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Dear Referee #1,

Please find hereafter the answers to your comments, concerns and remarks regarding the article entitled :

“Of the gradient accuracy in Full-Stokes ice flow model: basal slipperiness inference”

by Nathan Martin and Jérôme Monnier

Sincerely yours,

N. Martin and J. Monnier



You expressed an important concern about the fact that our conclusions and results strongly rely on a
black-box type adjoint derivation, thus influencing the whole discussion and making the study not applica-
ble to a more generic setup.

Although it is true that the considerations regarding the computational burden when using an automati-
cally derived adjoint code are specific to this situation, all the assessments made regarding the accuracy of
the exact adjoint and the “self-adjoint” approximation are generic and valid for any implementation of the
adjoint problem (from a discretization of the continuous adjoint equations to a source-to-source differenti-
ation of the forward code). In addition, according to the published litterature, very few research teams have
access to an implementation of an exact adjoint solution for the full Stokes problem (whatever the method
considered for the implementation) and our results on the accuracy of this method (and the comparison with
the accuracy of the “self-adjoint” method commonly used in the glaciology community) are provided here
for the first time.

However, as you pointed it out several times, the considerations on the computational cost of the present
approach are, indeed, applicable only to this type of approach. But, we believe that automatic differentiation
is a recent but spreading tool for the implementation of inverse methods and that the community could be
interested in this specific aspect of the inverse approach. For instance, a very similar accumulation method
is used in Goldberg and Heimbach - Parameter and state estimation with a time-dependent adjoint ma-
rine ice sheet model, TCD 2013 for computing the adjoint associated to the non-linear L1L2 problem. As
a matter of fact, this reference should be added as a glaciological reference using algorithmic differentiation.

It is clearly of interest to provide the continuous adjoint equations when possible and, for the flow con-
sidered in the present work, the strong form of the adjoint equations and the effects of the “self-adjoint”
approximation are detailed in Section 3(c) of this letter as you suggested. However, the continuous adjoint
equations do not allow in general, to accurately assess the loss of precision and would provide a more visual
presentation of the approximation yet harder to numerically quantify.

Please find hereafter an answer point-by-point to your comments:

1 Title

(a) We thought of the “of” as a more litterary form (as in “Of mice and men”) but maybe “On” is more
suited.

(b) the capital “F” was just to somewhat recall the common acronym FS (for Full Stokes) used in the glacio-
logical community to designate the Stokes equation with a power-law rheology. The hyphenation can
be corrected.

(c) It is maybe a little confusing. However the gradient provided by a Newton method corresponds to the
linear tangent model which provide the same gradient as the adjoint code but restricted to a given di-
rection of derivation so it is not completely misleading. But the title can be modified for a more explicit
version.



2 Abstract

(a) Since the parameter β is preceeding the velocity it should be made homogeneous using the term “fric-
tion coefficient”, as you suggest.

(b) Attention will be paid to consistent use of terminologies in the revised version of the paper. Regarding
the differences between the three methods, Section 3 is mostly dedicated to their descriptions but maybe
some improvement could be made to refer precisely to each terminology using consistent denomina-
tions throughout the paper. It is a rather complicated matter to present in an abstract so we thought it
was fare to assume that the reader know about the self-adjoint approximation used in glaciology and
why it is not an exact adjoint method. The incomplete adjoint approach cannot really be introduced
without several things in mind such as the reverse accumulation technique and it seems difficult for
the abstract and the introduction to provide the exact meaning of this method but only state that it lies
inbetween the two others as a tunable one and address the reader to section 3 for the details.

(c) The accuracy of the adjoint-based gradient is studied itself mainly in section 3 using the gradient test
(which is a classical tool to assess the quality of the gradient provided by the adjoint code) and the
accuracy of the “self-adjoint “gradient is compared using the same test. Sections 4 and 5 present a
lot of variational (i.e. adjoint-based) data assimilation runs to infer the friction coefficient in various
context of frequency, density and noise. The results of identifications are compared in terms of preci-
sion using Morozov’s discrepancy principe and the computed gradients are also plotted for various slip
ratio. There is different ways of solving an inverse problem and the two most important would be the
stochastic approach (filter-based) and the variational approach (adjoint-based). It seems important to
precise which one is considered here and “inverse problems”seems a little bit to general.

(d) Since there are few statements in the litterature about what level of information can be retrieved about
the state of the bedrock from surface velocity observations through parameter identification, it makes
sense that Petra et al. compared their results to those of Gudmundsson et al. at least to demonstrate that
the exact adjoint method leads, as one can expect, to a smaller lower bound on reachable wavelengths in
the reconstruction of the basal friction coefficient. Concerning the comparison of our results with those
of Petra et al., methods are identical (i.e. based on the solution of the exact adjoint problem). Therefore
it is a clean and essential comparison.

3 Sections

Section 1.

(a) It can be done in the revised version. For the reference, since it is a rather general statement, we could
cite for instance “K. M. Cuffey and W. S. B. Paterson. The Physics of Glaciers. Academic Press, 2010.”.
and more precisely the introduction of chapter 7 on basal slip.



Section 2.

(a) The Paterson’s Physics of glaciers can be given as an ice flow modelling reference, possibly with Hutter
(1983).

(b) It does seem a little premature to give these finite elements specifications in the first sentence. However,
since it is part of the model description, we could move it to the end of subsection 2.1 along with the
fixed point algorithm. The hyphenation of finite element shall be removed in the revised version.

(c) It will be done in the revised version. The definition for the nt subscript is as follows:

We introduce (t,n), the tangent-normal pair of unit vectors such that:

σ = (σ ·n)n+ (σ · t)t (1)

with:

σ ·n = σnnn+ σntt , σ · t = σtnn+ σttt (2)

(d) Since the reference is still not available and the calculation of this Poiseuille-like solution for a power
law Stokes flow in a flat channel is fairly simple, it can be given in a short appendix or a reference to
the first author PhD thesis can be given instead.

(e) The reliability of Newton method for power-law flows is arguable. Although, it is true that the Newton
method provides a very good rate of convergence in close-to-linear cases (power-law exponent n close
to 1), this rate of convergence strongly deteriorates with increasing n (for instance n = 3 leads to a
superlinear convergence but rather far from the theoretical quadratic rate). In addition, the local aspect
of the Newton method can be a strong issue and the radius of its convergence disk is unknown. As a
matter of fact, numerical tests shows that a rather good first-guess (typically obtained from the fixed
point method) is required to obtain a converged solution. The slowly convergence of the fixed point
method remains an important issue that we actually addressed in the following adjacent work: Four-
field finite element solver for quasi-Newtonian flows and variational sensitivity analysis, N. Martin and
J. Monnier, SIAM-Journal on Scientific Computing, in minor revision. In this work, a new algorithm
for the solution of the power-law Stokes problem is built. This algorithm provides better computational
time with low memory needs. An archive version can be provided.
In the present context, it seemed unnecessary to go into those technical details since the aim is to ad-
dress the precision and efficiency of the inverse problem using any iterative algorithm and automatic
differentiation. For this purpose, the fixed point method seemed the simplest and most generic approach.

(f) An illustration of the geometry and notation can be added in the revised version

(g) There are several unfortunate choice of notation on our side leading to this unclear situation for n. The
Glen’s flow law exponent n is the one defined in equation (3) and it is the same one used in equation
(6) since this Poiseuille-like solution is depending on the exponent of the power-law rheology. The n
appearing in equations (19), (26) and (31) should be renamed, for example N , as it just represent the
upper-value for the summation and is equal to 3 for the three higher frequencies which are added to the
carrier wave.



(h) Since the only control variable used in this paper is the friction coefficient β, the additional notation of
k can be avoided. But in a more general description of the adjoint model, the vector k can include many
input parameters (such as the reference viscosity η0 or the power-law exponent n for example). On the
other hand, β is a vector since it is a function of x in every simulation (although it is taken constant for
the gradient test runs).

(i) We tried to be careful about that but we were not able to find an official rule for the transcription of
Russian names in latin alphabet. A quick look on internet provides three major transcriptions which
are Tikhonov, Tykhonov and Tychonoff. However the one you are proposing appears to be the most
frequent one and can replace the previous one.

(j) The
1

2
is missing before the misfit term (see equation (25)). However, all the values for γ provided in

the paper are based on the definition without the
1

2
so it would be a bit complicated to modify.

(k) It is, indeed, an unnecessary reference to the PhD thesis and the reference to Vogel is sufficient

(l) Since β is an output of the minimization algorithm and γ is an input, it seemed correct to write
j(β) = j(β; γ) using the semicolon notation. Though, the notation j(β; γ) can be used everywhere
in the revised version to be more consistent.

(m) In fact, the precise comparison is made between the cost j(β; γ) and the best theoretical reachable cost
j(βt; 0) where βt represents the target β.

(n) The terminology is used here to designates the fact that we are using synthetic data. However, noise is
added every time time in the presented “twin experiments”. Similarly, in section 3.1, the convergence
of the direct solver is limited to simulate a limited precision on the data (p.3865 lines 1-10). We could
not find the origin of the terminology “twin experiment”.

(o) This is a mistake and rounding errors should be removed from the list in the revised version.

(p) Since section 3 is dedicated to the assessment of the adjoint code precision using the gradient test and
since the most common gradient test uses order one finite difference scheme (because it is less com-
putationally expensive), it seemed important to give the formula we are actually using. And as you
recall, given the audience, it might be helpful. Sections 2.5.1 and 2.5.2 could be presented in para-
graph or combined instead of being numbered. Regarding the reference, it does not seem necessary
to cite a book for an order two centered finite difference scheme (it is more than classical). For the
precise gradient test procedure, although it is a quite standard method for validating an adjoint code, it
is rather difficult to find a reference describing this procedure elsewhere than in software manuals or
documentations so it seemed fare to cite the documentation of our own software. However, the book of
Gunzburger does deal with these problematics and the reference could be added.



Section 3.

(a) It is probably a poor choice of words. The “current model” is simply supposed to designate “our model”.
It could be replaced by “The model considered here” or “The present model”.

(b) The introduction of section 3 explains the whole procedure. It is not an artifact but the way automatic
differentiation handles iterative routines. This technique is called reverse accumulation. The given ref-
erences (for instance, Christianson (1994) or Griewank (1989) ) explain quite well this procedure. It is
not dependent of the linear or non-linear aspect of the forward problem but only on the iterative aspect
of its solve.

(c) Regarding the actual terms being neglected in terms of continuous adjoint equations, some more atten-
tion can indeed be paid. It is undoubtly an interesting aspect that does not appear in the first verion of
this work.

Omitting the lateral boundaries, the adjoint system writes (see e.g. Petra et al., “A Newton method for
inversion in a nonlinear Stokes ice sheet model “):

−div(Σ) = 0 in Ω (3)

div(v) = 0 in Ω (4)

Σn = uobss − u on Γs (5)

Σnt = β1/m
(
|uτ |

1−m
m vτ + (m− 1)|uτ |

1−3m
m (uτ ⊗ uτ )vτ

)
on Γfr (6)

v ·n = 0 on Γfr (7)

where v denotes the adjoint velocity and Σ the adjoint stress tensor is defined by:

Σ = 2η(u, n)

(
I +

1− n
n

D(u)⊗D(u)

‖D(u)‖2F

)
D(v)− Id q (8)

with q denoting the adjoint pressure, I the fourth-order identity tensor applied to order two tensors, Id
the second order identity tensor and ′⊗′ the tensor product.

This problem is a linear problem in v and depends on the forward velocity u.

The self-adjoint method consists in neglecting the non-linearity that it to say the dependence of the
viscosity and, in the present situation the friction condition, on the solution u. Equivalently, it corre-
sponds to set n = m = 1 in the adjoint system (3)-(7). It is straightforward from the previous system
to see that the corresponding adjoint operator, under this approximation (i.e. with m = n = 1), is in
fact the forward Stokes operator for a Newtonian fluid and a linear friction, hence the “self-adjoint”
terminology. This terminology is incorrect since, the forward velocity field u is generally computed
from the non-linear full-Stokes solve and leads then to a velocity-independent yet spatially variable vis-
cosity field and consequently to a non-symmetric problem (which cannot then represent a self-adjoint
operator).

First, the non-linearity of the forward problem appears in the definition of the adjoint stress given in

equation (8). The norm of the term
D(u)⊗D(u)

‖D(u)‖2F
is simply one (since ‖D ⊗D‖ = ‖D‖F × ‖D‖F



given a consistent choice of the fourth-order tensor norm with the Frobenius matrix norm). And the
norm of the identity tensor is known to be greater or equal to one (and typically equal to one for the
sup norm). It follows that the terms that are being dropped are comparable to the one that are kept in

the “self-adjoint” approximation for
1− n
n

close to one (2/3 for n = 3). It logically follows that the
greater the non-linearity (the n), the greater the non-linear contribution.

The other non-linearity comes from the non-linear friction law and appears in equation (6). A similar
calculation leasd to the exact same conclusion and for m > 1, the norm of the two terms following the
friction coefficient β are comparable.

As pointed out by Reviewer #2 Stephen Cornford, this fact is well observed in the gradient test results
performed for the “self-adjoint” approximation which provides a term |Iα − 1| always around 1.

As you suggested, these observations could really be of interest and support the results of our work so
they could be included in the revised version.

(d) The
1

2
is in place this time but the s of uobss is missing. It will be corrected in the revised version.

(e) The two terminologies designate the same problem. Since the “backward” terminology appears only
two times throughout the paper, it could just be replaced by the “adjoint” terminology in order to avoid
any confusion.

(f) The gradient test normally requires unnoisy data in view of validation. With noisy data, the constant
rate for the decreasing of the error could not be perfectly retrieved since the reference value provided
by the finite difference would not match the computed one. In this case it helps to demonstrate that the
incomplete reverse accumulation behaves well as the constante rate decay of the error remains the same
for the different thresholds of the forward problem. It also shows that even with perfect data and a very
good forward solution (ν = 10−8) the self-adjoint precision is bouded around 1 (see Section 3. (b) of
the present letter).

(g) The solution of the exact adjoint problem still requires one assembly of a linear system and one solve
whereas the self-adjoint method considers the tranpose of the last matrix of the non-linear loop of the
forward problem as the adjoint one. If a factorized version of this matrix has been stored then the so-
lution of the transpose problem can be extremely fast so it is still more expensive to solve the exact
adjoint problem than to use the self-adjoint approximation but the difference will be much smaller in
that case. A sentence can be added to make that point clear.

(h) see Introduction and Section 3. (b) of the present letter

(i) The direct solver designates the iterative solver used for the solution of the power-law Stokes problem
which is here the fixed point method.

(j) It is indeed a matter of debate although the following references could be cited as actual surface velocity
data providing this type of precision:



• I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon. Greenland flow variability from
ice-sheet-wide velocity mapping. Journal of Glaciology. 2010

• M. King. Rigorous GPS data-processing strategies for glaciological appli- cations. Journal of
Glaciology. 2004

• E. Rignot, J. Mouginot, and B. Scheuchl. Ice flow of the antarctic ice sheet. Science. 2011

Section 4-6.

(a) there is no obvious relation involving subscript i so a more compact form could be to put the three
frequencies in the same equation line. Another option could be to define three ni providing the three
wavelengths (for instance 2dx, 4dx and 10dx for friction coefficient (19)). These friction coefficients
are plotted on figure 4 for the three values of n and the reference to this figure is given on page 3869
line 15.

(b) They are defined by equation (19) as the indices of the discrete sum so they are indeed natural integers.
Maybe the integer interval notation J K could be used instead.

(c) It is due to the fact that for smaller noise the limitation of the ”self-adjoint” precision becomes more
and more visible whereas the exact adjoint behaves well. The smaller the noise, the more you need
an accurate adjoint to reach the best precision you can expect. It is actually an important aspect of the
present work since the proposed “incomplete adjoint method” aims to propose a method adjustable in
precision (and therefore in terms of computational cost) according to the accuracy of the data instead
of using only the ”self-adjoint” as is regardless of its limitations.

(d) This equation contains two mistakes hence the possible confusion. Parameters n and nt should be β
and βt (the target β). The same mistakes appears in the caption of Figure 5. The parameter L is not
defined and corresponds to the horizontal length of the computational domain.

(e) The sentence is not very clear. Here is a possible reformulation of the paragraph p.3870 lines 22-26:
” Figure 5 clearly demonstrates the inability, for the “self-adjoint” method, to provide a gradient accu-
rate enough for sufficiently low noise. For noise levels δ = 0.1% and δ = 0.01%, the “self-adjoint”
gradient does not allow the optimal misfit to be reached. Therefore, in these situations, the “self-adjoint”
approximation is theoretically not valid. However, as we will see, the “self-adjoint” method shows a
certain ability to retrieve the target parameter”

(f) It was supposed to mean “good identification” but it is unnecessary since the sentence speaks about the
best situation so the word “quality”could simply be removed.

(g) It should be “Section 2.1” instead of equation (2.1)

(h) The beginning of the sentence should be something like “The trend of over-fitting one can observe on
the final cost value for sufficiently small values of γ (...”



(i) It will be modified in the revised version

(j) The reverse accumulation process is not an artifact of the implementation (see Introduction and Section
3. (b) of the present letter). It is generally true that using an automatically differentiated adjoint leads to
higher computational costs. However, we believe that a major strength of the automatic differentiation
is its high flexibility and capability to provide the adjoint of complicated, non-linear systems without
requiring to achieve the analytical derivation of the adjoint equations. The needs for data assimilation
in geophysics become more and more tangible and, at the same time, numerical models become more
and more complex and refined and the time required to derive and discretize adjoint equations could be
a limitation that scientist cannot really overcome. On the other hand, our research interests have tried to
focus on this computationnally extensive aspect through the derivation of a fast and low-memory full-
Stokes solver (see Section 2. (e) of the present letter) and the incomplete adjoint approach proposed
here also tries to take into account this concern.

(k) The revised version of the paper will include a more compact yet efficient notation for these equations.

(l) It will be modified in the revised version.

(m) The main goal of this work is to assess the accuracy and reliability of the “self-adjoint” method be-
cause it is a widely used approach and, since the exact adjoint for the full-Stokes problem only became
available recently in the glaciological community (for example in our work), it seemed of importance to
use this tool to infer its numerical validity. So the conclusion tries to weight the pros and cons of both
method based on the results provided before. The main advantage of the “self-adjoint” method is the
time-saving it provides in general. Although the CPU-time saving will be smaller (yet strictly positive
as it is explained in section 3. (g) of the present letter) for a code implementing the discretization of the
continuous adjoint equation, it could be precised that the other aspect of time saving would be the fact
that it is straightforward to implement the “self-adjoint” approximation (which requires to transpose a
matrix) and that the implementation of the exact adjoint solution is a much more complicated matter
(whatever the method considered).

4 References

(a) To recall the “acronym”DassFlow. It can be modified

(b) It will be modified in the revised version (if the reference is maintained).

5 Language

Many remarks have been made by the reviewers regarding the language. A thorough attention to this aspect
will be paid in the revised version of the paper in order to provide a higher level of english.


