1 2

# Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21<sup>st</sup> century

- 3 Ménégoz, M.<sup>1</sup>, Krinner, G.<sup>1</sup>, Balkanski, Y.<sup>2</sup>, Cozic, A.<sup>2</sup>, Boucher, O.<sup>3</sup>, Ciais, P.<sup>2</sup>.
- 4 [1] CNRS and UJF Grenoble 1, Laboratoire de Glaciologie et Géophysique de l'Environnement
- 5 (LGGE, UMR5183), 38041 Grenoble, France.
- 6 [2] Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Gif-sur7 Yvette, France.
- 8 [3] Laboratoire de Météorologie Dynamique, IPSL, Université P. et M. Curie, Paris, France.
- 9 Corresponding author: martin.menegoz@lgge.obs.ujf-grenoble.fr

## 10 Abstract

We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover 11 north of 30°N both for the present-day and for the middle of the 21<sup>st</sup> century. Black carbon (BC) 12 13 deposition over continents induces a reduction in the Mean Number of Days With Snow at the 14 Surface (MNDWS) that ranges from 0 to 10 days over large areas of Eurasia and Northern America 15 for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is 16 exposed to both strong solar radiation and large amount of aerosol deposition induced themselves 17 by a high level of transport of particles from polluted areas. North of 30°N, this deposition flux 18 represents 222 Gg BC month<sup>-1</sup> on average from April to June in our simulation. A large reduction in 19 BC emissions is expected in the future in all of the Representative Concentration Pathway (RCP) 20 21 scenarios. In particular, considering the RCP8.5 in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month<sup>-1</sup> in the 2050s. However, despite the reduction of the aerosol 22 impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 23 24 days from pre-industrial values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence 25 26 of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open 27 new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic 28 by the mid 21<sup>st</sup> century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening 29 30 effects associated to these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated however some changes of the MNDWS considering such 31

32 aerosol ship emissions. These changes are generally not statistically significant in boreal continents, except in the Quebec and in the West Siberian plains, where they range between -5 and -10 days. 33 They are induced both by radiative forcings of the aerosols when they are in the snow and in the 34 35 atmosphere, and by all the atmospheric feedbacks. These experiments do not take into account the 36 feedbacks induced by the interactions between ocean and atmosphere as they were conducted with prescribed sea surface temperatures. Climate change by the mid 21<sup>st</sup> century could also cause 37 38 biomass burning activity (forest fires) to become more intense and occur earlier in the season. In an idealized scenario in which forest fires are 50% stronger and occur 2 weeks earlier and later than at 39 present, we simulated an increase in spring BC deposition of 21 Gg BC month<sup>-1</sup> over continents 40 located north of 30°N. This BC deposition does not impact directly the snow cover through snow 41 42 darkening effects. However, in an experiment considering all the aerosol forcings and atmospheric 43 feedbacks, except those induced by the ocean-atmosphere interactions, enhanced fire activity 44 induces a significant decrease of the MNDWS reaching a dozen of days in Quebec and in Eastern 45 Siberia.

### 46 **1** Introduction

47 The boreal regions have been characterized as a region very sensitive to climate change (Lemke et 48 al., IPCC, chapter 4, 2007). One reason for the amplification in Arctic and Subarctic surface 49 warming in response to increased greenhouse gas concentrations is the snow and sea-ice albedo 50 feedback, which decreases surface albedo as snow and sea ice further melt and disappear in 51 response to the warming by greenhouse gases (Serreze et al., 2006, Qu et al., 2007). Both sea-ice 52 and snow-cover extents have been observed to shrink over the last decades in the Northern 53 Hemisphere (Serreze et al., 2007, Shi et al. 2011). Snow-cover extent is expected to decrease further 54 during the 21st century (e.g. Hosaka et al., 2005, Frei and Gong, 2005). However, it is quite difficult 55 to evaluate accurately this decrease using climate models, because of both the complexity of the 56 interactions between the snow and the atmosphere and the uncertainties when predicting future 57 anthropogenic climate forcing (Qu and Hall, 2006 and 2007, Ghatak et al. 2010).

58 In contrast with the Antarctic, the Arctic atmosphere is quite polluted. An ensemble of short-lived 59 species emitted in the industrialised mid-latitude regions of the Northern Hemisphere are 60 transported towards the Arctic, where their lifetime increases due to the weak intensity of removal 61 processes, in particular during the winter. The transport of pollutants into the Arctic atmosphere 62 occurs especially in spring, and has been referred to cause the "Arctic Haze" phenomenon (e.g. 63 Shaw, 1995, Stohl et al., 2006). Ozone and aerosols are the main short-lived species transported 64 toward the Arctic that impact significantly the climate of this region, modifying regionally the 65 radiative balance of the atmosphere (Law and Stohl, 2007). Ozone is a strong greenhouse gas, inducing a positive radiative forcing and causing a regional increase of the surface temperature 66 67 (Shindell et al., 2006). Sulphate, Organic Carbon (OC) and nitrate aerosols are known to scatter 68 solar radiation, inducing a negative radiative forcing at the top of the atmosphere and a cooling of 69 the Earth's surface (Penner et al., 2001, Kanakidou, 2005). Black Carbon (BC) strongly absorbs 70 solar radiation, inducing a positive forcing at the top of the atmosphere and a negative instantaneous 71 forcing at the surface (Reddy et al., 2005). The heating of the atmosphere due to BC induces also an 72 increase in the downward longwave radiation. Over highly reflective surfaces like snow covered 73 areas, this increase in the longwave flux can be higher than the decrease of the shortwave flux 74 induced by atmospheric BC (Quinn et al., 2008). In addition to these direct radiative forcings, 75 aerosols affect clouds microphysics, processes referred to as the aerosol indirect effects. Although 76 uncertain, these effects are thought to induce a negative radiative forcing, both at the top and the 77 bottom of the troposphere (Lohmann et al., 2005). However, it has been suggested that there is also 78 a longwave positive radiative forcing from aerosol-cloud interactions in the Arctic (Garrett and

79 Zhao, 2006; Lubin and Vogelmann, 2006). In addition, once deposited to snow or ice, BC and OC 80 absorb radiation within the snowpack, and cause an earlier snow disappearance or decrease the 81 snow mass, inducing a positive forcing at the surface, through decreased albedo (e.g. Warren and 82 Wiscombe, 1980, Clarke and Noone, 1985, Jacobson, 2004, Hadley and Kirchstetter, 2012). 83 Overall, Shindell and Faluvegi (2009) and Shindell (2012) pointed out that the temperature response 84 to a radiative forcing is not necessarily correlated with the location of this radiative forcing. This is 85 particularly true for the Arctic surface temperature response, which can be of opposite sign to that 86 of the radiative forcing. This points to the necessity to apply Global Circulation Models (GCM) to 87 quantify the surface temperature response to different radiative forcings in a particular region. 88 Overall, Shindell (2007) and Shindell and Faluvegi (2009) estimate that both anthropogenic well-89 mixed greenhouses gases and short-lived species have contributed to the Arctic warming.

90 The main source of aerosol in the Arctic atmosphere is the transport from polluted regions in North 91 America, Europe and Asia, while local aerosol emissions are very small (Shindell et al., 2008; 92 Browse et al., 2012). Future aerosol concentrations in the Arctic are therefore very dependent on the 93 evolution of the anthropogenic emissions from these regions. According to the Representative 94 Concentration Pathway (RCP, Moss et al., 2008) emission scenarios, aerosol emissions in Northern America and Europe are estimated to have reached maximum values at different time periods 95 96 during the 20<sup>th</sup> century, depending on countries and on the chemical species under consideration 97 (Bond et al. 2007, Smith et al., 2011). These regions now experience a significant decrease in their 98 aerosol emissions. This is not the case of Asian emissions, which are still increasing. Their decrease 99 is projected to take place in the next decades, although the exact timing is quite difficult to estimate, 100 as the projections for energy demand, biofuel consumption and the introduction of new technologies 101 are not set in stone (Ohara et al., 2007). In addition to anthropogenic emissions occurring in densely 102 populated and industrialized regions, it seems that two local sources could affect the Arctic 103 atmosphere in the decades to come: first, ship emissions could increase significantly, as summer 104 sea-ice retreat will open new routes across the Arctic Ocean (Corbett et al. 2011). In particular, the 105 possible increase of petroleum activities, extraction and refining, could induce an enhancement of 106 ship traffic in some parts of the Arctic. However, the atmospheric pollution associated to such 107 emissions in the Arctic should be limited by the decrease in emission factor as technology 108 progresses (Peters et al., 2011); second, biomass burning emissions are expected to become stronger 109 and to occur earlier in the season. The earlier occurrence of forest fires has recently been observed 110 in high latitudes, in particular during warmer and dryer spring periods, in response to climate 111 warming (e.g. Warneke et al. 2009). Flannigan et al. (2009a; 2009b) projected for instance that 112 climate warming will induce an increase of fire activity in temperate and boreal regions, mainly 113 from forest wildfires.

114 The goal of this study is to estimate the snow-cover variations in the boreal and temperate regions for the middle of the 21<sup>st</sup> century using simulations with a global coupled atmospheric general 115 116 circulation and chemistry model prescribed with different aerosol local emission scenarios. As our quite coarse model is not able to describe realistically the seasonal snow cover over regions with 117 118 complex topography, we excluded from our analysis most of the mountain ranges of the Northern Hemisphere. In particular, we excluded a large part of Himalaya, choosing a domain of study 119 120 extended from 30°N to the North Pole. Using a land surface model enhanced for including the 121 effects of BC on snow albedo, we investigate how the deposition of absorbing aerosols on snow 122 affects snow cover dynamics and feedbacks on regional climate. We evaluate the snow-cover 123 changes in the 2050 decade for the intensive RCP8.5 scenario (Representative Concentration 124 Pathway 8.5, Moss et al., 2008, 2010, Riahi, 2007), and analyse thereafter the role of possible 125 enhanced aerosols local emissions in the Arctic region.

### 126 2 Experimental set-up

#### 127 **2.1 Model description**

We used the "LMDZ-INCA-ORCHIDEE" atmospheric General Circulation Model to study the 128 interactions between atmosphere, aerosols and snow-covered areas. This model consists of three 129 130 coupled modules: the LMDZ general circulation model represents the atmospheric component (Hourdin et al., 2006). INCA (Interactions between Chemistry and Aerosols) describes gas- and 131 132 aqueous-phase chemistry (Hauglustaine et al., 2004; Boucher et al., 2002), as well as aerosol 133 physical properties such as size and hygroscopicity (Balkanski et al., 2010), which control the 134 amount of wet and dry deposition. The coupling between the LMDZ and INCA models allow for an 135 interactive simulation of five aerosol chemical species, namely sulphate, BC, OC, sea-salt and dust. 136 Direct aerosol forcing is taken into account for BC, OC, seasalt and dust, and both direct and indirect effect are taken into account for sulphate, BC and OC aerosol, as described in Déandreis et 137 138 al. (2012). We used here LMDZ and INCA with a horizontal resolution of 96 x 95 grid points in longitude and latitude, and with a vertical discretisation of 19 layers. Finally the ORCHIDEE land 139 140 surface model serves as the land surface boundary condition for LMDZ and describes exchanges of energy and water between the atmosphere, the soil and the biosphere (Krinner et al., 2005), 141 142 including a dynamic snow module. The coupling between LMDz and ORCHIDEE is described by 143 Hourdin et al. (2006), and those between LMDz and INCA is detailed by Hauglustaine et al. (2004) 144 for chemistry and tracers and by Balkanski et al. (2007, 2010) and Déandreis et al. (2012) for the 145 computation of the aerosols radiative forcings.

146 For this work, we used the detailed representation of snow-cover implemented in ORCHIDEE by 147 Krinner et al. (2006) who studied the interactions between dust aerosol and ice-sheets in Northern Asia during the last glacial maximum (21000 years BP). In this scheme, snow albedo and snow 148 149 cover are described separately for forests and grasslands/deserts, with a subgrid-scale orographic 150 variability to compute accurately the energy balance in mountainous areas (Douville et al., 1995, 151 Roesch et al., 2001). The aerosol content of the snow and its albedo are computed with a two-layer 152 scheme, with a top layer of 8 mm (Snow Water Equivalent, SWE), and a bottom layer containing 153 the remaining snow. A detailed description of the treatment of the snow/aerosol interactions in 154 ORCHIDEE can be found in Krinner et al. (2006). However, only dry-deposited dust aerosol was 155 taken into account in this study. Here, we also take into account BC, as its very absorbing property 156 makes it likely to impact significantly the snowpack energy balance and the snow cover extent (e.g. 157 Jacobson, 2004). Unfortunately, OC deposition on snow is not taken into account in our simulation. 158 This aerosol also absorbs solar radiation, but there remain a lot of uncertainties concerning its 159 radiative properties and its behaviour within the snowpack. We hope to take these processes into 160 account in a further study. BC dry and wet depositions are computed by the INCA atmospheric 161 chemistry module with a six-hourly time step. As in Krinner et al (2006), dry deposition contributes to increase the aerosol content in the top snow layer. Wet deposition also supplies aerosol to the 162 163 surface layer, but it should be noted that this process is associated with an entry of fresh snow. If snowfall brings more snow than the maximum height of the snowpack surface layer, then aerosols 164 165 in this previous surface layer are transferred into the bottom layer. Note that we considered a constant snow density of 330 kg m<sup>-3</sup>. In further studies, we hope to include a more realistic 166 representation of snow density in our model. If snowfall brings less than the maximum height of the 167 168 surface layer, the new aerosol concentration of the surface layer is computed with the proportional 169 contributions of the old aerosol concentration of the surface layer and those of the snowfall which 170 reaches the surface layer (wet deposition). During melt or sublimation, snow mass is supposed to be 171 lost from the surface layer. This one is therefore extended downwards to attain 8 mm SWE (if 172 enough snow remains in the bottom layer). The aerosol mass corresponding to the lost snow height 173 is added to those of the new surface layer. The timestep used to compute the snow aerosol content is 174 the same as those applied to the whole surface scheme, *i.e.* 30 min. More details about this snow 175 scheme can be found in Krinner et al. (2006). Conway et al. (1996) observed that BC could be 176 flushed effectively trough the snow in melting conditions, with velocities strongly dependent on the 177 particle size. However, the Conway et al. (1996) study was based upon experiments with particularly high rates of snow melting since they were performed during summer at altitudes 178 179 around 2000 meters over the Northern United States. More recent observations by Aamaas et al. 180 (2011) in Spitsbergen showed that BC aerosols tend to stay at the surface of the snowpack even during melting conditions. Building on this experimental evidence, and in contrast with Krinner et al. (2006), we will consider in this study that both dust and BC do not flush through the snow, and stay at the surface until a new snowfall occurs or until the disappearance of the snow-cover. This assumption could overestimate the magnitude of BC aerosol effects on the snow cover and climate.

185 Snow albedo is estimated using the parameterisation of Warren and Wiscombe (1980), which is 186 adapted for snow containing aerosols. As in Krinner et al. (2006), the snow albedo of the bottom 187 snowpack layer is computed first for diffuse radiation as a function of the underlying albedo, snow 188 grain size and aerosol content. Snow grain size evolves prognostically as a function of snow age 189 and temperature (Marshall and Oglesby, 1994), but unlike the aerosol content, it takes the same 190 value in both snow layers. The spherical albedo of the bottom layer is then used as the underlying 191 albedo for computing the albedo of the surface layer, both for diffuse and direct solar radiation. 192 Snow albedo is averaged separately in the visible and near-infrared parts of the solar spectrum. We 193 adopt the same aerosol physical properties as used in Balkanski et al. (2010) to evaluate their 194 radiative forcings in the atmosphere. Within the snow, we do not know the extent to which aerosols 195 are internally mixed, how they interact with snow grains, and how their hygroscopic and radiative properties evolve in time. Faced with all these uncertainties, we decided to consider simpler 196 197 physical and radiative properties for aerosols in the snow in comparison with atmospheric aerosols. 198 In futur model developments, we hope to include a more accurate representation of the interaction 199 between aerosols and snow grain. Flanner et al. (2012) showed that accounting for the internal 200 mixing of BC within snow grains increases its radiative forcing by 40 to 85% compared with 201 treatments of externally-mixed BC in snow. Therefore, the simplification applied in our study may 202 potentially underestimate the BC effect on snow albedo. The size and radiative parameters for dust 203 are the same as used by Krinner et al (2006), following Guelle et al. (2000) and Balkanski et al. 204 (2007). Black carbon is assumed to follow a log-normal size distribution with a median number 205 radius of 11.8 nm, characteristic of freshly emitted soot (Dentener et al., 2006, Jacobson et al., 206 2004). In the real world, this diameter increases quickly, as BC undergoes ageing and coagulation 207 and can be coated by other aerosols in the atmosphere. However, as we do not consider internal 208 mixtures for BC in snow, we consider that BC aerosols regain their initial size when incorporated in the snowpack. We considered a BC density of 1 g cm<sup>-3</sup>, and the refractive index for BC is taken to 209 210 be m=1.75-0.45i. Refractive indices for ice are taken from the GEISA database (Jacquinet-Husson 211 et al., 1999). The corresponding mass absorption cross-section (MAC) of BC resulting from these assumptions of size distribution, density, and refractive index reaches a value of 7.6 m<sup>2</sup>.g<sup>-1</sup> at 545 212 nm (mid-visible, see the MAC definition of Bond and Bergrstrom, 2006, and Boucher, 2011). This 213 value is comparable to 7.5  $\pm 1.2$  m<sup>2</sup>.g<sup>-1</sup>, a value found by Flanner et al (2007) and Bond and 214 215 Bergrstrom (2006). Such value could however be reevaluated in further study, as Flanner et al.

216 (2012) found larger values considering internal mixing for snow and aerosol.

#### 217 **2.2 Description of simulations**

218 Table 1 describes the eight 11-year global simulations that we performed to characterize the impact 219 of BC deposition on snow cover both for the present period and for the middle of the 21<sup>st</sup> century. 220 We exclude from our analysis the first year of simulation, considered as a spin-up period. The two 221 first experiments - designated as S1 and S1B - describe the present-day atmospheric state (1998-222 2008), using prescribed observed Sea Surface Temperature (SST, see Rayner et al., 2003) with 223 winds nudged toward ERA-40 reanalysis from the European Centre for Medium-range Weather 224 Forecasts (ECMWF). Note that pressure, temperature and humidity are computed with the LMDZ 225 model without nudging in these experiments. The nudging is applied only for horizontal winds as 226 described in Coindreau et al. (2006). Such protocol is very useful to reproduce the observed 227 atmospheric state (Douville, 2010), letting however the model partially free to react to external 228 forcings. We only applied the nudging to winds to avoid possible inconsistencies between winds 229 and other meteorological variables (pressure, temperature, and moisture). These experiments were 230 conducted with the present-day global aerosol emission inventory described in Lamarque et al. 231 (2010), an inventory made for the Coupled Model Inter-comparison Project Phase 5 (CMIP5, 232 CLIVAR special issue, 2011). In S1B, the BC content in the snow is set to zero, whereas it is 233 computed from aerosol deposition in all the other experiments. The six other experiments were 234 conducted over the period 2050-2060. They are based upon the aerosol and gases intensive 235 emission scenario RCP8.5 (Representative Concentration Pathway 8.5, Moss et al., 2008, 2010, 236 Riahi, 2007), characteristic of a scenario with no climate mitigation policies to limit greenhouse gas 237 emissions. This scenario corresponds to a total anthropogenic forcing in 2100 of approximately 8.5 W m<sup>-2</sup>. All six experiments were conducted with prescribed SST for the 2050s decade as produced 238 239 from a previous coupled ocean-atmosphere simulation using IPSL-CM5A configuration in the 240 context of the CMIP5 exercise (Dufresne et al., 2012). As for the two present-day simulations, using 241 prescribed SST for these experiments cancel completely all the possible feedbacks involving the 242 atmosphere ocean interactions. The first one of these six experiments – designated as S2 – has been 243 performed with the aerosol emission inventory corresponding to that defined for the RCP8.5 244 scenario (Lamarque et al., 2009). Importantly, none of the RCP emission inventories used in CMIP5 simulations over the 21st century considers variations of "local" emissions in the Arctic, which 245 246 could be associated to a significant increase in ship traffic in the Arctic or to an intensification of 247 biomass burning in boreal and temperate regions. For this reason, we performed another simulation - S3 - similar to S2 but replacing the baseline Arctic ship emissions in the RCP8.5 2050 by a 248 249 scenario that includes important ship traffic over Arctic routes. These larger ship emissions are 250 based on the "high-growth" scenario of Corbett et al. (2010), considering a high increase in ship 251 traffic over the current Arctic routes. This scenario takes also into account the diversion routes 252 opened during the summer following the seasonal retreat of sea-ice expected in the next decades. 253 Finally an S4 simulation was also performed, similar to S2, but with enhanced biomass burning 254 activity. Following Flannigan (2009a; 2009b), we consider an increase of 50% of BC and other aerosols emitted by fire during all the year. In addition, we consider also a 1-month extension of the 255 256 fire season in the Northern hemisphere (starting 15 days prior and extending 15 days after the fire 257 season of the present-day): From January to June (resp. from August to December), monthly 258 emissions are computed as the average between the emission of the current month and those of the 259 following (resp. previous) month. S3 and S4 emission variations are applied to sulphate, BC and 260 OC. S2, S3 and S4 experiments consist of a pair of 11-years simulations, with initial conditions 261 slightly modified in one of them, to be able to analyze 20 years of model output, as 10 years would 262 clearly be insufficient to make comparisons statistically robust. In addition, to evaluate in more details the impact of the future aerosol emissions changes without considering atmospheric 263 264 feedbacks, we realized three more experiments nudged toward our first 2050-2060 simulation: 265 S2\_N, S3\_N and S4\_N all have winds nudged toward S2, each of them using the same aerosol emissions as respectively S2, S3 and S4. Note that S2 N has been nudged toward itself (S2). This 266 267 has been done to analyze the difference between simulations induced by the aerosol emissions change and not by the nudging itself. 268

269 Current BC emissions are particularly intense over the main industrialized regions of the Northern Hemisphere (Figure 1a) with 2878 Gg year<sup>-1</sup> of BC emitted north of 30°N in the CMIP5 emission 270 271 inventory (Lamarque et al., 2010) that we used for our S1 simulation. Regarding the difference 272 between S2 and S1 (Figure 1b), we diagnose that according to the CMIP5 inventory, BC emissions 273 are expected to significantly decrease over the major parts of industrialized areas in RCP8.5 (-1588 274 Gg year<sup>-1</sup>), except in some regions of Central Asia. Note that this emission decrease is significant in 275 all the RCP scenarios. These decreased aerosol emissions are projected by integrated assessment 276 models under the hypothesis that increases in a country's wealth are accompanied with the 277 introduction of new technologies to reduce emissions. Note that all the different RCP consider the 278 same evolution for these technologies evolutions. This being said, the RCP8.5 projections indicate 279 an increase of emissions over the oceans, associated to an increase in ship and air traffic, which 280 appears inevitable (Eyring et al., 2005, Søvde et al., 2007). Figure 1c shows the increase in BC 281 emissions estimated by Corbett et al. (2010) consequent to the evolution of ship traffic over the 282 Arctic Ocean which could take place in addition to the RCP8.5 emissions for 2050. Note that we 283 consider a diminution of shipping emissions for current routes, as Arctic new routes would partially 284 replace current ones (Corbett et al., 2010). For this reason, the total difference in emissions with the S2 simulation is very small (only +3.9 Gg year<sup>-1</sup>). Finally we show in Figure 1d the increase in BC emissions associated to the idealized lengthening (+ 15 days before and between the fire season) and intensification (+50%) of biomass burning season applied on top of the RCP8.5 emission scenario (+ 236 Gg year<sup>-1</sup> north of 30°N). Note that biomass burning emissions are assumed to be constant during all of the  $21^{\text{st}}$  century in the RCP8.5 scenario.

### 290 **3 Results**

291 We computed the Mean Number of Days per year With Snow at the surface (MNDWS) in all of our 292 simulations as an indicator of the effects of aerosols emissions on snow cover. We considered the 293 surface to be snow covered when the snow mass averaged over one day exceeds 0.01 kg.m<sup>-2</sup> (i.e. 294 0.01 mm. snow water equivalent). Note that dust emissions were constant for all the simulations. In 295 the following, we will not discuss the dust effects on snow. Figure 2a and 2b represent the MNDWS 296 as observed (NSIDC, 2008) and modelled in our present-day control simulation S1, respectively. 297 The MNDWS ranges from several days at 30°N to almost a complete year north of 75°N. The goal 298 of our study is not to analyse in detail the ability of our GCM to describe the snow cover, as we will 299 focus more on the analysis of sensitivity experiments with this GCM. Nevertheless, looking at the 300 Root Mean Square Error (RMSE) between modelled and observed MNDWS (Figure 2c), we see 301 that our model describes quite well the snow cover duration over flat areas (RMS varying between 5 302 and 20). This is not the case in mountainous areas like the Himalayas, the Altay Mountains, the Alps 303 and the Rocky mountains where the RMSE generally exceeds values of 40 and can reach values of 304 300 days. As a consequence, we have to be very careful when we draw conclusions from the 305 analysis of our simulation in these regions. Such huge errors are clearly due to the coarse resolution of our model, which does not allow a correct representation of the complex topography of these 306 307 mountain ranges. Note that we did not consider the number of days with snow at the ground over 308 glaciers, icecaps or sea ice in our study. We discarded as well snow cover variations modelled in 309 grid-cells located just next to icecaps (Greenland) since the representation of these icecaps is also 310 not accurate due to the coarse spatial resolution of our model.

In the following, we discuss the difference of MNDWS between our different simulations. The statistical significance was estimated using a two-sample t-test. This statistical test is applied to validate the hypothesis that the mean of two simulations are different at the 95% significance level. All areas with statistically significant differences are shaded in grey on Figures 3 to 7. Regarding present-day conditions, considering the influence of BC deposition on snow albedo induces a decrease of the MNDWS that is statistically significant over a major part of the continents of the Northern hemisphere (Figure 3a, difference S1-S1B). This decrease lies within a range of 1 to 10 318 days over large areas of Eurasia and Northern America. Regarding future conditions, there is a 319 significant decrease of the MNDWS in the S2 simulation for 2050 (Figure 3b). This reduction is 320 statistically significant, and ranges from 10 to 100 days in most parts of northern continental areas. 321 Due to global warming forced by greenhouse gases, the beginning of the snow-accumulating season 322 (respectively, the beginning of the snow-melting season) is modelled with ORCHIDEE coupled to 323 LMDZ to occur later in autumn (resp. earlier in spring) in most snow-covered northern regions. A 324 negative trend of MNDWS has already been observed during the last decades (e.g. Déry et al., 325 2007, Roesch et al., 2006, Mote et al., 2005). Moreover, Hosaka al. (2005) and Brutel-Vuilmet et al. (2012) expect an acceleration of this phenomenon into the 21<sup>st</sup> century. Similar to the results 326 reported by Hosaka et al. (2005), we found that the snow cover changes are also driven in the model 327 328 by snowfall variations. As an example, the snow cover duration is less reduced in Eastern Siberia 329 than in Scandinavia, because snowfall is modelled to increase in Eastern Siberia in the middle of the 330 21<sup>st</sup> century. We found also a slight increase of the MNDWS compared to present-day over some 331 northern parts of China and over the USA, also induced by a local increase in snowfall for the 332 modelled LMDZ climate in 2050. However, we have to be very careful with this last result, as it 333 concerns mountainous areas, where the GCM coarse resolution cannot provide accurate results as explained above. 334

335 Considering an increase in aerosol emissions from Arctic ships or from biomass burning in our 336 2050-2060 nudged experiment induce MNDWS variations quasi equal to zero (see Figure 3c and 337 3d, showing respectively MNDWS differences S3\_N-S2\_N and S4\_N-S2\_N). It clearly means that 338 the snow albedo changes associated with this possible increase in aerosol emission is negligible in 339 comparison with the snow albedo changes induced today by the current aerosol emissions in the 340 Northern Hemisphere. We have to keep in mind that these future sensitivity experiments were 341 nudged, a process that limits atmospheric feedbacks: these experiments allow to quantify the 342 changes of snow cover duration induced by the aerosol effects on snow albedo, strongly minimizing 343 both the effect of aerosols when they are in the atmosphere and the temperature changes induced by 344 the snow cover variations. The nudging was applied only to the horizontal wind, but temperature is 345 also indirectly nudged as these two variables are quite dependent in a hydrostatic approximation 346 model (e.g. Holton, 2004). Hence, the variations of temperature induced by atmospheric aerosols 347 changes are partially cancelled in these nudged simulations. Nevertheless, the effect of atmospheric 348 aerosol was not completely inactivated in these nudged simulations, as it induces also a 349 modification of the radiative flux reaching the surface and a residual atmospheric warming. The 350 complete effect of aerosols can be evaluated through simulations performed without nudging, as it 351 was done for experiments S3 (with an increase in arctic ship traffic) and S4 (with an increase in 352 biomass burning emissions). Nevertheless, we have to keep in mind that all of these future

353 experiments used the same prescribed SST, which cancel the feedbacks which could be generated 354 through interactions with the ocean. Since our study focuses on the continental response to a continental forcing, the analysis presented here should not be too much affected. Figures 4a and 4b 355 356 show that without nudging the variations in MNDWS with enhanced ship and fire emissions can be 357 positive or negative depending upon the region. They are spatially variable, and reach values 358 ranging from -10 to +10 days per year in comparison with our 2050-2060 simulation performed 359 with the standard RCP aerosol emissions (S2). Note that these variations of MNDWS are not 360 statistically significant according to our two-sample t-test over the major part of the Northern 361 hemisphere. In other words, it means that the signal induced by the changes of aerosol emissions is 362 too low to affect the highly variable coupled land-atmosphere system. Nevertheless, we obtained a 363 statistically significant decrease of MNDWS in Quebec and in Siberia, both in simulation S3 and 364 S4. These MNDWS local decreases reach 10 days averaged over the decade-long simulation of the 365 2050s.

### 366 4 Discussion

From the analysis of our nudged and not nudged experiments, we estimate that the possible increase 367 368 in aerosol emissions from ships or boreal fires will not affect significantly the snow cover directly 369 from snow darkening effects. However, this conclusion may not hold if we had also accounted for 370 the atmospheric effects of aerosols. These effects are however very difficult to quantify: Shindell 371 and Faluvegi (2009) showed that the patterns of temperature response and aerosol radiative forcing do not correspond on a regional basis. The difficulty to answer these complex questions is 372 373 reinforced by the fact that ships emit different aerosol species (Balkanski et al., 2010), which have differentiated impacts on the climate system: They emit BC, an aerosol which absorbs solar 374 375 radiation, warming its environment, but they also emit large amount of sulphate, an aerosol which 376 strongly scatter solar radiation, cooling locally the atmosphere via direct end indirect effects 377 (Lohmann, 2005). The sign of the radiative forcing induced by biomass burning, which also emits 378 both BC, OC and sulphate depends also on the height at which the particles are transported (Abel et 379 al., 2005). In front of all these complex questions, we discuss in the following when and how the 380 MNDWS can be affected by increased ship and biomass burning aerosol emissions.

Both the scenario with enhanced biomass burning emissions and those with increased Arctic ship traffic emissions produce very low emissions in winter. In summer, the Northern Hemisphere experiences a reduced snow cover. During fall, when solar radiation is considerably reduced compared to summer, both atmospheric aerosols and aerosols deposited on snow surface have a weak impact on snow cover (Flanner et al., 2009). Spring is the season when the Arctic atmosphere

386 experiences the most pollution (e.g. Shaw et al., 1995, Ménégoz et al., 2012). For all of these 387 reasons, although summer is the period when aerosol concentrations from ship traffic and biomass 388 burning are the largest, it is during the spring that we find the largest significant MNDWS changes 389 associated to aerosol emissions considered in experiments S3 and S4 (Note that the MNDWS 390 changes are very low in our simulation during the other seasons, not shown). The significant spring 391 aerosol emissions are simultaneous with large residual snow cover over continental regions of the 392 Northern Hemisphere, and thus have the potential to amplify regional warming. This is why we 393 focus the following analysis on the interactions between snow and aerosols during the spring season 394 (April-May-June).

#### 395 **4.1 BC deposition on snow**

Present-day modelled BC spring deposition reaches 50 mg m<sup>-2</sup> month<sup>-1</sup> in Europe and Northern 396 America. and exceeds 100 mg m<sup>-2</sup> month<sup>-1</sup> over South-east Asia (Figure 5a). Typical deposition 397 values modelled in the pan-Arctic continental area (North of 60°N) range between 0.1 and 10 mg m<sup>-</sup> 398 399 <sup>2</sup> month<sup>-1</sup>. In simulation S2, a drastic decrease in BC deposition is obtained over the whole Northern hemisphere for 2050 (Figure 5b), with the exception of central Asia and Alaska. In these regions, 400 401 the anthropogenic emissions are increasing in the RCP8.5 scenario compared to current level (see 402 Figure 1b). On average over all the continental surfaces of the Northern hemisphere, this decrease represents half of the present-day spring deposition (decrease of 110 Gg month<sup>-1</sup> for a present-day 403 total of 222 Gg month<sup>-1</sup>, north of 30°N). The simulation performed with extra high ship emissions 404 405 in the Arctic (S3) does not induce significant changes of BC deposition in spring (Figure 5c) in comparison to the S2 2050 simulation. This is due to the fact that the additional Arctic ship 406 407 emissions are mainly enhanced in summer, when ships use alternate Arctic routes. Yet, these 408 enhanced ship emissions modify the atmospheric circulation and precipitation via the atmospheric 409 aerosol radiative forcings in our sensitivity experiment. These changes are certainly responsible for 410 the modelled spatial variations of aerosol deposition during springtime. Note that this very weak 411 signal is not statistically significant, indicating that the increase of ships emissions only generated 412 "noise" in the aerosol spring deposition signal of our sensitivity experiment S3. Such response can 413 be therefore mainly explained by natural variability. By contrast with S3, the earlier fire season 414 considered in simulation S4 causes a significant increase in BC spring deposition over both North 415 America and North Asia (Figure 5d). The total increase of BC continental deposition in the S4 simulation represents 21 Gg month<sup>-1</sup>. Regarding spring aerosol deposition, we can conclude that the 416 417 MNDWS changes modelled in the S3 experiment is clearly not induced by snow darkening effects by aerosols. They are more due to aerosols when they are in the atmosphere, and to all the possible 418 419 associated atmospheric feedbacks. Regarding S4 spring aerosol deposition, it is possible that snow

420 darkening effect of BC have impacted the MNDWS via atmospheric feedbacks.

#### 421 **4.2** Spring Snow Water Equivalent (SWE)

During the spring, the present-day SWE ranges from 500 to 2000 mm in mountainous areas such as 422 423 the Rocky Mountains, the Scandinavian mountains, the Ural Mountains or over Kamchatka (Figure 424 6a). Elsewhere, over high latitudes continental areas, it takes values on the order of 100 mm. 425 Considering BC deposition on snow in the present-day conditions (S1 - S1B) induces only a small 426 SWE decrease over large part of Eurasia an Northern America ranging from 0 to 10 mm (Figure 427 6b). However, in a few locations of Western America and Scandinavia, this decrease takes larger 428 values, exceeding 100 mm. The strongest BC induced decrease in present-day SWE appears in 429 regions where the SWE is generally elevated in spring. Overall, spring SWE is modelled to be much 430 lower in the RCP8.5 2050 scenario than under present-day conditions, and the modelled SWE 431 decrease reaches up to 50% over the major part of snow-covered areas (Figure 6c). There are very 432 few regions where spring SWE is modelled to increase in S2 compared to S1, and these exceptions 433 are North Eastern Canadian Islands, the Himalayan region and small parts of Northern Eurasia. An 434 enhancement of ship traffic in the Arctic is predicted to induce an extra decrease of the SWE in 435 Alaska, in the Canadian shield, and in large parts of Northern Eurasia, ranging from 10 to 100 mm 436 (Figure 6d), and in the Baffin Island, reaching 10 mm. In the scenario S4 with an earlier spring biomass burning activity, spring SWE is modelled to decrease in many parts of the continental pan-437 438 Arctic areas, by up to 50 mm, except in Baffin Island and in very small regions of Northern Eurasia 439 (Figure 6e). However, these modelled extra SWE changes in simulations S3 and S4 are not 440 statistically significant according to a two-sample t-test, indicating that the signal of the local 441 aerosol emissions taken into account is difficult to be characterized given the large amount of 442 natural climate variability, and the fact that local emissions play a second order role (S3-S2 and S4-443 S2) compared to the fist order effect of GHG forced future warming effects on SWE (S2-S1).

444 The present-day SWE decrease induced by aerosol deposition is quite smaller than the decrease 445 modelled in 2050 under the RCP8.5 scenario (see Figures 6b and 6c). The decrease of SWE 446 expected in 2050 is due to the temperature increase associated with the greenhouse gas radiative 447 forcing. This result clearly shows that the drastic reduction of BC deposition in the Northern 448 Hemisphere in 2050 (Figure 5b) is clearly not sufficient to counteract the decrease of SWE induced 449 by greenhouse gas radiative forcing and its associated temperature increase (Figure 6c). As 450 explained previously, there are almost no changes in aerosol spring deposition in the simulation S3 451 with enhanced ship emissions. The modelled changes in MNDWS and SWE are therefore due to 452 atmospheric aerosol effects, which can experience atmospheric feedbacks. For the S4 simulation 453 with enhanced biomass burning in spring, there is a significant increase of aerosol deposition, which 454 may explain a part of the MNDWS and SWE diminutions in some regions of Northern Eurasia and 455 Northern America. This assumption appears very likely where the MNDWS variations are 456 statistically significant, in North-eastern America as in central and eastern Siberia. However, the 457 SWE variations are generally not statistically significant, and there is no clear correlation between 458 BC deposition and snow cover variations. Therefore, it is likely that part of the SWE changes is also 459 consecutive to surface energy balance changes or to snowfall variations in our simulations.

#### 460 **4.3 Spring snowfalls**

Present-day spring snowfalls are widespread over a large part of the Northern hemisphere 461 462 continents (Figure 7a). In our present-day simulation, the snow albedo decrease induced by BC aerosol deposition leads to a slight but statistically significant snowfall reduction (Figure 7b). A 463 464 large part of the spring decrease in SWE between 2050 and present-day simulations (Figure 6c) can be explained by this snowfall feedback (Figure 7c). In most part of the spring snow-covered area of 465 466 the Northern hemisphere, snowfall decreases by 50% (see Figure 7a and 7c) in S2 compared to S1. 467 This is mainly due to temperature rise, which transforms snowfall into rainfall. We find only few 468 and small areas, like North Eastern Canadian Islands, parts of the Himalayan region and very small 469 parts of Northern Eurasia where snowfall increases. However, these increases may explain the SWE 470 increases modelled in the same regions.

471 Based upon the sensitivity experiments S2, S3 and S4, we are able to evaluate the impact of an 472 aerosol emission change in a 2050 scenario. In simulations S3, the spring SWE change exhibits a 473 pattern similar to snowfall change in many continental areas of the Northern hemisphere, with a 474 general decrease in the pan-arctic area, except in small areas like Baffin Islands and other Northern 475 Canadian islands (Figure 7d). Therefore, we can assess that the atmospheric perturbations induced 476 by enhanced ship traffic BC emissions in the Arctic induce a small decrease of snowfall over large 477 area of the boreal continents. Even if these variations are not statistically significant according to a two-sample t-test, they partly contribute to the decrease of SWE modelled in the same region. 478 479 However, it is very difficult to estimate which physical processes link snowfall variations to BC 480 aerosol emissions change, since aerosols from ships contain both absorbing and reflective species 481 which have complex interactions with the atmosphere (Balkanski et al., 2010). Regarding the S4 482 simulation, we can also assess that the snowfall decreases which take place in the major part of 483 Northern America, in North-Eastern Europe and in North-east Asia (Figure 7e) are responsible for part of the modelled decrease of both MNDWS and SWE in these regions. However, this 484 485 assumption is not verified in Northern Central Siberia, where we modelled an increase of snowfall 486 but a decrease of the SWE and the MNDWS. In this region, the SWE decline is certainly induced 487 by an aerosol forcing. It may be due both to a decrease of the snow albedo via aerosol deposition,

488 and to a warming of the atmosphere associated to an increase in the atmospheric concentration of

489 BC.

490

### 491 **5** Conclusion

The snow-cover changes induced by aerosol emissions were evaluated in the boreal continental area both for the present-day and for the middle of the 21<sup>st</sup> century. The following eight experiments were carried out: two present-day simulations, with one of them not considering the snow albedo variations induced by aerosol deposition, and six 2050-2060 simulations based upon the RCP8.5 gas and aerosol anthropogenic emission inventory.

497 We estimate that current aerosol emissions directly cause a decrease of the MNDWS ranging 498 between 0 and 10 days in large areas of the boreal region. This "snow darkening effect" is 499 essentially due to the BC deposition during the spring, a period of the year when the remaining of 500 snow accumulated during the winter is exposed to both strong solar radiation and large amount of aerosol deposition. This deposition over continents represents 222 Gg month<sup>-1</sup> of BC north of 30°N. 501 502 Recent papers have shown that the "snow darkening effect" affect as much the present-day snow 503 cover as the warming induced by anthropogenic GHG (e.g. Flanner et al., 2007, 2009, 2012, 504 Jacobson et al.2004).

505 The projected drastic decrease of the anthropogenic aerosol emissions from the RCP scenarios for the middle of the 21<sup>st</sup> century in the Northern hemisphere may limit the decrease of snow albedo 506 507 due to absorbing aerosol deposition. But this response is very much dependent on the quality of the 508 emission scenarios, as no inflexion in BC emissions over Asia has been observed in the past 509 decades. Nonetheless, a major part of snow-cover in the Northern hemisphere will experience a 510 significant reduction under the GHG forced warming. By comparison with present-day conditions, 511 the MNDWS was found to be reduced by 10 to 100 days over the major part of the continental 512 regions of the Northern Hemisphere by the middle of the 21<sup>st</sup> century. The main cause for this 513 decrease is a temperature rise that substitutes snow to rain over several regions and accelerates 514 melting. The relative contribution of the snow darkening effect to the total snow cover reduction 515 will clearly decrease in the next decades, as those of the GHG forcing is expected to strongly 516 increase. These conclusions have been reached with a future scenario that considers strong increases 517 in greenhouse gases concentrations. The decrease of the aerosol impact on snow-cover should be 518 relatively more important for a scenario with lower greenhouse gases concentrations.

519 Considering a significant additional increase in ship traffic in the Arctic by the mid 21<sup>st</sup> century 520 does not lead to significant changes of the aerosol deposition over snow-covered areas in the most 521 sensitive period for a positive climate feedback, springtime. Therefore, the MNDWS is clearly not 522 affected by snow darkening effects associated to these Arctic ship emissions. This result has been 523 demonstrated using a simulation nudged toward the observed atmosphere, to quantify how aerosol 524 deposition could affect directly the snow cover. We have to keep in mind that applying nudging 525 techniques in these sensitivity experiments strongly limits all the possible atmospheric feedbacks, 526 but does not cancel completely the diming happening in surface and the atmospheric warming due 527 to atmospheric aerosols. As a consequence, atmospheric BC aerosols associated to these Arctic 528 ships traffic have also no direct impact on the snow cover. In an experiment considering such an increase of ship emissions without nudging toward atmospheric reanalyses, we simulated some 529 530 changes of the MNDWS. Ships emit absorbing aerosols like BC and to a lesser extent OC, but in 531 comparison a lot more sulphur dioxide, which strongly scatters the incoming solar radiation, 532 thereby cooling the atmosphere. Modifying the atmospheric energy balance by accounting for these 533 aerosols affects the atmospheric circulation and the precipitation pattern. In this experiment, the 534 MNDWS changes are generally not statistically significant in boreal continents, except in the 535 Quebec and in the West Siberian plains, where the MNDWS decrease from 5 to 10 days.

536 Biomass burning activity proportionally emits more BC and OC aerosol and much less sulphate 537 compared with ship traffic. We modelled a significant increase in BC spring deposition that exceeds 1 mg m<sup>-2</sup> month<sup>-1</sup> over large parts of America and Eurasia in a 2050-2060 simulation that take into 538 539 account forest fires that are 50% stronger and are projected to occur 2 weeks earlier and later than at present. This increase of BC spring deposition represents 21 Gg month<sup>-1</sup> on continents located north 540 541 of 30°N. However, with such emissions, we do not simulate a reduction of the MNDWS in an 542 experiment performed with winds nudged toward atmospheric reanalyses. This demonstrates that 543 our biomass burning emission scenario does not induce a significant reduction of the snow cover, 544 either via "snow darkening effects", either via "aerosol diming", and either via "atmospheric 545 warming due to absorbing aerosols". However, considering all the aerosol forcings and atmospheric 546 feedbacks in an experiment performed without nudging, enhanced fire activity induces a significant 547 decrease of the MNDWS reaching a dozen of days in Quebec and in Eastern Siberia.

548 Due to the snow-albedo feedback, the Arctic is a region very sensitive to climate change. As a 549 consequence of this feedback, Flanner et al. (2009) showed that absorbing aerosol emissions 550 reduced the springtime snow cover as much as anthropogenic greenhouse gases since the pre-551 industrial period. Consequently, limiting aerosol emissions appears as essential as limiting 552 greenhouse gases emissions to slowdown the snow cover decline observed over the Northern Hemisphere. Foreseeing the possible emissions scenarios in the 21<sup>st</sup> century, one can envisage for 553 strong aerosol reductions in most industrialized region over the Northern Hemisphere with the 554 555 introduction of advanced technologies in controlling emissions. However, increases in the emissions 556 and concentrations of greenhouse gases that are projected in most scenarios are expected to significantly reduce the snow cover in the middle of the 21<sup>st</sup> century. It appears very challenging to 557

558 estimate accurately the snow cover changes induced by the possible changes in aerosol emissions in 559 the Arctic and in the boreal region because of the complex processes linking aerosol forcing, atmosphere response and snow cover dynamics. Thanks to the comparison between our nudged and 560 561 not nudged simulations, we can maintain that the decrease of MNDWS that we simulated in our 562 scenario with increased ships traffic or enhanced fire emissions is more explained by the atmospheric feedbacks than by the forcing directly generated by these aerosols, either in the 563 564 atmosphere, either deposited on the snow. The aerosol forcing is the initiator of the modelled 565 changes, but several feedbacks can be involved: As an example, a warming induced by absorbing 566 aerosols located in the snow or in the atmosphere will generate a diminution of snow cover. This 567 one will induces a diminution of the surface albedo, therefore an increase of the solar energy 568 absorbed by the surface, and finally an increase of temperature, itself impacting the atmospheric 569 circulation and the precipitation pattern and phase. In particular, we found in our simulation a 570 diminution of both snowfall and SWE in the area where we modelled a decrease of MNDWS. Such 571 variations are associated to a warming of the low layers of the atmosphere in these regions (not 572 shown). Further simulations could be performed to diagnose accurately the aerosol direct and 573 indirect effects generated by the aerosol emissions scenarios that we suggest in this paper. Such 574 protocol has yet been applied to estimate the radiative forcing of the present-day aerosol emissions 575 (IPCC, 2007). However, if it is quite easy to apply this protocol for the aerosol direct effect (e.g. 576 Balkanski et al., 2010), it appears to be a more delicate exercise for indirect effects (e.g. Déandreis 577 et al., 2012). Besides, the snow albedo variations induced by absorbing aerosol deposition is quite 578 dependent on the chemical composition of these aerosols (Wang et al., 2012), their evolution within 579 the snow cover (Aamas et al., 2011, Conway et al., 1996), and their mixing state with snow grains 580 (Flanner et al., 2012). Further experiments dealing with these processes could provide a realistic 581 spread about the existing knowledge concerning BC and its interactions with snow albedo. Anyway, 582 we predict that the likely future aerosol emissions from ships traffic over the Arctic region or an 583 increase in biomass burning will play a minor role in the reduction of continental snow cover area 584 trough snow darkening direct effects at high Northern latitudes. We have not attempted to predict 585 future changes in sea ice due to these effects but these may be significant.

586

#### 587 Acknowledgements

This work was supported by Agence Nationale de la Recherche under contract ANR-09-CEP-005-02/PAPRIKA and by funding from the European Union 7th Framework Programme under project LIFE SNOWCARBO. We would like to thank the "Commissariat à l'Energie Atomique et aux Energies Alternatives" and GENCI for providing computer time for the simulations presented in this paper. The figures have been prepared with Ferret free software. We thank J. J. Corbett for providing ship traffic emissions scenarios in the Arctic, and the National Snow and Ice Data Centre (NSIDC, Boulder, CO) for providing IMS daily Northern Hemisphere snow and ice analysis. We thank the editor and the 4 anonymous reviewers for their relevant comments, which helped to refine our study and to improve the manuscript.

597

#### 598 **References**

- Aamaas, B., Bøggild, C.E., Stordal, F., Berntsen, T., Holmén, K., Ström, J.: Elemental carbon
  deposition to Svalbard snow from Norwegian settlements and lonb-range transport, Tellus 63B,
  340–351, 2011.
- Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M. A.: The direct radiative effect of
  biomass burning aerosols over southern Africa, Atmos. Chem. Phys., 5, 1999-2018,
  doi:10.5194/acp-5-1999-2005, 2005.
- Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E. J., and Shine, K. P.: Direct radiative
  effect of aerosols emitted by transport: from road, shipping and aviation, Atmos. Chem. Phys., 10,
  4477-4489, 2010.
- Balkanski, Y., M. Schulz, T. Claquin And O. Boucher, Reevaluation of mineral aerosol radiative
  forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 8195, 2007.
- Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M.
  Trautmann: Historical emissions of black and organic carbon aerosol from energy-related
  combustion, 1850 2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840,
  2007.
- Bond, T.C. & Bergstrom, R.W.: Light Absorption by Carbonaceous Particles: An Investigative
  Review, Aerosol Science and Technology, 40:1, 27-67, 2006.
- Boucher, Olivier: Aérosols atmosphériques, propriétés et impacts climatiques, ed. Springer, 248 pp.,
  2011.
- Boucher, O., Pham, M., Venkataraman, C.: Simulation of the atmospheric sulfur cycle in the
  Laboratoire de Météorologie Dynamique General Circulation Model. Model Description, Model
  Evaluation, and Global and European Budgets, Note n°23, IPSL, 2002.
- 622 Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The scavenging processes
- 623 controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12,

- 624 6775-6798, doi:10.5194/acp-12-6775-2012, 2012.
- Brutel-Vuilmet, C., Ménégoz, M., and Krinner, G.: An analysis of present and future seasonal
  Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models, The
  Cryosphere Discuss., 6, 3317-3348, doi:10.5194/tcd-6-3317-2012, 2012.
- Conway, H., A. Gades, and C. F. Raymond: Albedo of dirty snow during conditions of melt, Water
  Resour. Res., 32(6), 1713–1718, doi:10.1029/96WR00712, 1996.
- Clarke, A. D. and Noone, K. J.: Soot in the Arctic snowpack: A cause for perturbations in radiative
  transfer, Atmos. Environ., 19, 2045–2053, 1985.
- Coindreau, O., Hourdin, F., Haffelin, M., Mathieu, A., Rio, C.: Assessment of physical
  parameterizations using a global climate model with strechable grid and nudging, Monthly Weather
  Review, 135:1474-1489, 2006.
- Corbett, J. J., Lack, D. A., Winebrake, J. J., Harder, S., Silberman, J. A., and Gold, M.: Arctic
  shipping emissions inventories and future scenarios, Atmos. Chem. Phys., 10, 9689-9704,
  doi:10.5194/acp-10-9689-2010, 2010.
- Déandreis, C., Balkanski, Y., Dufresne, J. L., and Cozic, A.: Radiative forcing estimates of sulfate
  aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability,
  Atmos. Chem. Phys., 12, 5583-5602, doi:10.5194/acp-12-5583-2012, 2012.
- Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S.,
  Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der
  Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and
  1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321-4344, doi:10.5194/acp-64321-2006, 2006.
- 646 Déry, S. J., and R. D. Brown: Recent Northern Hemisphere snow cover extent trends and
  647 implications for the snow-albedo feedback, Geophys. Res. Lett., 34, L22504,
  648 doi:10.1029/2007GL031474, 2007.
- 649 Douville, H., Royer, J.-F. and Mahfouf, J.-F.: A new snow parametrization for the Météo-France
  650 climate model. Part II: Validation in a 3-D GCM experiments, Clim. Dyn. 12, 37-52, 1995.
- 651 Dufresne J.-L., Foujols, M.-A., Denvil, S., Caubel, A. Marti, O., Aumont, O., Balkanski, Y., Bekki,
- 652 S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P.,
- 653 Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
- 654 Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine,
- D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S.,

- Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip,
- 657 M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio,
- 658 C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N.: Climate change
- projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dyn., SpecialIssue, xxx-yyy, 2012.
- 661 Eyring, V., H. W. Kohler, A. Lauer, and B. Lemper: Emissions from international shipping: 2. Impact
  662 of future technologies on scenarios until 2050, J. Geophys. Res., 110, D17306,
  663 doi:10.1029/2004JD005620, 2005.
- Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy absorption by
  internally-mixed black carbon in snow grains, Atmos. Chem. Phys., 12, 4699-4721,
  doi:10.5194/acp-12-4699-2012, 2012.
- Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J.
  Rasch: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem.
  Phys., 9, 2481-2497, 2009.
- Flannigan, M.D., Krawchuk, M.A., de Groot, W.J., Wotton, B.M. and Gowman, L.M.: Implications
  of changing climate for global wildland fire. International Journal of Wildland Fire, 18, 483-507,
  2009.
- Flannigan, M.D., Stocks, B.J., Turetsky, M.R. and Wotton, B.M.: Impact of climate change on fire
  activity and fire management in the circumboreal forest. Global Change Biology, 15: 549-560. DOI:
  10.1111/j.1365-2486.2008.01660.x, 2009.
- Frei, A. and G. Gong: Decadal to Century Scale Trends in North American Snow Extent in Coupled
  Atmosphere-Ocean General Circulation Models. Geophysical Research Letters, 32:L18502, doi:
  10.1029/2005GL023394, 2005.
- Garrett, T. J. and C. Zhao: Increased Arctic cloud longwave emissivity associated with pollution from
  mid-latitudes. Nature, 440, 10.1038/nature04636, 787-789, 2006.
- Ghatak, D., A. Frei, G. Gong, J. Stroeve, and D. Robinson: On the emergence of an Arctic
  amplification signal in terrestrial Arctic snow extent, J. Geophys. Res., 115, D24105,
  doi:10.1029/2010JD014007, 2010.
- 684 Guelle, W., Balkanski, Y., Schulz, M., Marticorena, B., Bergametti, G., Moulin, C., Arimoto, R.,
- 685 Perry, K.D.: Modelling the atmospheric distribution of mineral aerosol: comparison with ground
- 686 measurements and satellite observations for yearly and synoptic time scales over the North Atlantic.
- 687 J. Geophys Res 105:1997–2005, 2000.

- Hauglustaine, D.A., Hourdin, F., Jourdain, L., Filiberti, M.A., Walters, S., Lamarque, J.F. and
  Holland, E.A.: Interactive chemistry in the Laboratoire de Météorologie Dynamique general
  circulation model : Description and background tropospheric chemistry evaluation, J. Geophys.
  Res. 109, 10.1029/2003JD003957, 2004.
- Hadley, O.L., Kirchstetter, T.W.: Black carbon snow albedo reduction, Nature Climate Change, doi:
  10.1038/NCLIMATE1433, 2012.
- 694 Holton, J. R.: An Introduction to Dynamic Meteorology. New York: Academic Press, 2004.
- Hosaka, M., D. Nohara, and A. Kitoh: Changes in snow coverage and snow water equivalent due to
  global warming simulated by a 20km-mesh global atmospheric model. Scientific Online Letters on
  the Atmosphere, 1, 93–96, 2005.
- Hourdin, F., and Coauthors: The LMDZ4 general circulation model: Climate performance and
  sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787–
  813, 2006.
- 701 Intergovernmental Panel on Climate Change (2007), Climate Change. The scientific Basis,702 Cambridge Univ. Press, Cambridge, U. K., 2007.
- Jacobson, M.Z.: Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to
  snow and sea ice albedo and emissivity. J. Geophys. Res., 109, D21201, 2004.
- Jacquinet-Husson, N., Arié, E., Ballard, J., Barbe, A., Bjoraker, G., Bonnet, B. and Brown, L. R.: The
  1997 spectroscopic GEISA databank. J Quant Spect Radiat Transfer 61:425–438, 1999.
- Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C.,
  Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y.,
  Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E.,
  Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos.
- 711 Chem. Phys., 5, 1053-1123, doi:10.5194/acp-5-1053-2005, 2005.
- 712 Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S.,
- 713 Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T.,
- 714 Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P.,
- 715 Gong, S., Horowitz, L., Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller,
- 716 R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L.,
- 717 Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor,
- 718 C., van Aardenne, J. A., and Zhao, Y. 2009. Evaluation of black carbon estimations in global aerosol
- 719 models. Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.

- Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P.,
  Sitch, S. and Prentice, IC.: A dynamic global vegetation model for studies of the coupled
  atmosphere-biosphere system. Glob. Biogeochem. Cycle, 19(1), 44 pp, 2005.
- Krinner, G., O. Boucher and Y. Balkanski: Ice-free glacial northern Asia due to dust deposition on
  snow. Clim. Dyn., 27(6), 613–625, 2006.
- 725 Lamarque, J-F., Granier, C., Bond, T., Eyrling, V., Heil, A., Kainuma, M., Lee, D., Liousse, C.,
- 726 Mieville, A., Riahi, K., Schultz, M., Sith, S., Stehfest, E., Stevenson, D., Thomson, A., 727 vanAardenne, J., and D. vanVuuren: Gridded emissions in support of IPCC AR5. IGAC Newsl. 41,
- 728 12–18, 2009.
- Law, K.S. and Stohl, A.: Arctic Air Pollution: Origins and Impacts, Science, *315* (5818), *1537-1540*, *doi:10.1126/science.1137695*, *16 March 2007*.
- 731 Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C.,
- 732 Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J.,
- 733 Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren,
- D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive
  gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017-7039,
  doi:10.5194/acp-10-7017-2010, 2010.
- Lemke, P., J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H.
  Thomas and T. Zhang: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change
  2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
  Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z.
  Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press,
  Cambridge, United Kingdom and New York, NY, USA, 2007.
- 743 Lohmann, U. and Feichter, J.: Global indirect effects: a review, *Atmos. Chem. Phys.*, *5*, 715-737,
  744 2005.
- Lubin, D. and A. M. Vogelmann: A climatologically significant aerosol longwave indirect effect in
  the Arctic. Nature, 439, 453-456, 2006.
- Marshall S, Oglesby RJ: An improved snow hydrology for GCMs. Part I: snow cover fraction,
  albedo, grain size, and age. Clim Dyn 10:21–37, 1994.
- 749 Ménégoz, M., Voldoire, A., Teyssèdre, H., Salas y Mélia, D., Peuch, V.-H., Gouttevin, I.: How does
- the atmospheric variability drive the aerosol residence time in the Arctic region?, Tellus B, 64,
- 751 11596, DOI: 10.3402, 2012.

- 752 Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda,
- 753 L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J.F., Manning, M., Matthews, B.,
- 754 Meehl, J., Meyer, L., Mitchell, J., Nakicenovic, N., O'Neill, B., Pichs, R., Riahi, K., Rose, S.,
- 755 Runci, P., Stouffer, R., van Vuuren, D., Weyant, J., Wilbanks, T., van Ypersele, J.P., and Zurek, M.:
- 756 Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response
- 757 Strategies. Technical Summary. Intergovernmental Panel on Climate Change, Geneva, 25 pp. 2008.
- 758 Moss R.H., Edmonds, J.A., Hibbard, K., Manning, M., Rose, S.K., Van Vuuren, R.D., Carter, T.,
- 759 Emori, S., Kainuma, M., Kram, T., Meehl, G., Mitchell, J., Nakicenovic, N., Riahi, K., Smith, S.J.,
- 760 Stouffer, R., Thomson, A.M., Weyant, J. and Wilbanks, T.: "The Next Generation of Scenarios for
- 761 Climate Change Research and Assessment." Nature 463(7282):747-756. doi:10.1038/nature08823,
- 762 *2010*.
- Mote, P. W., Hamlet, A. F., Clark, M. P. and Lettenmaier, D. P.: Declining mountain snowpack in
  western North America. Bull. Amer. Meteor. Soc., 86, 39–49, 2005.
- National Ice Center. 2008, updated daily. IMS daily Northern Hemisphere snow and ice analysis at 4
  km and 24 km resolution. Boulder, CO: National Snow and *Ice Data Center. Digital media*, 2008.
- Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian
  emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem.
  Phys., 7, 4419-4444, doi:10.5194/acp-7-4419-2007, 2007.
- Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch,
  R., Murphy, D., Nganga, J., and Pitari, G.: Aerosols, their Direct and Indirect Effects, in: Climate
  Change 2001: The Scientific Basis (edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M.,
  Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.), Report to Intergovernmental Panel
  on Climate Change from the Scientific Assessment Working Group (WGI), Cambridge University
  Press, 289–416, 2001.
- Peters, G. P., Nilssen, T. B., Lindholt, L., Eide, M. S., Glomsrød, S., Eide, L. I., and Fuglestvedt, J. S.:
  Future emissions from shipping and petroleum activities in the Arctic, Atmos. Chem. Phys., 11,
- 778 5305-5320, doi:10.5194/acp-11-5305-2011, 2011.
- Qu X., Hall, A.: What controls the strength of snow albedo feedback? J. Clim. 20: 3971-3981,
  DOI:10.1175/JCLI4186.1, 2007.
- Qu X., Hall, A.: Assessing snow albedo feedback in simulated climate change. J. Clim. 19: 26172630, 2006.
- 783 Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A., Lohmann, U.,

- 784 Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A., Feingold, G., Hoose, C.,
- 785 Kristjánsson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P. A., Stier, P., Grandey, B.,
- 786 Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G., Kirkevåg, A., Iversen, T., Seland, Ø.,
- 787 Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H., Lamarque, J.-F., Iacono, M. J., Kinne, S., and
- 788 Schulz, M.: Aerosol indirect effects general circulation model intercomparison and evaluation
- with satellite data, Atmos. Chem. Phys., 9, 8697-8717, doi:10.5194/acp-9-8697-2009, 2009.
- 790 Quinn, P.K., T.S. Bates, E. Baum, N. Doubleday, A. Fiore, M. Flanner, A. Fridlind, T. Garrett, D.
- 791 Koch, S. Menon, D. Shindell, A. Stohl, and S.G. Warren, Short-lived pollutants in the Arctic: Their
- climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723-1735, 2008.
- Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental
  development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–35, 2007.
- Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E.C.
  and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air
  temperature since the late nineteenth century, J. Geophys. Res., Vol. 108, No. D14, 4407
  10.1029/2002JD002670, 2003.
- Roesch, A.: Evaluation of surface albedo and snow cover in AR4 coupled climate models, J.
  Geophys. Res., 111, D15111, doi:10.1029/2005JD006473, 2006.
- 801 Roesch, A., M. Wild, and A. Ohmura, Snow cover fraction in a General Circulation Model, in
- 802 Remote Sensing and Climate Modeling: Synergies and Limitations, edited by M. Beniston and M.
- 803 M. Verstraete, pp. 203–232, Kluwer Acad., Norwell, Mass., 2001.
- Serreze, M. C., and J. A. Francis: The arctic amplification debate. Climatic Change 76(3-4): 241-264,
  doi:1007/s10584-005-9017-y, 2006.
- 806 Serreze, M. C., M. M. Holland, and J. Stroeve: Perspectives on the Arctic's shrinking sea-ice cover.
- 807 Science 315(5818): 1533-1536, 2007.
- 808 Shaw, G. E.: The Arctic haze phenomenon, B. Am. Meteorol. Soc., 76, 2403–2413, 1995.
- 809 Shi, X., Groisman, P. Ya., Déry, S. J., and Lettenmaier, D. P.: The role of surface energy fluxes in 810 pan-Arctic snow cover changes, Env. Res. Lett., 6, 035204, 2011.
- Shindell, D. T.: Evaluation of the absolute regional temperature potential, Atmos.Chem. Phys., 12,
  7955-7960, doi:10.5194/acp-12-7955-2012, 2012.
- 813 Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G., Fiore, A. M., Hess, P., Koch, D.
- 814 M., MacKenzie, I. A., Sanderson, M. G., Schultz, M. G., Schulz, M., Stevenson, D. S., Teich, H.,
- 815 Textor, C., Wild, O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B. N., Folberth, G.,

- Horowitz, L. W., Jonson, J., Kaminski, J. W., Marmer, E., Park, R., Pringle, K. J., Schroeder, S.,
  Szopa, S., Takemura, T., Zeng, G., Keating, T. J., and Zuber, A.: A multi-model assessment of
  pollution transport to the Arctic. Atmos. Chem. Phys., 8, 5353-5372, 2008.
- Shindell, D.: Local and remote contributions to Arctic warming.\_Geophys. Res. Lett., 34, L14704,
  doi:10.1029/2007GL030221, 2007.
- Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar: Role of tropospheric ozone
  increases in 20th century climate change. J. Geophys. Res., 111, D08302,
  doi:10.1029/2005JD006348, 2006.
- Shi, X., Groisman, P.Y., Déry, S. and Lettenmaier, D.P.: The role of surface energy fluxes in panArctic snow cover changes Environ. Res. Lett. 6, 035204. 2011.
- Stohl, A: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111,
  D11306., doi:10.1029/2005JD006888, 2006.
- Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.:
  Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101-1116,
  doi:10.5194/acp-11-1101-2011, 2011.
- Søvde, O. A., Gauss, M., Isaksen, I. S. A., Pitari, G., and Marizy, C.: Aircraft pollution a futuristic
  view, Atmos. Chem. Phys., 7, 3621-3632, doi:10.5194/acp-7-3621-2007, 2007.
- 833 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
- 834 Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S.,
- 835 Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I.,
- 836 Kloster, S., Koch, D., Kirkevag, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu,
- 837 X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T.,
- and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom.
- 839 Atmos. Chem. Phys., 6, 1777–1813, 2006.
- 840 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
- 841 Boucher, O., Chin, M., Dentener, F., Diehl, T., Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini,
- 842 A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch, D.,
- 843 Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V.,
- 844 Myhre, G., Penner, J. E., Pitari, G., Reddy, M. S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.:
- 845 The effect of harmonized emissions on aerosol properties in global models an AeroCom
- 846 experiment. Atmos. Chem. Phys., 7, 4489-4501, 2007.
- 847 Wang, X., S. J. Doherty, and J. Huang (2012), Black carbon and other light-absorbing impurities in

- snow across Northern China, J. Geophys. Res., doi:10.1029/2012JD018291, in press.
- 849 Warneke, C., Bahreini, R., Brioude, J., Brock, C.A., de Gouw, J.A., Fahey, D.W., Froyd, K.D.,
- 850 Holloway, J.S., Middlebrook, A., Miller, L., Montzka, S., Murphy, D.M., Peischl, J., Ryerson, T.B.,
- 851 Schwarz, J.P., Spackman, J.R. and Veres, P.: Biomass burning in Siberia and Kazakhstan as an
- important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett., 36, L02813,
- doi:10.1029/2008GL036194, 2009.
- 854 Wiscombe W., and Warren, S.: A model for the spectral albedo of snow II. Snow containing
- atmospheric aerosols J. Atmos. Sci., 37, 2734-2745, 1980.

**Table 1**: Period, aerosol emissions and description of the nudging protocol for our 8 simulations. (x2) in the period means that the simulation was performed a second time with a slightly modified initial conditions to get 20 years of simulation as 10 years would clearly be insufficient to make comparisons statistically robust. Note that all simulations were made with prescribed Sea Surface Temperature (SST, observed for present-day simulations, or simulated from a previous coupled ocean-atmosphere model simulation for future periods).

| Simulation | Period         | Emissions                                  | Description                                                                               |
|------------|----------------|--------------------------------------------|-------------------------------------------------------------------------------------------|
| S1         | 1998-2008      | Current                                    | Horizontal wind nudged toward ECMWF                                                       |
| S1B        | 1998-2008      | Current                                    | Horizontal wind nudged toward<br>ECMWF - No snow albedo change<br>with aerosol deposition |
| S2         | 2049-2060 (x2) | IPCC – 2050                                | No nudging                                                                                |
| <b>S</b> 3 | 2049-2060 (x2) | IPCC – 2050 + increased<br>Arctic ships    | No nudging                                                                                |
| S4         | 2049-2060 (x2) | IPCC – 2050 + increased<br>biomass burning | No nudging                                                                                |
| S2_N       | 2049-2060      | IPCC - 2050                                | Horizontal wind nudged toward S2                                                          |
| \$3_N      | 2049-2060      | IPCC – 2050 + increased<br>Arctic ships    | Horizontal wind nudged toward S2                                                          |
| S4_N       | 2049-2060      | IPCC – 2050 + increased<br>biomass burning | Horizontal wind nudged toward S2                                                          |

862

#### 863 **Figure captions:**

**Figure 1**: Annual mean of BC emissions (mg m<sup>-2</sup> month<sup>-1</sup>); (a): Current emissions (S1, total=2878 Gg/yr); (b): difference between 2050 RCP8.5 scenario and current emissions (S2-S1; difference= -1588 Gg/yr); (c): difference in 2050 ships emissions in a scenario with a large ship traffic over the Arctic region (Corbett et al.; 2010) with the 2050 RCP8.5 projected ship traffic scenario (S3-S2, difference=+3.9 Gg/yr); (d): difference in 2050 fire emission between a scenario with lengthened biomass burning season (constructed after Flanningan et al. ; 2009a, 2009b) and the 2050 RCP8.5 scenario projected fire emissions (S4-S2, difference=+235.9 Gg/yr).

Figure 2: Mean number of days per year with snow at the surface (MNDWS); (a): present-day
(1997-2008) observation from NSIDC; (b): present-day simulation with BC effects on snow albedo
(S1); (c): RMSE between model and observation for the whole period 1998-2008.

Figure 3: Mean number of days per year with snow at the surface (MNDWS); (a):Present-day 874 875 MNDWS difference induced by BC deposition on snow; S1-S1B. (b): MNDWS difference between 876 2050 climate with RCP8.5 emission scenario and present-day simulation (S2\_N-S1); (c): MNDWS 877 difference between a 2050 scenario with higher ship traffic in the Arctic in comparison with 2050 878 RCP8.5 scenario (S3 N-S2 N); (d): MNDWS difference between a 2050 scenario with increased 879 biomass burning activity in comparison with 2050 RCP8.5 scenario (S4\_N-S2\_N). Note that future 880 simulations are nudged toward the S2 N future simulation. Areas with statistically significant 881 differences, according to a two-sample t-test, are shaded in grey. Note that the changes shown in (a) 882 and (b) are statistically significant over the major part of the domain.

**Figure 4**: Mean number of days per year with snow at the surface (MNDWS); (a): MNDWS difference between a 2050 scenario with higher ship traffic in the Arctic in comparison with 2050 RCP8.5 scenario (S3-S2); (d): MNDWS difference between a 2050 scenario with increased biomass burning activity in comparison with 2050 RCP8.5 scenario (S4-S2). Simulations S2, S3 and S4 are not nudged. Areas with statistically significant differences, according to a two-sample t-test, are shaded in grey and contoured.

**Figure 5**: Spring (April-May-June) BC continental deposition (mg m<sup>-2</sup> month<sup>-1</sup>); (a): Present-day deposition (S1, total=222 Gg month<sup>-1</sup>); (b): difference in deposition between RCP8.5 scenario for 2050 and present-day simulation (S2-S1, difference=-110 Gg month<sup>-1</sup>); (c): difference in deposition between a 2050 scenario with enhanced ship traffic over the Arctic and an RCP8.5 scenario for 2050 (S3-S2, difference=-0.8 Gg month<sup>-1</sup>); (d): difference in deposition between a scenario with increased biomass burning activity for 2050 and the RCP8.5 scenario for 2050 (S4-S3, difference=+21 Gg month<sup>-1</sup>). Areas with statistically significant differences, according to a twosample t-test, appear in grey shading. Note that the changes shown in (b) and (c) are statisticallysignificant over the major part of the domain.

Figure 6: Spring (April-May-June) average of snow depth (SWE, mm): (a) Present-day SWE, S1; 898 899 (b): Present-day SWE difference induced by BC deposition on snow (S1-S1B), (c): Difference between 2050 RCP8.5 scenario and present-day SWE (S2-S1); (d): SWE difference in a 2050 900 901 scenario with high-level ships traffic in the Arctic in comparison with 2050 RCP8.5 scenario (S3-S2): (e): SWE difference in a 2050 scenario with increased biomass burning activity in comparison 902 with 2050 RCP8.5 scenario (S4-S2). Simulations for the middle of the 21<sup>st</sup> century are not nudged. 903 Areas with statistically significant differences, according to a two-sample t-test, appear in grey 904 905 shading. Note that the changes shown in (b) and (c) are statistically significant over the major part of the domain. 906

Figure 7: Spring (April-May-June) snowfall (SWE, mm month<sup>-1</sup>); (a) Current snowfall; (b): 907 908 Present-day snowfall difference induced by BC deposition on snow (S1-S1B), (c): difference between 2050 RCP8.5 scenario and present snowfall (S2-S1); (d): snowfall difference in a 2050 909 910 scenario with high-level ships traffic in the Arctic in comparison with 2050 RCP8.5 scenario (S3-S2); (e): snowfall difference in a 2050 scenario with increased biomass burning activity in 911 comparison with 2050 RCP8.5 scenario (S4-S2). Simulations for the middle of the 21<sup>st</sup> century are 912 not nudged. Areas with statistically significant differences, according a two-sample t-test, appear in 913 914 grey shading. Note that the changes shown in (b) and (c) are statistically significant over the major 915 part of the domain.

### 916 Figures:



**Figure 1**: Annual mean of BC emissions (mg m<sup>-2</sup> month<sup>-1</sup>); (a): Current emissions (S1, total=2878 Gg/yr); (b): difference between 2050 RCP8.5 scenario and current emissions (S2-S1; difference= - 1588 Gg/yr); (c): difference in 2050 ships emissions in a scenario with a large ship traffic over the Arctic region (Corbett et al.; 2010) with the 2050 RCP8.5 projected ship traffic scenario (S3-S2, difference=+3.9 Gg/yr); (d): difference in 2050 fire emission between a scenario with lengthened biomass burning season (constructed after Flanningan et al.; 2009a, 2009b) and the 2050 RCP8.5 scenario projected fire emissions (S4-S2, difference=+235.9 Gg/yr).



Figure 2: Mean number of days per year with snow at the surface (MNDWS); (a): present-day
(1997-2008) observation from NSIDC; (b): present-day simulation with BC effects on snow albedo
(S1); (c): RMSE between model and observation for the whole period 1998-2008.



Figure 3: Mean number of days per year with snow at the surface (MNDWS); (a):Present-day 932 933 MNDWS difference induced by BC deposition on snow; S1-S1B. (b): MNDWS difference between 934 2050 climate with RCP8.5 emission scenario and present-day simulation (S2\_N-S1); (c): MNDWS 935 difference between a 2050 scenario with higher ship traffic in the Arctic in comparison with 2050 936 RCP8.5 scenario (S3 N-S2 N); (d): MNDWS difference between a 2050 scenario with increased 937 biomass burning activity in comparison with 2050 RCP8.5 scenario (S4\_N-S2\_N). Note that future 938 simulations are nudged toward the S2\_N future simulation. Areas with statistically significant 939 differences, according to a two-sample t-test, are shaded in grey. Note that the changes shown in (a) 940 and (b) are statistically significant over the major part of the domain.

931



942

943 Figure 4: Mean number of days per year with snow at the surface (MNDWS); (a): MNDWS 944 difference between a 2050 scenario with higher ship traffic in the Arctic in comparison with 2050 945 RCP8.5 scenario (S3-S2); (d): MNDWS difference between a 2050 scenario with increased biomass 946 burning activity in comparison with 2050 RCP8.5 scenario (S4-S2). Simulations S2, S3 and S4 are 947 not nudged. Areas with statistically significant differences, according to a two-sample t-test, are 948 shaded in grey and contoured.



950

Figure 5: Spring (April-May-June) BC continental deposition (mg m<sup>-2</sup> month<sup>-1</sup>); (a): Present-day 951 deposition (S1, total=222 Gg month<sup>-1</sup>); (b): difference in deposition between RCP8.5 scenario for 952 2050 and present-day simulation (S2-S1, difference=-110 Gg month<sup>-1</sup>); (c): difference in deposition 953 between a 2050 scenario with enhanced ship traffic over the Arctic and an RCP8.5 scenario for 954 2050 (S3-S2, difference=-0.8 Gg month<sup>-1</sup>); (d): difference in deposition between a scenario with 955 increased biomass burning activity for 2050 and the RCP8.5 scenario for 2050 (S4-S3, 956 difference=+21 Gg month<sup>-1</sup>). Areas with statistically significant differences, according to a two-957 958 sample t-test, appear in grey shading. Note that the changes shown in (b) and (c) are statistically 959 significant over the major part of the domain.



960

961 Figure 6: Spring (April-May-June) average of snow depth (SWE, mm): (a) Present-day SWE, S1; (b): Present-day SWE difference induced by BC deposition on snow (S1-S1B), (c): Difference 962 963 between 2050 RCP8.5 scenario and present-day SWE (S2-S1); (d): SWE difference in a 2050 scenario with high-level ships traffic in the Arctic in comparison with 2050 RCP8.5 scenario (S3-964 965 S2); (e): SWE difference in a 2050 scenario with increased biomass burning activity in comparison with 2050 RCP8.5 scenario (S4-S2). Simulations for the middle of the 21<sup>st</sup> century are not nudged. 966 Areas with statistically significant differences, according to a two-sample t-test, appear in grey 967 968 shading. Note that the changes shown in (b) and (c) are statistically significant over the major part 969 of the domain.





970

Figure 7: Spring (April-May-June) snowfall (SWE, mm month<sup>-1</sup>); (a) Current snowfall; (b): 971 972 Present-day snowfall difference induced by BC deposition on snow (S1-S1B), (c): difference 973 between 2050 RCP8.5 scenario and present snowfall (S2-S1); (d): snowfall difference in a 2050 974 scenario with high-level ships traffic in the Arctic in comparison with 2050 RCP8.5 scenario (S3-S2); (e): snowfall difference in a 2050 scenario with increased biomass burning activity in 975 976 comparison with 2050 RCP8.5 scenario (S4-S2). Simulations for the middle of the 21<sup>st</sup> century are 977 not nudged. Areas with statistically significant differences, according a two-sample t-test, appear in 978 grey shading. Note that the changes shown in (b) and (c) are statistically significant over the major 979 part of the domain.