
Response'to'Referee'#3'
!

Attached(is(a(revised(manuscript(containing(the(changes(described(below(and(in(

our(responses(to(other(referees.(

(

We(apologise(for(the(late(response,(due(in(part(to(rewriting(our(analysis(code.(In(

doing(so(we(discovered(an(error(in(applying(the(SMB(sign(selection(to(the(100m(and(

50m(grid(cells(in(the(parameter(estimates.(Details(are(at(the(end(of(this(response.(

(

We(thank(Referee(#3(for(their(helpful(comments.(Detailed(replies(are(below.((

!

This!manuscript!provides!a!new!parameterization!of!the!surface!mass!balance!–!

elevation!feedback!for!the!Greenland!ice!sheet,!derived!from!the!regional!climate!

model!MAR.!They!derive!this!parameterization!using!a!set!of!8!RCM!experiments!

using!different!topographies,!and!different!climatologies.!Next!to!optimized!

values!of!the!‘SMB!lapse!rates’,!they!find!plausible!ranges!for!these!values,!using!

a!Bayesian!statistical!approach,!which!enables!them!to!constrain!results!(in!a!

companion!paper)!with!credibility!intervals.!This!is!an!important!subject!that!

potentially!bridges!the!gap!between!(regional)!climate!models!and!ice!sheet!

models,!circumventing!synchronously!coupled!experiments.!Therefore!it!

contributes!to!constraining!an!important!uncertainty!in!the!discussion!on!the!

future!contribution!of!ice!sheets!to!sea!level!change.!The!manuscript!is!well!

written,!and!the!methodology!well!described.!

!

Although!this!work!is!important!and!worth!publishing,!there!are!some!points!

that!I!would!like!to!see!addressed!before!publication:!

!

My!most!important!point!concerns!the!choice!of!the!authors!to!discard!any!

spatial!variability!in!their!soNcalled!“SMB!lapse!rate”!(apart!from!a!difference!

between!north!and!south),!to!make!their!parameterization!simple!to!implement!

and!easy!to!apply.!However,!these!results!show!that!there!is!a!large!variability!

and!a!clear!spatial!pattern!of!the!SMB!adjustment!as!a!function!of!elevation!

changes.!This!is!most!evident!in!the!reversed!(negative)!values!of!the!SMB!lapse!

rate!along!the!western!(NonUn!exp)!and!northern!(N100!m!and!N50!m!exp)!ice!

sheet!margin,!the!different!∆S/∆h!slopes!for!the!north!and!south,!and!

accumulation!and!ablation!areas,!but!also!from!the!large!variability!apparent!in!

the!scatter!plots!of!figure!5,!and!different!slopes!of!the!arrows!in!figure!4.!

Although!there!is!evidently!a!spatial!pattern!in!the!SMB!lapse!rate,!the!authors!

refrain!to!show!plots!of!this.!Usage!of!a!single!value!is!preferred!(more!

specifically!4!values!based!on!accumulation/ablation,!north/south)!to!enable!an!

easy!use!in!ISM!experiments,!at!the!cost!of!loss!of!spatial!patterns.!Could!the!

authors!give!more!information!on!this!spatial!structure,!for!example!by!

extending!figure!2!with!two!plots!showing!the!spatial!distribution!of!∆S/∆h?!This!

allows!an!easy!comparison!to!other!SMB!lapse!rates!as!provided!by!e.g.!Helsen!et!

al!(2012).!Do!these!patterns!look!alike?!How!do!absolute!values!of!the!SMB!lapse!

rate!compare?!Another!consequence!of!this!approach!is!that!all!the!spatial!

variability!found!in!the!SMB!lapse!rates!translates!into!(maybe!too)!large!

credibility!intervals!(CIs).!



The(limitations(of(using(a(fourHvalued(parameterisation(are(discussed(in(the(text(

and(can(be(seen(in(Figs.(8(and(9((results(for(the(best(estimate(parameterisation):(in(

particular,(the(parameterised(SMB(response(along(the(western(margin(is(negative(

everywhere(while(the(target(SMB(response(is(positive(along(the(outer(edge((due(to(

the(barrier(wind(mechanism(described(in(Section(2.1),(and(in(the(northwest(the(

parameterised(response(is(more(uniform(than(the(target.(However,(the(largeHscale(

features(are(captured((Figs.(8,(10),(and(much(of(the(spatial(variability(is(

represented(by(the(CIs,(so(we(feel(a(simple(parameterisation(is(adequate.(As(

discussed(in(the(text,(we(did(test(a(parameterisation(structure(with(elevation(

dependence(but(this(did(not(perform(significantly(better(at(reproducing(the(target.(

(

We(believe(it(is(better(to(use(a(simple(parameterisation(with(wide(credibility(

intervals((where(the(width(is(induced(by(our(incorporation(of(the(spatial(

variability)(than(to(overHtune(the(parameterisation(to(our(specific(simulations.(

!

At!first!it!seems!very!straightforward!to!make!a!distinction!between!SMB!lapse!

rates!above!and!below!the!equilibrium!line.!However,!looking!at!figure!4,!it!

seems!that!the!true!shift!in!functional!form!of!the!SMB!–!elevation!relation!lies!

somewhat!above!the!equilibrium!line.!This!mainly!results!from!the!interplay!

between!the!(quite!straightforward)!decrease!of!runNoff!with!elevation,!and!the!

more!complex!relation!of!precipitation!with!elevation.!I!understand!that!the!

authors!wish!to!keep!this!distinction!at!SMB!=!0!for!simplicity!and!applicability!in!

transient!ISM!runs,!but!it!would!be!valuable!to!add!a!discussion!on!this!subject.!

For!example,!a!consequence!of!this!choice!is!that!the!optimal!values!of!SMB!lapse!

rates!as!reconstructed!for!the!accumulation!area!are!still!positive,!whereas!for!

some!areas!this!is!not!right:!where!precipitation!decreases!when!elevation!

increases,!and!other!components!of!the!SMB!are!of!minor!importance.!This!

occurs!in!the!southeastern!sector!of!the!ice!sheet,!as!suggested!by!the!red!pixels!

in!figure!2.!Related!to!this!issue:!on!page!643,!lines!20N23:!The!fact!that!a!

complex!relation!between!SMB!and!elevation!is!found!above!the!ELA!is!

worrisome!for!the!use!of!a!single!value!for!the!SMB!lapse!rate.!

We(are,(of(course,(not(using(single(values(but(probability(distributions(for(these(

very(reasons.(The(distributions(cross(zero,(therefore(incorporating(both(positive(

and(negative(values.(We(believe(we(have(made(this(uncertainty(in(the(relationship(

a(clear(focus,(and(that(a(single(value(from(each(distribution(would(not(be(sufficient(

to(represent(the(full(range(of(SMBHelevation(relationships.(We(choose(to(sample(this(

uncertainty(with(a(perturbed(parameter(ensemble(of(ice(sheet(simulations(

(analogous(to(previous(work(in(climate,(e.g.(Sexton(et(al.(2012),(rather(than(

multiple(parameter(values(within(a(single(simulation.((

!

Using!different!values!of!SMB!lapse!rates!north!and!south!of!77N!may!lead!to!

unexpected!results.!To!which!extent!can!this!parameterization!be!used!in!ISM!

transient!runs?!What!if!the!ice!sheet!retreats!from!north!to!south,!and!passes!

77N,!then!a!sudden!shift!in!ice!sheet!retreat!will!occur.!Some!comment!on!this!

choice!is!needed.!More!general,!it!is!likely!that!different!climatic!regimes!will!also!

result!in!different!SMBNelevation!responses.!What!is!the!authors!opinion!on!this?!

We(agree,(which(is(why(we(incorporate(two(climatic(regimes(in(our(estimates(of(the(

parameters((ECHAM5(A1B(2000H2019(and(2080H2099;(discussed(in(more(detail(in(

Rae(et(al.,(2012;(Fettweis(et(al.,(2013).(We(have(added(the(following(to(the(



discussion:(“We(note(that(the(parameterisation(may(not(be(robust(for(changes(in(

elevation(and(SMB(much(greater(than(those(in(the(NonUn(A1B(2080H2099(

simulation….Boundaries(can(lead(to(unexpected(edge(effects.(If(the(ice(sheet(were(to(

retreat(past(77degN(then(the(parameterisation(would(shift(to(using(only(the(South(

values,(i.e.(a(larger(response.(However,(as(we(have(discussed,(we(would(not(

recommend(using(this(parameterisation(for(elevation(and(SMB(changes(far(beyond(

our(simulations….(We(include(only(one(boundary(rather(than(several(to(minimise(

edge(effects.”(

!

Minor'comments'
!

Abstract,!last!line:!This!is!a!matter!of!taste,!but!isn’t!it!better!to!restrict!the!

content!of!the!abstract!to!results!of!this!paper,!not!of!those!in!a!companion!

paper?!

Agreed(–(we(have(deleted(this(sentence.(

!

Page!639,!line!7:!RCM!is!defined!twice,!also!on!line!4.!

Thanks!(Fixed.(

!

Page!640,!paragraph!starting!on!line!12:!I!had!to!read!this!paragraph!a!couple!of!

times,!and!I!still!think!it!is!not!clear.!This!paragraph!needs!to!be!rewritten,!I!think!

you!mean!something!like!this:!“Is!we!are!to!simulate!SMB!over!time!and!also!

include!the!effect!of!the!ice!dynamical!response!(i.e.!topography!changes)!on!

SMB,!we!must!either!couple!an!ISM!and!RCM,!or!use!an!ISM!forced!with!RCM!

output,!and!additionally!parameterize!the!SMB!–!elevation!feedback!in!terms!of!

an!“SMB!lapse!rate.”!Also!in!the!next!lines,!it!is!not!really!clear!if!there!is!a!

difference!between!the!coupling!of!an!ISM!with!a!GCM!or!RCM.!

We(agree!(We(have(replaced:((

“If(we(are(to(simulate(SMB(with(an(RCM,(and(also(incorporate(the(ISM(dynamical(

response((in(contrast(to(Rae(et(al.(2012;(Fettweis(et(al,(2012),(we(must(either(

couple(the(two(models(or(parameterise(the(relationship(in(terms(of(an(`SMB(lapse(

rate'.(Coupling(an(ISM(to(a(GCM(is(rarely(done(because(it(is(technically(challenging(

(one(example(is(Ridley(et(al,(2005);(coupling(an(ISM(to(an(RCM((even(if(it(is(a(GCM(

with(different(settings(for(processes(and(resolution)(has(even(more(difficulties,(

because(the(RCM(is(so(expensive(to(run(and(the(GrIS(responds(on(longer(time(scales.(

On(top(of(this,(the(expense(of(the(RCM(usually(prohibits(sampling(of(uncertainties(

due(to(poorlyHconstrained(RCM(or(ISM(parameters,(or(the(structure(of(the(ISM.”(

(

with:(

“If(we(are(to(simulate(SMB(with(an(RCM(and(how(that(SMB(is(affected(by(ice(

topography(changes((unlike(Rae(et(al.(2012;(Fettweis(et(al,(2012),(we(must(either(

couple(an(ISM(to(an(RCM,(or(else(force(an(ISM(with(RCM(output(using(a(

parameterisation(of(the(relationship(in(terms(of(an(`SMB(lapse(rate'.(Coupling(an(

ISM(to(a(GCM(or(RCM(is(rarely(done(because(it(is(technically(challenging((one(

example(is(Ridley(et(al,(2005),(and(because(the(climate(models((particularly(RCMs)(

are(too(computationally(expensive(to(simulate(the(time(scales(of(longHterm(ice(

sheet(response.(The(computational(expense(also(drastically(limits(the(opportunities(

to(perform(multiple(simulations(to(sample(uncertainties(in(modelling(choices.”(

!



Page!641,!line!24:!unlike!most!RCMs,!it!includes!the!albedo!feedback.!Which!

RCMs!are!implied!here?!In!the!manuscript,!a!couple!of!other!RCMs!are!

mentioned,!like!RACMO,!HIRHAM.!I’m!quite!sure!that!RACMO!also!includes!the!

albedo!feedback.!

We(have(changed(this(to:(“MAR(is(one(of(the(few(RCMs((another(is(RACMO2/GR)(

that(includes…”(

!

Page!646,!line!27!–!page!647!line!5:!It!is!argued!that!the!reason!for!not!using!

spatially!variable!gradients!is!because!this!method!is!independent!of!the!shape!of!

the!ice!sheet,!but!this!method!is!also!influenced!by!the!shape!of!the!ice!sheet.!

We(have(changed(this(to(“A(spatiallyHvarying(parameterisation(would(be(tailored(

to(the(current(shape(of(the(ice(sheet”.(

!

Page!647,!line!5:!The!fact!that!parameterizations!in!PDD!schemes!also!do!not!

vary!spatially!and!temporally!is!actually!a!manifestation!of!a!shortcoming!of!PDD!

schemes,!see!Bougamont!et!al!(2007,!JGR)!and!Van!den!Broeke!et!al.!(2010,!GRL).!

Agreed:(sentence(deleted.(

!

Page!648,!line!12:!add!∆?!

Thanks!(Fixed.(

!

Page!655:!Regarding!the!differences!of!this!approach!relative!to!other!published!

parameterizations!of!such!SMB!lapse!rates:!it!should!be!noted!that!Helsen!et!al.!

did!include!validation!experiments!in!which!they!used!RCM!runs!with!different!

topographies,!which!showed!that!their!approach!resulted!in!good!agreement!

with!their!spatial!SMB!gradients.!

We(have(changed(this(to:(“Helsen(et(al.((2011)(do(not(use(altered(topography(to(

estimate(their(SMB(gradients,(though(they(do(to(assess(their(performance.”(

(

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH(

!!

When(rewriting(the(code(we(fixed(the(error,(removed(some(unnecessary(rounding,(

and(restructured(it(which(means(the(random(seed(for(each(bootstrap(sample(has(

changed.(The(old(parameter(values(were:!

(

North_neg:((H0.22,(0.54,(1.34(

South_neg:(1.03,(1.89,((2.61(

North_pos:(H0.03,(0.09,((0.22((

South_pos:(H0.07,(0.06,((0.56(

(

The(new(results(with(the(bug(fix,(removed(rounding,(and(new(random(seed(are(as(

follows((2.5%,(best(estimate,(97.5%;(differences(in(bold):(

(

North_neg:(H0.22,(0.56,(1.33(
South_neg:(1.03,(1.91,(2.61(
North_pos:(H0.03,(0.09,(0.23(
South_pos:(H0.07,(0.07,(0.59(
(



All(changes(are(at(the(rounding(level((0.01),(except(the(best(estimate(of(North_neg(

and(South_neg((0.02)(and(the(upper(CI(bound(on(South_pos((0.03).(

(

The(sensitivity(tests(have(also(been(updated,(and(have(now(been(rounded(to(2d.p.(in(

line(with(the(main(results.(The(old(and(updated(values(are:(

(

CAUCHY((

Old:(“the(CI(widths(decrease(by(54H84%,(and(the(best(estimates(increase(by(15H42%(

for(three(of(the(gradients(and(194%((from(0.063(to(0.185(kg(m^{H3}(a^{H1})(for(

b^S_p.”(

New:(“the(CI(widths(decrease(by(54H84%,(and(the(best(estimates(increase(by(13H

38%(for(three(of(the(gradients(and(186%((from(0.07(to(0.20(kg(m^{H3}(a^{H1})(for(

b^S_p.”(

(

SIGMA((

Old:(“Changing(sigma(from(20(to(15(or(25~Gt(does(not(affect(the(best(estimates(

much((±2H8%)(except(for(the(smallHvalued(b^S_p((+30%(and(H41%(respectively).(

Increasing(or(decreasing(sigma(by(5~Gt(has(the(effect(of(increasing(or(decreasing(

the(CI(widths(by(10H20%.”(

New:(“Changing(sigma(from(20(to(15(or(25~Gt(does(not(affect(the(best(estimates(

much((0H11%)(except(for(the(smallHvalued(b^S_p((43%).(Increasing(or(decreasing(

sigma(by(5~Gt(has(the(effect(of(increasing(or(decreasing(the(CI(widths(by(12H24%.”(

(

SAMPLING((

Old:(“Shifting(both(the(longitudinal(and(latitudinal(offsets(by(H3(cells(gives(a(small(

decrease(in(the(best(estimate((0(to(H3%),(while(offsets(of(H2,(H1(and(+1(all(give(higher(

best(estimates((16H32%,(except(b^S_p(60H92%).(The(effect(on(CI(width(is(also(mixed;(

the(largest(effect(is(on(b^S_p,(an(increase(of(19H30%.”(

New:(“Shifting(both(the(longitudinal(and(latitudinal(offsets(by(H3(cells(gives(a(small(

decrease(in(the(best(estimate((0(to(H4%),(while(offsets(of(H2,(H1(and(+1(all(give(higher(

best(estimates((15H34%,(except(b^S_p(71H100%).(The(effect(on(CI(width(is(also(

mixed;(the(largest(effect(is(on(b^S_p,(up(to(26%.”(

(

BANDWIDTH(

Old:(“Using(automatically(set(bandwidths((0.4(kg(m^{H3}(a^{H1}(below(the(ELA,(

0.02(kg(m^{H3}(a^{H1}(above)(gives(much(wider(CIs,(but(appear(to(oversmooth(the(

distributions(for(SMB(<(0(and(undersmooth(the(distributions(for(SMB(>=(0(

(especially(in(the(south).(Changing(our(bandwidths(from(0.15(to(0.1(or(0.2(kg(m^{H

3}(a^{H1}(below(the(ELA(and(from(0.05(to(0.03(or(0.07(kg(m^{H3}(a^{H1}(above(

affects(the(CI(widths(by(small(amounts(±0H5%,(except(for(b^N_p((H21(to(24%).”(

New:(“Using(automatically(set(bandwidths(gives(wider(CIs,(but(oversmooths(the(

distributions,(for(SMB(<(0(and(narrower(CIs,(but(undersmooths(the(distributions,(

for(SMB(>=(0.(Changing(our(bandwidths(from(0.15(to(0.1(or(0.2(kg(m^{H3}(a^{H1}(

below(the(ELA(and(from(0.05(to(0.03(or(0.07(kg(m^{H3}(a^{H1}(above(affects(the(CI(

widths(by(small(amounts(±0H6%,(except(for(b^N_p((H23(to(27%).”(

(

!

!
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Abstract

We present a new parameterisation that relates surface mass balance (SMB: the sum
of surface accumulation and surface ablation) to changes in surface elevation of the
Greenland ice sheet (GrIS) for the MAR regional climate model. The motivation is to
dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with5

SMB simulated by MAR while incorporating the SMB-elevation feedback, without the
substantial technical challenges of coupling ice sheet and climate models. This also
allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution
to sea level, using multiple global climate and ice sheet models, without the need for
additional, expensive MAR simulations.10

We estimate this relationship separately below and above the equilibrium line altitude
(ELA, separating negative and positive SMB) and for regions north and south of 77� N,
from a set of MAR simulations in which we alter the ice sheet surface elevation. These
give four ‘SMB lapse rates’, gradients that relate SMB changes to elevation changes.
We assess uncertainties within a Bayesian framework, estimating probability distribu-15

tions for each gradient from which we present best estimates and credibility intervals
(CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly
positive, because SMB usually increases with elevation: 0.54 (95% CI: -0.22 to 1.34)
kg m�3 a�1 for the north, and 1.89 (1.03 to 2.61) kg m�3 a�1 for the south. Above the
ELA the gradients are much smaller in magnitude: 0.09 (-0.03 to 0.22) kg m�3 a�1 in20

the north, and 0.06 (-0.07 to 0.56) kg m�3 a�1 in the south, because SMB can either
increase or decrease in response to increased elevation.

Our statistically-founded approach allows us to make probabilistic assessments for
the effect of elevation feedback uncertainty on sea level projections (Edwards et al.,
2013).25
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1 Introduction

Over the past two decades the Greenland ice sheet (GrIS) has been losing mass at
an increasing rate, on average 142 ± 49 Gt a�1 with a total contribution to global sea
level of about 8 mm (Shepherd et al., 2012). The GrIS has the potential to raise global
sea level by several centimetres this century, and more in the next, with larger regional5

changes. The sensitivity of the GrIS to climate change is not well-known (IPCC, 2007),
so it is important to improve estimates of its response and make projections of the
resulting contribution to sea level over the next one to two centuries to inform policy
and planning. Underestimating sea level rise would leave coastal cities around the
globe at risk, while overestimating it could result in unwarranted expenditure on coastal10

defence. Projections should therefore include probabilistic assessments of uncertainty
if they are to provide the most robust and complete information for making decisions.

Predictions of the GrIS response to projections of future climate change are made
with physically-based ice sheet models (ISMs) forced with climate model simulations.
ISMs simulate both parts of ice sheet response: the flow of ice subject to its bound-15

ary conditions (dynamic); and surface mass balance (SMB), which is the balance of
ice gain by snowfall (accumulation) versus loss by meltwater runoff (ablation). How-
ever, SMB models included in ISMs are usually rather simple. Most often they use
an empirically-derived positive degree-day (PDD) scheme, in which melting is param-
eterised as a function of the sum of daily air temperatures above melting point, and20

runoff is usually modelled from temperature and precipitation with a simple snow pack
model (e.g. Janssens and Huybrechts, 2000). Daily climate means are often approxi-
mated from seasonal means to reduce the input dataset size.

At the other end of the spectrum of model complexity are regional climate models
(RCMs). These simulate the atmosphere and surface over a limited spatial domain,25

with higher spatial and temporal resolution than global climate models (GCMs), and
are forced at their boundaries with GCM simulations or reanalysis data such as ERA-
40. Some RCMs, such as MAR (Modèle Atmosphérique Régional: Fettweis, 2007)

3



and RACMO2/GR (e.g. Ettema et al., 2009), include complex snow-ice schemes that
represent many of the physical processes that govern SMB. Such RCMs have been
shown to be quite successful in reproducing the current SMB of the GrIS (e.g. Ettema
et al., 2009; Fettweis et al., 2011; Vernon et al., 2013). RCMs are computationally
expensive so only short and/or a small number of simulations can be performed.5

Some have suggested that PDD descriptions of ice sheet response are too sensitive
to climate change (van de Wal, 1996; van de Berg, 2011). In contrast, comparisons
made between RACMO2/GR and the Janssens and Huybrechts (2000) PDD model by
Vernon et al. (2013) and Hanna et al. (2011) find the RCM is more sensitive. In an
attempt to make the most robust comparison (for example, using the same ice sheet10

extent and forcing from the same RCM), Goelzer et al. (2013) find that a PDD model
underestimates sea level rise by 14-31% compared to MAR. These large variations in
response relative to RCMs may reflect the simplicity of the PDD scheme.

Ideally, then, we would prefer future projections of GrIS SMB to be made with the
more complete representations in RCMs rather than simple parameterisations such15

as the PDD model (for example Rae et al., 2012; Fettweis et al., 2013). But the ice
flow component of an ISM is still needed to simulate the dynamical response of the
GrIS. ISMs are run at higher resolution than RCMs (kilometres rather than tens of
kilometres), to better represent glacier flow at the ice sheet margin.

As the ice sheet evolves in response to climate change, it also affects the local20

climate through feedback processes. Some, like the ice albedo feedback, may be
simulated within the RCM. Others relating to the dynamical response, including the
evolving geometry of the ice sheet, can only be simulated by coupling the RCM and
ISM, or else parameterising the feedback to adjust the input climate forcing throughout
the simulation.25

One important ice-climate feedback is the set of interactions between the atmo-
sphere and the ice sheet surface elevation; here we focus on the feedback between
the atmosphere and ice surface/snow pack. The two main parts of this SMB-elevation
feedback are (i) temperature, where an initial increase in air temperature that leads

4



to ice melting lowers the surface elevation and exposes the ice to warmer tempera-
tures through the atmospheric lapse rate; and (ii) precipitation, where surface elevation
changes affect air temperature and atmospheric circulation and therefore the location
and amount of precipitation. Surface topography in RCMs is usually held constant, so
they do not incorporate the elevation feedback at all. PDD schemes include a parame-5

terisation of the temperature aspect of the feedback, using an atmospheric lapse rate to
adjust the input temperature forcing as the ice sheet surface evolves. They do not rep-
resent the precipitation aspect of the feedback except, in some cases, through a scaling
factor for temperature. Most PDD schemes assume constant feedbacks (temperature-
elevation, i.e. atmospheric lapse rate correction; precipitation-elevation, i.e. scaling cor-10

rection; and ice albedo) that do not vary across the ice sheet or with climate change
(discussed by Robinson et al., 2010; Helsen et al., 2011; Stone et al., 2010), though
there are exceptions (Tarasov and Peltier, 2002).

If we are to simulate SMB with an RCM and how that SMB is affected by ice to-
pography changes (unlike Rae et al., 2012; Fettweis et al., 2013, who use RCMs with15

constant ice sheet topography), we must either couple an ISM to an RCM, or else
force an ISM with RCM output using a parameterisation of the relationship in terms
of an ‘SMB lapse rate’. Coupling an ISM to an RCM or GCM is rarely done because
it is technically challenging (one example is Ridley et al., 2005), and because the cli-
mate models, particularly RCMs, are too computationally expensive to simulate the20

time scales of long term ice sheet response. The computational expense also dras-
tically limits opportunities to perform multiple simulations to sample uncertainties in
modelling choices.

The pragmatic solution is therefore to parameterise the SMB-elevation feedback.
This allows us to explicitly simulate the SMB and dynamical responses without the tech-25

nical challenges and substantial computational expense of coupling ISMs to RCMs.
Provided the parameterisation adequately represents the feedback in MAR this allows
us to perform many simulations that we otherwise could not, because we can force
ISMs with MAR that have not yet been coupled to it, and sample uncertainties in the
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feedback and ice sheet modelling with additional simulations that we would not other-
wise have computational resources to perform.

Helsen et al. (2011) provide the first such parameterisation, for the relationship be-
tween SMB and height in RACMO2/GR, and use this to adjust the SMB forcing applied
to an ISM. Franco et al. (2012) derive relationships between the individual components5

of SMB (snowfall, rainfall, meltwater runoff, and loss by sublimation and evaporation)
and elevation changes in MAR, to correct low resolution SMB simulations onto a higher
resolution ice sheet topography. Hakuba et al. (2012) study the SMB response to sur-
face elevation changes in a version of the ECHAM5 GCM (Roeckner et al., 2003) by
lowering the ice sheet topography to 75%, 50% and 25% of the present day, though do10

not parameterise the relationship. We develop on these studies in method (presented
here) and application (Edwards et al., 2013).

We derive a new parameterisation for the elevation feedback in MAR using a suite
of simulations in which the MAR GrIS surface height is altered. The parameterisation
is a set of four gradients that relate SMB changes to height changes. These can be15

used to adjust the input SMB forcing as the ice sheet geometry evolves (Edwards
et al., 2013). The four gradients are used according to whether the adjusted mean
SMB of the previous decade is positive or negative, and whether the grid cell is in the
north or south of the ice sheet. Elevation feedback uncertainty can be sampled with
different SMB lapse rates; with careful experimental design this can give a probabilistic20

assessment of the effect of elevation feedback uncertainty on sea level. ISM and GCM
uncertainty can also be sampled by using different models. We present these results
in a companion paper (Edwards et al., 2013).

2 Method

We derive the parameterisation from a set of MAR simulations in which the surface25

elevation is altered (Sect. 2.1). We try various choices for the parameterisation struc-
ture, judging them by their success in reproducing the SMB response in MAR and their
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flexibility and ease of implementation (Sect. 2.2). After deciding on the structure, we
estimate probability distributions for the four SMB-elevation gradients (Sect. 2.3).

2.1 Climate simulations

The regional climate model MAR (Fettweis, 2007) has been adapted for simulating
the climate over Greenland, with full coupling to a complex snow-ice model and rel-5

atively high horizontal resolution (25 km). MAR is one of the few RCMs (another is
RACMO2/GR) that includes the positive feedback between ice surface albedo and
melting (Fettweis, 2007), though this is only partially included because the ice sheet
extent and elevation are constant (there is no change in the ice-tundra boundary). MAR
has been shown to simulate GrIS SMB quite successfully (e.g. Fettweis et al., 2011).10

We use a set of eight simulations, each twenty years long, in which MAR is forced
at the boundaries by the ECHAM5 GCM (Roeckner et al., 2003) under the SRES A1B
emissions scenario (Nakićenović et al., 2000). Two are control simulations, using the
default ice surface topography based on Bamber et al. (2001): they are the first two
decades (2000-2019, t1) and last two decades (2080-2099, t2) of the MAR ECHAM5-15

A1B simulation described by Rae et al. (2012) and Fettweis et al. (2013). The other
six are perturbation experiments, three for each time period, in which we alter the
GrIS surface height. We use three types of height change: uniform lowering by 50m
(“-50m"), uniform lowering by 100m (“-100m"), and NonUniform changes (“NonUn")
derived from a GrIS simulation by Ridley et al. (2005). Ridley et al. (2005) couple the20

GISM ice sheet model (Huybrechts and de Wolde, 1999) to the HadCM3 GCM (Gordon
et al., 2000) so that the elevation feedback is included, and quadruple the atmospheric
CO2 concentrations from preindustrial values. We use the resulting GrIS surface height
change after 140 years, at which point the ice sheet has lost 10% of its original volume.
We interpolate these height changes from the GISM 20 km polar stereographic grid to25

the MAR grid, and add them to the default topography over ice sheet grid cells. The ice
sheet area is not changed: no cells are changed from ice to tundra or vice versa. Any
negative height values that result after applying the changes are set to zero, to avoid

7



the ice surface being specified below the bedrock. Our analysis uses the mean of each
two decade simulation, over which the SMB time series is approximately stationary
(Rae et al., 2012).

Figure 1 shows the default (control) topography and the height difference between
the NonUn and control experiments. Figure 2 shows the SMB changes for the NonUn5

experiments and Fig. 3 the uniform height change experiments. These figures show
that large decreases in elevation generally decrease SMB, due to increased melting
and decreased snowfall (Franco et al., 2012). There are two main exceptions to this
that arise from the complex effects of topography on local air circulation and precipi-
tation. In the NonUn experiments, there is an increase in SMB along the western ice10

sheet margin while there is a thinning of the ice sheet (Fig. 2). Here the lowering of
the ice sheet surface dampens the ‘barrier wind’ that brings warm air from the tundra
along the ice sheet margin and enhances melting (van den Broeke and Gallée, 1996).
In the uniform height change experiments, surface lowering can lead to either a de-
crease or increase in SMB (Fig. 3): a decrease in elevation exposes ice to warmer air15

temperatures, which can increase the moisture content of the air and enhance pre-
cipitation, but conversely an increase in elevation may cause air to rise and cool, also
encouraging precipitation (Fettweis et al., 2005; Franco et al., 2012). These aspects
show the importance of using a surface energy balance based RCM, rather than sim-
pler models, to account for such phenomena. The consequences of this complexity for20

the parameterisation are discussed in Sect. 3.2.
Figure 4 shows SMB responses versus height changes for the two NonUn experi-

ments, with arrows pointing from control to NonUn result, separated into regions north
and south of latitude 77� N (this choice of latitude is explained later). The structure of
the data is somewhat similar to that found by Helsen et al. (2011) for RACMO2/GR, with25

a broadly linear positive relationship below the equilibrium line altitude (ELA: the line at
which SMB equals zero) and a negative, weaker relationship above the ELA. The be-
haviour is linear below the ELA within each time period because we use the simulation
mean: in a constant climate, the average melting is approximately proportional to the
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average temperature, which is approximately proportional to elevation. The behaviour
above the ELA, particularly south of 77� N (the majority of the ice sheet), is reminiscent
of the complex relationship found between precipitation and height in MAR by Franco
et al. (2012).

There is a clear offset between the beginning and end of the century. At a given5

height, particularly below the ELA, the SMB is lower in the warmer climate at the end of
the century. This is partly due to the linear dependence of melting on local temperature
in a constant climate (described above), but also to two mechanisms that accelerate the
melting and runoff as the climate warms. The first is the positive ice albedo feedback.
Bare ice appears each summer after the accumulated winter snowpack melts, and it10

has a lower albedo than snow. So in a warming climate the maximum area of bare ice
(the ablation zone) increases, and a positive albedo feedback amplifies the warming.
MAR has a more realistic, lower albedo for bare ice (around 0.45) than most RCMs and
therefore a greater sensitivity to warming; Fettweis et al. (2013) estimate that surface
melting increases exponentially with rising temperatures. The second mechanism is15

the type of precipitation falling on the ice sheet. In the latter part of the century most
summer precipitation falls as rain rather than snow, and most of this runs off directly to
the ocean rather than accumulating as ice. Both mechanisms accelerate the decrease
in SMB as the A1B scenario progresses.

Figure 5 shows the SMB responses versus height changes for all of the perturbation20

experiments except NonUn t2 (reserved as a test: Sect. 2.3), divided into four partitions
of SMB (negative and positive) and region (north and south of 77� N). Each data point
shows the SMB response (�S

i

= S

pert

i

�S

cont

i

) versus the height perturbation (�h

i

=
h

pert

i

�h

cont

i

) for a given grid cell i, so each grid cell can appear up to five times. We
exclude the 906 grid cells of the NonUn t1 experiment that have |�h|< 25 m (see Sect.25

2.3). We also exclude cells in which the SMB crosses the ELA between the control
and perturbed experiments, i.e. in which the perturbed and control SMB have opposite
signs, to make distinct datasets for positive and negative SMB.

Most of the variation in Fig. 5 is from the NonUn simulation, because this has the
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widest range of height perturbations. The south has a steeper slope, a stronger rela-
tionship between �S and �h, than the north.

The uniform perturbation experiments are the short vertical bands at �h = (-50m, -
100m). Most of the uniform experiment data in the south (bottom two subfigures of Fig.
5) show the behaviour we expect: when elevation decreases, SMB decreases (most5

points are in the bottom left quadrant, where both �S and �h are negative; �S/�h

is therefore positively signed). But in the north (top two subfigures), the response is
the opposite: when elevation decreases, SMB increases (most points are in the top
left quadrant, with positive �S and negative �h; �S/�h is negative). This change in
response from north to south can be seen in the maps in Fig. 3, particularly for the10

-100m experiment (top two subfigures) where the SMB change along the margin is
positive (red) north of 77� N and mostly negative (blue) in the south. However, most of
the uniform experiment data do lie within the range of the NonUn results.

2.2 Parameterisation structure

The parameterisation comprises four ‘SMB lapse rates’, gradients that characterise a15

linear relationship between SMB change and surface elevation change. When testing
the parameterisation we use the gradients to adjust the control SMB using the NonUn
height changes and compare with the actual NonUn SMB results. In a companion
paper we use the parameterisation with several ice sheet models to dynamically adjust
projections of future SMB as the GrIS shape evolves (Edwards et al., 2013). The four20

gradients correspond to the four possible combinations of the grid cell adjusted mean
SMB over the past decade being positive or negative and the grid cell latitude being
north or south of 77� N. We estimate these gradients from the ratios of SMB changes
to height changes (�S/�h) in the surface elevation perturbation experiments. This
parameterisation structure is determined by a combination of a priori choices and25

informal tests.
We choose the structure of our parameterisation with the following aims: to preserve

as much of the SMB-elevation relationship in the MAR simulations as possible; to use
10



as few assumptions as possible; to be applicable to any SMB forcing from MAR; and
to be simple for the ice sheet modeller to implement. We test the ability of the param-
eterisation to reproduce the SMB field in the NonUn t2 simulation when applied to the
control t2 simulation using the NonUn height changes.

We parameterise the relationship between elevation and mean SMB, using total SMB5

rather than its individual components (as in Franco et al., 2012) so it is easier to imple-
ment in ISMs and requires only one simulated variable as the input forcing. We also
choose to parameterise changes in SMB as a function of changes in elevation (in com-
mon with Franco et al., 2012), rather than absolute values (as in Helsen et al., 2011).
If we were to parameterise the relationship between absolute SMB S and absolute10

height h, using a linear model S = a+ bh (e.g. in Fig. 4), we would force the adjusted
SMB to lie along a single line lying somewhere between the data from the two time
periods t1 and t2, with large uncertainty in the intercept due to the climate dependence
of SMB at a given height. Instead, we can parameterise the relationship between SMB
changes and height changes, �S= b�h, estimating only the gradient b. This way SMB15

can be adjusted up or down the slope apparent in the data, rather than onto a single
line with constant intercept. Eliminating the intercept in this way preserves the climate
dependence of the SMB-elevation relationship in the MAR simulations, and removes
half the unknown parameters. Working with anomalies rather than absolute values is
also a standard approach in climate modelling, because the former are thought to be20

simulated more reliably than the latter.
The adjusted SMB is S

adj =S

RCM +b�h, where S

RCM is the original SMB (kg m�2

a�1), �h the height change (m), and b the SMB-height gradient b=�S/�h (kg m�3

a�1). More specifically, for a given MAR grid cell in a year t a gradient b

t

is used
to adjust the control SMB S

RCM

t

using the height difference between the NonUn and25

control experiments, Sadj

t

= S

RCM

t

+ b

t

(hNonUn�h

control). The gradient b
t

is selected
according to the ‘reference’ SMB and latitude of the grid cell, where the reference is
the mean of the adjusted SMB over the previous 10 years (see Edwards et al., 2013, for
more details). Using the adjusted SMB for the reference means the gradient selection
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evolves as part of the feedback, which helps to make the method more robust with
changing climate.

Our height perturbation simulations allow us to derive the gradients directly from
SMB responses to height changes for each grid cell, rather than the difference in SMB
between grid cells in different locations on the ice sheet (as in Helsen et al., 2011).5

This is important because the SMB response may be determined by different physical
processes due to local topography and atmospheric circulation patterns. Each grid cell
i provides an estimate of the gradient b=�S/�h from the SMB change (perturbed
SMB minus control SMB, �S

i

=S

pert

i

�S

cont

i

) versus the elevation change (perturbed
height minus control height, �h

i

=h

pert

i

�h

cont

i

). In Fig. 4 these correspond to the arrow10

slopes; in Fig. 5 they are the y-axis values divided by the x-axis values.
We choose not to make the gradients a function of grid cell location (Helsen et al.,

2011; Franco et al., 2012), other than the north-south divide, to avoid dependence on
the MAR grid resolution (Franco et al., 2012) and make the parameterisation as generic
as possible. A spatially-varying parameterisation would be tailored to the current shape15

of the ice sheet and the gradients would need to be interpolated for the ISM grid, which
could lead to distorting edge effects at discontinuities such as the margin, ELA, and
grid cell boundaries (e.g. Franco et al., 2012).

We do not make the gradients a function of climate or time (beginning versus end
of the century), because this would restrict our ability to apply the parameterisation to20

other MAR simulations: for the missing years of the A1B scenario (2020-2079) we could
interpolate or otherwise scale the results, but this would be less reliable or applicable
for other emissions scenarios and simulations forced by other GCMs.

To guide our choices for other aspects of the parameterisation structure, we con-
sider various methods of estimating and applying the gradients and quantify their rel-25

ative success in reproducing SMB changes in one of the perturbation experiments.
We estimate the gradients from the SMB responses in the two NonUn simulations,
then use them to adjust the SMB in the control t2 experiment according to the NonUn
height changes. We quantify success by comparing the parameterised cumulative
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SMB change with the actual results in the NonUn t2 simulation, in terms of both the
root mean square error in the spatial pattern and the error in the GrIS total (not shown).
We base our decisions on a combination of practical considerations (such as ease of
implementation) and these informal sensitivity tests, rather than a systematic optimisa-
tion across all possible choices.5

Our final gradients are a function of SMB sign (positive/negative) and region (north/south),
because these divisions make substantial improvements to the parameterisation while
not introducing much complexity when implementing in ISMs. The clear difference in
SMB response above and below the ELA has already been discussed (Sect. 2.1). We
also choose to divide by region because of the distinct regimes in Fig. 4 in which the10

north has a shallower gradient and larger intercept than the south. The uniform height
change simulations also indicate that the the northern margin behaves differently (Fig.
3). We test the performance of north-south divisions in half degree intervals in the
range 74-79� N, and also compare with using no division, and find that 77� N gives the
best result.15

We test two other functional dependencies for the gradients: eight divisions in SMB
rather than two, and height dependence as well as SMB dependence. The improve-
ments are not marked enough to justify the extra complexity.

We try three methods for estimating gradients: (a) a linear model of S versus h; (b)
a linear model of �S versus �h with zero intercept, and (c) a non-parametric method.20

We apply each to the four datasets (positive/negative SMB, north/south), and grid cells
with |�h|< 25 m are excluded. In method (a), a linear fit of S vs h estimates the gradient
b in Fig. 4; this is a similar approach to Helsen et al. (2011), except that we then make
the SMB adjustment with our anomaly method rather than an intercept. In method (b),
a linear fit of �S versus �h estimates the gradient b in Fig. 5; a zero intercept reflects25

our expectation that mean SMB change is zero if there is no height change. In method
(c), we use a non-parametric approach instead of a linear model. This takes the median
of �S/�h ratios (y/x in Fig. 5) as an estimate of b. Method (a) is the least successful,
and (b) is the most successful. But we judge that (b) is not an appropriate method,
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because the fit residuals for grid cells above the ELA vary systematically as a function
of height change. Part of this may be due to our constraint of a zero intercept, but the
data also clearly have non-linear structure (Fig. 5). The non-parametric method avoids
model assumptions such as normally distributed fit residuals, allowing us to capture all
the aspects of the MAR response. Our final method is therefore based on (c), though5

we use the full distribution rather than the median (Sect. 2.3).
Our final parameterisation of the SMB-elevation feedback is therefore a set of four

gradients b= (bN
p

,b
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,b
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) that are used to adjust SMB with a linear model of SMB
change versus elevation change. A gradient is selected from the set of four according
to whether the mean of the adjusted SMB in the previous decade is positive (p) or10

negative (n) and whether the grid cell is north or south of 77� N (N,S). The gradients
are estimated from the ratios �S/�h of grid cells in the MAR perturbation experiments.

The full SMB-elevation relationship is complex, but our aim is to create a parame-
terisation that is straightforward to implement: we have therefore partially linearised it,
by partitioning the data four ways and by using a linear model of SMB adjustment. In15

the following section our aim is to account for this approximation with non-parametric
assessment of uncertainties in those linear parameters. With this structure it is easy to
implement the parameterisation, to use it in forcing an ice sheet model, and to assess
the impacts of the parametric uncertainty (arising in large part from this linearisation)
using additional ice sheet model simulations.20

2.3 Parameter estimation

We now turn to formal statistical inference to obtain the final gradient values. We wish
to assess the full uncertainty in the SMB-elevation relationship rather than using only
tuned (‘best estimate’) values or performing ad-hoc sensitivity tests. This is particularly
important given there are opposite sign SMB responses to elevation changes in the25

simulations. So we estimate full probability distributions for each of the four gradients
(b= b
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) using a Bayesian approach. This also allows us to propagate the
probabilistic SMB-elevation feedback uncertainty to predictions of the GrIS contribution
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to sea level (Edwards et al., 2013).
We derive initial (‘prior’) distributions for the four gradients using SMB responses

from five of the six perturbation simulations: -100m, t1 and t2; -50m, t1 and t2; and
NonUn t1. These five experiments thus include parameter estimates under different
climates (t1 and t2), different height changes (-50m, -100m, and NonUn), and different5

locations for a uniform height change (-50m, -100m).
We reserve the final simulation (NonUn t2) as a test of the parameterisation, reweight-

ing the prior distributions using the degree of success in reproducing the cumulative
sea level change to obtain updated (‘posterior’) distributions. We choose NonUn t2 be-
cause the NonUn height changes span a wider range and are closer in spatial pattern10

to those expected in a warmer climate than the uniform height changes, and because
the SMB signal is larger for t2 than for t1; we are more concerned that the parameteri-
sation is valid under a warmer climate than the present day.

This division of simulations allows us to try a wide range of candidates for parameter
values but assign larger weights to those that match the target we wish to reproduce:15

the aggregate behaviour of the whole ice sheet.
We use histograms of the ratio of SMB changes to height changes, �S/�h (Fig.

6), as a basis for our prior distributions for the four linear gradient values. These are
the same data as in Fig. 5, which shows �S versus �h. Our minimum threshold
for the denominator, |�h|>= 25 m, removes extreme values from the tails of these20

distributions which stabilises estimation of the ratios. All four distributions show that
SMB is sometimes positively correlated with height, sometimes negatively correlated.
Above the ELA (Figs. 6 (b) and (d)) the histograms for bN

p

and b

S

p

are very narrow: the
SMB responses for a given height change are small in magnitude with little variation.
Below the ELA (Figs. 6 (a) and (c)) the histograms for bN

n

,b

S

n

are much broader, showing25

the wide variation in response for different regions of the ice sheet. These histograms
are dominated by the four uniform perturbation simulations.

Each of the four histograms has a different number of grid cells, so we take equally-
sized subsets of each to obtain a joint sample of the gradient set b: for each histogram

15



we order the values of �S/�h and take the 0.5% to 99.5% quantile values in 0.5%
steps, giving 199 samples of the four gradients (bN

p

,b

N

n

,b

S

p

,b

S

n

). These prior distributions
are shown in light grey in Fig. 7.

We use each of these 199 prior estimates of the gradient set to adjust the control
SMB in 2080-2099 according to the NonUn height change, and assess their success in5

reproducing the target NonUn t2 experiment. Each gradient set is used to calculate a
spatial pattern of cumulative SMB change and the corresponding total GrIS cumulative
sea level contribution.

We simplify the statistical modelling by choosing comparisons so that the differences
(‘discrepancies’) between the adjusted and target SMB at each location are approxi-10

mately i.i.d. (independent and identically distributed) in space. We make the compar-
isons approximately independent by ‘thinning’ (Rougier and Beven, 2013), using only
every 5th grid cell (125 km spacing). This spacing removes spatial correlation: an em-
pirical variogram of the thinned discrepancies is flat for all lengths up to around 800 km
(the width of the ice sheet). We assume the discrepancies are identically distributed in15

space, i.e. that the model is equally likely to match the target at every location. We also
assume that the discrepancies are normally distributed. In the absence of further infor-
mation and as a first attempt to describe parameterisation uncertainty, these choices
and assumptions allow us to avoid the difficult task of modelling the spatial correlation
and variation of the discrepancies.20

These assumptions translate to a simple metric for assessing the gradient estimates.
The scoring, ‘likelihood’, function is a multivariate (for multiple locations) independent
Gaussian with constant variance; the exponent is the sum of squared differences be-
tween the adjusted SMB and the target SMB over the subsampled grid cells (inde-
pendent: a product of Gaussians) divided by the ‘discrepancy variance’ �2 (identically25

distributed: constant variance). The multiplicative constant is discarded due to normal-
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isation later. So the score s
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for the j

th of 199 samples of b is
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where f is the adjusted SMB, z the target SMB, and i the grid cell index. The discrep-
ancy variance is a parameter that represents how closely we expect the parameterised
SMB to match the target; our choice is discussed below.5

The weight given to each gradient set is the normalised score, w
j

= s

j

/

X

j

s

j

. Note

that a single weight is calculated for each gradient set b, rather than individual weights
for each of the four components. The most successful (‘maximum likelihood’) gradient
set b̃ has the smallest sum of squared differences and therefore the largest weight. We
calculate posterior distributions for the four components of b by reweighting the prior10

distributions with the normalised weights. We estimate probability densities from the
histograms with kernel density estimates and use these to estimate the modes of the
posterior distributions, which are our best estimates of the gradients. As we are in
a Bayesian framework, our uncertainties are expressed as ‘credibility intervals’ rather
than confidence intervals. We estimate 95% credibility intervals with bootstrapping:15

we resample 100 000 times from the 199 gradient values (with replacement, using the
normalised weights), smooth these with the same bandwidth, and estimate the 2.5%
and 97.5% quantiles.

Our statistical framework requires minimal choices: the form of the likelihood func-
tion; the spacing for the sub-sampling; and a value for the discrepancy variance. We20

also choose to set the bandwidth (standard deviation of the smoothing) for the kernel
density estimation because the automatically-chosen value (Silverman, 1986) does not
seem to adequately resolve the distribution shapes. We test various options and make
our final choices with the following considerations: thinning so that the discrepancies
appear approximately uncorrelated in space; the variance �

2 chosen such that the25

weights are not concentrated on a small number of gradient estimates and most or all
17



of the discrepancies for the maximum likelihood parameterisation b̃ are in the range
±3� (Pukelsheim, 1994); and the posterior distribution of total GrIS sea level contri-
bution is close to the target. We choose the smoothing bandwidth so that the density
profile captures the main features of the histogram. Our final choices are: a Gaussian
likelihood function; subsampling distance 5 grid cells (125 km); discrepancy variance5

�

2 =(20⇥103 Gt)2; and bandwidths 0.15 kg m�3 a�1 for gradients below the ELA and
0.05 kg m�3 a�1 above the ELA. Sensitivity tests for these choices are described in the
next section.

2.4 Results

Figure 8 shows the adjusted cumulative SMB from the maximum likelihood parameter-10

isation b̃ and the target. The maximum likelihood gradient set reproduces the target
well in most areas, but cannot reproduce the SMB increases with decreasing elevation
along the western and southeastern ice sheet margins. Figure 9 shows the discrepan-
cies between the two for all grid cells and the subset used for the likelihood calculation.
Most of the discrepancies are small over the ice sheet interior and larger at the margin.15

Figure 7 shows the posterior distributions (dark grey) for the four gradients; Table 1
gives the best estimates and 95% credibility intervals. The posterior distributions are
mostly positive, with much larger gradients below the ELA, particularly in the south,
than above. Most of the distributions are fairly symmetric, except the south above the
ELA which has a low best estimate and a long tail of larger values. The weighting20

has a particularly strong effect for grid cells below the ELA, drastically narrowing the
distributions: effectively the likelihood scoring gives high weights to the gradient esti-
mates derived from the NonUn 2000-2019 experiment (large, positive values), rather
than the uniform height change experiments (small, positive and negative values), be-
cause these are most successful in reproducing the patterns of change in the NonUn25

2080-2099 experiment.
We can apply the same weights to the total GrIS cumulative sea level contributions

for each sample of the gradient set (Fig. 10). The prior distribution is centred close to
18



zero: i.e. the prior estimate of the elevation feedback is that it has no net effect. The
update narrows and shifts the posterior distribution so that it is centred on the target, a
positive contribution from the feedback.

We test the sensitivity of the results to the elevation threshold and statistical mod-
elling choices. Varying the threshold (from the default 25m) between 10m and 50m in5

5m intervals changes the results by no more than 0.02 kg m�3 a�1, and in most cases
0.01 kg m�3 a�1 or zero, for the majority of the gradient best estimates and CI bounds.
The exceptions are the best estimates in the South (bn

S

, bp
S

) and the upper CI bound for
the latter (bp

S

), where the changes are in the range 0.06-0.12 kg m�3 a�1. These cor-
respond to a 5% change for bn

S

; for the smaller gradient bp
S

the fractional changes are10

larger, but the changes plateau (i.e. the gradient estimates stabilise) above 25-30m,
as intended with the use of the threshold.

We try substituting the Gaussian likelihood with a Cauchy (Student’s t-distribution
with one degree of freedom; very heavy-tailed), scaled to match a Gaussian at the
25% and 75% quantiles. Our motivation is that the histogram of discrepancies for the15

maximum likelihood gradient set is fairly sharply peaked. The effect of this is to dis-
tribute the weights over a much smaller number of gradient sets, which drastically nar-
rows the posterior distributions. If we reduce the bandwidths to match these narrower
distributions (from 0.15 to 0.05 kg m�3 a�1 below the ELA and from 0.05 to 0.03 kg
m�3 a�1 above), the CI widths decrease by 54-84%, and the best estimates increase20

by 13-38% for three of the gradients and 186% (from 0.07 to 0.20 kg m�3 a�1) for bS
p

.
Because the weights are so concentrated, and we wish to be conservative with uncer-
tainty estimates, we choose the Gaussian likelihood. An alternative approach would be
to set a larger discrepancy variance for the ice sheet margin grid cells than the interior,
though one might be less confident in assigning the value of two uncertain parameters25

rather than one.
The discrepancies for the maximum likelihood parameterisation are all within ±1.5�,

which indicates that our discrepancy variance is too large; on the other hand, reducing
� concentrates the weights on a smaller number of gradient estimates, leading to nar-
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rower posterior distributions and 95% CIs. Changing � from 20 to 15 or 25 Gt does not
affect the best estimates much (0-11%) except for the small-valued b

S

p

(43%). Increas-
ing or decreasing � by 5 Gt has the effect of increasing or decreasing the CI widths
by 12-24%. Decreasing � to 15 or 10 Gt broadens the discrepancies to about 2 �, but
concentrates the weights rather more. Again, we err on the side of conservatism in our5

choice.
In the grid cell sampling (required for independence), using different spacing does

not have a monotonic effect on the results. Decreasing the spacing from 5 grid cells
to 4 (100 km) or increasing it to 6 (150 km) both have the effect of decreasing most
best estimates and CI widths. This indicates it is not a problem of using too short10

a correlation length (violating the independence assumption) but of sensitivity to the
grid cell sampling, most likely at the ice sheet margin. Of these three choices, the
5 cell spacing produces the best match to the cumulative sea level change in Fig.
10; in other words, both the 4 and 6 cell spacings concentrate the weights on smaller
gradients (smaller SMB adjustments), which match the target spatial pattern well for the15

particular sampled cells but perform poorly for the ice sheet total using all grid cells.
We alter the offset of the sampling, which also has a non-monotonic effect. Shifting
both the longitudinal and latitudinal offsets by -3 cells gives a small decrease in the
best estimate (0 to -4%), while offsets of -2, -1 and +1 all give higher best estimates
(15-34%, except bS

p

71-100%). The effect on CI width is also mixed; the largest effect is20

on b

S

p

, up to 26%. Using a larger discrepancy variance for the margin than the interior
would reduce the sensitivity of the results to sampling, because the margin grid cells
would have less effect on the likelihood value.

Using automatically set bandwidths gives wider CIs, but oversmooths the distribu-
tions, for SMB < 0 and narrower CIs, but undersmooths the distributions, for SMB � 0.25

Changing our bandwidths from 0.15 to 0.1 or 0.2 kg m�3 a�1 below the ELA and from
0.05 to 0.03 or 0.07 kg m�3 a�1 above affects the CI widths by small amounts ± 0-6%,
except for bN

p

(-23 to 27%).
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3 Discussion

3.1 Advantages and strengths

The main advantage of parameterising the GrIS SMB-elevation feedback is that it al-
lows us to force ISMs with SMB simulated by the MAR RCM, which has a more physi-
cally realistic representation of the processes than simple schemes such as the PDD,5

while incorporating the feedback.
The parameterisation can also be used without ISMs to make a first order adjust-

ment to SMB, improving projections such as Rae et al. (2012) and Fettweis et al.
(2013) by incorporating the elevation feedback (in effect omitting only the dynamical
ice response): for this, the SMB in a given year for each grid cell can be converted to10

an ice-equivalent height change. A third use is adjusting low resolution SMB fields to
the observed surface elevation, for better comparisons with observations or inputs to
ISMs (as do Franco et al., 2012).

We have confidence in our parameterisation due, for example, to the similarity in
patterns between the maximum likelihood result and the target (Fig. 8), and the centring15

of the posterior sea level distribution on the target (Fig. 10), and have quantified the
effects of the complex non-linear responses in MAR on the feedback uncertainty.

There are several advantages to our approach relative to the parameterisations by
Helsen et al. (2011) and Franco et al. (2012). The first relate to our RCM simulations, in
which the relationship between SMB and height appears to be more complex (e.g. Fig.20

4). For Helsen et al. (2011), this may be partly due to the different schemes in MAR and
RACMO2/GR, but in general it is due to our use of simulations in which both the surface
elevation and climate boundary conditions are altered. Franco et al. (2012) alter the
grid resolution, which produces local changes to elevation; Helsen et al. (2011) do not
use altered topography to estimate their SMB gradients, though they do to assess their25

performance. Neither force the RCM with a global climate different to the present day.
Altering the elevation means there is no need for a ‘space-for-time’ substitution. This
improves the relevance and robustness of the parameterisation because it is based
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on results from height changes at a given location, rather than height changes across
different spatial locations. We found it is also important to use a wide range of height
perturbations, i.e. that 50-100m changes are not sufficient to explore the relationship.
It may also be important to apply height changes with the spatial pattern expected un-
der climate change (NonUn) rather than a uniform or fractional (Hakuba et al., 2012)5

lowering, because the effects on local atmospheric circulation are potentially quite dif-
ferent. We see it is important, particularly for RCMs that include the albedo feedback,
to assess the elevation feedback under different global climate conditions, rather than
studying one climate era (Franco et al., 2012) or correcting the ice sheet elevation for
other climates using a temperature lapse rate (Helsen et al., 2011).10

The second set of advantages relate to our parameterisation structure. Using only
a gradient (in common with Franco et al., 2012), rather than a gradient and inter-
cept (Helsen et al., 2011), is more robust because it minimises the problem of the
climate-dependent offset. In other words, parameterising the relationship between
SMB changes and height changes, rather than absolute values, retains more infor-15

mation about the response. A further aspect of flexibility is our choice to estimate the
gradients with a non-parametric method (no assumed functional form) rather than a
linear model as both Helsen et al. (2011) and Franco et al. (2012) do. Furthermore
our parameterisation is very flexible because, unlike the previous studies, it does not
depend on spatial location (other than the north-south divide) so it does not depend on20

the RCM resolution or require interpolation to the ISM grid, and is easy to implement.
The third advantage relates to parameter assessment. We estimate the gradients

within a formal probabilistic framework. This allows us to provide not only a best esti-
mate parameterisation but the full probability distributions, so that ISMs can be used to
explore the effect of this uncertainty on the GrIS contribution to sea level and express25

these as credibility intervals.
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3.2 Limitations and further work

This is a parameterisation of the SMB-feedback response in an RCM, not of the real
world. We have not attempted to estimate the parametric or structural uncertainty
of MAR, and have not used an observational constraint. One approach to explore
structural uncertainty would be to compare with parameterisations derived for other5

RCMs. Assessing MAR parametric uncertainty would require a perturbed parameter
ensemble such as the 11 member HadRM3 ensemble of Murphy et al. (2009), which is
very computationally expensive. We could incorporate observations into the elevation
feedback by using them, rather than the target simulation, to calculate the likelihood.
We would have to take care that a parameterisation based on observed SMB changes10

would give a coherent result when applied to RCM simulations. However, the effect of
a first order SMB adjustment on sea level is negligible for a present day ERA-INTERIM
forced simulation (not shown), so observational constraints might in any case be of
limited use.

We use MAR because it is the most successful of the three RCMs presented by Rae15

et al. (2012) at reproducing the current SMB of the GrIS. If we were to study additional
RCMs, we would derive the parameterisation separately for each. Our preliminary
assessment of another RCM used by Rae et al. (2012), HIRHAM, indicates that the
SMB response to height is much more linear and less variable than in MAR, most likely
because fewer processes are incorporated such as the albedo feedback. Uncertainty20

in SMB projections are generally thought to be dominated by the choice of GCM, rather
than RCM (e.g. Rae et al., 2012); two GCMs are used for the projections presented by
Edwards et al. (2013).

We note that the parameterisation may not be robust for changes in elevation and
SMB much greater than those in the NonUn A1B 2080-2099 simulation.25

We could parameterise each component of SMB separately (Franco et al., 2012)
or make the parameterisation structure more complicated in other ways described, but
this would have hindered our aim to test the results from the parameterisation in several
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ISMs (Edwards et al., 2013).
Our estimation of the gradients is non-parametric, but our adjustment of SMB with

these gradients uses a linear model with zero intercept. This linear model is an approxi-
mation we use to reduce the complexity of the parameterisation. Figure 4 indicates that
the relationship is not quite linear above or below the ELA: for example, the gradient in5

the north is slightly shallower at the lowest elevations. Figure 5 indicates that the inter-
cept may be positive below the ELA. A more complex parameterisation could account
for these departures from our model, though it would be harder to implement.

Figures 2 and 3 show that a surface lowering can often lead to an increase in SMB.
This is particularly the case in the uniform elevation change simulations (Fig. 3) for10

the north and east, for small elevation changes, and for the beginning of the century.
It is also apparent in the NonUn simulations (Fig. 2) along the western margin. This
behaviour is likely to derive from the precipitation component of SMB, which has a com-
plex, non-linear relationship with surface elevation (Franco et al., 2012). The maximum
likelihood gradient set does not reproduce the SMB increases with decreasing height15

in the west and southeast (Fig. 8). The probability distributions do incorporate this
variation by including the full range of responses: in other words, other samples from b
give different correction patterns depending on whether the individual components are
positive or negative (Edwards et al., 2013). But within an individual ISM simulation the
four components of b are held constant. One way to represent this complex behaviour20

more fully would be with a stochastic parameterisation, in which the gradients are ran-
domly sampled from the distributions through the simulation rather than held constant.
This would incorporate the effect of both positive and negative values of each gradient
within a single simulation rather than separate simulations (as in Edwards et al., 2013).
However, this would require much more complex statistical modelling to describe the25

spatial and temporal correlation structure of the gradients, and more complex imple-
mentation.

We exclude grid cells with opposite sign SMB in the control and perturbation simula-
tions when estimating the gradients, because of our division at the ELA. (This exclusion
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only applies to estimating the gradients, not to applying them: when adjusting the MAR
SMB, a grid cell may be above the ELA before and below after). The arrows that cross
the ELA in Fig. 4 indicate that this filtering may tend to remove smaller gradients from
the below ELA sample and higher gradients from the above ELA sample. There is no
significant change in albedo in grid cells that remain on one side of the ELA or the5

other, so these show a linear relationship between SMB and elevation. Non-linearity
occurs mainly for grid cells that are above the ELA (where no bare ice appear in sum-
mer) in the control simulation and move below the ELA with a new elevation, or vice
versa, but these are not included in the analysis. This exclusion might therefore lead
to an underestimate of the uncertainty.10

Boundaries can lead to unexpected edge effects. If the ice sheet were to retreat
past 77� N then the parameterisation would shift to using only the South values, i.e. a
larger response. However, as we have discussed, we would not recommend using this
parameterisation for elevation and SMB changes far beyond our simulations.

The gradients change stepwise across the north-south boundary at 77� N. In princi-15

ple, this could be smoothed out with a soft transition in a slightly more complex imple-
mentation. We include only one boundary rather than several to minimise edge effects.
It might be useful to use a further regional division, west-east at around 40� W, because
MAR projects different precipitation responses to a warming climate: along the eastern
coast snowfall tends to increase, while along the western coast summer precipitation20

begins to fall as rain.
Our choice of a 25m threshold was made to stabilise the gradient estimates. Most

results are not sensitive to this choice, but we note that a different threshold would in
particular alter the best estimate and CI upper bound of bp

S

.
Using the mean of each twenty year simulation might lead to an underestimate of25

uncertainty by averaging over temporal variability. However, this variability is incor-
porated when the parameterisation is applied to an annual SMB time series, so care
would have to be taken to avoid double-counting.

Finally, the choices of the structure and parameter estimation depend on the approx-
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imations and the prioritisation of aspects described in Sects. 2.2 and 2.3. Different
choices for the statistical modelling might be justifiable, and future work could explore
this more thoroughly. As mentioned, an alternative choice might be to set a larger
discrepancy variance for the ice sheet margin grid cells than the interior. The subset
of data chosen to ensure independent discrepancies could also be selected by hand5

rather than regularly spaced, with the aim of choosing the most informative cells: for
example, picking cells along the margin and a smaller number from the interior. Ag-
gregation of data is another possible method for removing correlation (Rougier and
Beven, 2013). Different statistical modelling choices would certainly be appropriate if
parameterising the elevation feedback for a different RCM.10

4 Conclusions

Surface mass balance of the GrIS can be modelled with the sophisticated, physically-
based energy balance schemes available in some RCMs, but this is usually at the
expense of including the elevation feedback. To include the feedback requires coupling
the RCM with an ISM, but this is computationally expensive and technically challeng-15

ing, which effectively precludes the exploration of uncertainties in the structure and
parameter values of the ISM, and in the elevation feedback in the RCM. The only way
to incorporate the physical modelling of SMB processes and elevation feedback while
also exploring these model uncertainties is with a parameterisation such as the one
presented here.20

We estimate the SMB-elevation feedback separately below and above the ELA and
for regions north and south of 77� N from a set of MAR simulations in which we alter
the ice sheet surface elevation. We make advances on previous parameterisations, in
particular by including probabilistic assessment of the parameters. This demands sta-
tistical modelling choices that must balance adequate representation of the processes25

in MAR with ease of implementation for widespread use by ice sheet modellers. In
general we approach this with linearisation of the processes (for simplicity of use) com-
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bined with Bayesian inference of parameter probability distributions (to capture the
range of uncertainties arising from linearisation). The maximum likelihood parame-
terisation is successful in representing the cumulative sum, and most of the spatial
pattern, of MAR SMB changes at the end of the century under the A1B scenario and
non-uniform elevation changes. Best estimates and 95% credibility intervals for the5

parameters provide ice sheet modellers with the opportunity to fully explore the non-
linear behaviour. In Edwards et al. (2013) we propagate the probabilistic uncertainties
presented here to future sea level projections for the GrIS.
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Fig. 1. Left: ice sheet surface elevation in the control experiments. Right: elevation change in
the NonUn experiments (NonUn - control). Red dashed line is 77� N.

31



SMB change (kg m−2 a−1)

−2000

−1000

0

1000

2000

SMB change (kg m−2 a−1)

−2000

−1000

0

1000

2000

Fig. 2. Mean SMB change (perturbed minus control) in the NonUn experiments, 2000-2019
(left) and 2080-2099 (right). Red dashed line is 77� N.
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line is 77� N. 33



0 500 1000 1500 2000 2500 3000

−5
00
0

−4
00
0

−3
00
0

−2
00
0

−1
00
0

0
10
00

20
00

Height (m)

SM
B 

(k
g 
m

−2
 a

−1
)

2000−2019

2080−2099

0 500 1000 1500 2000 2500 3000

−5
00
0

−4
00
0

−3
00
0

−2
00
0

−1
00
0

0
10
00

20
00

Height (m)

SM
B 

(k
g 
m

−2
 a

−1
)

2000−2019

2080−2099

Fig. 4. Changes in SMB when perturbing the height of the MAR ice sheet from the control
topography to the NonUn-based topography for grid cells north (left) and south (right) of 77� N.
Arrows point from control to NonUn experiment. Data with height change |�h|< 25 m are
excluded.

34



−1000 −800 −600 −400 −200 0 200

−2
00
0

−1
50
0

−1
00
0

−5
00

0
50
0

Height change (m)

SM
B 
ch
an
ge

 (k
g 
m

−2
 a

−1
)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●
●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●
●●

●

●

●●
●
●

●

●
●
●

●
●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●
●

●
●

●

●●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●●

●
●●

●
●

●

●●

●

●
●
●

●●
●

●

●

●

●

●

●

●
●
●●
●

●●

●
●

●

●●
●●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●●

●●

●
●●
●
●
●

●●●
●●
●

●
●
●●●●
●

●

●

●●
●

●●

●
●●
●
●●

●●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●
●

●
●●
●●
●
●

●

●

●

●
●
●●

●●●

●●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●
●
●●●

●

●

●
●
●●

●●
●

●

●●●
●

●

●

●

●

●

●

●
●●●●●

●

●
●●●

●
●

●

●

●

●●●

●●●

●
●●●
●●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

2000−2019

2080−2099

(a)

−500 −400 −300 −200 −100 0 100

−1
00
0

−5
00

0
50
0

Height change (m)

SM
B 
ch
an
ge

 (k
g 
m

−2
 a

−1
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●
●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●

●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●

●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●

●●
●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●

●●

●●●
●●●●●●●●●●●●●●●
●

●

●

●●

●

●

●●●●●●●●

●
●
●●
●

●

●
●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●

●
●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●
●

●
●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●

●

●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●
●

●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●
●

●
●
●

●

●
●●

●
●●●●●●●●●●●●●●●
●●●●●
●●
●

●●●●●●●●●●●●●
●●●●●●
●●●

●
●

●●●
●●●●●●●●●●●
●●●●
●
●●

●●●●
●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●
●●●

●●●●●●
●●●●●●●●●
●●
●
●●
●●●●●●
●●●●●

●●
●●
●
●●●●●●●
●●●●

●
●●●●●●
●
●●●●●

●

●

2000−2019

2080−2099

(b)

−1000 −800 −600 −400 −200 0 200

−2
00
0

−1
50
0

−1
00
0

−5
00

0
50
0

Height change (m)

SM
B 
ch
an
ge

 (k
g 
m

−2
 a

−1
)

●
●

●

●

●

●

●
●

●

●
●●●
●

●

●
●

●

●●

●

●

●
●

●

●
●
●●
●

●●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●●●

●●●●

●

●

●●
●●
●
●
●

●

●

●

●
●
●

●

●

●
●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●
●●

●

●
●
●

●
●

●
●●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●●

●●
●●

●

●

●

●
●●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●●
●
●
●●
●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●
●
●
●

●
●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●

●

●●

●
●
●

●

●

●●

●

●●●

●

●

●

●●
●
●●

●

●

●
●●●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●●●●

●
●

●

●●●●

●
●
●

●

●
●●
●●

●

●

●

●

●

●
●

●
●
●●
●

●
●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●●

●

●●

●●●
●●

●

●●●●
●●
●

●

●
●
●●●

●

●

●

●●

●
●●

●
●●●
●●

●

●
●
●
●●

●

●

●●
●
●

●

●●
●

●

●●

●

●●

●●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●●
●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●●

●

●

●●

●

●

●
●●

●

●

●

●
●
●

●

●
●
●
●
●

●●●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

2000−2019

2080−2099

(c)

−500 −400 −300 −200 −100 0 100

−1
00
0

−5
00

0
50
0

Height change (m)

SM
B 
ch
an
ge

 (k
g 
m

−2
 a

−1
)

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●
●
●●
●

●
●

●

●

●●
●
●●

●

●

●

●●●
●●
●

●

●

●

●●
●●●●●

●

●

●

●●●●●●●●

●

●
●●●●●
●●●
●

●
●
●

●●●●
●●●●●
●

●

●

●●●●
●●●
●●
●

●
●
●●
●●●●●
●●●
●

●

●●●
●●●●●
●●
●

●

●●
●●●●●
●●●●●

●
●

●●●
●●●●●
●
●●●

●

●
●
●●●●●●●
●
●●●

●

●

●

●●●●●
●●●
●●●

●

●

●

●●●●●
●●●
●●●

●
●●

●●●●●
●●
●●●
●
●

●

●

●
●
●●●
●●●
●●●●●
●

●●
●●●
●●●
●●●
●●●
●

●

●

●

●
●●●●
●●●
●●●●
●

●

●
●●●
●●●●
●●●●●●●
●

●

●

●●●●
●●●
●●●●●●
●

●

●
●●●●●
●●●●●
●●
●
●
●
●
●
●●
●

●●●●●●●
●●●●●●●
●●●●●●●

●

●●●●●●
●●●●●●●●●●●●
●
●●
●

●●●
●●●●
●●●●●●●●●●●
●●
●

●

●●●●●
●●●●●●●●●●●●
●●●

●
●●
●●●
●●●●●
●●●●●●●●●
●●●●

●
●●●●●
●●●●●●●●●●●●
●●●
●

●
●
●●●●●
●●●●●●●●●●●●
●●●●

●●
●
●●●●●●●●
●●●●●●●●●
●●●
●
●
●●●●●●
●●●●●●●●●●
●●●●

●

●●●●●●●●●
●●●●●●●●
●●●●
●●
●
●●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●

●
●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●
●●
●●●●●
●●●

●
●
●●
●●●

●
●

●
●●●

●

●●
●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●
●●

●

●●

●

●
●
●
●
●

●

●

●

●
●●
●●
●

●

●
●

●

●●
●●
●●

●

●

●

●●●●
●●
●

●●

●

●
●●●
●●●●

●

●

●

●

●●
●●●●
●

●

●

●

●●
●●●
●●

●

●

●
●

●●●
●●
●●

●

●

●

●●●●
●●
●

●
●

●

●

●●●●
●●
●
●

●

●

●

●
●●
●●
●●
●

●

●

●

●

●●
●●
●●
●

●

●

●

●
●●
●
●●●

●
●

●●

●●
●●
●●●

●

●
●

●
●●●
●●●●

●
●

●

●

●
●
●●
●●
●●●

●●

●

●

●●●
●●
●●●●

●

●
●

●●●
●●
●●●●●

●
●
●
●●●
●●●
●●●
●

●
●

●●
●●
●●●●●●
●

●
●
●
●
●●

●

●●●●
●●●●●●●●●●●●
●

●

●●
●
●●●
●●●●●●●●●●●
●
●

●
●

●●
●●●
●●●●●●●●●
●●●

●

●

●●●
●●●●●●●●●
●●●
●

●

●

●
●●●●●●●●●●●
●●●
●●●

●

●
●●●●●●●●●●●
●●●
●●●

●

●
●●●●●●●●●●●
●●●
●●
●●
●
●●●●●●●●●●●
●●
●●●●●

●●●●●●●●●●
●●●
●●●●
●

●●●●●●●●●●●
●●●●●●

●

●

●●●
●
●

●
●●●●●●●●●●●
●●●●●●
●●●●●
●

●●●

●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●

●

●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●

●

●

●
●●●●●●●●●●●●
●●●●●●●●●●
●

●

●

●

●
●

●
●●●
●●●●●●●●●●●●●●●●●●●
●

●

●

●●

●
●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●●

●

●
●●
●

●

●●

●

2000−2019

2080−2099

(d)

Fig. 5. Scatter plots of SMB change �S versus height change �h for grid cells north (top row)
and south (bottom) of 77� N, divided into grid cells with SMB in both the control and perturbed
experiments less than zero (left column) and greater than or equal to zero (right). Data with
height change |�h|< 25 m are excluded. 35
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Fig. 6. Histograms of the ratio �S/�h for grid cells north (top row) and south (bottom) of 77� N,
divided into grid cells with SMB in both the control and perturbed experiments less than zero
(left column) and greater than or equal to zero (right). Data with height change |�h|< 25 m are
excluded. 36
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Fig. 7. Prior (light grey) and posterior (dark grey) distributions of the four value gradient set,
b= (bNp ,b

N
n ,b

S
p ,b

S
n) for regions north (bN , top row) and south (bS , bottom) of 77� N, and SMB

less than zero (bn, left column) and greater than or equal to zero (bp, right).
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Fig. 8. Cumulative SMB change at the end of the NonUn 2080-2099 simulation: (left) target
MAR simulation (perturbed minus control) and (right) result from maximum likelihood gradient
set b̃ applied to the NonUn height change (adjusted minus control). Red dashed line is 77� N.
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Fig. 9. Cumulative SMB change at the end of the NonUn 2080-2099 simulation: (left) error
in the maximum likelihood gradient set b̃ applied to the NonUn height change (adjusted minus
perturbed), and (right) the subset of those grid cells used in the calculation of the weights
(discrepancies f

j
i �zi in Eq. 2.3). Red dashed line is 77� N.
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Fig. 10. Prior (blue) and posterior (red) distributions of cumulative change in sea level at 2099
using parameterised elevation feedback for height changes in the NonUn simulation. The target
is the result from the NonUn 2080-2099 experiment (vertical black line).
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Table 1. The 2.5% quantile, best estimate, and 97.5% quantile estimates of the SMB-elevation
gradients in kg m�3 a�1, below (SMB < 0) and above (SMB � 0) the ELA, for regions north
and south of 77� N.

Region 2.5% Best estimate 97.5%

SMB < 0 North -0.22 0.56 1.33
South 1.03 1.91 2.61

SMB � 0 North -0.03 0.09 0.23
South -0.07 0.07 0.59
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