The Cryosphere Discuss., 6, C2834–C2835, 2013 www.the-cryosphere-discuss.net/6/C2834/2013/ © Author(s) 2013. This work is distributed under the Creative Commons Attribute 3.0 License.

TCD

6, C2834-C2835, 2013

Interactive Comment

Interactive comment on "The role of cornice fall avalanche sedimentation in the valley Longyeardalen, Central Svalbard" by M. Eckerstorfer et al.

Anonymous Referee #2

Received and published: 19 January 2013

Interesting paper which does not meet completely the scope of THE CRYOSPHERE. It would be more appropriate to submit it to an international journal of Geomorphology, provided that:

- 1. the comparison of results with previous studies carefully takes into account the snow avalanche types (in order to make the comparison of sedimentation and rockwall retreat rates more valid);
- 2. the significance of the inferred rockwall retreat rates is more extensively discussed (cf. primary debris falls vs secondary debris reworking by avalanches);
- 3. some key references on the same topics are added and used, including:

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

C2834

Gardner, J., 1970. Geomorphic significance of avalanches in the Lake Louise District. Arctic and Alpine Research, 2: 135-144.

Gardner, J., 1983. Accretion rates on some debris slopes in the Mount Rae area, Canadian Rocky Mountains. Earth Surface Processes and Landforms, 8: 347-355.

Gray, J.T., 1973. Geomorphic effects of avalanche and rockfalls on steep mountain slopes in Central Yukon Territory, p 107-117. In D. B. Fahey et R. D. Thompson, édit., Research in Polar and Alpine Geomorphology Proceedings. 3rd Guelph Symposium on Geomorphology, Norwich, 316 p.

Interactive comment on The Cryosphere Discuss., 6, 4999, 2012.

TCD

6, C2834-C2835, 2013

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

