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Abstract. Marine ice sheet stability is mostly controlled by the dynamics of the grounding line, i.e.,

the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has

been investigated in the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project),

which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour,

executing short-term simulations (200 years) of a steady ice sheet perturbed by the release of the5

buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding

line behaviour of four different flowline ice sheet models has been compared. The models differ in

the physics implemented (full-Stokes and Shallow Shelf Approximation), the numerical approach,

as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be

broadly consistent in terms of grounding line position, rate of surface elevation change and surface10

velocity. However, still small differences appear for these latter variables, and they can lead to large

discrepancies (> 100%) observed in terms of ice sheet contribution to sea level when cumulated

over time. Despite the recent important improvements of marine ice sheet models in their ability to

compute steady-state configurations, our results question the capacity of these models to compute

short-term reliable sea-level rise projections.15

1 Introduction

A range of observational methodologies have shown that significant loss of Antarctic ice mass has

occurred over the past decade (Wingham et al., 2006; Rignot et al., 2008; Velicogna, 2009; Rignot
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et al., 2011; Pritchard et al., 2012). Increased basal melt of ice shelves appears to be the primary

control on Antarctic ice sheet loss. Its resultant thinning induces a reduction of the buttressing force,20

i.e. the mechanical effect of the ice shelf on the state of stress of grounded ice, which leads to an

acceleration of outlet glaciers (Rignot et al., 2008; Pritchard et al., 2012). The dynamical response

of the grounding line (GL), where ice loses contact with bed and, downstream, begins to float over

the ocean, is an essential control on the mass balance of a marine ice sheet. In particular, a rigorous

mathematical description of the long-standing hypothesis of marine ice sheet instability (Weertman,25

1974) has been recently given by Schoof (2007), for a flowline type ice sheet without buttressing.

While observations are crucial in diagnosing the state of balance of an ice sheet, extrapolation of

current trends is a limited technique in predicting ice-sheet future behaviour. Ice sheet models are

therefore the central tool in forecasting the evolution of ice masses and, more particularly, their future

contribution to the ongoing sea-level rise (SLR). A large suite of ice sheet models has been developed30

in recent years. Increasing complexity has been regularly added, enabling progressive improvements

from 1D flowline models based on shallow ice approximations to full numerical solutions of the

Stokes equations for an actual 3D geometry (Morlighem et al., 2010; Gillet-Chaulet and Durand,

2010; Larour et al., 2012; Gillet-Chaulet et al., 2012). However, implementing GL migration in ice

flow models still represents a challenge to be faced by the community of ice sheet modellers (Vieli35

and Payne, 2005; Pattyn et al., 2012a,b).

As mentioned above, Schoof (2007) developed a boundary-layer theory establishing the relation

between ice flux and ice thickness at the GL, which can be implemented as a boundary condition in

ice-flow models. The boundary layer is a zone of acceleration, generally a few tens of kilometres

in extent (Hindmarsh, 2006; Schoof, 2007) for high-slip cases such as we consider, where the stress40

regime adjusts from being shear-dominated to extension-dominated. This theoretical development

demonstrated the uniqueness of steady solutions of marine ice sheets resting on a downward sloping

bedrock and their unstable behaviour on an upward sloping region. Based on the Schoof (2007)

results, an intercomparison effort compared the behaviour of the GL evolution of 26 different models

on a flowline, as part of the Marine Ice Sheet Model Intercomparison Project (MISMIP, Pattyn45

et al., 2012a), which was essentially designed to compare models with the semi-analytical solution

proposed by Schoof (2007). However, Schoof’s flux formula is derived on the assumption of near-

steady-state, and its ability to represent transient behaviour has not been fully investigated. This

issue was briefly touched upon during the MISMIP experiments (Pattyn et al., 2012a), but it was not

the primary focus of investigation.50

The MISMIP experiments showed a broad range of behaviour of numerical implementations in re-

sponse to an instantaneous global change of the ice rheology, with some quantitative consistency be-

tween different numerical formulations. The MISMIP experiments highlighted, along with Schoof’s

studies, the importance of obtaining high accuracy in the numerical solution in the boundary layer

near the GL, which in practice means the use of high resolution or high accuracy methods, which55
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has the consequence that the numerical approach used is of significant issue.

Short term predictions of rapid change in the Antarctic Ice Sheet necessarily involve transient pro-

cesses, and the ability of marine ice sheet models to represent these requires quantification. There-

fore, we conduct a model intercomparison dealing with rapid change in order to evaluate the transient

behaviour of different models. A particular aim is to investigate the divergence of ice sheet models60

from the Schoof (2007) solution during these very short time scale processes. Furthermore, owing

to the use of different physical approximations and numerical approaches, we expect that the same

experiment carried out with different ice sheet models may give different results. Therefore, another

aim of this study is to quantify these differences and understand their origin.

In contrast to the original MISMIP experiment, here we choose to investigate the physically more65

reasonable transient forcing of a decrease in ice-shelf buttressing. This is implemented by means of

a flowline model with grounded part and a floating ice shelf. As is common with previous studies

(Nick et al., 2009; Price et al., 2011; Williams et al., 2012), buttressing is implemented by varying

the force applied at the calving front (downstream end) of the ice shelf. This is not an exact repre-

sentation of how ice shelves generate back-pressure (Gagliardini et al., 2010), but since our primary70

focus is on how a release in back-pressure at the GL forces GL motion, this is sufficient for our

purposes.

A recent study (Williams et al., 2012) has shown that the shallow-ice approximation, besides be-

ing invalid at short wavelength, is also invalid at sub-decadal to decadal forcing frequencies. This

highlights the need to consider the nature of the mechanical model deployed in transient studies. Ice-75

sheet modelling has previously mainly been achievable with vertically-integrated mechanical repre-

sentations of the appropriate governing Stokes equations. With recent advances, one of the models

deployed solves the Stokes equations, while the others solve the vertically-integrated shallow-shelf

approximation (SSA) (Morland, 1987; Mac Ayeal, 1992). The four models differ thus in the me-

chanical model as well as in the numerical approach used. They are briefly outlined here, with more80

details to follow below.

The first one is the finite element full-Stokes Elmer/Ice model, denoted FS-AG for Full-Stokes

- Adaptive Grid, firstly presented in Durand et al. (2009b) (http://elmerice.elmerfem.org). In this

application, an adaptive grid refinement is used. This model is computationally two dimensional in

this flowline representation. The three remaining models solve the SSA, and are therefore vertically85

integrated and thus computationally one-dimensional. SSA-FG, for SSA-Fixed Grid, and SSA-H-

FG, for SSA-Heuristic-Fixed Grid, use a fixed grid with a resolution of 50 m and 10 km, respectively.

The GL migration of SSA-H-FG is computed according to the Pollard and DeConto (2009) heuristic

rule that implements the Schoof (2007) boundary condition (Docquier et al., 2011). The last model

solves the SSA equations using pseudo-spectral method (Fornberg, 1996; Hindmarsh, 2012) on a90

moving grid, and will be denoted SSA-PSMG for SSA - Pseudo-Spectral Moving Grid. For this

model, grounded ice and floating ice shelf are solved on two coupled domains, with continuity of
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stress and velocity across the grounding-line guaranteed. The first two models approach the problem

of modelling the flow in the boundary layer by increased resolution, the third model uses a coarse

resolution and a heuristic rule at the GL, and the last model addresses this issue by using high-95

accuracy spectral methods and explicit grounding line motion formula (Hindmarsh and LeMeur,

2001). All models have successfully participated in the MISMIP benchmark (Pattyn et al., 2012a),

exhibiting unique stable positions on downward sloping beds, unstable GL positions on retrograde

slopes and related hysteresis behaviour over an undulated bedrock.

Details and numerical characteristics of the four models are summarised in Tab. 1. In Section 2,100

specificities of the models are further described. The setup of the proposed experiments is outlined

in Section 3 and corresponding results are discussed in Section 4 before we conclude in Section 5.

2 Model description

2.1 Governing equations

The problem consists of solving a gravity driven flow of incompressible and isothermal ice sliding

over a rigid bedrock noted b(x). The ice is considered as a nonlinear viscous material, following the

behaviour of the Glen’s flow law (Glen, 1955):

τ = 2ηD , (1)

where τ is the deviatoric stress tensor, D is the strain rate tensor defined as Dij = (∂jui +∂iuj)/2

and u= (u,w) is the velocity vector. The effective viscosity η is defined as follows:

η=
A−1/n

2
D(1−n)/n

e , (2)

where A and n are the Glen’s law parameter and flow law exponent respectively, and De is the105

strain-rate invariant defined as D2
e = 2DijDij .

The ice flow is computed by solving the Stokes problem, expressed by the mass conservation

equation in the case of incompressibility

tr(D) = div(u) = 0, (3)

and the linear momentum balance equation

div(σ)+ρig= 0, (4)

where σ = τ −pI is the Cauchy stress tensor with p=−trσ/3 the isotropic pressure, ρi the ice

density and g the gravity vector.

Both the upper ice/atmosphere interface z= zs(x,t) and the lower ice/bedrock or ocean interface

z= zb(x,t) are allowed to evolve following an advection equation:

∂zi

∂t
+ui

∂zi

∂x
−wi = ai i= s,b, (5)
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where (ui,wi) is the surface velocity (i= s) or the basal velocity (i= b). For this application, the

mass flux at the surface (i.e., surface mass balance) is constant and uniform (as(x,t) = as, see Tab. 2)110

and ab = 0.

2.2 Boundary conditions

The geometry is restricted to a two-dimensional flowline along the x-direction and the z-axis is the

vertically upward direction. The upstream boundary of the domain x= 0 is taken to be a symmetry

axis (ice divide), where we impose the horizontal velocity u(x= 0) = 0. The downstream boundary,115

x= xf corresponds to the calving front. The position of the calving front xf is fixed, and the GL

position xg is delimited by 0≤ xg ≤ xf . In what follows, we assume a constant sea level, set to

z= 0.

The upper ice surface z= zs(x,t) is in contact with the atmosphere, where pressure is negligible

with respect to involved stresses inside the ice body. This is a stress free surface, implying the

following condition:

σ ·n|zs
= 0, (6)

where n is the outward pointing unit normal vector.

The lower surface z= zb(x,t) is either in contact with the bedrock or with the ocean, and two dif-

ferent boundary conditions will be applied for the Stokes problem on these two different interfaces,

defined as: 

zb(x,t)>b(x) or

zb(x,t) = b(x) and −σnn|zb
≤ pw

Ice/Ocean interface,

zb(x,t) = b(x) and −σnn|zb
>pw Ice/Bedrock interface.

(7)

In Eq. (7), the water pressure pw = pw(z,t) is defined as:

pw(z,t) =

−ρwgz if z≤ 0

0 if z > 0
(8)

where ρw is the water density.120

Where the ice is in contact with the ocean (first condition in Eq. (7)), the following Neumann

boundary condition applies for the Stokes equations:

σ ·n=−pwn. (9)

Where the ice is in contact with the bedrock (second condition in Eq. (7)), a no-penetration con-

dition is imposed as well as a friction law, such as

u ·n= 0, (10)

τb = t ·(σ ·n)|b =Cum
b ,
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where τb is the tangential component of the traction, t is the tangent vector to the bedrock, ub is the

sliding velocity, C is the friction parameter and m is the friction law exponent (see Tab. 2 for the

adopted values).

2.3 Shallow shelf/shelfy stream approximation (SSA)

As mentioned previously, three of the four models use the Shallow Shelf Approximation (SSA)

which is a vertically integrated approximation of the Stokes Eqs. (3) and (4). The horizontal velocity

u(x) is obtained by solving the following equations (Morland, 1987; Mac Ayeal, 1992):
2
∂(hτxx)

∂x
−Cum = ρigh

∂zs

∂x
0≤x≤xg , for the grounded part,

2
∂(hτxx)

∂x
= γh

∂h

∂x
xg <x≤xf , for the floating part.

(11)

where h= h(x) is the ice thickness, τxx = 2η∂xu is the longitudinal deviatoric stress and u is the

horizontal velocity in the flow direction. The effective viscosity, η, is computed as in (2), where

De≈ ∂xu. The parameter γ is defined as:

γ= ρig

1−
ρi

ρw

 . (12)

According to the SSA approximation, ice deformation is dominated by membrane stresses and verti-125

cal shear within the ice is neglected. For the SSA model, the only boundary condition is u(x= 0) = 0

at the ice divide, whereas the boundary condition at the lower surface is already implicitly included

in the set of equations (11) and the boundary condition at the calving front is defined in section 2.5.

The lower surface zb is determined from the no-penetration condition and the floating condition:zb(x,t) = b(x) for x≤xg ,

zb(x,t) =−hρi/ρw >b(x) for x>xg .
(13)

The upper surface zs = zb +h is deduced from the vertically-integrated mass conservation equa-

tion giving h as
∂h

∂t
+
∂(hu)

∂x
= as . (14)

2.4 Grounding line treatment

The implementation of GL treatment differs from one model to the other. In this section we define130

for each model the specificities regarding the treatment of the GL.

The FS-AG model solves the contact problem between the ice and the bedrock. During a time

step, the contact condition (7) is tested at each node of the mesh and the bottom boundary conditions
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(9) or (10) are imposed accordingly. More details about this method and its implementation can be

found in Durand et al. (2009a). The consistency of this GL implementation strongly depends on the135

grid resolution, and a grid size lower than 100 m is needed to obtain reliable results (Durand et al.,

2009b). In order to reach this resolution while considering a reasonable number of mesh nodes, an

adaptive mesh refinement around the GL is applied: the horizontal distribution of nodes is updated

at every time step, such that finer elements are concentrated around the GL.

For the SSA-FG model the grid points are kept fixed in time and the last grounded grid point is

determined through the flotation criterion, i.e. by solving the following equation:

F =hg +b(xg)
ρw

ρi

= 0. (15)

The GL position xg is given with sub-grid precision between the last grounded grid point and the140

first floating point following the method proposed by Pattyn et al. (2006).

The GL position is also determined with sub-grid precision following Pattyn et al. (2006) for

the SSA-H-FG, but while SSA-FG uses the flotation criterion as a boundary condition at the GL,

the SSA-H-FG model makes use of an additional boundary condition based on the semi-analytical

solution of Schoof (2007). The ice flux at the GL qg is calculated as a function of ice thickness at

the GL hg:

qg =

Aρigγ
n

4nC


1

m+1

θ
n

m+1h
m+n+3

m+1
g , (16)

and is used in a heuristic rule to enable GL migration (Pollard and DeConto, 2009). This parame-

terization allows relatively coarse resolutions to be used (10 km in this study) and gives steady-state

results of GL position that are independent of the chosen resolution and agree well with the semi-

analytical solution given by Schoof (2007) (Docquier et al., 2011). In Eq. (16), the coefficient θ

accounts for buttressing and is defined as

θ=
4τxx|xg

γhg

. (17)

The numerical approach used by the pseudo-spectral SSA-PSMG model consists in explicitly

calculating the rate of GL migration, ẋg , according to the following explicit formula (Hindmarsh

and LeMeur, 2001)

ẋg =−
∂tF

∂xF
, (18)

where F is given by Eq. (15). At each time step, a new position is computed and the grid moves ac-

cordingly, so that the GL coincides exactly with a grid point (Hindmarsh, 1993). Moving grids have

the ability to ensure that a grid-point always coincides with the GL, allowing easy representation of

gradients at this location, but are not always convenient to implement.145
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2.5 Calving front boundary condition and the specification of buttressing

The experiments we propose are driven by changes in the buttressing force. One approach could

have consisted of applying lateral friction on the ice shelf following the method of Gagliardini et al.

(2010), but the total buttressing force would then have been function of the ice-shelf area and ice-

shelf velocities, and therefore different for all models. In order to ensure the same buttressing force150

for all models, we follow the method proposed by Price et al. (2011), in which the inward force at

the calving front is modified by a factor, noted CF in our study.

For vertically integrated models, the horizontal force acting on the calving front is entirely due to

the hydrostatic water pressure and the longitudinal deviatoric stress at the front is given by MacAyeal

et al. (1996):

τxx|xf
=
γ

4
hf , (19)

where hf is the ice thickness at the calving front. In the case of the vertically integrated models

SSA-FG, SSA-H-FG and SSA-PSMG, a factor CF is then used to modify longitudinal deviatoric

stress (19), which becomes:

τxx|xf
=CF

γ

4
hf . (20)

A value of CF = 1 means that the longitudinal deviatoric stress at the calving front is opposed

solely by water pressure, corresponding to no buttressing. Values less than one induce a lower

extensional longitudinal deviatoric stress at the front, simulating the effect of buttressing. Note155

that this procedure implies an additional force applied at the calving front; this results in a varying

contribution of the butressing to the stress as the ice thickens upstream.

Moreover, for SSA-H-FG, the buttressing parameter CF is by construction incorporated in the

boundary condition at the GL. This boundary condition relates the ice flux qg to the ice thickness hg

at the GL and includes the buttressing factor θ as defined by Eq. (17). From the SSA equations in the

ice shelf, we derive (see Appendix A) the relation that links θ and CF through both the ice thickness

at the GL hg and the ice thickness at the calving front hf :

θ= 1−(1−CF )

hf

hg

2

. (21)

The other two SSA models solve for the longitudinal variation of τxx in the ice shelf to compute the

value at the GL.

For the FS-AG model, the hydrostatic pressure pw(z) is imposed along the ice column in contact

with the sea, so that the longitudinal Cauchy stress is not uniform on this boundary. This non-uniform

stress induces a bending of the ice shelf near the front. To avoid an increase of this bending when

adding the buttressing, the stress condition at the front is modified by adding a uniform buttressing
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stress pb, such that

σxx|xf
(z,t) = pw(z)+pb(t). (22)

Using Eqs. (22) and (20), and assuming the equality of the mean longitudinal Cauchy stress for

both parameterisations, the buttressing stress to be applied at the front of the full-Stokes model is

obtained as a function of CF (see Appendix B), such as

pb =
ρwgz

2
b

2ρihf

(ρw−ρi)(CF −1). (23)

Note that pb has to be computed at each time step since it depends on the ice thickness at the front,160

which is not constant.

3 Experimental setup

We consider an ice sheet resting on a downward sloping bedrock, with the calving front fixed at

1000 km, as shown in Fig. 1. The GL never advances as far as this in the experiments. The flow

parameters summarised in Tab. 2 are used by each model in order to calculate a steady state geometry.165

The steady state is obtained with a buttressed ice shelf (CF = 0.4). Computed steady surfaces are

in good agreement between models, exhibiting only a slight difference in GL position of less than

20 km (see Fig. 1). We chose the simpler, stable case of a forward slope for the simple reason

that computing comparable initial starting conditions on the unstable reverse slope is a practical

impossibility. GL retreat rates are governed by the water depth and the buttressing, and we chose170

values that were physically acceptable and also produced physically reasonable retreat rates.

Ice-sheet geometry is subsequently perturbed by a release of the initial buttressing force. This

process, arising from increased melt of the ice shelf, appears to be responsible for the observed

acceleration of Antarctic outlet glacier (Wingham et al., 2006; Rignot et al., 2008; Pritchard et al.,

2012). Starting from the steady geometries obtained with initial factor CF = 0.4, the buttressing175

force is decreased at t= 0 ( i.e. CF increases) and kept constant during the simulation. Since we

focus on the transient behaviour, simulations are run during 200 years. Three different amplitudes

of the perturbation are investigated with corresponding modified values of CF = 0.5, 0.8 and 1.

4 Results and discussion

4.1 Transient behaviour of direct observable variables on actual ice sheets180

We first evaluate the response of the various models regarding the variables that are currently ob-

served over actual ice sheets, namely GL position (Fig. 2), surface elevation change (Fig. 3) and

surface velocity (Fig. 4).
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As expected, release of buttressing induces a GL retreat, and the greater the release, the larger

the amount and rate of retreat (Gagliardini et al., 2010). Retreat can reach up to almost 100 km in185

200 years following a complete loss of buttressing restraint (CF = 1, see Fig. 2 and Tab. 3). The

different models show a similar trend regarding the temporal evolution of GL position (left panels in

Fig. 2). However, owing to the various initial steady state profiles, the GL position differs between

models. For the three perturbations, SSA-H-FG shows the highest GL retreat compared to the initial

position, followed by SSA-FG, then SSA-PSMG, and finally FS-AG (Tab. 3). The evolution of the190

GL position of SSA-H-FG has a step-like behaviour due to the model grid size (10 km).

Rates of GL migration (right panels in Fig. 2) for SSA-PSMG and SSA-FG exhibit a very similar

pattern, i.e. a high retreat rate value in the beginning of the perturbation and then a convergence

towards a zero-value. Moreover, the greater the perturbation (higher value of CF ), the larger the re-

treat rates in the beginning of the perturbation. The smooth decrease of the migration rate computed195

by SSA-PSMG is due to the explicit way the GL migration is computed (see model description

above). Because the SSA-FG interpolates the GL position between the last grounded point and the

first floating point (Pattyn et al., 2006), it also ensures a smooth description of GL migration rate.

However, FS-AG and SSA-H-FG show discontinuous GL migration rate induced by numerical arte-

facts: both models give results that are affected by their grid size. The stepped patterns obtained with200

FS-AG are due to high frequency oscillation between two successive nodes during GL migration:

the GL retreats, then stays at the same position during one time step, then retreats, etc. so that the

GL migration rate oscillates with an amplitude of 500 m a−1 (i.e. grid size divided by time step).

The numerical noise found in SSA-H-FG is due to a combination of both the grid size effect and

single-cell dithering, i.e., flipping back and forth between upstream and downstream grid points205

(Pollard and DeConto, 2012). As a general trend, the GL retreats by 10 km steps as a consequence

of the model resolution (grid size effect). At some discrete GL positions (every 10 km), the rate of

GL migration varies significantly due to the heuristic rule used in the model (flux imposed either

upstream or downstream the GL), so that the GL slightly advances and retreats within the same grid

cell (single-cell dithering). In summary, the GL retreats by 10 km (corresponding to the model reso-210

lution) and reaches a discrete position where it oscillates within the same grid cell, and then retreats

before reaching another discrete position again, etc...

Rates of surface elevation change through time and distance from the ice divide are presented

in Fig. 3 for the various models and perturbations. The horizontal surface velocity is similarly

plotted (see Fig. 4). The largest perturbation (CF = 1) exhibits rates of surface elevation change215

of a few meters per year in the beginning, with horizontal velocities above one kilometer per year.

Together with GL migration rates of the order of a kilometer per year (Fig. 2), those are in general

agreement with the obervation for currently recessing glaciers of West Antarctica, and Pine Island

Glacier in particular (Rignot, 1998; Rignot et al., 2011). That confirms the relevance of the amplitude

of the perturbations applied. Rates of surface elevation change are quite similar between the four220
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models (Fig. 3). The highest thinning rates appear in the vicinity of the GL at the beginning of

the perturbation. Similarly, the surface velocities steadily decrease during the simulation (Fig. 4).

High frequency and small amplitude numerical noise in FS-AG appear not to significantly affect

the surface response. However, with SSA-H-FG the high frequency and amplitude variabilities

drastically affect the surface thinning rate and velocities over short time scales (i.e. about a decade).225

We deliberately chose a low spatial resolution (uniform 10 km along the flowline) for the SSA-H-

FG model compared with other models. Indeed, in contrast to other approaches, such type of models

produces consistent steady geometries at low spatial resolution (Docquier et al., 2011), which is the

main motivation for applying such parameterizations in large-scale ice sheet models. One can also

note that ice-sheet models using a flux boundary condition at the grounding line with a similar reso-230

lution are currently used on centennial time scale to estimate Antarctic evolution (Bindschadler et al.,

2012). However, evaluating their performance with similar numerics on controlled experiments re-

mains to be done. Increasing the resolution (down to 500 m) allows removal of high frequency

numerical artefacts, but the general trend of variables such as GL migration rate and surface eleva-

tion changes over 200 years does not depend on resolution (data not shown). Moreover, refining the235

grid size significantly increases its numerical cost, so that the major advantage of this model is lost,

as well as its applicability to large-scale ice-sheet models.

4.2 Divergence from the boundary-layer solution

Despite the numerical noise exhibited by SSA-H-FG and FS-AG models, the evolution of the ge-

ometry during the simulations appears very similar for all four models. However, the boundary layer240

theory implemented in the SSA-H-FG model hypothesizes near-steady conditions and its ability

to represent transients requires evaluation. In Fig. 5, the flux at the GL is plotted as a function of

the instantaneous ice thickness at the GL for all models and simulations. By construction, SSA-H-

FG essentially follows the boundary layer prescription. This can most clearly be seen for the case

CF = 1 (see the bottom of Fig. 5) where the close correspondence of the curves of Schoof (2007)245

and SSA-H-FG is evident. This correspondence is not as clear for the other perturbations, since the

SSA-H-FG boundary condition for the flux now relies on a parameterization of θ, which in turn de-

pends on the quantity hf/hg (see Eq. 21). Since this ratio varies in time, the steady-state condition

of the Schoof condition is not fulfilled.

Interestingly, and despite their very different physical and numerical approaches, all the other250

models show very similar behaviour, with the boundary layer theory result attained after some time.

This is most obvious for the largest perturbation (CF = 1) but also clearly visible for the weaker

perturbations (CF = 0.8 and 0.5). However, during the highly transient phase, for a given ice thick-

ness at the GL, the ice flux is substantially overestimated by the boundary layer theory, consequently

overestimating the outflow during the whole period of 200 years.255
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4.3 Changes in Volume Above Flotation (∆VAF)

From the perspective of projecting the future contribution of Antarctica to sea-level rise (SLR), the

change in Volume Above Flotation (∆VAF = VAF(t) - VAF(t= 0)) is certainly a pertinent variable

to investigate. Indeed, plotting ∆VAF (Fig.6) has the advantage of integrating through time both the

contribution coming from outflow at the GL and the consequence of grounding-line retreat in terms260

of ice release. In our case, this also allows the investigation of the spread in the transient behaviour of

the various models in response to similar perturbations. We also plotted the evolution of ∆VAF for

each model relative to ∆VAF computed by FS-AG as it directly emphasizes the difference between

models (Fig.6). Choice of FS-AG model as a reference was arbitrary.

As anticipated, SSA-H-FG shows the greatest change in VAF compared with other models. Rel-265

ative to FS-AG, SSA-H-FG overestimates the contribution to SLR by more than 100 % during the

first 50 years of the simulation, which decreases to a 40 % overestimation after 200 years. SSA-FG

shows a similar pattern with a smaller overestimation (about 15 % after 200 years). On the other

hand, SSA-PSMG briefly underestimates the change in VAF relative to FS-AG at the beginning of

the perturbation, but after 20 years the contribution of the models to SLR is remarkably similar to270

the one computed by FS-AG, with relative difference below 5 %. It seems striking that response in

terms of relative ∆VAF is extremely similar from one perturbation to the other, while the response

of the models is highly modulated by the amplitude of the perturbation. This particularity may allow

in the future to weight the response of a model according to the physics implemented in.

This intercomparison strongly suggests that models prescribing flux at the GL according to the275

boundary layer theory most probably overestimate ice discharge, with significant difference at the

very beginning of the transient simulation. It also clearly shows that the rate of contribution to SLR

significantly differs from one model to the other, even for a relatively simple and constrained ex-

periment. When extrapolated to the current imbalance of the Antarctic ice sheet, this would have

important consequences. According to Rignot et al. (2011), the Antarctic ice sheet drained about280

100 Gt/yr in 2000 with an increasing acceleration trend in mass loss of 14.5 Gt/yr2. Following that

trend, the Antarctic ice sheet have contributed by 4.6 mm of SLR between 2000 and 2010. Assuming

ice-sheet models were capable of describing exactly the ice dynamical conditions in 2000, and also

assuming the parameters forcing enhanced ice discharge to be properly known, we can compute a

broad scale of uncertainties on predicted SLR arising from the use of the four different models. If we285

arbitrarily consider the FS-AG model as the one that would give the SLR prediction of 4.6 mm in

2010 after a given perturbation, the use of the other models would lead to an erroneous contribution

to SLR between 3 mm (under estimation of 30 % by SSA-PSMG) and 18 mm (over estimation of

300 % by SSA-H-FG). Furthermore, as ice sheets are still in a transient phase (i.e., perturbations

are sustained through time) the discrepancy of the models would eventually increase with time inte-290

gration. Of course, these assertions have to be moderated by the fact that the complexity of actual

3D geometries could mitigate the discrepancy between model results, which is the focus of future

12



research.

5 Conclusions

We have computed the transient response of four flowline ice-sheet models to a reduction in the295

buttressing force exerted by an ice shelf onto the upstream grounded ice sheet. The intensity of

buttressing perturbations was chosen in order to reproduce changes in geometry that are comparable

to those observed on current ice sheets. Compared with MISMIP, we investigated the transient

response in more detail and applied a perturbation that reflects direct mechanical forcing.

The dynamics (or momentum balance) are implemented in a different way in the different models300

(from SSA to the solution of the full-Stokes equations), while the models differ in their numerical

treatment as well (finite difference and finite element). One of the models includes the heuristic

rule of Pollard and DeConto (2009), i.e. the flux-thickness relation proposed by Schoof (2007) is

imposed at the GL. All models have successfully participated in the MISMIP benchmark (Pattyn

et al., 2012a), exhibiting unique stable positions on downward sloping beds, unstable GL positions305

on retrograde slopes and related hysteresis behaviour over an undulated bedrock.

Surprisingly, and despite the different physics and numerics implemented, all models broadly give

similar results in terms of changes in surface geometry and migration of the GL. However, discrep-

ancies remain in between models. Particularly, the SSA-H-FG model which directly implements

the boundary layer theory exhibits faster grounding line retreat and larger surface thinning (Fig.2310

and Fig.3). Once cumulated over years, this leads to significant differences in predicted discharge.

Moreover, the prescription of flux at the GL introduces high frequency, large amplitude numerical

noise deteriorating the surface change signal over decadal time scales. Finally, it seems that, at least

in these experiments, the boundary layer theory overestimates the discharge during the transient evo-

lution. As a consequence, models that prescribe the flux at the GL should be used with particular315

caution when dealing with small spatial and temporal scales.

Estimation of the contribution to SLR through numerical modelling still exhibits large uncertain-

ties, with results from different models showing > 100 % spread on a decadal time-scale and still

around 40 % two hundred years after the initial change in buttressing. There may be a large uncer-

tainty in models that are seeking to establish reliable projection of coming contribution of Antarctic320

ice sheet to SLR. Further model intercomparison must be pursued to better constrain the rate of dis-

charge, and intercomparisons on specific Antarctic outlet glaciers should be encouraged in the near

future.
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Appendix A

In this Appendix the relation between the buttressing factors θ in Eq. (17) and CF in Eq. (20) is

derived. The ice-shelf equation is

2
∂(hτxx)
∂x

=
γ

2
∂
(
h2
)

∂x
, (A1)

where h is the ice thickness along the ice shelf. The longitudinal deviatoric stress within the ice shelf

is then obtained as

τxx =
γ

4
h− B

h
, (A2)

where B is the back-force at the calving front. Evaluatting this at x=xf and using (20), we obtain

τxx|xf
=CF

γ

4
hf =

γ

4
hf −

B

hf
, (A3)

yielding

B= (1−CF )
γ

4
h2

f , (A4)

and

τxx =
γ

4

(
h−(1−CF )

h2
f

h

)
. (A5)

Now, at the GL x=xg , by definition of θ (17):

τxx|xg = θ
γ

4
hg , (A6)

so that

θ= 1−(1−CF )
(
hf

hg

)2

. (A7)

Appendix B325

In this appendix, we demonstrate how is obtained the buttressing pressure pb(t) in Eq.(22) giving

the front-stress for the FS-AG model. We need to find pb(t) such that the mean longitudinal Cauchy

stress be the same for all models. This equality is expressed as follows:

σ̄SSA
xx = σ̄FS

xx (B1)

where σ̄SSA
xx and σ̄FS

xx are the longitudinal Cauchy stress of SSA models and FS-AG model, respec-

tively.

The mean longitudinal Cauchy stress for SSA models reads:

σ̄SSA
xx = 2τ̄xx + σ̄zz (B2)

where σ̄zz =−
ρighf

2
and τ̄xx is given by Eq. (20).
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The longitudinal Cauchy stress for FS-AG model, given by Eq.(22), and once integrated over the

ice column gives:

σ̄FS
xx =−ρwgzb

2

2hf
+pb (B3)

Using Eq. (B2) for SSA models and Eq. (B3) for FS-AG, Eq. (B1) leads to

2CF
γ

4
hf −

ρighf

2
=−ρwgzb

2

2hf
+pb (B4)

Using the flotation condition ρihf = ρwzb, and after simplifications, pb can be isolated and de-

duced as

pb =
ρwgz

2
b

2ρihf

(ρw−ρi)(CF −1). (B5)
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Fig. 1. Initial steady state geometry (CF = 0.4) for all models. The inset emphasizes the differences in GL

position. SSA-H-FG lower surface has a quite different shape with respect to the three other models due to its

coarser resolution (10 km).
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Fig. 2. Grounding line position xg (left) and migration rate dxg/dt (right) as a function of time for the four

models and for the three buttressing values (CF = 0.5 on the first line, CF = 0.8 on the second line and CF = 1
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20



FS-AG SSA-FG SSA-H-FG SSA-PSMG CF

0.5

0.8

1.0

X (km)

Fig. 3. Rate of surface elevation change (m yr−1) as a function of time and horizontal distance (x = 0 corre-

sponds to the ice divide and xf = 1000 km is the calving front) for the three buttressing values (lines) and for

the four models (columns).
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Fig. 4. Surface horizontal velocity (km yr−1) as a function of time and horizontal distance (x = 0 corresponds

to the ice divide and xf = 1000 km is the calving front) for the three buttressing values (lines) and for the four

models (columns).
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Table 1. Summary table of model characteristics: LGGE stands for Laboratoire de Glaciologie et de

Géophysique de l’Environnement, CSC - IT for Science, ULB for Université Libre de Bruxelles, and BAS

for British Antarctic Survey.

FS-AG SSA-H-FG SSA-FG SSA-PSMG

Affiliation LGGE/CSC ULB ULB BAS

(Durand et al.,

2009a)

(Docquier et al.,

2011)

Physics Full Stokes SSA SSA SSA

Numerics Finite Element Finite Difference Finite Difference Pseudo-spectral

Vertically No Yes Yes Yes

integrated

Grid Adaptive Fixed and Stag-

gered

Fixed and Stag-

gered

Moving

Resolution GL: 50 m; divide:

10 km

10 km 50 m 3km

Time step 0.1 yr 0.1 yr 0.1 yr 1 yr

GL Contact problem Heuristic rule Flotation Margin tracking

(Pollard and De-

Conto, 2009)

Table 2. Parameters of initial steady state

Parameter Description Value Unit

b Bed elevation -x/1000 m

ρi Ice density 900 kg m−3

ρw Water density 1000 kg m−3

g Gravitational acceleration 9.8 m s−2

A Glen’s law coefficient 1.5 × 10−25 Pa−3 s−1

n Glen’s law exponent 3

C Basal friction parameter 106 Pa m−1/3 s1/3

m Basal friction exponent 1/3

as Accumulation rate 0.3 m a−1

CF Buttressing parameter 0.4
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Table 3. GL position for the intial steady state (CF = 0.4) and for the different perturbations for each model

after 200 years. The difference between the initial steady state and the perturbed state is given in brackets. All

values are in km.

FS-AG SSA-FG SSA-H-FG SSA-PSMG

CF =0.4 540.5 551.8 554.1 556.1

CF =0.5 523.8 (16.7) 534.7 (17.1) 530.4 (23.8) 539.2 (16.9)

CF =0.8 482.0 (58.5) 488.5 (63.3) 474.8 (79.3) 495.2 (60.9)

CF =1 463.7 (76.8) 468.9 (82.9) 454.3 (99.8) 476.8 (79.3)
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