panel) and 3 389 

April 2013 (bottom panel), which accounted for the largest amount of snow accumulation in 390 

each of the two years. The variable TPI determined the first branching point, and this 391 

occurred in the majority of the trees obtained (not shown). After the first branching, other 392 

variables were significant in the model, including Sx and TPI for 2 May 2012,and Sx and 393 

Northing for 3 April 2013, demonstrating the importance of these variables in the subsequent 394 

branching of the trees. 395 

The relative importance (scaled from 0 to 100) of each topographic variable in each BRT is 396 

shown in Table 5. This shows that TPI was the first most important variable explaining SD 397 

for all survey days. For the 2012 snow season, TPI explained more than 67% of the total 398 

explained variance in all BRTs, and 75% during the accumulation period (the first three 399 

surveys). Thus, for most of the survey days the variance explained by the other variables was 400 

<30%. The second most important variable explaining the SD distribution in 2012 differed 401 

amongst the survey days. Thus, Sx was the second most influential variable during May 402 

(except for 24 May 2012), following the largest snowfall in the season (which occurred the 1 403 

May 2012), and Elevation was the most important variable in the other surveys during 2012. 404 

Northing also had an evident influence during the two first surveys of the year, but 405 
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subsequently had minimal explanatory capacity, as was the case for all the other variables. In 406 

2013 TPI was also the main contributor to the total explained variance, exceeding 50% for 407 

almost all survey days, and approaching or > 70% during the snowmelt period. The influence 408 

of Sx was more important in 2013 than in the previous year. At the beginning of 2013 the 409 

contribution of Sx to the total explained variance was almost 46%, and remained >20% for the 410 

rest of the snow season; an exception was the last survey, when melting dominated and its 411 

effect declined to 12%. When snow was not mobilized for long periods by wind, the SD 412 

distribution was more dependent on variables related to terrain curvature (TPI and 413 

Curvature). During 2013, Elevation contributed approximately 5% to the total explained 414 

variance during the entire snow season. Northing made a significant contribution to the model 415 

(14.7%) on only one day (3 April 2013), and a much smaller contribution on the following 416 

survey day (25 April 2013). Where included in the BRTs, the other variables (Easting, 417 

Radiation) made no, or only minor, contributions to the total explained variance. 418 

5. Discussion  419 

The distribution of snow in mountain areas is highly variable in space and time, as was shown 420 

for the Izas experimental catchment during two consecutive years. Many meteorological and 421 

topographic parameters affect the snow distribution and its evolution through time with 422 

different weights subjected to several factors. In this context, we demonstrated that 423 

topography was a major controlling factor affecting SD in a subalpine catchment, and showed 424 

that its effect evolved during the snow accumulation and melting periods over two years 425 

having highly contrasting climatic conditions and levels of snow accumulation. 426 

There have been many studies analyzing the spatial distribution of SD in mountain areas 427 

(Anderton et al., 2004; Erickson et al., 2005; López-Moreno et al., 2010; Mccreight et al., 428 

2012). Besides some researches have also focused their attention in long-term inter-annual 429 

snow distribution analyses (Jepsen et al., 2012; Sturm and Wagner, 2010, Winstral and 430 

Marks, 2014) but there are very few datasets that have enabled investigation of the intra- and 431 
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inter-annual variability of the topographic control on the snowpack distribution, being 432 

important to investigate both time scales. The results of previous research have highlighted 433 

the difficulties in fully explaining the distribution of snow in complex mountainous terrain. In 434 

addition, the results have differed among studies, and suggest that different variables govern 435 

the distribution of snowpack among areas as consequence of their differing characteristics and 436 

geographical settings, including surface area and altitudinal gradients, the importance of wind 437 

redistribution, the presence or absence of vegetation, and the topographic complexity 438 

(Grünewald et al., 2013). 439 

Most of the topographic variables investigated in this study have been included in previous 440 

studies, including Elevation, Slope, Radiation, Curvature and Sx. Other variables, in 441 

particular TPI, have received little attention in previous research (López-Moreno et al., 2010). 442 

We showed that TPI at a scale of 25 m had the greatest capacity to explain the SD distribution 443 

in the study catchment. Curvature (which refers to a small spatial scale of terrain curvature) 444 

was also highly correlated with the SD distribution, but not as highly as TPI, reinforcing the 445 

importance of considering terrain curvature at various scales in explaining the SD distribution 446 

in mountain environments. The correlation between snowpack and the TPI decreased during 447 

melting periods, whereas the correlation with Curvature remained constant. This suggests that 448 

snow accumulates more in small, deep concavities, but is shallower at the end of the season in 449 

wider concave areas that were identified by the 25 m TPI scale. This effect was evident at the 450 

end of the snow season, when snow was present only in deep concavities, as shown in Figure 451 

3. To explain the snow distribution, Anderton et al. (2004) compared the relative elevation of 452 

a cell with the terrain over a 40 m radius, and observed that this had a major role on SD 453 

distribution, what reinforces curvature importance at different scales.  454 

The maximum upwind slope (Sx; Winstral et al., 2002) has also been identified as a key 455 

variable explaining snow distribution, improving the results obtained when it is introduced 456 

into models. Our results are comparable with those of other studies that have shown that the 457 
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optimum searching distance for correlating Sx with the SD distribution is 300 m (Schirmer et 458 

al., 2011), so it is not a large difference for the considered distances in this work which 459 

reaches 500m. As it is observed from the reported wind information, Izas experimental 460 

catchment has W-NW dominant wind direction what is consistent with the best correlated Sx461 

directions. For this reason, the Sx preferred direction for each date was selected, and showed 462 

that there were intra-annual shifts in the most highly correlated direction. The change in the 463 

most important Sx direction was similar between the 2012 and 2013 snow seasons; it started 464 

with a northerly component and evolved to a dominant westerly direction. We also found a 465 

decrease in the correlation between Sx and the snow distribution at the end of each snow 466 

season, when melting conditions dominated; this is consistent with the findings of previous 467 

studies (Winstral and Marks, 2002). 468 

Sx parameter takes into account sheltering effects with topographic origin in relation to wind 469 

directions. As it has been observed in this study, higher SD amounts are observed in leeward 470 

slopes, which for this study site are in E-SE slopes, being perceived this effect in the SD 471 

distribution maps. TPI is not able to explain snow drifts, because this index considers the 472 

topographic characteristics in all directions. Nevertheless, terrain characteristics at the study 473 

site in relation to SD distribution have shown a higher importance of TPI when compared to 474 

Sx. The most likely explanation of this result is that the basin has a rather reduced size, shows 475 

the same general aspect (SE facing) and topography is relatively gentle. Under such 476 

conditions, during wind blowing events snow is accumulated in all the wide concavities of the 477 

basin (represented by TPI) independently of its specific location. Nonetheless, wind 478 

redistribution will be affected by a combination of local topography in relation to the main 479 

wind directions; what makes necessary to consider the Sx parameter, and this effect lasts in 480 

time until the melting season is advanced. Nonetheless, under such conditions more snow is 481 

accumulated according to main wind directions; what makes necessary to consider Sx482 

parameter, and this effect lasts in time until the melting season is advanced. 483 
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Only for two days (22 February 2012 and 2 April 2012) was there no (or a minor) 484 

contribution of Sx to SD, according to the BRTs and MLRs. On these days Northing was 485 

introduced into the models, and was found to explain some of the variance of Sx from 486 

northerly direction (the best correlated direction for these days (Table 2). 487 

Although Elevation has been found to largely explain the snow distribution in areas having 488 

marked altitudinal differences (Elder et al., 1998; Erxleben et al., 2002; Molotch and Bales, 489 

2005) in our study no strong association was found between SD and Elevation, with 490 

significant correlations occurring only during the snowmelt period. This is because of the low 491 

elevation range of the study area (300 m). During the accumulation period the entire 492 

catchment is generally above the freezing height. However, during spring the 0C isotherm 493 

shifts to higher elevations, which may lead to different melting rates within the basin. Despite 494 

the relatively weak correlation between Elevation and SD, this variable was introduced as a 495 

predictor in the MLRs and BRTs for most of the days analyzed. Similarly, López-Moreno et 496 

al. (2010) reported that elevation was of increasing importance as the grid size increased. 497 

Anderton et al. (2004) also informed about the importance of elevation to explain snowpack 498 

distribution in the same study area. The results of the present study suggest the increase in 499 

importance of Elevation at the end of the snow season, and particularly when it is considered 500 

in combination with other topographic variables in MLR and BRT models. 501 

Slope was only a weak explanatory factor for snow distribution, probably because the slope in 502 

most of the catchment is not sufficient to trigger gravitational movements including 503 

avalanches and slushes during the snowmelt period, which could thin the snowpack on the 504 

steepest slopes (Elder et al., 1998). Maybe some of Slope explanatory capacity is included on 505 

Radiation explanatory capacity, because it affects solar light incident angle, and also, the 506 

steeper areas of the catchment are in south facing zones, nevertheless quantifying such kind of 507 

effects is highly difficult due to the high complexity of SD dynamic in mountain terrain.  508 
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Radiation, Northing and Easting showed no close correlation with the snowpack distribution; 509 

their relationships with SD were variable over time, with statistically significant correlations 510 

occurring on some days and only weak correlations on other days. The results suggested that 511 

Radiation and Northing (which showed almost opposite patterns) may be related to SD for 512 

two different reasons. During the accumulation period in 2013 heavy snowfalls associated 513 

with northerly winds led to the accumulation of deep snow on south-facing (more irradiated) 514 

surfaces, whereas during the snowmelt period the greater exposure of the southern slopes to 515 

solar energy led to a positive (negative) correlation with Northing (Radiation). This 516 

phenomenon was also observed by López-Moreno et al. (2013), using a physically-based 517 

snow energy balance model in the same study area. Moreover, the high and opposite 518 

correlation between Northing and Radiation obtained in PCA results (not shown in the 519 

manuscript), prevented us of potential problems of multicollinearity. Thus, only Northing was 520 

considered for MLRs and BRTs (the same occurred with TPI and Curvature, being only 521 

considered in statistical models the TPI). Although Northing did not show a significant 522 

correlation with SD during accumulation periods, when the surveys were closer to the 523 

snowmelt period the negative correlation of this variable with SD was much more evident, 524 

possibly due to the increase of the difference in the energetic exchange between the sun 525 

exposed and shaded areas. The importance of Northing in MLR models, combined with the 526 

contribution of Easting during the accumulation period may be related to the high snow 527 

redistribution originated by wind directions from N- NW directions. In such a way terrain 528 

aspect (considered with Northing and Easting) during winter is more related to the 529 

accumulation patterns resulting from wind redistribution, whereas in spring they were 530 

associated with the unequal distribution of solar radiation, which leads to higher melting rates 531 

on the most irradiated slopes, what has shown better explanatory capacity than Radiation at 532 

Izas Experimental catchment.  533 
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The MLRs and BRTs provided reasonably high accuracy scores when observed and predicted 534 

SD data were compared. The scores were comparable, and in some cases better, to values 535 

reported in previous researches using similar methods. Molotch et al., (2005) reported r2536 

values between 0.31 and 0.39 with BRT; and Winstral et al., (2002), considering different 537 

number of terminal nodes of BRT with similar topographic variables, obtained an optimal tree 538 

size of 16 nodes (which is quite similar to the tree size selected in this study, in spite of 539 

differences in the study area, the nature of the dataset, etc) with an r2 value close to 0.4. 540 

Moreover results presented here were obtained from a separate dataset, and data used to create 541 

the models are not considered for testing, thanks to the large available data set. One reason for 542 

the improvement may be the use of the TPI as a SD predictor, as this variable has not been 543 

considered in previous studies. Nevertheless, it should be noted that the study sites considered 544 

in other studies, could differ in terms on complexity of terrain, and also in SD accumulation 545 

amounts. For the 12 survey days the TPI had the greatest explanatory capacity in both 546 

approaches. However, based on comparison of the different dates and surveys, the other 547 

variables made more varying contributions, as a result of the different roles they play during 548 

the snow accumulation and melting periods, and the wind conditions during the main snowfall 549 

events. The models had less capacity to explain spatial variability of the snowpack when the 550 

snow was thinner and patchy. The BRT and MLR approaches were consistent with respect to 551 

error estimates. The results obtained using each approach were comparable, so the trends in 552 

the variable ranking for both models for each survey day were very similar. Only during 553 

conditions of snow scarcity did the BRT approach demonstrate better capability to relate SD 554 

to topography. This is probably a consequence of the greater capacity of BRTs to take account 555 

of the nonlinear response of the snowpack to topography, and the occurrence of sharp 556 

thresholds typical of days when the snowpack is patchy (López-Moreno et al., 2010; Molotch 557 

et al., 2005). 558 
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In spite of model results differ between survey days and years, some variables are always 559 

present in the models and their contribution to the total explained variances are rather similar. 560 

Moreover for 2012 and 2013 a consistent inter-annual distribution of the snow pack in the 561 

catchment is observed; the areas of maximum SD and the location of snow free zones were 562 

consistent between both years of the study, and more importantly there is a strong consistency 563 

of the effect of topography on SD is clear. This spatial consistency of snowpack has 564 

implications for soil dynamics and plant cycles, because some parts of the basin will tend to 565 

remain free of snow cover during longer periods favoring the presence of temporary frozen 566 

soils, and reducing the isolation effect of snowpack to the plants (Keller et al., 2000; Pomeroy 567 

and Gray, 1995). Moreover, it suggests that the information acquired from TLS during several 568 

years could be useful to design long-term monitoring strategies of SD in the basin based on 569 

few manual measurements in representative points according their terrain characteristics.  570 

6. Conclusions 571 

Topographic variables related to terrain curvature were shown to contribute more to 572 

explaining snow distribution than other variables. In particular, the TPI at a 25 m searching 573 

distance was the major variable explaining SD in the Izas experimental catchment. This 574 

suggests the importance of including this index in future snow studies, and the need to 575 

establish the best searching distance for relating this variable to SD distribution at other study 576 

sites. The maximum upwind slope at a searching distance of 200 m was also an important 577 

variable explaining the SD distribution. However, its influence varied markedly between 578 

years and surveys, depending of the specific wind conditions during the main snowfall events. 579 

The influence of the other topographical variables on the spatial distribution of SD was less, 580 

and showed greater intra- and inter-annual variability. The results from BRTs and MLRs 581 

models were consistent, and the explanatory capacities of the main variables were very 582 

similar for all surveys. This suggests that the effect of topography on snow distribution has 583 

relatively high intra- and inter-annual consistency in the study catchment. Terrain 584 
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characteristics have shown a major role on snow distribution, as TPI explanatory capacity. 585 

When snow distribution could be affected by wind action (mainly during the accumulation 586 

period), its distribution is modified tightly related with main wind directions and sheltering 587 

effects, well described with Sx parameter.  Several interesting temporal evolutions during the 588 

two snow seasons were found in the relation of some topographic variables to SD. 589 
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9. Tables787 

788 

Table 1: Summary statistics of the snowpack distribution and the snow covered area of the 789 

basin. Note that snow covered area is expressed as a % of the total area surveyed by the TLS, 790 

and the mean SD is the average of all SDs not including zero values. 791 

792 

Table 2: Pearson’s r coefficients between SD and Sx, calculated for the eight studied wind 793 

directions over the survey days. * marks those correlations that were statistically significant 794 

(<0.05) in at least the half of the samples (500 out of 1000 samples) from the Monte Carlo 795 

approach, and bold r coefficients represent the best correlated Sx direction for a specific 796 

survey day. 797 

798 

799 

800 

Snow season 2012 Snow season 2013
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

Mean 
SD 
(m) 

0.72 0.58 0.60 0.97 0.71 0.70 2.98 3.22 2.53 2.28 2.09 1.61 

Max 
SD 
(m) 

5.5 3.8 5.3 6.1 4.4 4.3 10.9 11.2 10.1 9.6 8.9 7.9 

SCA 
(%) 67.2 33.5 94.1 98.8 30.9 18.9 98.8 100.0 96.3 86.4 77.1 67.0 

Snow season 2012 Snow season 2013 
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06 

Sx 0º 0,19 0,13 0,09 -0,11 0,06 -0,01 0,51* 0,40* 0,31* 0,23* 0,22* 0,20*
Sx 45º 0,15 -0,02 0,00 -0,16 -0,08 -0,09 0,36* 0,25* 0,17 0,12 0,12 0,12 
Sx 90º 0,12 -0,14 -0,07 0,11 -0,11 -0,03 -0,15 -0,15 -0,10 -0,09 -0,09 -0,10

Sx 135º 0,02 -0,05 0,05 0,26* 0,01 0,11 -0,27* -0,19 -0,10 -0,06 -0,06 -0,06 
Sx 180º 0,02 0,14 0,15 0,38* 0,17 0,21* -0,19 -0,08 0,02 0,08 0,08 0,12 
Sx 225º 0,12 0,29* 0,26* 0,44* 0,32* 0,23* 0,06 0,18 0,26* 0,29* 0,29* 0,31* 
Sx 270º 0,20* 0,33* 0,34* 0,26* 0,27* 0,21* 0,48* 0,52* 0,49* 0,45* 0,42* 0,43* 
Sx 315º 0,22* 0,26* 0,27* 0,01 0,22* 0,12 0,56* 0,50* 0,41* 0,34* 0,32* 0,33*
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801 

Table 3: Pearson’s r coefficients between SD and the topographic variables. * marks those 802 

correlations that were statistically significant (<0.05) in at least the half of the samples (500 803 

out of 1000 samples) from the Monte Carlo approach, and bold r coefficients represent the 804 

best correlated topographic variable for a specific survey day.805 

806 

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

TPI -0,69 -0,53 -0,60 -0,59 -0,48 -0,40 -0,78 -0,72 -0,73 -0,80 -0,74 -0,72
Sx 0,11 0,28 0,26 0,20 0,16 0,36 0,31 0,43 0,37 0,38 0,31

Elev. 0,09 0,22 0,34 0,27 0,27 0,35 0,14 0,08 0,13
Slope -0,25 -0,29 -0,24 -0,21 -0,21 -0,10 -0,14 -0,16 -0,09 -0,15
North -0,22 0,13 -0,16 -0,12 -0,11 -0,11
East. 0,10 0,29 0,25 0,25 0,31 0,23 0,20

r2 0,45 0,31 0,40 0,47 0,33 0,25 0,65 0,63 0,60 0,60 0,57 0,51

807 

Table 4: Multiple linear regression beta coefficients for each independent variable and 808 

sampled day.809 

810 

811 

812 

813 

814 

815 

Snow season 2012 Snow season 2013 
22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06 

Elev. 0,09 0,26* 0,16 0,10 0,29* 0,19 0,09 0,18 0,13 0,18 0,21* 0,26*
Slope 0,06 0,18 0,02 -0,03 0,20* 0,03 0,25* 0,27* 0,20* 0,20* 0,21* 0,26* 
Curv -0,44* -0,45* -0,47* -0,49* -0,41* -0,37* -0,39* -0,40* -0,40* -0,39* -0,38* -0,38*

North -0,06 0,00 0,04 0,19 0,07 0,11 -0,38* -0,27* -0,19 -0,09 -0,06 -0,11 
East. 0,09 0,21* 0,13 0,13 0,13 0,11 0,25* 0,26* 0,27* 0,22* 0,18 0,14 
Rad 0,05 0,04 -0,06 -0,22* -0,12 -0,11 0,36* 0,21* 0,10 -0,09 -0,12 -0,23* 

TPI 25 -0,56* -0,46* -0,54* -0,58* -0,40* -0,32* -0,66* -0,68* -0,68* -0,66* -0,63* -0,61* 
Sx  0,22* 0,33* 0,34* 0,44* 0,32* 0,23* 0,56* 0,52* 0,49* 0,45* 0,42* 0,43*
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Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

TPI 83.2 78.8 75.0 71.7 74.0 66.9 49.1 56.4 64.4 71.2 69.9 77.5
Sx 4.6 12.7 13.4 10.8 45.9 23.1 23.0 21.8 20.1 12.5

Elev. 5.7 6.8 13.2 9.1 8.2 15.2 5.0 5.7 5.0 3.3 5.9 5.4
Slope 1.7 5.4 5.7 6.5 3.2 7.0 2.1
North 9.3 8.1 1.5 1.3 14.7 4.3 2.4 2.9 3.6
East. 1.2 1.3 1.1 1.0

r2 0.56 0.42 0.52 0.54 0.46 0.39 0.58 0.56 0.55 0.54 0.53 0.51
816 

Table 5: Contribution of the various topographic variables to the explained variance of SD 817 

distribution in the binary regression models for 2012 and 2013. Values have been rescaled 818 

from 0 to 100. 819 

820 

821 

822 

823 

824 

825 
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827 

828 

829 

830 
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832 

833 
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835 
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10. Figures  836 

837 

Figure 1: Location of the Izas experimental catchment, and the digital elevation model 838 

showing the positions of the scan stations and the automatic meteorological station. The two 839 

images in the bottom part of the figure, from Scan Station 1, show the terrain characteristics 840 

with (1) and without snow cover (2). 841 

842 
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843 

844 

 Figure 2: Daily average temperature, snow depth and net solar radiation at the automatic 845 

weather station (AWS) for the 2012 (left) and 2013 (right) snow seasons. The continuous 846 

lines represent the daily values for 2012 and 2013, and the dashed lines show the 25th and 847 

75th percentiles of historical daily series (1996–2011). The vertical dashed lines show the 848 

TLS survey days. Note that during some surveys no snow was present at the AWS, but some 849 

areas of the Izas experimental catchment were covered by snow. 850 

851 

852 

853 

854 
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Figure 3: Spatial distribution of snow depth in the Izas experimental catchment in the surveys 856 

undertaken in 2012 and 2013. 857 

858 

Figure 4: Wind roses from the automatic weather station placed at the catchment obtained for 859 

a 15 day period. 860 
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861 

Figure 5: Willmott’s D and r2 values between the observed and predicted SD, based on the 862 

multiple linear and binary regression models for all survey days. 863 

864 
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865 

Figure 6: Binary regression tree obtained for 2 May 2012(top) and 3 April 2013 (bottom). 866 

The final nodes (with ellipses) show the predicted SD in the zone having the specified terrain 867 

characteristics. At each branch point, one topographic variable is considered; if the value is 868 

less than the specified value, the left branch is selected, but if it is equal to or greater than the 869 

specified value, the right branch is selected. 870 


