
Dear Dr. J. Bassis,  
 
thank you for your valuable comments to our paper in discussion for TC. We 
considered them carefully in the revised manuscript which to our believe made it 
more clearly. In the following please find our answers to the comments.  
!
This manuscript describes the use of a finite element model to simulate the 
penetration of surface crevasses within ice shelves extending previous semi-analytic 
treatments of crevasse penetration to include vertical variation in ice properties. 
Overall, this manuscript treats an interesting and timely problem and despite some of 
my confusion about some of the modeling descriptions (see below) is a valuable 
contribution to studies of ice shelf fracture. 
 
Specific comments: 
 
Boundary conditions: 1. Viscous versus elastic loading: The authors assert that “The 
stress field at the ice shelf surface is evaluated from the flow velocity in the ice 
shelf using Glen’s flow law (Glen, 1958).” This statement is confusing. Normally, 
one would suppose that the ice shelf surface is traction free and use the condition 
that the dot product of the stress tensor with the outward normal vector from the 
surface must vanish. This doesn’t involve specifying any velocities nor the use of 
Glen’s flow law. It may be that the authors are using a viscous rheology to determine 
a velocity along the rightmost side (i.e., calving front edge) of the domain and turning 
this into a displacement boundary condition? The reason to do this is unclear since it 
introduces an inconsistency into their model. !
!
You are right, stating that the dot product of the stress tensor with the outward normal 
vector from the surface must vanish. However, the stress components at the ice shelf 
surface acting in the tangential plane do not vanish and are the components 
evaluated using Glenʼs flow law. As we do not include the calving front in our model, 
but look at cracks in the shelf in a sufficient distance from the calving front, we do not 
convert the velocities at the calving front into displacement boundary conditions. 
Instead we evaluate the displacement boundary conditions from the given velocity 
field. For the conversion, we use the principal surface stresses that we can evaluate 
using the rheological relation of Glenʼs flow law. As the choice of boundary conditions 
is a crucial point in the modelling, this topic is discussed in detail in Sec. 3.1.1. To 
further discuss the influence of the boundary, a figure is added to this section 
together with more detailed explanations. In general, we assume a displacement 
loading which is consistent with the velocity profile. As the horizontal velocities are 
assumed to be constant over thickness, the displacements, as the time integration of 
the velocities, should as well bare a constant value over the thickness. This is the 
central idea in the choice of the boundary condition. For the sake of comparability to 
previous results and analytical models we recalculate the displacement boundary 
condition in terms of surface stresses (of the uncracked) specimen. As discussed in 
the revised version of Sec. 3.1.1, this is not a one to one relation for deeper cracks 
and was not intended to be. It is rather to assign stress loads via Eqn. (19) to the 
displacement loads. Further remarks on this topic can be found in the response to 
length effect. In order to be brief, we do not repeat them here. 
 



If the ice is behaving viscously then it is unclear why the elastic as opposed to 
viscous stresses are important. On the other hand, if elastic stresses are important it 
is unclear why the viscous flow of the ice should play any role. If this is done purely 
for numerical convenience the authors should clearly state this. This is all the more 
important since the viscous flow results from the dissipation of gravitational potential 
energy and it is far from obvious that viscous displacements due to the dissipation of 
gravitational potential energy can increase elastic loading? This seems likely to lead 
to a violation of conservation of energy. I realize that one of the challenges in 
simulating fracture of glacier ice is that fracturing is usually considered to be an 
elastic process whereas the flow of glacier ice is predominantly viscous. The authors 
need to confront this more explicitly and provide a more clearly reasoned explanation 
and rationalization for their choice of boundary conditions. 
 
If we consider ice as visco-elastic in terms of a Maxwell element, there is no viscous 
OR elastic stress - depending on the time scale, the response of the element to a 
given load is more viscous or more elastic. This leads to viscous strains, which on 
the long time scale predominate the elastic strains. However, as we look on short 
time scales to analyse fracture, we consider the elastic strain. 
 
2. Benchmark: The fact that the numerical model is able to reproduce the quasi-
analytic solution of Rist (2002) is encouraging and this may be sufficient to ferret out 
any errors in the numerical algorithm. However, there are several approximations 
implicit in the Rist study and it is often best to test numerical solutions again analytic 
solutions where available so that one can examine the convergence of the numerical 
solution to the “true” solution. This is often an important step in the numerical 
approximation of LEFM since there is a square root of r singularity near the tip of 
cracks that will be poorly represented by conventional finite element shape functions. 
Because of the fact that numerical methods often fail to converge, numerous authors 
have introduced special crack-tip shape functions that more accurately incorporate 
the singularity. I’m fairly confident that the numerical model is sufficiently stated, but if 
the authors have done grid refinement studies to examine if the singularity is 
negatively impacting the results it would be useful to state this. 
 
Exact analytical solutions for stress intensity factors do only exist for infinite domains. 
As our ice shelf geometry has a finite thickness, we used a semi-analytical solution 
that can be found in many fracture mechanical books (e.g. Gross and Seelig) to 
validate the numerical model (Sec. 2.5, manuscript). The physical model is then 
validated using the results of Rist et al. (2002). We are confident that it is not 
necessary to use special crack-tip shape functions as the results with a refined crack 
tip are in good agreement with the semi-analytical results. The refinement studies are 
described in Sec. 2.5 and Fig. 1c. 
!
There are a few statements that I think are misleading and should be clarified.  
1. Velocity in ice shelves is independent of depth. This assumption is usually justified 
based on a long wavelength asymptotic expansion that is valid for length scales that 
are large compared to the ice thickness. Over smaller length scales, flexural bending 
stresses may be important. This is especially true near the front of an ice shelf, which 
seems especially relevant here since observations and theory indicate that there 
should be bending near the calving front of an ice shelf. 



 
We changed the sentence in Sec. 2.4 from “The modelled ice shelf consists of a 
vertical cut through an “infinite” ice shelf ...” to “The modelled ice shelf consists of a 
vertical cut through a finite section of an “infinite” ice shelf, …” in order to prevent 
possible misunderstanding about the proximity of the calving front. The geometry 
chosen is supposed to be far from the grounding line, as well as from the calving 
front, so that the influence of those on the crack is negligibly small. 
 
2. Domain size: The authors are using glacier length of 2 km for an ice shelf that is 
uniformly 250 m thick. Given the assumed symmetry, the 1 km length between the 
fracture the end of the domain is comparable to the flexural wavelength within the ice. 
This would lead me to wonder if the results may be contaminated by edge effects 
from the domain boundaries and would be consistent with the large flexure that the 
authors observe in the constant stress boundary conditions. The authors should test 
to make sure that there results are independent of the length of their glacier.!
 
Thank you for this very useful comment that made us rethink about the choice of the 
domain length. 
We would like to emphasize that we are dealing with a multi-scale problem: the 
smallest length scale is the vertical crack length (or the thickness of the ice shelf), the 
medium scale is the horizontal model length (size of the computational domain), the 
macro length scale is the characteristic length of the ice shelf. This is not necessarily 
the lateral extend of the ice shelf. In order to have scale separation the wave length 
fluctuations of fields in the ice shelf have to be larger than the size of the 
computational domain. The surface stresses in the un-cracked ice shelf may vary 
over tenth of km. In order to achieve consistency, the length of the model domain has 
to be smaller to justify the application of a lateral constant stress or displacement 
state based on the surface velocities/stresses. 
In addition, the model length has to yield results that are in good agreement with 
semi-analytical studies. For the validation we used stress boundary conditions and 
an aspect ratio thickness to length, which with approx. 1/10 satisfies the beam aspect 
ratio. The comparison with semi-analytical results showed that an aspect ratio ½ 
already yields satisfying results. 
Taking constant displacement boundary conditions implies that the stress state at the 
crack tip depends on the model domain length, e.g. increases with the model length. 
The limiting stress intensity factor for an infinite model length can only be evaluated 
by applying the equivalent stress boundary condition.  
We added a few sentences about the model length dependence in Sec. 3.1.1, where 
the dependence on different boundary conditions is analysed. Please find a revised 
version of Sec. 3.1.1 and the mentioned additional figure attached to the answer to 
your comment. 
 
3. It looks like all computations were performed for a 250 thick ice shelf. It may be 
helpful to readers to report crack penetration depths as the ratio of crack penetration 
depth to ice thickness. I suspect that if the authors can perform the same simulation 
for a range of ice thicknesses then they will find that the ratio of crevasse penetration 
depth to ice thickness may be constant for a given set of parameters. If it is not, then 
this would be useful to report.!
 



As we are using depth dependent material parameters (density, Youngʼs modulus) 
the stress intensity factor can only be a function of the crack depth and thickness and 
not of only the ratio crack depth to ice thickness. Additionally, the density variation 
will always occur in the upper 70 to 100 m, independent of the ice thickness.  
 
Section 2.4: I had a very hard time following the description of the boundary 
conditions used. I suspect that the authors treatment is correct and the 
misunderstanding is on my part, but it might be helpful to other readers if the authors 
can clarify the following questions. 
1. It is not clear to me why the authors want to neglect bending stresses in the 
formulation. One often neglects these stresses our of convenience, but this does not 
imply that they are not present. 
!
We do not neglect bending stresses within our ice shelf geometry. The geometric 
constraint of depth constant displacements exactly causes a bending moment as 
reaction to this constraint, thus bending stresses are taken into account. However, as 
the model geometry represents a finite cut out of an infinite ice shelf we have to 
prevent the vertical boundaries from bending more than the entire ice shelf would 
allow. We allow boundary displacements in vertical direction, which leads to bending 
stresses. We changed the sentence in Sec. 2.4 from “…, as those would allow 
bending.” to “… as those would allow tilting of the vertical boundaries.” . 
!
2. “Sufficiently long rectangular domain” is vague. Can the authors confirm that they 
have performed domain size tests to determine if their results are independent of the 
length of the domain?!
!
We believe that the discussion of the size effect in the revised version of Sec. 3.1.1 
clarifies also this point. The vague expression was removed in the revised version. 
!
3. “The stress field at the ice shelf surface is evaluated from the flow velocity in the 
ice shelf”: It would be helpful if the authors explained how the authors are computing 
the viscous flow field. For instance, are they solving the full Stokes equations in the 
interior of the domain subject to traction boundary conditions on three sides?!
!
The stress field is calculated using the velocity field of Braun at al. (2009) as stated in 
Sec. 3.1.2. In the cited paper the velocities are estimated using interferometry.  
!
4. Glen’s flow law depends on temperature and. How does the assumed ice 
temperature influence the authors results?!
!
The temperature in the ice shelf influences the rate factor, that is used to evaluate the 
surface stresses using Glenʼs flow law. As we are only interested in a range of 
possible stresses and not in one specific stress, the influence of the temperature at 
this point has no influence on the conclusions of our results. The influence of the 
temperature on the ice density is included in the densification model of Herron and 
Langway. The dependence of the elastic parameters on the temperature is hardly 
investigated and therefore not simulated in the present study.!
!



4. In a typical ice shelf model, one would assume that the ice surface is traction free. 
Why is this not the case for the elastic model? Do the authors mean the ice-air-water 
interface? 
!
Of course, the ice surface is traction free, i.e. as stated in the beginning the stress 
vector normal to the ice shelf surface is zero. Nevertheless, the in-plane stresses at 
the surface are non-zero. We tried to avoid this misunderstanding by rephrasing the 
relevant sentences: “…, the magnitude of the boundary displacement Δu on one side 
of the model ice shelf is related to the horizontal stress σ at the ice shelf surface by 
…”  
!
Figures:  
Figure 1: Difficult to read the numbers on panel (b) and the axis labels in panel (c) 
appear garbled on my screen. 
 
Figure 6 (a): Axis labels are also garbled (perhaps a conversion issue?)  
 
Figure 8 and 9: More problems with the axis labels -- make sure you check all of 
these!
!
We solved the conversion problems. 
!
Figure 4 (b): It would be helpful to have actual numbers on the colorbar so we can 
see the actual magnitude of the stress. 
!
We chose a qualitative plot with an equal colour range for both cases to show the 
influence of different boundary conditions. As the maximum tensile stress is at the 
crack tip and therefore singular in both cases, we do not think that actual numbers 
would increase the statement of this plot.  
 
We would like to thank Dr. Bassis for the very constructive and helpful comments that 
helped us to improve the paper. 
!
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3.1.1 Boundary conditions and scale effects

Figure 3 (a) shows two uncracked example geometries of a homogeneous isotropic
body, i.e. ρ= const., with different horizontal BCs (left: constrained, right: uncon-
strained). Additionally, the vertical displacement at the basal boundary is constrained
in both configurations, uz(z=0)= 0. The geometries are solely loaded by gravity. Fig-5

ure 3 (b) shows the resulting the normal stress σxx for different Poisson’s ratios and
BCs. The stress component σzz, that can also be referred to as the ice overburden
pressure, is identical for all simulated Poisson’s ratios and BCs. It equals the horizontal
stress for the constrained boundaries and ν = 0.499 (dot-and-dashed line). The hor-
izontal stress component σxx is affected by both, the changes in the Poisson’s ratio10

and the BCs. A Poisson’s ratio of ν=0.499, approximating an incompressible material,
leads to a cryostatic stress state for the horizontally constrained body, meaning that for
every material point in the body, the normal stress components are equal and shear
stresses vanish. The value ν = 0.499 is a good approximation of the incompressible
case (ν =0.5), which numerically can not be treated with the applied constitutive law15

as it yields singularities in the stiffness matrix. For ν =0.3, the body is compressible.
This leads for the horizontally constrained body to stresses σxx which are less than
half of the stress component σzz. For a horizontally unconstrained body, the horizon-
tal stress component σxx is identical zero. These results show that the assumption of
incompressibility overestimates the crack closing pressure due to the weight of the ice20

by approximately a factor two.
In a next step, we apply different BCs on a cracked geometry to analyse the effect

of the type of boundary condition on the stress concentration at the crack tip as well
as possible dependencies on the length of the model domain. To ensure comparability
to semi-analytical results, the simulations are performed without additional gravity or25

bottom pressure. Figure 4a shows, that simulations with pure stress boundary condi-
tions on a domain of 2km length and 250m depth (green drawn through line) reproduce
the semi-analytical results (black circles), which assume infinitely long domains (Gross

13
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and Seelig, 2011). Further simulations with different depth/length ratios and stress
BCs indicated, that a ratio larger than 1

2 is sufficient to yield a crack tip field that is
independent of the disturbance introduced by the boundaries. Different results can be
expected for constrained boundaries (dashed and dotted lines) where the dependence
on the domain length affects the stress intensity at the crack tip in two ways. To iden-5

tify the factors that induce a length dependence, the cracked domain is on the first
hand loaded by displacement BCs ∆u and on the second hand loaded by stress BC
σ with the additional constraint ∂u

∂z =0, which prevents tilting and bending of the verti-
cal boundaries. The relation between the applied ∆u and σ is evaluated via Eq. 19
using the uncracked geometry. The displacements ∆u are kept constant for all crack10

depths. The dashed and the dotted lines in Fig. 4a show the resulting stress intensity
factors KI(d) considering different domain length l for displacement and stress BCs,
respectively. For large crack depths d, a length dependent difference between the
constrained (dotted line) and the unconstrained stress BC represented by the drawn
through line becomes obvious. The difference is caused by the crack closing bending15

moment induced by constrained boundaries. For l reaching infinity, the influence of the
constraints on the deflection in proximity of the crack becomes negligibly small and the
KI converge to the solution of the unconstrained problem with stress BCs.

The difference between the dashed and the dotted lines for geometries of equal
length l results in the compliance effect of deep cracks loaded by constant displace-20

ment BCs. If we imagine the ice shelf as a spring, the compliance due to the crack
growth can be understood as a reduction of the spring stiffness. A reduction in stiff-
ness yields a reduction in the resulting stresses and therefore decreasing stress inten-
sity factors. The compliance effect becomes less obvious for values of l approaching
infinity and liml→∞(KI(d)) yields the solution of the unconstrained problem with stress25

BCs.
The results show, that constrained boundaries imply a dependence on the length of

the cracked domain. For infinitely long domains the influence on the type of BC van-
ishes and the solution of the pure stress BC is reached. The crack closing bending

14
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moment as well as the compliance due to the application of displacement BCs are rea-
sonable qualities of the chosen model, considering an ice shelf with a given vertically
constant velocity field.

Cracks in ice shelves are small-scale defects - crack depth and crack opening are
small in comparison to the lateral extend of the ice shelf. As we are interested in the5

local effect of the crack we have to choose a model size that is large in comparison
to the crack length but small in comparison to the characteristic length of the ice shelf.
In addition, the stress field in the shelf can vary over length scales of less than 10km
for which reason it is unrealistic to model cracked domains with lengths of more than
10km. To this end, we chose a finite domain length of l=2km for all further simulations,10

taking the length dependence due to displacement BCs into account.
Figure 4b illustrates the deviation in the resulting KI for different BCs and realistic

loading due to additional volume forces (ρ= const.) and water pressure at the bottom
of the shelf.

The applied BCs consist of pure tension (a), the equivalent displacement boundary15

condition given by (19) (b) and the superposition of tension and horizontal pressure
(c). As for ν = 0.3, the horizontal pressure is not equivalent to the ice overburden
pressure (see Fig. 3 (b)), it has to be evaluated from the horizontal reaction forces
of the horizontally constrained body. For a small load of 100kPa and resulting shallow
cracks, the difference between the BCs (b) and (c) is marginal. Case (a), with pure20

tension represents a totally different loading case. Even though the body is loaded
by volume forces, they do not influence the horizontal stresses. The stress intensity
factors for higher loads are on the other hand more sensitive to the choice of the BC as
(d) and (e) demonstrate. Figure 4 (c) shows a qualitative plot of the horizontal normal
stress σxx and the deformed shape (exaggerated presentation, scaled by a factor 100)25

for stress BCs and equivalent displacement BCs (no application of gravity or water
pressure at the bottom boundary). As displacement BCs prevent the ice from bending,
a bending moment that works against the crack opening is induced and the stress
intensity at the crack tip, especially for deeper cracks, is smaller.

15



0 2 4 6
x 107

0

50

100

150

200

KI [Pa
√

m]

C
ra

ck
d
ep

th
,

d
[m

]

 

 
semi-analyt., σ =100kPa
l =2km, σ =100kPa
l =2km, ∆u =̂ σ = 100kPa
l =2km, σ =100kPa, ∂ u

∂ z = 0
l =20km, ∆u =̂ σ = 100kPa
l =20km, σ =100kPa, ∂ u

∂ z = 0
l =100km, ∆u =̂ σ = 100kPa
l =100km, σ =100kPa, ∂ u

∂ z = 0


