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We would like to thank Peter Mills for his comment and his interest in our article. In-
deed the Burke model neglects higher order reflection terms, as it is also mentioned
in the paper (p. 3640, l. 9-23). However, that the Burke model accounts only for
upwelling radiation is only partly true. For example, we here consider the case of a
semi-infinite layer of air above a layer of ice above a semi-infinite layer of water. For the
brightness temperature above the layer of ice TB, the Burke model accounts for 1) the
upwelling radiation originating from the ice, 2) the upwelling radiation originating from
the water underneath the ice, and 3) the downwelling radiation originating from the
ice that is reflected at the ice-water interface and radiates upwards to the air-ice inter-
face. In contrast to a model that accounts for higher order reflection terms, the Burke
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model neglects the contribution to the brightness temperature TB from upwelling ra-
diation originating from the ice that is reflected at the air-ice boundary, then radiated
downward in the ice and then reflected at the ice-water boundary and radiated upward.
Consequently, of course, a model that neglects the higher order reflection terms is
only an approximation of the radiation system and the reflectivities at the considered
boundaries and the attenuation of the considered layers determine whether this ap-
proximation is applicable.
As written in our paper, in Maaß (2013) I have compared sea ice brightness tempera-
tures as calculated with the Burke model and as calculated with a radiation model that
is based on backward propagation matrices. This latter approach accounts for higher
order reflection terms, and is described in Ulaby et al. (1981) and follows Kong (1975).
The comparison showed that for our model setup with one ice and one snow layer and
the considered water, ice and snow permittivities, the brightness temperatures from the
Burke model agreed with the brightness temperatures from the coherent Ulaby model
(when these were averaged over the coherent oscillations).
Here, we use the model that is described in the final report of the SMOS-Ice project
as well as in Mills and Heygster (2011), to re-calculate and to compare the brightness
temperatures we show in the theoretical investigations in Sect. 3 of our Discussion
paper (Fig. 1 and 2). At horizontal polarisation, the brightness temperatures calculated
with the model described in Mills and Heygster (2011) are somewhat higher than the
brightness temperatures calculated with the Burke model (Fig. 1). With increasing ice
thickness the difference decreases and the brightness temperatures are almost sim-
ilar for ice thicknesses higher than about 30cm. The difference between the models
is also quite small at vertical polarisation. The conclusions we draw in our Discus-
sion paper regarding the impact of a snow layer on the ice brightness temperature and
the role of the thermal insulation by snow are identical to the results we would obtain
if we used the model suggested by Mills and Heygster (2011). When we consider
brightness temperatures over thick ice as a function of snow thickness (Fig. 2), we ob-
tain that the brightness temperatures calculated with the model described in Mills and
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Heygster (2011) are about 0.4 K higher than the brightness temperatures calculated
with the Burke model. This difference seems to be constant over the range of snow
thicknesses considered here. The difference between the models is smaller for lower
incidence angles and increases with increasing incidence angle θ (not shown here).
The difference of 0.4 K corresponds to the average difference for brightness tempera-
tures between θ= 15 and θ= 60 ◦.
Our Discussion paper aims to show the first comparison between modelled and ob-
served SMOS L-band brightness temperatures over snow-covered ice. Thus, because
using one or the other model does not change the overall characteristics of the con-
sidered radiation (but only the absolute values in the order of 0.4 K for the applications
considered here), we think that the Burke model is sufficient to demonstrate the poten-
tial of SMOS measurements in this context. For a future large-scale retrieval of snow
thickness from L-band brightness temperatures, a more suitable radiation model would
of course be advantegeous.
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Fig. 1. For figure description see Fig. 1 of the Discussion paper. The purple (V-Pol) and cyan
(H-Pol) lines indicate brightness temperatures as calculated from Mills and Heygster (2011).
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Fig. 2. For figure description see Fig. 2 of the Discussion paper. The purple (-15◦C) and cyan
(-30◦C) lines indicate brightness temperatures as calculated from Mills and Heygster (2011).
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