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   the	
   reviewer	
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   comments	
   to	
   our	
   paper	
   in	
   discussion	
   for	
   TC.	
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   them	
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   the	
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   manuscript.	
   In	
   the	
   following	
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   find	
   our	
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  to	
  the	
  comments.	
  
 
This manuscript presents an analysis of the instability of crevasses in ice shelves from finite-
element calculations. This is an old problem, tackled by several authors in the past, generally 
from analytical calculations. However, the finite-element method used in this study can be 
potentially a way to explore more complex situations, such as complex density profiles or 
situations subjected to brine infiltration. In that sense, the approach proposed here is potentially 
interesting, the subject is timely and certainly relevant for The Cryosphere. However, in my 
opinion, several important clarifications and probably complements are needed before 
publication. 
 
1) To estimate stress intensity factors (K), the authors calculate first stress energy release rates 
(Gy) using the method of “configurational forces”. A detailed comparison with other classical FE 
methods to estimate K is needed here: - Is this “configurational 
” method similar to, or (or not) inspired from the perturbation method (Parks, Int J Frac 1974) ? If 
not, what is its advantage ? - the calculations are done here with elements with quadratic shape 
functions. For fracture mechanics problems, special elements dealing with 1/(rˆ1/2) singularities 
can be used and are more adapted to correctly estimate K. Did the authors try to use these 
elements ? 
 
In	
   linear	
   elastic	
   fracture	
   mechanics	
   many	
   different	
   approaches	
   can	
   be	
   used	
   to	
   evaluate	
  
stress	
   intensity	
   factors	
   (SIFs).	
   The	
  most	
  modern	
   ones	
   are	
   the	
   computation	
   via	
   XFEM	
   and	
  
Configurational	
  Forces.	
  The	
  method	
  of	
  Parks	
  also	
  uses	
  the	
  energy	
  release	
  rate	
  to	
  compute	
  
SIFs.	
   However,	
   from	
   the	
   computational	
   point	
   of	
   view,	
   this	
   method	
   is	
   too	
   expensive	
   and	
  
inflexible	
  and	
  therefore	
  no	
  longer	
  in	
  use	
  in	
  computational	
  fracture	
  mechanics.	
  
The	
  configurational	
  force	
  approach	
  is	
  rather	
  versatile,	
  as	
  the	
  configurational	
  force	
  at	
  a	
  crack	
  
tip	
  can	
  be	
  interpreted	
  as	
  a	
  crack	
  driving	
  force.	
  This	
  interpretation	
  holds	
  for	
  inhomogeneous	
  
situations	
   and	
  problems	
  with	
   loaded	
   crack	
   faces.	
  An	
  extension	
   to	
   inelastic	
   fracture	
   is	
   also	
  
possible,	
  which	
  is	
  why	
  we	
  prefer	
  and	
  use	
  this	
  method.	
  
We	
  compared	
  the	
  simulation	
  results	
  to	
  semi-­‐analytical	
  results	
  of	
  the	
  SIFs	
  as	
  can	
  be	
  found	
  in	
  
standard	
   fracture	
   mechanical	
   literature	
   (Sec.	
   2.5	
   and	
   Fig.	
   1c).	
   As	
   our	
   results	
   with	
   mesh	
  
refinement	
  are	
  in	
  very	
  good	
  agreement	
  with	
  the	
  semi-­‐analytical	
  results	
  we	
  did	
  not	
  feel	
  to	
  be	
  
in	
  the	
  need	
  to	
  use	
  special	
  crack	
  tip	
  elements.	
  It	
  finally	
  should	
  be	
  mentioned	
  that	
  the	
  K-­‐factor	
  
calculation	
   via	
   configurational	
   forces	
   does	
   not	
   require	
   the	
   detailed	
   determination	
   of	
   the	
  
singular	
  crack-­‐tip	
  field.	
  This	
  is	
  one	
  advantage	
  of	
  the	
  method.	
  
	
  
2) Sections 2.4 to 2.6: In their simulations, the authors prescribe vertically constant 
displacements, as they argue that at large distance from the grounding line, horizontal velocities 
and displacements are depth-independent. Although some references would be useful here, this 
might appear as a reasonable approximation.  
	
  
We	
   added	
   the	
   reference	
   to	
   the	
   book	
   of	
   Greve	
   and	
   Blatter	
   in	
   Sec.	
   3.4	
   to	
   justify	
   the	
  
assumption	
  about	
  the	
  depth-­‐independent	
  horizontal	
  velocities	
  made	
  in	
  the	
  manuscript.	
  
 
However, to apply displacements instead of stresses can lead to some tricky problems. In section 
2.4, the authors explain that the boundary displacement Delta_u is linked to the normal stress at 
the surface (no effect of the overburden pressure) through a linear elastic rheology. But, just 
below, they indicate that this stress is calculated using a viscous rheology (Glenʼs law). There is 
therefore a contradiction here. This contradiction is also present in Rist et al. (JGR 2002), but this 
was more justified in this case based on analytical calculations.  
 



The	
  application	
  of	
  displacement	
  boundary	
  conditions	
  instead	
  of	
  stress	
  boundary	
  conditions	
  
is	
   indeed	
   tricky	
   as	
   this	
   approach	
   requires	
   further	
   consideration	
   on	
   how	
   various	
   material	
  
parameters	
  and	
  their	
  variance	
  over	
  depth	
  influence	
  the	
  outcome	
  of	
  the	
  problem.	
  However,	
  
not	
   requiring	
   elastic	
  material	
   parameters	
   when	
   applying	
   stress	
   boundary	
   conditions	
   does	
  
not	
  imply	
  that	
  their	
  influence	
  does	
  not	
  exist	
  and	
  need	
  to	
  be	
  discussed.	
  	
  
We	
   do	
   not	
   see	
   a	
   contradiction	
   in	
   the	
   transformation	
   of	
   the	
   viscous	
   surface	
   stresses	
   into	
  
displacement	
  boundary	
  conditions	
  for	
  our	
  linear	
  elastic	
  analysis.	
  In	
  a	
  visco-­‐elastic	
  material	
  as	
  
e.g.	
  represented	
  by	
  a	
  non-­‐linear	
  Maxwell	
  element,	
  there	
  is	
  one	
  and	
  the	
  same	
  stress	
  acting	
  in	
  
the	
  spring	
  as	
  well	
  as	
  in	
  the	
  dashpot.	
  Depending	
  on	
  the	
  time	
  scale,	
  the	
  strain	
  in	
  the	
  material	
  
will	
  be	
  dominated	
  by	
  the	
  short-­‐term	
  elastic	
  response	
  or	
  the	
  long-­‐term	
  viscous	
  response.	
  We	
  
assume	
  that	
  for	
  the	
  fracturing	
  process	
  in	
  a	
  first	
  approach	
  only	
  the	
  elastic	
  response	
  due	
  to	
  a	
  
sudden	
   change	
   in	
   the	
   geometry,	
   e.g.	
   due	
   to	
   an	
   initial	
   crack	
   is	
   important.	
   The	
   stress	
  
overburden	
  pressure	
   is	
   included	
   in	
  our	
  model	
  by	
  applying	
  gravity	
  as	
  a	
  volume	
  force	
   in	
   the	
  
entire	
  computation	
  domain.	
  
	
  
In the real world, both rheologies are coupled, and play a different role depending on time scales. 
Finite-element calculations could be a way to model the full problem. In this case, velocities 
instead of displacements should be used as BCs. In the simulations of this manuscript, 
displacement BCs are applied (and do not evolve through time). Imagine an elasto-viscous body 
on which you apply - instantaneously – some displacement Delta_u. The obtained stress field at 
t=0 would be the one calculated by the authors, but this stress field will relax as the ice creeps. 
As the instantaneous application of a fixed displacement is an unrealistic scenario in case of ice 
shelves, this raises problems for the interpretation of the presented results in terms of crevasse 
instability. A more realistic scenario would be to apply velocities instead of displacements: in this 
case, the instability will depend strongly on the rate of loading, i.e. on the possibility to relax by 
creep the increasing elastic stresses. In addition, for prescribed velocity BCs, the presence of 
crevasses will modify the obtained surface stresses. These problems explain why previous 
analytical approaches (e.g. Smith, C93 J.Glac, 1976; Van der Veen, Cold Reg Sci Tech, 1988, . . 
.) considered stress BCs, even if they introduce other simplifications. In conclusion, I do not see a 
real break- through here compared to previous analytical works, whereas the FE approach could 
potentially allow such progress. 
 
Laboratory	
  studies	
  and	
  observations	
  on	
  ice	
  shelves	
  indicate	
  that	
  unstable,	
  sudden	
  and	
  crack	
  
growth	
  in	
  ice	
  shelves	
  exists	
  and	
  happens	
  on	
  time	
  scales	
  where	
  relaxation	
  due	
  to	
  creep	
  can	
  
be	
   neglected.	
   However,	
   we	
   totally	
   agree	
   with	
   the	
   reviewer,	
   that	
   a	
   time	
   dependent	
   FE	
  
simulation	
   of	
   the	
   visco-­‐elastic	
   material	
   to	
   analyse	
   the	
   crack	
   propagation	
   would	
   be	
   more	
  
realistic	
   and	
   desirable.	
   Unfortunately,	
   this	
   approach	
   needs	
   even	
   more	
   knowledge	
   and	
  
assumptions	
   about	
   the	
   elastic	
   and	
   viscous	
   material	
   parameters	
   as	
   well	
   as	
   the	
   boundary	
  
conditions	
   at	
   t=0	
   for	
   the	
   velocities	
   and	
   the	
   displacements.	
   For	
   this	
   reason	
   we	
   first	
  
concentrated	
  only	
  on	
  the	
  elastic	
  properties	
  and	
  their	
  influence	
  on	
  the	
  stress	
  intensity	
  at	
  the	
  
crack	
   tip	
  with	
   the	
   intention	
   to	
   expand	
   the	
  model	
   to	
   a	
   visco-­‐elastic	
   one	
   in	
   further	
   studies.	
  
Furthermore	
   we	
   would	
   like	
   to	
   remark	
   that	
   analytical	
   models	
   can	
   not	
   consider	
   material	
  
inhomogeneities,	
   such	
   as	
   varying	
   Young’s	
   modulus.	
   In	
   that	
   respect,	
   we	
   believe	
   that	
   the	
  
method	
  proposed	
  here	
  is	
  more	
  versatile	
  and	
  is	
  applied	
  to	
  more	
  realistic	
  settings.	
  
	
  
3) p471, L9: “an elastically compressible solid”: this precision might be useful to avoid confusion 
with incompressible (e.g. plastic) flow. 
 
4) p474, L7: “the identity tensor I” (and not 1) 
 
We	
  agree	
  with	
  the	
  reviewer	
  and	
  will	
  therefore	
  adapt	
  the	
  sentence	
  and	
  the	
  symbol.	
  
 



5) section 2.3: the so-called crack driving force is actually an energy release rate (see e.g. eq. 
(18)) 
	
  
Yes,	
   in	
   the	
   elastic	
   case,	
   the	
   crack	
   driving	
   force	
   is	
   an	
   energy	
   release	
   rate.	
   This	
   term	
   is	
  
commonly	
  used	
  in	
  the	
  literature	
  and	
  is	
  appropriate	
  and	
  descriptive	
  in	
  the	
  context	
  of	
  fracture	
  
mechanics.	
  
 
6) section 2.5: what is the evolution of the mesh size as approaching the crack tip ? Are the 
results dependent on this “rate” of refinement ? 
 
Of	
  course	
  the	
  refinement	
  strategy	
  is	
  influencing	
  the	
  results.	
  The	
  comparison	
  with	
  the	
  semi-­‐
analytical	
   result	
   however	
   indicated	
   that	
   the	
   results	
   are	
   accurate	
   enough.	
   As	
   all	
   meshes	
  
influence	
   the	
   results	
   we	
   do	
   not	
   believe	
   that	
   specifying	
   the	
   exact	
   rate	
   of	
   refinement	
   will	
  
provide	
   a	
   better	
   understanding.	
   In	
   order	
   to	
   provide	
   some	
   more	
   specific	
   information	
   we	
  
mentioned	
  the	
  minimal	
  element	
  size	
  in	
  section	
  2.5	
  and	
  will	
  add	
  the	
  average	
  total	
  number	
  of	
  
elements	
   (about	
  8400	
  elements	
   for	
  crack	
  tips	
   located	
   in	
  the	
  domain	
  centre)	
   in	
  the	
  revised	
  
version.	
  
 
7) equation (20): B (creep constant ?) and rho_sw (density of sea water ?) should be defined. 
 
We	
  changed	
   the	
   sentence	
   in	
   the	
  manuscript	
   to:	
   “…	
  based	
  on	
  measurements	
   of	
   ice	
   cores,	
  
rho_sw	
  =	
  1028	
  kg/m^3	
   is	
   the	
  density	
  of	
   salt	
  water	
  and	
  B	
   the	
   temperature	
  dependent	
  and	
  
therefore	
  depth-­‐dependent	
  rate	
  factor.”	
  	
  
 
8) p479, L5-6: “The stress intensity. . .(Bueckner 1970)”: Not clear. Does this mean that K is not 
estimated from eq. 18 ? 
 
Rist	
   et	
   al.	
   (2002)	
   use	
   the	
   weight	
   function	
   method	
   of	
   Bueckner	
   (1970)	
   to	
   calculate	
   stress	
  
intensity	
  factors.	
  We	
  used	
  configurational	
  forces	
  and	
  Eqn.	
  (18)	
  to	
  reproduce	
  the	
  results	
  for	
  
the	
  validation	
  of	
  the	
  model.	
  We	
  changed	
  the	
  sentence:	
  “The	
  stress	
  intensity	
  factor	
  KI	
  based	
  
on	
   σxx,	
   is	
   calculated	
   using	
   the	
   weight	
   function	
   method	
   (Bueckner,	
   1970).”	
   to	
   “Rist	
   et	
   al.	
  
(2002)	
  use	
  the	
  weight	
  function	
  method	
  presented	
  in	
  Bueckner	
  (1970)	
  to	
  evaluate	
  the	
  stress	
  
intensity	
  factor	
  KI	
  based	
  on	
  σxx.”	
  .	
  	
  
 
9) p479, L8: “which ranges between (1-4) Pa.mˆ1/2” ???? Fracture toughness of ice is around 
100-150 kPa (see e.g. Schulson and Duval, 2009). 
 
We	
  regret	
  that	
  we	
  have	
  forgotten	
  the	
  10^5	
  here	
  and	
  changed	
  in	
  the	
  manuscript.	
   It	
  should	
  
read	
   	
   (1-­‐4)	
  10^5	
  Pa	
  m^(1/2)	
  or	
  100-­‐400	
  kPa	
  m^(1/2).	
  However	
  we	
  choose	
  to	
  take	
  400	
  kPa	
  
m^(1/2)	
  instead	
  of	
  150	
  kPa	
  m^(1/2)	
  as	
  upper	
  limit,	
  based	
  on	
  the	
  measurements	
  reported	
  by	
  
Rist	
  et	
  al.	
  (2002).	
  
 
10) p480, L4-6: “This approach requires. . .”. I do not understand why, as stresses (and not 
displacements) are not prescribed in this case. 
 
11) p480, L11: For a polycrystalline ice with isotropic fabrics, the Poisson ratio is very close to 
1/3, and does not vary significantly with e.g. temperature. Variation in the range 0.2-0.4 are only 
obtained for strongly anisotropic fabrics (see e.g. Schulson and Duval, 2009). In this case, nu is 
axis-dependant, and not isotropic, with possible fluctuations with depth (as fabrics changes). 
Therefore, I do not really understand this discussion about the Poissonʼs ratio (section 3.2). 
Moreover, this dependence of the results on nu comes from the displacement BCs (and not 
stresses) approximation. 



 
The	
  effect	
  of	
  gravity	
  acting	
  on	
  the	
  ice	
  must	
  be	
  transformed	
  into	
  a	
  boundary	
  stress,	
  if	
  stress	
  
boundary	
  conditions	
  are	
  applied.	
  By	
  assuming	
  a	
  hydro/cryostatic	
  stress	
  varying	
  with	
  depth,	
  
which	
   is	
   added	
   to	
   the	
  depth	
  dependent	
  or	
   constant	
   tensile	
   stress,	
   the	
  mentioned	
  authors	
  
tacitly	
   imply	
  an	
  elastically	
   incompressible	
  material	
  behaviour	
  and	
   therefore	
  nu	
  =	
  0.5.	
  With	
  
the	
   discussion	
   about	
   Poisson’s	
   ratio	
   we	
   want	
   to	
   sensitize	
   for	
   the	
   fact	
   that	
   for	
   an	
   elastic	
  
analysis	
  of	
   fracture	
   in	
   ice	
  one	
  has	
   to	
  discuss	
   the	
  appropriate	
   value	
   for	
  Poisson’s	
   ratio	
  and	
  
accordingly	
   adapt	
   the	
   boundary	
   conditions.	
   The	
   results	
   for	
   nu=0.5	
   and	
   nu=0.3	
   vary	
   by	
   a	
  
factor	
  ½.	
  This	
  is	
  not	
  a	
  matter	
  of	
  displacement	
  or	
  stress	
  boundary	
  conditions,	
  but	
  on	
  how	
  the	
  
gravity	
  induced	
  pressure	
  is	
  transformed	
  into	
  boundary	
  conditions. 
 
12) p482, L15-16: KI<KIc is a poor crack arrest criterion. In general, as dynamic effects have to 
be taken into account during unstable propagation (KI>KIc), the arrest is observed for K«KIc: see 
e.g. the classical (Ravi-Chandar, Int. J. Fracture, 1984). KI>KIc is a good crack initiation criterion 
for unstable crack growth. It tells nothing about how a crack (a crevasse here) can reach the 
critical depth (in this manuscript, the creep strain-rate, and so the surface tensile stress, is 
considered to be constant through time). To describe this, sub-critical crack growth has to be 
considered. In the context of crevasses, this point has been tackled by (Weiss, J. Glac., 2004). 
	
  
In	
  this	
  paper	
  only	
  quasistatic	
  crack	
  initiation	
  and	
  growth	
  is	
  considered.	
  In	
  this	
  framework	
  a	
  
crack	
  is	
  considered	
  as	
  stable	
  as	
  long	
  KI<KIc	
  holds.	
  We	
  agree	
  absolutely	
  with	
  the	
  reviewer	
  that	
  
this	
  criterion	
  cannot	
  be	
  applied	
  as	
  an	
  arrest	
  criterion	
   in	
  case	
  of	
  dynamic	
  crack	
  growth.	
  For	
  
brittle	
  materials,	
  the	
  (dynamic)	
  arrest	
  value	
  KIarr	
  usually	
  is	
  below	
  KIc,	
  but	
  detailed	
  data	
  for	
  ice	
  
to	
   our	
   knowledge	
   seems	
   not	
   to	
   exist	
   in	
   the	
   literature,	
   which	
   is	
   also	
   stated	
   in	
   the	
   very	
  
interesting	
  paper	
  of	
  Weiss	
  (2004)	
  that	
  the	
  reviewer	
  mentioned.	
  In	
  this	
  context	
  it	
  also	
  should	
  
be	
   mentioned	
   that	
   a	
   sound	
   KIarr	
   value	
   would	
   only	
   make	
   sense	
   in	
   conjunction	
   with	
   a	
   full	
  
dynamic	
  crack	
  growth	
  analysis.	
  We	
  added	
  a	
   reference	
  to	
   the	
  paper	
  of	
  Weiss	
   (2004)	
   in	
   the	
  
introduction	
   of	
   the	
   revised	
   manuscript:	
   “A	
   different	
   approach	
   was	
   introduced	
   by	
   Weiss	
  
(2004)	
  who	
  argued	
  that	
  critical	
  crack	
  growth	
  can	
  not	
  explain	
  slow	
  crevasse	
  propagation.	
  He	
  
therefore	
   analysed	
   subcritical	
   crack	
   growth	
   for	
   very	
   simplified	
   geometries,	
   boundary	
  
conditions	
  and	
  material	
  parameters.	
  “	
  	
  
 
13) p484, L21-22: The exponential dependency of E is probably related to a strong dependency 
of E on porosity in firn (see e.g. Schulson and Duval, 2009). This strong, non-linear dependency 
of E on r calls for a coupled analysis of the effects of both parameters (i.e. to unite sections 3.3 
and 3.4) 
 
We	
  chose	
  to	
  look	
  at	
  E	
  and	
  rho	
  independently	
  and	
  added	
  a	
  sentence	
  about	
  their	
  dependency	
  
and	
   the	
  motivation	
   to	
   perform	
   a	
   coupled	
   analysis	
   in	
   the	
   revised	
  manuscript.	
   In	
   order	
   to	
  
separate	
   effects	
   and	
   mechanisms	
   we	
   prefer	
   to	
   keep	
   the	
   parameter	
   studies	
   in	
   separate	
  
sections:	
   “Rist	
   et	
   al.	
   (2002)	
   motivate	
   a	
   density	
   related	
   and	
   therefore	
   exponential	
  
dependency	
  of	
  the	
  Young’s	
  modulus	
  on	
  the	
  depth,	
  which	
  gives	
  reason	
  for	
  a	
  coupled	
  analysis	
  
of	
   the	
   influence	
  of	
  both	
  parameters.	
  However,	
   in	
  order	
   to	
   compare	
   the	
   simulation	
   results	
  
with	
  former	
  analyses	
  applying	
  depth	
  dependent	
  density	
  profiles	
  and	
  to	
  separate	
  effects	
  and	
  
mechanisms,	
  we	
  decided	
  to	
  look	
  at	
  E	
  and	
  rho	
  independently.”	
  
	
  
14) the legends of fig. 1(c) are unreadable 
 
We	
  solved	
  the	
  conversion	
  problems.	
  	
  
We	
  are	
  grateful	
  for	
  the	
  very	
  constructive	
  and	
  helpful	
  comments	
  of	
  the	
  reviewer	
  that	
  helped	
  
us	
  to	
  improve	
  the	
  manuscript.	
  	
  


