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Abstract

In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite
was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which
we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level.
Accurate CryoSat-2 range measurements over open water and the ice surface on the order of5

centimeters are necessary to achieve the required accuracy of the freeboard-to-thickness con-
version. Besides uncertainties of the actual sea-surface height and limited knowledge of ice and
snow properties, the composition of radar backscatter and therefore the interpretation of radar
echoes is crucial. This has consequences in the selection of retracker algorithms which are used
to track the main scattering horizon and assign a range estimate to each CryoSat measurement.10

In this study we apply a retracker algorithm with thresholds of 40 %, 50 % and 80 % of the first
maximum of radar echo power, spanning the range of values used in current literature. By using
the selected retrackers and additionally results from airborne validation measurements we eval-
uate the uncertainties of sea-ice freeboard and higher level products that arise from the choice of
the retracker threshold only, independently from the uncertainties related to snow and ice prop-15

erties. Our study shows that the choice of retracker thresholds does have a significant impact
on magnitudes of estimates of sea-ice freeboard and thickness, but that the spatial distributions
of these parameters are less affected. Specifically we find mean radar freeboard values of 0.121
m (0.265 m) for the 40 % threshold, 0.086 m (0.203 m) for the 50 % threshold and 0.024 m
(0.092 m) for the 80 % threshold, considering first-year ice (multi-year ice) in March 2013. We20

show that the main source of freeboard and thickness uncertainty results from the choice of the
retracker and the unknown penetration of the radar pulse into the snow layer in conjunction with
surface roughness effects. This uncertainties can cause a freeboard bias of roughly 0.06 - 0.12
m. Furthermore we obtain a significant rise of 0.02 - 0.15 m of freeboard from March 2013 to
November 2013 in the area for multi-year sea ice north of Greenland and Canada. Since this is25

unlikely it gives rise to the assumption that applying different retracker thresholds depending
on seasonal properties of the snow load is necessary in the future.
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1 Introduction

Sea-ice thickness is an important parameter of the polar cryosphere where changes in its sea-
sonal cycle may cause significant negative feedbacks. There is already notable evidence for
thinning of the Arctic sea ice (Rothrock et al., 1999). Together with the rapid reduction of ice-
covered area (Comiso et al., 2008), especially during the summer season (Stroeve et al., 2012),5

the reduction of sea-ice volume in the Arctic might exceed the rate of ice extent decrease. There-
fore, long term observations of sea-ice thickness are required to assess current changes of Arctic
sea-ice thickness and its implications for a further reduction of the ice cover.

Basin-scale measurements of sea-ice thickness are currently carried out by satellite altimeter
missions. The altimetric sea-ice thickness retrieval is based on measurements of freeboard, the10

height of the ice-surface above the local sea level, which can be used to calculate ice thick-
ness (Kwok et al., 2009; Laxon et al., 2013). The radar altimeters onboard the ERS missions
(Laxon et al., 2003) have been the first that were used for Arctic sea-ice thickness retrieval,
followed by the Envisat mission. These pulse-limited radar altimeters had a comparably large
footprint between 2 and 10 km and a latitudinal limit of 81.5◦N (Connor et al., 2009). A better15

coverage up to 86◦N was possible with the ICESat mission, which featured a laser altimeter
with a significantly smaller footprint (70 m), but could be affected by clouds. The current satel-
lite altimeter dedicated to Cryospheric science is CryoSat-2, a mission of the European Space
Agency (ESA), which provides improved coverage of the Arctic up to 88◦N. It was launched in
April 2010 and is equipped with a Ku-Band radar altimeter (SIRAL - Synthetic Aperture Inter-20

ferometric Radar Altimeter). Its range retrieval enables the calculation of the sea-ice freeboard,
which is the height of the ice surface above the actual sea level. The sea-ice freeboard can be
converted into sea-ice thickness, assuming hydrostatic equilibrium (Laxon et al., 2003; Wad-
hams et al., 1992). Therefore it is crucial to measure the range to the main scattering horizon
very accurately.25

It has been suggested that Ku-Band radar waves do fully penetrate dry and cold snow (Beaven
et al., 1995). However, field experiments indicate that snow moisture and density layering may
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prevent a radar from ranging through the snow to the ice surface in Arctic spring conditions
over multi-year ice (Willatt et al., 2011).

The range to the main scattering horizon is estimated at the leading edge of the radar echo
waveforms (Tonboe et al., 2006). In synthetic aperture radar (SAR) altimetry, the waveform
consists of a stack of collocated beams, separated from different bursts by their doppler infor-5

mation. The range to the main scattering horizon is obtained by a retracker algorithm, either
an empirical threshold of the peak power or an empirical approximation of the entire wave-
form. Theoretical considerations of SAR altimetry suggest that the main scattering horizon is
located near the peak power and not at the half power point on the leading edge as it is the
case for conventional pulse-limited altimeters (Wingham et al., 2004). However, a variety of10

assumptions are used in the literature. Laxon et al. (2013) used a leading-edge 50 %-threshold
retracker, while in a recent study waveform fitting and the usage of forward model results in
an effective retracking near the waveform peak (Kurtz et al., 2014). In order to map land ice
elevations Helm et al. (2014) again focused on the lower part of the leading edge to minimize
spatial and temporal variations of the volume scattering contribution. The location of the main15

scattering horizon below the snow surface depends significantly on the choice of the threshold
or the empirical waveform fitting method. Kurtz et al. (2014) found a mean difference of 12 cm
between a 50 % threshold and a waveform fitting method with a near peak threshold during the
period 2011-2013. Therefore the choice of retracker adds to the existing uncertainty of physi-
cally limited penetration due to increased moisture, ice lenses in the snow layer or stratified high20

density snow. In addition, uncertainties arise due to variable footprint-scale surface roughness
and inaccurate reconstruction of the local sea-surface elevation.

The conversion of freeboard to sea-ice thickness again depends on the correct knowledge of
snow depth and the densities of sea ice and snow, all parameters not very well constrained by
observations at basin-scale. First comparisons of CryoSat-2 sea-ice thickness data (Laxon et al.,25

2013) with validation data from airborne experiments and moorings show a good agreement
on large scale, but scatter in the data comparison reflect the residual uncertainties cited above.
Quantifying these uncertainties is essential for trend estimates in sea ice and the use of CryoSat-
2 data, for example in sea-ice modeling studies, especially for data assimilation.
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Here, we present CryoSat-2 freeboard and thickness retrievals with consistent uncertainty
estimates in spring/autumn 2013, using different approaches for waveform interpretation. We
apply three different thresholds which span the range of values found in literature and access
their impact on CryoSat-2 Arctic sea-ice freeboard and thickness retrieval. The goal of our study
is to isolate and quantify the effect of SAR waveform interpretation from other uncertainties that5

arise from the freeboard processing and the freeboard to thickness conversion. We describe the
methodology and compare our findings to airborne datasets and other sea-ice remote sensing
products. The contributions of different uncertainty sources are analyzed for its impact on the
freeboard and thickness retrieval relative to assumptions to the CryoSat-2 radar echo interpre-
tation. We therefore investigate the effect of the retracker threshold range on the magnitude of10

Arctic sea-ice freeboard in spring and autumn.

2 Data and methodology

2.1 Radar freeboard

The term sea-ice freeboard usually refers to the elevation of the snow/ice interface above the
local sea level. With different altimetry sensor wavelengths we define the terminology of free-15

board (Fig. 1):

1. The ice freeboard refers to sea-ice freeboard as defined above. The lower wave propaga-
tion speed in the snow layer requires a correction based on assumed snow depth.

2. Snow freeboard: Elevation of the air/snow interface, which is sensed by laser altimetry.

3. Radar freeboard: Since the main scattering horizon may not coincide directly with the20

ice freeboard, we use the term radar freeboard for range measurements from CryoSat-2
(hereafter called CS-2). As for the ice freeboard the lower wave propagation speed in the
snow layer requires a correction based on assumed snow depth and penetration, but is not
applied for the radar freeboard in this study.
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Fig. 2 gives an outline of the steps in our data processing chain. To obtain radar freeboard it
is necessary first to relate range estimates from the satellite to the main scattering surface. We
use geolocated waveforms provided by ESA (L1b dataset, Baseline B) in both the SAR mode
and the SARIn mode which is applied in the western Arctic Ocean and coastal zones. SARIn
data additionally contain phase information of the returning echo. Since they are not used in5

this study and to keep consistence, the phase information is discarded (Kurtz et al., 2014).
We obtain the two-way delay time of the averaged radar echoes (waveforms) by applying a

TFMRA (Threshold-First-Maximum-Retracker-Algorithm) retracker (Helm et al., 2014). First,
the original waveform is oversampled by a factor of 10 and a running mean with a width of
10 bins is applied to smooth the oversampled waveform (grey line in Fig. 3). The noise in10

front of the leading edge is suppressed with a power threshold. Then, the first local maximum is
determined by the derivative of the curve. In the final step the leading edge of the first maximum
of the waveform is tracked at a certain threshold of the maximum power of the waveform. We
choose thresholds of 40 % (TFMRA40), 50 % (TFMRA50) and 80 % (TFMRA80) of the first-
maximum power to simulate the assumptions in Helm et al. (2014), Laxon et al. (2013) and to15

emulate the waveform fitting method used in Kurtz et al. (2014), that is tracking the leading
edge rather close to the peak.

We assume that the resulting range gives the distance to the main scattering horizon at the
individual threshold level. Fig. 3 shows typical CS-2 waveforms for sea ice and leads and the
different applied thresholds. As a result we receive geolocated ellipsoidal elevations of CS-220

data for each orbit over sea ice.
In the following step the mean sea-surface height product DTU10 MSS (Andersen, 2010)

is subtracted from the geo-located surface elevations to remove the main features of the actual
sea-surface height. This is done to reduce errors in regions where the actual sea-surface cannot
be obtained with sufficient accuracy due to the absence of leads.25

Then, by applying a lead detection algorithm, we automatically obtain the actual elevation
of the sea level in ice-free sections of the CS-2 ground tracks. Leads between ice floes usually
have far less surface waves than the open ocean and thus feature a distinct mirror-like peaky
waveform. On the other hand diffusive radar returns over snow covered and roughened sea-ice
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surface lead to a wider angular distribution and a significantly different shape of the radar wave-
forms. Radar echoes over open ocean with higher significant wave height again show specific
characteristics. In contrast to Laxon et al. (2013) we use the same retracker for both leads and
sea ice to avoid biases due to the usage of different retracker algorithms.

This surface-type dependance of radar waveforms is traditionally used to automatically clas-5

sify leads in the ice pack (Laxon, 1994; Drinkwater, 1991). We consider several waveform
parameters that are either available in the raw data files or can be computed from the wave-
forms. Table 1 gives an overview of these parameters and their assumed threshold values which
are used to distinguish between the surface types ’ocean’, ’lead’ and ’sea ice’. The surface
type ’lead’ may not represent a single, large lead, but a sea-ice surface that typically includes10

a few small leads within the footprint. We use the ’pulse peakiness’ PP that has already been
described in Giles et al. (2008); Peacock and Laxon (2004). It has to be noted that we used a
slightly different notation of the pulse peakiness in contrast to Laxon et al. (2013):

PP =

NWF∑
i=1

max(WF )

WFi
·NWF (1)

Here NWF represents the number of range bins and WFi the echo power at range bin index15

i. Thus PP can be transferred to values in Laxon et al. (2013) by a multiplication with a factor of
1/NWF . The second parameter is the ’stack kurtosis’ K which is a measure of peakiness of range
integrated stack power distribution (Wingham et al., 2006). Here the term ’stack’ refers to an
assembly of beam echoes which steer to a fixed point on the surface from different bursts. Spec-
ular reflections (narrow waveforms) from leads cause a high pulse peakiness as well as a small20

kurtosis. In contrast, echoes from sea ice are defined by waveforms with a wider power distribu-
tion and thus a lower peakiness. Further, the ’stack standard deviation’ SSD provides a measure
of the variation in surface backscatter with incidence angle of the different beam echoes that are
stacked (Wingham et al., 2006). Off-nadir reflections from leads can bias the range retrieval,
since only a little area is required in the radar footprint to dominate the waveform (Armitage25

and Davidson, 2014). Because those echoes do not show the typical specular reflection they are
7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

discarded by introducing a modified pulse peakiness which considers only three range bins on
the ’left’ (PPl) and on the ’right’ (PPr) of the power maximum of a waveform 3:

PPr =
max(WF )

mean([WFimax−3,WFimax−1])
· 3 (2)

PPl =
max(WF )

mean([WFimax+1,WFimax+3])
· 3 (3)5

For the coarse discrimination between ocean and sea-ice area (including leads) we use inter-
polated ice concentration from the daily OSI SAF ice concentration product (Eastwood, 2012).
To identify echoes from the ocean we additionally consider the ’OCOG WIDTH’, which is de-
rived from the algorithm of the OCOG retracker (Wingham et al., 1986). It provides information
about the ’width’ of the echo. Surface waves on the ocean cause a high OCOG WIDTH which10

can be used for the surface type discrimination. Radar echoes that are not assigned to one of the
surface types ’ocean’, ’lead’ or ’sea ice’ are assumed to be biased by off nadir leads and hence
are discarded.

2.1.1 Sea-surface anomaly

The surface-type classification parameters were initialized based on manual tuning of example15

CS-2 ground tracks where coincident aircraft validation data (see section 2.5) were available.We
use a linear interpolation on the ranges of the retrieved open water spots from leads. We then
apply a running mean with 25 km width as a low-pass filter to smooth jumps that occur in
dense lead clusters due to the signal noise. This procedure is done for each CS-2 track, yielding
the sea-surface anomaly (SSA), the deviation of the actual sea-surface elevation from the mean20

sea-surface height (Fig. 1).
As the next step, the remaining anomaly from the mean sea-surface height (sea-surface

anomaly SSA), that is obtained by the interpolated lead elevations is subtracted from the re-
tracked surface elevations L, which were identified as sea ice in the surface type discrimination.
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This is done for every single CS-2 track. The radar freeboard FR, which is not corrected for the
lower wave propagation speed in the snow layer, is then obtained by:

FR = L− (MSS+SSA) (4)

We finally only allow freeboard values within the interval −σl1b < FR < 2 m + σl1b, where
σl1b is the speckle noise (see section 2.3) that represents random uncertainty of the range mea-5

surement and therefore should represent the lower boundary.

2.2 Sea-ice thickness

We consider the ice freeboard as a function of the radar freeboard FR, corrected by the pene-
tration depth cp, a bias cr due to surface roughness effects and cw, the correction for the lower
wave propagation speed in the snow layer:10

FI = αFR + cp + cr + cw (5)

where α is a factor that represents the uncertainty due to the choice of the retracker threshold.
Considering the fact that the values of α, cp, cr and cw are uncertain, we do not apply correction
terms in this study to get a consistent comparison. Therefore we assume that the uncorrected
radar freeboard FR represents the ice freeboard FI . Nevertheless correction terms have been15

applied for the AWI CS-2 freeboard and thickness product which is available for public (Hen-
dricks et al., 2013).

The radar freeboard FR can be converted into sea-ice thickness T depending on the snow
depth S and the densities of snow (ρS), sea ice (ρI ) and sea water (ρW ). :

T = FR ·
ρW

ρW − ρI
+S · ρS

ρW − ρI
(6)20

9



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Corresponding to Laxon et al. (2013), we use the modified Warren snow climatology (W99)
to estimate the snow depth (Warren et al., 1999) in the absence of year around snow-depth obser-
vations for the entire Arctic Ocean. The climatology is based on observations from drift stations
in a period were the Arctic Ocean was dominated by multi-year sea ice. It is therefore likely
that the reduction of multi-year sea ice in the recent decade (Nghiem et al., 2007) may have5

impacted the distribution of snow-depth in areas that are now more often covered by seasonal
sea ice. Based on data from an airborne snow-depth radar, Kurtz and Farrell (2011) suggest
that though W99 is still representative for multi-year ice, but snow depth has to be reduced in
first-year ice regions by 50 %. We follow this approach and classify the ice cover in first-year
and multi-year sea ice using the daily ice type product from OSI SAF (Eastwood, 2012) and ap-10

ply the snow-depth reduction accordingly. This step was introduced by Laxon et al. (2013) for
CS-2 data processing. We additionally use the confidence level that is provided in the ice-type
product to allow a mixture of both types at the boundaries.

The snow density ρS is adopted from the Warren snow-water equivalent climatology (Warren
et al., 1999). Both snow depths and snow density are available as a monthly product. Consistent15

with the approach of Laxon et al. (2013) we use ice densities ρI of 916.7 kg/m3 for first-year
ice (FYI) and 882.0 kg/m3 for multi-year ice (MYI) (Alexandrov et al., 2010). Furthermore we
assume a value of 1024 kg/m3 for the water density ρW .

The freeboard-to-thickness conversion is applied for each individual CS-2 ground track. We
calculate ice thickness from an individual data point and not from a larger-scale averaged snow20

freeboard in order to allow estimation of individual uncertainties of retrieved thickness after
later spatial downsampling.

2.3 Uncertainty of freeboard and thickness

We consider two sources of uncertainties:

1. Random uncertainties that originate from random fluctuations during the measurement25

and usually can be minimized with increasing the number of measurements.

10
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2. A bias or systematic uncertainty has a assignable cause and the same magnitude for all
measurements and thus cannot be reduced by averaging.

In Wingham et al. (2006) different types of errors from CS-2 measurements over sea ice have
already been discussed. The first of which are errors that affect the range measurements, e.g.
speckle noise. Second, the uncertainty of the actual sea-level height (MSS + SSA), that affects5

the freeboard retrieval through Eq. 4. Third, there is an uncertainty of the location of the reflec-
tion horizon depending on the physical properties of the snow cover. It can be combined with the
uncertainty of the choice of the retracker threshold. Furthermore there are contributions which
arise from uncertainties in densities of the sea-ice layer and snow loading, directly affecting the
thickness retrieval through Eq. 6. Finally Wingham et al. (2006) considered potential high level10

errors due to limited recording of thin ice (<1 m). However this was observed for pulse limited
radar altimetry and is still not clarified for CS-2 (Laxon et al., 2013).

Fig. 4 provides an overview of all individual uncertainties that are incorporated into the free-
board and thickness uncertainty budget in this study. We acknowledge that this is only an ap-
proximation resulting from incomplete knowledge of the covariance of individual error contri-15

butions.
The random uncertainty of radar freeboard is assumed to be governed by the speckle noise

and the accuracy of the actual sea surface height. The latter depends on the abundance of de-
tected leads, which are needed for an accurate interpolation of the sea-surface anomaly. These
two uncertainties are considered to be uncorrelated.20

According to Wingham et al. (2006), the speckle noise that originates from instrument system
errors is assumed to be σl1b = 0.10 m for SAR mode and σl1b = 0.14 m for SARin mode. It affects
the lead elevations as well as the ice floe elevations. The lead coverage is variable, depending
on season, region and ice type. The SSA uncertainty σSSA is computed by taking the standard
deviation of the detected lead elevations within a moving 25 km window. In the absence of leads25

inside the moving window the uncertainty is given by the deviation of the interpolated SSA from
the mean CS-2 elevation. As a consequence it rises with decreasing density of detected leads

11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

along a CS-2 ground track. We can then estimate the uncertainty of an individual radar freeboard
measurement by adding the variances (Fig. 4):

σ2
FR

= σ2
l1b +σ2

SSA (7)

The choice of the retracker threshold in conjunction with the incomplete knowledge about
the penetration of the radar pulse and the effect of surface roughness causes a bias which is5

affecting all measurements in the same way. We quantify this bias by comparing the results of
using different retracker thresholds.

For the sea-ice thickness uncertainty we again separate between random uncertainties and
biases (Fig. 4). The random uncertainties are assumed to be uncorrelated an can be combined
via Gaussian propagation of uncertainty. For both types of uncertainties we have to calculate10

the partial derivatives of Eq. 6 as weights for the variances of the single variables to get the
contribution to the thickness uncertainty:

∂T

∂FR
=

ρW
ρW − ρI

∂T

∂ρS
=

S

ρW − ρI
∂T

∂ρI
=

FR · ρW +S · ρS
(ρW − ρI)2

15

∂T

∂S
=

ρS
ρW − ρI

(8)

The random thickness uncertainty of an individual measurement can then be determined by:

σ2
T =

(
∂T

∂FR
·σFR

)2

+

(
∂T

∂ρI
·σρI

)2

(9)

12
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using the result for the random uncertainty (σFR
) of radar freeboard (Eq. 7) and the uncer-

tainty of ice density (σρI ) that is adopted from Alexandrov et al. (2010) and is assumed to
be 35.7 kg/m3 for FYI and 23.0 kg/m3 for MYI. The contribution of uncertainties due to the
variability of water density are neglected (Kurtz et al., 2012).

Further uncertainties concerning the thickness retrieval are considered as biases and do not5

decrease due to averaging. As for the freeboard the choice of the retracker threshold in con-
junction with the incomplete knowledge about the penetration of the radar pulse and the effect
of surface roughness also affects the thickness retrieval. Furthermore the uncertainties of the
modified W99 snow depth and snow density due to inter-annual variabilities are assumed to
be systematic and cannot be treated as random uncertainties. Therefore we use the inter-annual10

variability of snow depth and snow-water equivalent, provided in Warren et al. (1999), to access
this potential bias. The OSI SAF ice-type product is applied to form the modified W99 snow
depth and the ice density field. The ice type product is provided with a confidence level that is
used as a measure of uncertainty. A wrong ice type classification biases both the snow depth
and the ice density.15

Each of the systematic uncertainties is multiplied with the partial derivative of the respective
variable (Eq. 8) to obtain the contribution to the thickness uncertainty.

2.4 Gridding

Including radar freeboard, snow depth, sea-ice thickness and all auxiliary data products, data
for one month are averaged on the EASE2.0 Grid (Brodzik et al., 2012) with a resolution of 2520

km. For averaging radar freeboard and thickness we use the weighted arithmetic mean which is
calculated from all processed data points within the boundaries of a grid cell. As weights we use
the squares of the individual random uncertainties. For radar freeboard and sea-ice thickness,

13
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each grid cell represents the mean value of data points classified as sea ice only, without the
open water fraction.

F̄, T̄ =

∑N
i=1

1
σ2
[Fi,Ti]

· [Fi,Ti]∑N
i=1

1
σ2
[Fi,Ti]

(10)

Due to monthly averaging the random uncertainties of the individual measurements decrease
with

√
N , leading to the random freeboard and thickness uncertainties of a grid cell:5

σF̄,T̄ =

√√√√ 1∑N
i=1

1
σ2
[Fi,Ti]

(11)

Since the W99 climatology bases upon in-situ measurements (Warren et al., 1999), regions
without or insufficient sampling should be excluded. Therefore we provide a sea-ice mask,
but exclude certain regions, e.g. Baffin Bay, the Canadian Archipelago and the region between
Greenland and Sewernaja Semlja below 80°N (Fig. 5a). Fig. 5b shows the data mask and an10

example of a monthly average snow depth field from March 2011.

2.5 Airborne data

The penetration of the radar pulse, the effect of surface roughness as well as the choice of the
retracking point is still under investigation. Laser altimetry is a valuable technique for their
evaluation because it is always referring to the snow freeboard (Fig. 1).15

Since 2003 the CryoSat Validation Experiment (CryoVex) is carried out over sea ice in the
northern hemisphere to directly validate CS-2 products. During the CryoVEx campaign in the
Lincoln Sea in spring 2011 the first coincident measurements by CS-2 and two research aircraft
were accomplished. Besides other sensors a laser scanner was mounted on board of the AWI
aircraft ’Polar 5’.20

14



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Airborne laser scanner (ALS) provide high-precision and high-resolution measurements and
thus are capable to evaluate measurements of the radar altimeter SIRAL on CryoSat-2. The
accuracy for the range measurements is about a few cm. The main limitation is due to GPS
positioning, especially for a longer baseline of more than 100 km (Forsberg et al., 2002).

The laser scanner has been operated at an altitude of 300 m with around 370 shot points each5

scan line and a point spacing of around 0.3 m. The spacing along track has been around 1 m.
We include two flights Into our analysis where we consider profile sections with a total length
of about 450 km in coincidence with CS-2. They were conducted over the Lincoln Sea on April
15 and 17, operated from the Canadian Forces Station Alert (Fig. 6a and Fig. 7a).

In consistence with the CS-2 processing the geolocated ALS elevations have to be referenced10

to the actual sea surface height. Therefore leads are picked manually from the ALS elevation
model. The sea-surface height is then determined along the center shot points by applying a
spline interpolation. The snow freeboard is obtained by subtracting the sea-surface height from
the geolocated ALS elevations.

In the following step ALS data are averaged over the respective CS-2 Doppler cell, which15

is assumed to cover an area of 300 m by 1000 m. In order to provide a consistent comparison
with CS-2 measurements the ALS data points are weighted, depending on the distance to the
respective CS-2 data point, that we assume to be located in the center of the CS-2 Doppler
cell. The averaging process is applied to accommodate the footprint geometry and therefore
the coarser resolution of CS-2 measurements. Finally every averaged value of the ALS data is20

assigned to a corresponding CS-2 data point.

3 Results

In this section we first describe the results from the freeboard CS-2 processing. Then we con-
sider results of the performance of different CS-2 retracker thresholds and their differences,
also using airborne laser altimetry as a reference. Finally contributions of uncertainties in the25

waveform interpretation are considered in the context of additional random and systematic un-
certainties.
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3.1 Radar freeboard retrieval

Fig. 6a shows the CS-2 mean radar freeboard retrieval from April 2011 using the TFMRA40
retracker. We find a mean radar freeboard of 0.3 m in the multi-year ice (MYI) region north of
Greenland and Canada and a mean radar freeboard of 0.16 m for first-year ice (FYI). For the
discrimination between FYI and MYI we use a monthly mean ice-type product. This originates5

from the CS-2 data processing where OSI SAF ice-type data are interpolated along each CS-2
ground track. As for the CS-2 freeboard and thickness retrieval the interpolated ice-type data
are averaged on the EASE2.0 grid over one month.

Fig. 6b shows a monthly mean of MESOP ASCAT backscatter from April 2011. The backscat-
ter is affected by the dielectric properties of the snow and the surface roughness that both change10

with the ice type. High backscatter indicates a rather rough surface and is usually associated with
MYI, whereas low backscatter rather indicates younger FYI. A slightly increased freeboard can
be observed in the East Siberian Sea. It occurs as higher backscatter (red dashed square). To-
gether with SSM/I passive microwave radiometer MESOP ASCAT backscatter is also an input
for the OSI SAF ice-type classification that is used to build the modified W99 snow depth as15

well as the ice density field.

3.2 Comparison with airborne laser altimetry (ALS)

Fig. 7 and Fig. 8 show ALS snow freeboard and uncorrected CS-2 radar freeboard FR for
different retracker thresholds. Gaps in Fig. 7b originate from discarded CS-2 data that were bi-
ased by off-nadir leads, insufficient retracking or poor quality in the ALS data. We additionally20

smoothed all data sets with a running mean of 10 km width to reduce noise and small scale
artifacts. The along track comparison in Fig. 7b shows some long scale agreement of the free-
board gradient, particularly between 150 and 200 km track distance on ground track 5428. This
counts for all of the three threshold retrievals. Nevertheless the magnitude of variations in the
ALS retrieval is higher than in the CS-2 freeboard.25

The TFMRA40 freeboard is the closest to the snow freeboard. The mean difference to the
snow surface is 0.21 m. The TFMRA50 freeboard is 0.1 m below the TFMRA40 freeboard in
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average. Both show very similar magnitudes of variations. This is also shown in the correspond-
ing probability density functions in Fig. 8. Here we use a relative probability that reveals the
modal freeboard as the peak of the function which represents the level ice. The tail represents
the fraction of deformed ice.

In contrast to the 40 % and 50 % threshold retrievals the TFMRA80 is very close to the5

sea level and deviates by a mean distance of 0.52 m to the snow freeboard. It also shows less
variation in magnitude, resulting in a narrow distribution (Fig. 8).

3.3 Freeboard and thickness from different retracker thresholds and uncertainties

Fig. 9 shows the uncorrected radar freeboard from March and November 2013 for each thresh-
old. Similar to Fig. 6 we find a significant increase of freeboard for the MYI north of Greenland10

and Canada of up to 0.55 m (40 %), 0.45 m (50 %), 0.3 m (80 %) , whereas FYI regions (e.g.
Siberian Sea) is characterized by a lower radar freeboard, especially in November. The patterns
are similar for all applied thresholds, but with different magnitudes.

Fig. 10 shows the corresponding random uncertainties to Fig. 9. They result from Eq. 7 and
Eq. 11 and show a latitude-dependent gradient. The mean uncertainties for FYI and MYI do not15

differ significantly and are between 0.01 m and 0.04 m except for the ice edge and land-fast ice
regions (e.g. Laptev Sea) where they can reach 0.07 m. Magnitude and pattern of the random
freeboard uncertainties are very similar for all applied thresholds.

Table 2 summarizes the corresponding mean values classified into FYI and MYI for the
use of different thresholds. Considering the results of the TFMRA40 retracker we find a mean20

radar freeboard of 0.12 m (0.25 m) for FYI (MYI) in March and 0.08 m (0.26 m) for FYI
(MYI) in November. In comparison to the TFMRA40 the TFMRA50 mean radar freeboard is
decreased by 0.04 m (0.06 m) for FYI (MYI) in March 2013 and 0.03 m (0.07 m) for FYI (MYI)
in November 2013. Considering the TFMRA80 mean radar freeboard we find a significant
decrease in comparison to the retrievals from using the other thresholds. The TFMRA80 mean25

radar freeboard is decreased by 0.10 m (0.17 m) for FYI (MYI) in March and 0.08 m (0.19 m)
for FYI (MYI) in November compared to the TFMRA40 retrieval. Furthermore the mean radar
freeboard for FYI of November 2013 shows a value which is negative and close to the sea level.
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Fig. 11 shows the spatial differences between the freeboard retrievals from using 40 %, 50
% and 80 % thresholds. In consistence with the mean differences in Table 2 we find only small
differences in the range of 0.05 m for FYI and up to 0.1 m for MYI between the 40 % and the
50 % threshold retrievals. Nevertheless the MYI pattern is slightly visible (Fig. 11a). In contrast
the difference magnitudes between the 40 % threshold and the 80 % threshold are higher and5

reach 0.15 m for FYI and 0.3 m for MYI (Fig. 11b). Besides the ice-type pattern there is also
a visible gradient within the MYI, showing higher differences north of Greenland of up to 0.35
m.

Fig. 12a shows the sea-ice thickness estimate from March and November 2013 together with
the corresponding uncertainty maps (Fig. 12b), using the 50 % threshold. Areas, where the W9910

climatology is not valid, have been excluded (Fig. 5). The spatial distribution is similar to the
radar freeboard retrieval and results from Eq. 6, without using a correction term for the signal
penetration into snow. The random thickness uncertainties are increased by a factor of around
10 and also feature the same pattern like the random freeboard uncertainties in Fig. 10.

Fig. 13 shows contributions to the systematic sea-ice thickness uncertainty for March 2013.15

The bias uncertainty of each parameter (e.g. snow depth, ice and snow density) is multiplied
with the corresponding partial derivative (Eq. 8) and hence gives the contribution to the thick-
ness bias. Fig. 13a shows the bias that results from the inter-annual snow depth variability. Here
we find values between 0.12 m (FYI) and 0.21 m (MYI) for March 2013. Fig. 13b shows the
bias resulting from the inter-annual snow density variability. It is between 0.10 m (FYI) and20

0.18 m (MYI). In contrast to Fig. 13a we find an inverse pattern for the ice-type dependency.
Fig. 13c shows the thickness bias that originates from the ice-type classification which is used
to construct the snow depth field. In contrast to Fig. 13a and b the bias features positive and
negative values with peaks at the boundary between FYI and MYI where the uncertainty of
the ice-type classification is relatively high. There we find values of up to ± 0.05 m for March25

2013. The same pattern, just inverse, is shown by the ice-density bias, that is induced due to the
ice-type classification (Fig. 13d). Here we find values of ± 0.04 m at the ice type boundaries.
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4 Discussion

In this section we first focus on the comparison between the retrievals from different retracker
thresholds. These results are then discussed in the context of the total error budget of the CS-2
freeboard and thickness retrieval where sources of uncertainty are separated into random and
systematic uncertainties.5

4.1 Differences between the retrievals of different thresholds

The comparison of the regional distribution of the CS-2 freeboard map from April 2011 with
ASCAT backscatter data shows similar geographical features. Since MYI is usually associated
with higher ASCAT backscatter both backscatter and freeboard should correlate. Local features
like a small area of potentially MYI in the Siberian sea are visible (red dashed box in Fig. 6a)10

in both datasets and give confidence that CS-2 is indeed able to capture actual distribution of
sea-ice types.

Considering the freeboard maps in Fig. 9 we find negative freeboard from applying the 80 %
threshold for FYI. It needs to be taken into account that the CS-2 freeboard retrievals have not
been corrected for the lower wave propagation in the snow layer which may lift up the freeboard.15

Therefore a correction term has to be added to FR. Regarding Matzler and Wegmuller (1987),
the correction can be applied by reducing the range below the snow/ice interface by the ratio
of vacuum speed of light to local speed of light in the snow layer (22 % for a snow density of
300 kg/m3). If the main scattering horizon is located in the snow layer, either to the physical
properties of the snow or due to the choice of a too low retracker threshold the snow propagation20

correction has to be applied by the fraction of penetration into the snow layer accordingly.
Considering the results of the direct comparison with airborne laser altimetry data we es-

timate the mean differences between snow freeboard and the CS-2 freeboard retrievals as the
distance that the radar signal propagated through the snow. Hence the mean CS-2 retrievals from
the different thresholds are elevated to 0.46 m (40 %), 0.39 m (50 %) and 0.22 m (80 %). With25

regard to the snow freeboard from ALS, this indicates a location of the main scattering horizon
of 0.16 m (40 %), 0.24 m (50 %) and 0.4 m (80 %) below the snow surface. Another airborne
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survey in the framework of Operation IceBridge (OIB) took place in the same area on the 15th
of April (green dotted line in Fig. 7a). The operating airplane carried a snow depth radar that is
able to map the snow depth along the flight track. The data reveal a mean snow depth of 0.31
m along the track (Kurtz et al., 2012, updated 2014). Furthermore from simultaneous in-situ
measurements on the ground we additionally know that the mean snow depth exceeded 0.3 m5

(Willatt and Haas, 2011). Thus if we assume this value as representative for this area, the 40
% threshold does not track the ice surface. Also the 50 % threshold seems to be too low which
is consistent with the conclusions in Kurtz et al. (2014). On the other hand the 80 % threshold
seems to be too high regarding the estimated snow depths. We acknowledge that the approach
of Kurtz et al. (2014) is significantly different and therefore our approach of using an 80 %10

threshold can yield different results. We also note that this comparison might be only valid for
the multi-year ice region north of Alert in spring. This implicates that in case of the 40 % and 50
% threshold we need to apply a geometric correction before converting freeboard to thickness
(Eq. 6). This has been done for the AWI CS-2 sea-ice product where a 40 % threshold was used.
Nevertheless the spatial and temporal variation of such a geometric correction term is unknown.15

The narrow probability density function of the 80 % threshold indicates less variations in the
upper part of the leading edge. We can speculate that the shallow probability density function
for the 40 % threshold and 50 % thresholds (Fig. 8) originate from volume scattering through
the snow layer which affects the lower part of the leading edge and leads to increased scattering
in the range retrieval.20

Considering the spatial differences between the retracker thresholds after gridding indicates
a flattened leading edge over MYI and a steep leading edge over FYI. A flat leading edge results
in increased range deviations between the retracker thresholds as it can be seen in Fig. 11. This
information could be used in the future to obtain an ice-type classification directly from the
CS-2 data, similar to the approach of Zygmuntowska et al. (2013). The gradient inside the MYI25

area in Fig. 11b seems to correlate with the gradient of the radar freeboard retrieval (Fig. 9)
and indicates that with increasing radar freeboard the leading edge is flattened which causes
increasing deviations between the retrievals of the different retracker thresholds.
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4.2 Major increase of multi-year ice freeboard in November 2013

In November 2013 we observe a major increase of radar freeboard in the MYI region north of
Greenland and Canada compared to previous November data and even March 2013 (Hendricks
et al., 2013). This counts for all thresholds, though for the 80 % threshold this increase is less
strong and only significantly appears north of Greenland and Canada. This can be considered5

as unlikely since March represents the end of the winter season and November a period shortly
after beginning of the freeze up. We can speculate that this an effect of a higher than usual
snow load in combination with a limited penetration of the radar pulse into the snow due to
non negligible volume scattering caused by ice lenses and possibly wet snow in the beginning
of the freezing season. This further implies that using retracker with 50 % and also a 80 %10

threshold do not track the ice surface in these conditions, which was assumed by Laxon et al.
(2013) and Kurtz et al. (2014). This agrees with results of recent work by Willatt et al. (2010)
and Willatt et al. (2011). They show that the CS-2 range estimates may only partially penetrate
into the snow layer, thus a penetration correction would be required. Their findings are based
on controlled ground-based Ku-Band radar experiments and aircraft validation data such as15

from the CryoSat-2 Validation Experiment (CryoVEx, see also section 2.5). Nevertheless the
comparison with airborne laser altimetry and the differences between the threshold retrievals
give rise to the assumption that the impact of volume scattering and/or surface roughness is
reduced using a threshold close to the peak.

Thus we can speculate how to accommodate the spatial and temporal variability of radar20

penetration in regions or periods where snow conditions can not be considered as cold and dry
without significant internal density contrast by ice lenses. In these scenarios where the main
scattering horizon is not penetrating the snow load completely the usage of a low-threshold
retracker might be reasonable to track the snow freeboard. On the other hand, in case of regions
where penetration is physically possible, a high-threshold retracker might be the better choice.25

It would include volume scattering and thus track the ice freeboard. Such a parametrization is
hypothetically at the moment and may result in significant biases if the choice of threshold is
not correctly timed with the actual snow conditions.
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4.3 The retracking uncertainty in the context of the total uncertainty budget

The random uncertainties of the radar freeboard are caused by the signal noise and the sea-
surface height uncertainty. They can be reduced by averaging inside a 25 x 25 km grid cell and
decrease with

√
N where N is the number of measurements to be averaged. Since the CS-2

track density within on month increases with higher latitude towards the North Pole this results5

in a latitude dependent gradient.
The systematic radar freeboard uncertainties originate from the choice of the retracker thresh-

old and both the physical penetration of the radar pulse and the surface roughness. Since these
uncertainties cannot be separated with sufficient accuracy they are treated as a combined contri-
bution. We try to estimate this uncertainty by evaluating the differences between the retrievals10

of the different thresholds. Between the 40 % and the 80 % threshold we find deviations of up
to 0.35 m for MYI whereas for FYI they remain below 0.1 m. This uncertainty can potentially
be reduced with the findings from the direct comparisons with laser altimetry were we relate
the threshold retrievals to the snow freeboard and estimated snow depths. Considering the mean
difference between the 50 % and 80 % retrievals we can roughly estimate an uncertainty of15

0.06 m (0.12 m) for FYI (MYI). Since this uncertainty has a systematic nature it can not be
reduced with averaging. Therefore it will dominate the total radar freeboard uncertainty since
the random uncertainty contribution is below 0.03 m, neglecting the marginal ice zones.

Considering the sea-ice thickness retrieval one has to separate again between random and
systematic uncertainties. The random uncertainties are composed of the random freeboard un-20

certainty and the variability of ice density. The composited random thickness uncertainty shows
the same pattern and features like the corresponding random freeboard uncertainty and basically
is increased by a factor of 10, which is caused by the freeboard-to-thickness conversion.

Due to the usage of auxiliary products (e.g. snow depth, snow and ice densities, ice type) the
sea-ice thickness product is affected by several systematic uncertainties. Their impact depends25

on the one hand on their individual uncertainty and on the partial derivative (Eq. 8) on the other
hand. Among the auxiliary data products the snow depth uncertainty that arises from inter-
annual variabilities dominates. With regard to Fig. 13a the inverse pattern for the snow depth
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variability results from multiplication with the partial derivative. The polarity of Fig. 13c and d
is caused by the nature of the ice-type product. Since a measuring point can be either flagged
as FYI or MYI the induced error can only point in one direction. Since the classification uncer-
tainty that we retrieve from the confidence level is most significant at the boundary between FYI
and MYI we also find the peak values in those regions. The ice-type induced ice-density uncer-5

tainty shows the same features, but with an inverse polarity. To combine these uncertainties it is
necessary to introduce covariances which is beyond the scope of this study. Therefore we only
consider the individual contributions of the systematic uncertainties. However, the systematic
uncertainties of the auxiliary variables can possibly not be reduced as long as they are used
(e.g. W99 climatology, OSI SAF ice-type product). Additionally we have to consider the bias10

caused by the choice of the retracker threshold in conjunction with the unknown penetration
of the radar pulse and the surface roughness. Due to the freeboard-to-thickness conversion it is
increased by a factor of approximately 10. This results in systematic uncertainties of 0.6 m (1.2
m) for FYI (MYI). Like for the freeboard retrieval this bias will dominate the total uncertainty.

However we do acknowledge that the assumption of uncorrelated random uncertainties and15

thus the reduction by averaging might be an insufficient description of certain factors. For ex-
ample the uncertainty of sea-surface anomaly can only be reduced by gridding if enough lead
detections exist. If none are available within one grid cell, the uncertainty contribution due to
the lack of leads would be constant for all CS-2 data points and not reduced by gridding. Also
temporal variations within one month are not included in these considerations, which might be20

significant during freeze-up and summer melt and result in visible orbit-patterns in the monthly
means. The temporal and spatial covariances between uncertainty contributions of freeboard
and thickness retrievals are only weakly constrained by observations, mainly in Arctic spring,
and thus we have limited our uncertainty estimation to a first-order level where we assume
correlation (systematic uncertainties) or no correlation (random uncertainties).25
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5 Conclusions

In this study we calculate CryoSat-2 radar freeboard retrievals with consistent uncertainty esti-
mates in spring/autumn 2013, applying three different thresholds for a threshold first-maximum
retracker algorithm (TFMRA). The choice of the thresholds is based on current approaches by
different scientific groups for CryoSat-2 data processing on Arctic sea ice. In general the appli-5

cation of all thresholds gives confidence that the freeboard retrieval represents the geographyical
distribution of sea-ice types. This is shown by direct comparisons with airborne laser altimetry
on a local scale as well as with ASCAT backscatter data on a basin scale.

Considering first-year ice (multi-year ice) in March 2013 we find mean radar freeboard values
of 0.121 m (0.265 m) for the 40 % threshold, 0.086 m (0.203 m) for the 50 % threshold and10

0.024 m (0.092 m) for the 80 % threshold. The comparison between the freeboard retrievals
from different thresholds and airborne laser altimetry indicate that the 40 % and 50 % thresholds
are tracking above ice surface, while the 80 % threshold tracks below the ice surface. However,
the freeboard maps show that the choice of retracker thresholds does have a significant impact
on magnitudes of sea-ice freeboard and thickness estimates, but that the spatial distributions of15

these parameters are less affected. Analyzing the differences between the freeboard retrievals of
different thresholds we find that the leading edge for multi-year ice (MYI) is less steep compared
to the leading edge of first-year ice (FYI). With Extraction of this information directly from
the CryoSat-2 data the usage of an auxiliary ice-type product would be redundant and could
therefore reduce the uncertainties.20

Our uncertainty estimates of the gridded data show values up to 0.03 m for random freeboard
uncertainties, neglecting the marginal ice zones. The main driver of their geographical pattern
are the density of CryoSat-2 ground tracks which causes a latitude-dependent gradient. In addi-
tion systematic uncertainties of roughly 0.06 m (0.12 m) for FYI (MYI) arise from the choice
of the retracker and the unknown penetration of the radar pulse into the snow layer. Consider-25

ing the freeboard-to-thickness conversion we have estimated the resulting uncertainties for the
thickness product and find a similar distribution for the random thickness uncertainties, multi-
plied by a factor of 10. Due to the usage of auxiliary products (e.g. snow depth, ice and snow
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densities and ice type) systematic uncertainties in the range between 0.01 - 0.2 m from each of
this variables have to be taken into account. However, the estimated systematic uncertainty of
roughly 0.6 m (1.2 m) for FYI (MYI) due the choice of the retracker and the unknown penetra-
tion of the radar pulse into the snow layer clearly dominates the current thickness uncertainty
budget.5

Depending on the threshold, the comparison between March and November 2013 retrievals
shows an increase of 0.02 - 0.15 m of radar freeboard in the MYI region north of Greenland and
Canada from March to November which is unlikely. It gives rise to the assumption that even
by applying an 80 % threshold retracker the radar does not penetrate through the snow layer
completely. Therefore we can anticipate a seasonal bias in the CryoSat-2 freeboard retrieval10

and higher level products.
Thus, for the future it would be useful to investigate different thresholds depending on the

properties of the snow load e.g. seasonal or location specific retrackers. To support this there is
a strong need for more information and measurements on the spatial and temporal variability of
snow properties.15
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Table 1. Waveform parameters and ice concentration thresholds used in the CryoSat-2 processing algo-
rithm to discriminate between the surface types ’Ocean’, ’Lead’ and ’Sea ice’: pulse peakiness PP, stack
kurtosis K, standard deviation SSD, peakiness PPl left of the power maximum, peakiness PPr right of
the power maximum, sea-ice concentration IC and the width of the OCOG box (OCOG WIDTH).

Waveform parameter

Type PP K SSD PPl PPr IC (%) OCOG WIDTH

Ocean 0≤PP≤10 ≥18.5 ≤5 ≥38
Lead ≥40 ≥40 ≤4 ≥40 ≥30 ≥70

Sea ice ≤8 ≤15 ≥70
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Table 2. Mean radar freeboard FR of gridded data for March and November 2013, discriminated between
first-year ice (FYI) and multi-year ice (MYI).

March 2013 November 2013

FYI (m) MYI (m) FYI(m) MYI (m)

TFMRA40 0.121 0.247 0.077 0.257
TFMRA50 0.086 0.187 0.048 0.190
TFMRA80 0.025 0.076 -0.004 0.065
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Fig. 1. Schematic diagram of parameters regarding the CryoSat-2 freeboard and thickness processing.
The actual sea-surface height is composed of the mean sea-surface height (MSS) and the sea-surface
anomaly (SSA). The radar freeboard is obtained by subtracting the actual sea surface from the range
retrieval over sea ice. In contrast to a laser altimeter (e.g. IceSat), the radar altimeter of CryoSat-2 can
penetrate the snow cover, depending on the snow properties.
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Fig. 2. Flowchart of the CryoSat-2 data processing algorithm.
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(b)(a)

Fig. 3. Typical CryoSat-2 waveforms for sea ice (a) and leads (b). The fitted waveform (grey) is a result of
linear interpolation and smoothing of the original CryoSat-2 waveform (black dots). The colored vertical
lines represent the different applied TFMRA (Threshold first-maximum retracker algorithm) thresholds
in this study: 40 % (TFMRA40), 50 % (TFMRA50) and 80 % (TFMRA80). Red circles mark the range
bins that are considered for the ’left-hand’ (dotted) and ’right-hand’ peakiness (solid).
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Fig. 4. Flowchart of the CryoSat-2 uncertainty budget for freeboard and thickness, showing the typical
range for the individual uncertainty of each parameter and referring to a single CryoSat-2 measurement.

34



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

(b)(a)

 sea-ice mask

Fig. 5. (a) Data mask, which is applied to calculate sea-ice thickness estimates. Only thickness data
within the dark grey area are considered as valid. (b) Snow depth from 03/2011 and data mask (solid
black line). Thickness data in excluded regions are discarded because the W99 snow depth fit is not valid
there.
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MYI mask

(a) (b)

   Fig. 7

Fig. 6. (a) CryoSat-2 mean radar freeboard of April 2011, retrieved by applying the TFMRA40 retracker.
It shows the area of coincident validation flights in April 2011 (black box, see Fig. 7). (b) METOP
ASCAT mean backscatter for 04/2011. The red dashed box marks a common feature of (a) and (b).
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Fig. 7. (a) Area of coincident flights of CryoSat-2 (CS-2) and Polar-5 (black box in Fig. 6) from April
15 and 17, 201. The green dotted line shows the track of Operation IceBridge (OIB) flight 1038 that
carried a snow depth radar. The aircraft surveyed the ascending CryoSat-2 tracks from the South East to
the North West. (b) Uncorrected TFMRA40, TFMRA50 and TFMRA80 radar freeboard of CryoSat-2
and snow freeboard from airborne laser altimetry (Laser) along CryoSat-2 tracks 5399 and 5428. For
the comparison only valid data from coincident coverage are considered. The Dots represent the original
data with a spatial resolution of 300 m. We additionally applied a running mean (10 km width, solid
lines).
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Fig. 8. Probability density functions corresponding to Fig. 7b. For the comparison only valid data from
coincident coverage are considered.

38



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

(a) (b) (c)

Fig. 9. Radar freeboard from different TFMRA (Threshold first-maximum retracker algorithm) retracker
thresholds for March (upper row) and November (lower row) 2013: (a) 40 %, (b) 50 % and (c) 80 %
threshold. The black polygon defines the averaged MYI zone, retrieved from the OSI SAF ice type
product.
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(a) (b) (c)

Fig. 10. Random freeboard uncertainties corresponding to Fig. 9: (a) TFMRA40, (b) TFMRA50 and (c)
TFMRA80. The uncertainties result from Gaussian propagation of uncertainty (Fig. 4).

40



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

(a) (b)

Fig. 11. Range differences between different TFMRA (Threshold first-maximum retracker algorithm)
retracker thresholds for March (upper row) and November (lower row) 2013. (a) TFMRA40 - TFMRA50,
(b) TFMRA40 - TFMRA80. The black polygon defines the averaged MYI zone, retrieved from the OSI
SAF ice type product.
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(a) (b)

Fig. 12. (a) CryoSat-2 Arctic sea-ice thickness from March and November 2013, applying the 50 %
threshold. (b) Random thickness uncertainties corresponding to (a). The black polygon defines the aver-
aged MYI zone, retrieved from the OSI SAF ice type product.
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(a) (b)

(d)(c)

Fig. 13. Contribution to the sea-ice thickness bias originating from (a) snow-depth variability, (b) snow-
density variability and ice type induced uncertainties of (c) snow depth and (d) ice density.
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