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This manuscript presents an analysis of the instability of crevasses in ice shelves from
finite-element calculations. This is an old problem, tackled by several authors in the
past, generally from analytical calculations. However, the finite-element method used
in this study can be potentially a way to explore more complex situations, such as
complex density profiles or situations subjected to brine infiltration. In that sense, the
approach proposed here is potentially interesting, the subject is timely and certainly
relevant for The Cryosphere. However, in my opinion, several important clarifications
and probably complements are needed before publication.

1) To estimate stress intensity factors (K), the authors calculate first stress energy
release rates (Gy) using the method of “configurational forces”. A detailed comparison
with other classical FE methods to estimate K is needed here: - Is this “configurational
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forces” method similar to, or (or not) inspired from the perturbation method (Parks, Int
J Frac 1974) ? If not, what is its advantage ? - the calculations are done here with
elements with quadratic shape functions. For fracture mechanics problems, special
elements dealing with 1/(rˆ1/2) singularities can be used and are more adapted to
correctly estimate K. Did the authors try to use these elements ?

2) Sections 2.4 to 2.6: In their simulations, the authors prescribe vertically constant
displacements, as they argue that at large distance from the grounding line, horizontal
velocities and displacements are depth-independent. Although some references would
be useful here, this might appear as a reasonable approximation. However, to apply
displacements instead of stresses can lead to some tricky problems. In section 2.4, the
authors explain that the boundary displacement Delta_u is linked to the normal stress
at the surface (no effect of the overburden pressure) through a linear elastic rheology.
But, just below, they indicate that this stress is calculated using a viscous rheology
(Glen’s law). There is therefore a contradiction here. This contradiction is also present
in Rist et al. (JGR 2002), but this was more justified in this case based on analyti-
cal calculations. In the real world, both rheologies are coupled, and play a different
role depending on time scales. Finite-element calculations could be a way to model
the full problem. In this case, velocities instead of displacements should be used as
BCs. In the simulations of this manuscript, displacement BCs are applied (and do not
evolve through time). Imagine an elasto-viscous body on which you apply - instanta-
neously – some displacement Delta_u. The obtained stress field at t=0 would be the
one calculated by the authors, but this stress field will relax as the ice creeps. As the
instantaneous application of a fixed displacement is an unrealistic scenario in case of
ice shelves, this raises problems for the interpretation of the presented results in terms
of crevasse instability. A more realistic scenario would be to apply velocities instead of
displacements: in this case, the instability will depend strongly on the rate of loading,
i.e. on the possibility to relax by creep the increasing elastic stresses. In addition, for
prescribed velocity BCs, the presence of crevasses will modify the obtained surface
stresses. These problems explain why previous analytical approaches (e.g. Smith,
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J.Glac, 1976; Van der Veen, Cold Reg Sci Tech, 1988, . . .) considered stress BCs,
even if they introduce other simplifications. In conclusion, I do not see a real break-
through here compared to previous analytical works, whereas the FE approach could
potentially allow such progress.

3) p471, L9: “an elastically compressible solid”: this precision might be useful to avoid
confusion with incompressible (e.g. plastic) flow.

4) p474, L7: “the identity tensor I” (and not 1)

5) section 2.3: the so-called crack driving force is actually an energy release rate (see
e.g. eq. (18))

6) section 2.5: what is the evolution of the mesh size as approaching the crack tip ?
Are the results dependent on this “rate” of refinement ?

7) equation (20): B (creep constant ?) and rho_sw (density of sea water ?) should be
defined.

8) p479, L5-6: “The stress intensity. . .(Bueckner 1970)”: Not clear. Does this mean
that K is not estimated from eq. 18 ?

9) p479, L8: “which ranges between (1-4) Pa.mˆ1/2” ???? Fracture toughness of ice is
around 100-150 kPa (see e.g. Schulson and Duval, 2009).

10) p480, L4-6: “This approach requires. . .”. I do not understand why, as stresses (and
not displacements) are not prescribed in this case.

11) p480, L11: For a polycrystalline ice with isotropic fabrics, the Poisson ratio is very
close to 1/3, and does not vary significantly with e.g. temperature. Variation in the
range 0.2-0.4 are only obtained for strongly anisotropic fabrics (see e.g. Schulson
and Duval, 2009). In this case, nu is axis-dependant, and not isotropic, with possible
fluctuations with depth (as fabrics changes). Therefore, I do not really understand this
discussion about the Poisson’s ratio (section 3.2). Moreover, this dependence of the
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results on nu comes from the displacement BCs (and not stresses) approximation.

12) p482, L15-16: KI<KIc is a poor crack arrest criterion. In general, as dynamic
effects have to be taken into account during unstable propagation (KI>KIc), the arrest
is observed for K«KIc: see e.g. the classical (Ravi-Chandar, Int. J. Fracture, 1984).
KI>KIc is a good crack initiation criterion for unstable crack growth. It tells nothing
about how a crack (a crevasse here) can reach the critical depth (in this manuscript,
the creep strain-rate, and so the surface tensile stress, is considered to be constant
through time). To describe this, sub-critical crack growth has to be considered. In the
context of crevasses, this point has been tackled by (Weiss, J. Glac., 2004).

13) p484, L21-22: The exponential dependency of E is probably related to a strong
dependency of E on porosity in firn (see e.g. Schulson and Duval, 2009). This strong,
non-linear dependency of E on r calls for a coupled analysis of the effects of both
parameters (i.e. to unite sections 3.3 and 3.4)

14) the legends of fig. 1(c) are unreadable
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