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Abstract. Observations over the last 30 yr have shown thatHemisphere than in the Southern Hemisphere. In particu-
the sea ice extent in the Southern Ocean has slightly infar, simulations performed for the 3rd Coupled Model Inter-
creased since 1979. Mechanisms responsible for thisyp®siti comparison Project (CMIP3) are generally able to reproduce
trend have not been well established yet.this study, we  relatively well the timing of the seasonal cycle of Southern
tackle two related issues: is the observed positive trenttco Ocean sea ice extent but fail in simulating the observed am-
patible with the internal variability of the system and de th plitude (Parkinson et al., 2006). Furthermore, the models a
models agree with what we know about the observed internalisually unable to simulate the observed increase in Sauther
variability? For that purpose, we analyze the evolution of seaOcean sea ice extent (e.g. Arzel et al., 2006; Parkinson,et al
ice around the Antarctic simulated by 24 different general2006), which is estimated to be of 11 28@680km?yr !
circulation models involved in the 5th Coupled Model Inter- between 1979 and 2006 (Comiso and Nishio, 2008). At
comparison Project (CMIP5), using both historical and hind the regional scale, the 1979-200énd in observed sea ice
cast experiments. Our analyses show that CMIP5 modelextent is positive in all the sectors of the Southern Ocean,
respond to the forcing, including the one induced by strato-except in the Bellingshausen-Amundsen Seas sector, and the
spheric ozone depletion, by reducing the sea ice cover in th&®oss Sea sector exhibits the largest positive trend (exga-Ca
Southern Ocean. Some simulations display an increase in sdiri and Parkinson, 2008; Comiso and Nishio, 2008). Lefeb-
ice extent similar to the observed orfeccording to models, vre and Goosse (2008a) have studied the trend simulated by
the observed positive trend is compatible with internal-var several CMIP3 models in the different sectors of the South-
ability. However, models strongly overestimate the vaze@sa ern Ocean and they have shown that these models were not
of sea ice extent and the initialization methods currergcu  able to reproduce this observed spatial structure.
in models do notimprove systematically the simulated tsend  The observed increase in sea ice extent during the past
in sea ice extentOn the basis of those results, a critical role decades is statistically significant at the 95% significavel
of the internal variability in the observed increase in tha s (e.g. Cavalieri and Parkinson, 2008). However, its posnti
ice extent in the Southern Ocean could not be ruled outfutauses are still debated. We do not know the part of this trend
current models results appear inadequate to test more prehat can be attributed to external forcing and the one that is
cisely this hypothesis. due to natural variability. This issue has already been ad-
dressed for the Arctic sea ice extent (e.g. Kay et al., 2011)
but remains poorly investigated for the Southern Ocean sea
60 ICe.

Several studies dealing with the potential role of the fdrce
The way climate models reproduce the observed charactef€SPonse have pointed out the relationship between strato-
istics of sea ice has received a lot of attention (e.g. FlatoSPheric ozone depletion over the past few decades (Solomon,
2004: Arzel et al., 2006: Parkinson et al., 2006 Lefebvid an 1999) and changes in the atmospheric circulation at high lat

Goosse, 2008a; Sen Gupta et al., 2009). One conclusién dfudes (e.g. Turner et al., 2009; Thompson et al., 2011). In-
those studies is that the models skill is higher in the Narthe deed, variations of sea ice extent in the Southern Ocean are

strongly influenced by changes in the atmosphere circula-
Correspondence  to: Violette Zunz (vio-  tion (e.g. Holland and Raphael, 2006; Goosse et al., 2009b).
lette.zunz@uclouvain.be) However, the link between atmospheric circulation and the

1 Introduction




70

75

80

85

90

95

100

105

110

115

120

2 V. Zunz et al.; CMIP5 1979-2005 Southern Ocean sea ice

sea ice extent integrated over the Southern Ocean issnatllow a quantitative estimate of its value. The results from
straightforward (e.g. Lefebvre and Goosse, 2008b; Stammermodel simulations appear thus to be crucial to balance this
john et al., 2008; Landrum et al., 2012) and several recentack of observations. Provided that models are compatible
studies came to the conclusion that the stratospheric ozoneith the available observations, they can help addreskiag t
depletion does not lead to an increase in the sea ice extemgsue whether the observed positive trend in the Antaretic s
(e.g. Sigmond and Fyfe, 2010; Smith et al., 2012; Bitz andice extent is due to external forcing or to internal varigil
Polvani, 2012) A second potential cause of the observed or to both of them.
expansion of sea ice cover relies on an enhanced stratifica- The decreasing trend in many model simulations may be
tion of the ocean which would inhibit the heat transfer to due to a misrepresentation of the response of the circulatio
the surface. This strengthened stratification is mainlytdue and/or of the hydrological cycle to the forcinglternatively,
a freshening of the surface water, triggered by an increase ithe observed changes may belong to the range of the trends
the precipitation over the Southern Ocean, the melting®f th that can be attributed to the internal variability of theteys.
ice shelf and changes in the production and transport of seén this hypothesis, the positive trend observed over the las
ice (e.g. Bitz et al., 2006; Zhang, 2007; Goosse et al., 2009bdecades is just one particular realization among all theipos
Kirkman and Bitz, 2010). Liu and Curry (2010) pointed ble ones. A negative trend in one model simulations does not
out that an enhanced hydrological cycle may also increasémply necessarily a disagreement between model and data
the snowfalls at high latitudes in the Southern Ocean. Inas another simulation with the same model (another member
that case, the snow cover on thicker sea ice would raise thef an ensemble, for instance) would likely display a positiv
surface albedo, strengthen the insulation between the-atmane. Furthermore, if this is valid and if the internal variab
sphere and the ocean, and thus would protect the sea ice froity is to some extent predictable, an adequate initiakiradif
melting. Nevertheless, this mechanism mainly impacts thickthe system could lead to a better simulation of the evolution
ice because for thin ice, the higher snow load leads to seawasf the sea ice cover around the Antarctic.
ter flooding and to the formation of snow ice. This decreases In this paper, we examine outputs from general circulation
the effect of the initial increase in snow thickness. models (GCMs) following the 5th Coupled Model Intercom-
Another hypothesis suggests that the positive trend in theparison Project (CMIP5) protocollo further study the role
Southern Ocean sea ice extent could arise from the internaif the internal variability in the increasing trend in sea é&x-
variability of the system that masks the warming signal in tent in the Southern Ocean and in the apparent disagreements
the Southern Oceahat should characterize the response tobetween models and observations, we deal with two kinds of
an increase in greenhouse gases concentration, accooding simulations: historical and hindcast (or decadal) simoifes.
climate models. In this framework, some recent studies hav& he first ones are driven by external forcing and are initial-
drawn the attention on the importance of distinguishingstheized without observational constraints. They are used-o as
lack of agreement between models from the lack of signifi-sess how well each model simulates the observed mean state,
cant signal (e.g. Tebaldi et al., 2011; Deser et al., 2012). Avariability and trends in seaice concentration and ex{Eme.
trend can be significant from a statistical point of view, i.e objective is to study the possible links between the interna
if it is above a threshold of significance computed through avariability of the system and the simulated trend in sea ice
statistical test. This does not imply that its value is alésb extent.Our purpose is, on the one hand, to test if the internal
of the range that can be reached by the internal variabilityvariability of the models agrees with the one of the observa-
For instance, Landrum et al. (2012) have pointed out thations. On the other hand, we check if the observed positive
large interannual variability in simulated sea ice connt trend stands in the range of trends provided by models inter-
tion leads to late 20th Century trends in sea ice concentranal variability. Analyzing the mean state also appears to be
tion that are not always statistically significant for indivalies  important here because of its impact on the simulated vari-
members of an ensemble simulation. The observed positivability (e.g. Goosse et al., 2009a). In addition to thos&{soi
trend of Southern Ocean sea ice extent is statisticallyifsign related to the variability of the system, the way stratosiche
icant at the 95% level for the last 30 yr (e.g. Cavalieri and ozone is taken into accountin models is also discussed to es-
Parkinson, 2008). However, this time period is too short totimate if this has a significant impact on the simulated teend
properly assess the multidecadal variability of the systemHowever, it is out of the scope of this study to discuss specifi
Consequently, we cannot estimate if this trend is exception mechanisms that link the sea ice extent and the stratospheri
or if similar conditions have already occurred many times ozone variations.
in the recent pastThe period spanning the last 30yr dur-  The second kind of simulations, the hindcasts, are also
ing which sea ice cover slightly expanded in the Southerndriven by external forcing but, in contrast to the historica
Ocean might follow a large melting that may have happeredimulations, are initialized through data assimilatiorobf
before 1979 (e.g. de la Mare, 1997, 2009; Cavalieri et al. servations. Consequently, these simulations allow us-to as
2003; Curran et al., 2003; Cotté and Guinet, 2007; Goosssess how the state of the system in the early 80’s impacts the
et al., 2009b).This suggests that multidecadal variability in variability of the models and their representation of tieat
the Southern Ocean is large but the available data does naiver the last 30 yr. Idealized model studies have shown high
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potential predictability at decadal time scales inthe Bert  the CMIP3 simulations. Indeed, nearly half of the CMIP3
Ocean (e.g. Latif et al., 2010), i.e. models have determinis models prescribed a constant ozone climatology (Son et al.,
tic decadal variability, in particular for surface temperas  2008). Nevertheless, some of the models have a coarse at-
(Pohlmann et al., 2004). The predictive skill of the models mosphere resolution which sometimes does not encompass
at decadal time scales is also discussed here to see if this pthe whole stratosphere. In that case, processes relathd to t
tential predictability is confirmed in real applications. interaction between radiation and ozone as well as the ex-
An initial investigation of the results of CMIP5 models change between the stratosphere and the troposphere may be

has shown that, in agreement with previous studies related trepresented rather crudely.
CMIP3 models (e.g. Lefebvre and Goosse, 2008ajentao The hindcast simulations were initialized from a state that
GCMs do not simulate a spatial structure of the trend in seehas been obtained through a data assimilation procedewre, i.
ice extent similar to the observed one. This spatial strectu constrained to be close to some observed fields. There is
might as well arise from the internal variability. In such a a large panel of data assimilation methods but most of the
case, models would not have to fit the observed pattern, amodels involved in CMIP5 assimilate observations through
discussed above. However, this remains a hypothesissand nudging. This method consists in adding to the model equa-
we have chosen to focus on the sea ice extent in the whol&@ons a term that slightly pulls the solution towards theaybs
Southern Ocean rather than in the individual sectors tadavoi vations (Kalnay, 2007). MIROC4h and MIROCS incorporate
the additional complexity associated with the spatialcstru observations in their data assimilation experiments bynan i
ture of the changedModels and observation data are briefly cremental analysis update (IAU). Details about this method
presented in Sect. 2. The time period we analyze is limitedcan be found in Bloom et al. (1996). Table 3 summarizes
by the available observations. For the Southern Ocean, valthe data assimilation method corresponding to each model,
idation data are quite sparse before 1979. We therefore exas well as the variable it assimilates. The relevant docu-
amine outputs between 1979 and 2005. Results provided bynentation was not available to us for CCSM4, FGOALS-
models historical simulations are presented and discussed g2 and MRI-CGCM3. All the models for which we have
Sect. 3. The analyses of hindcast simulations are desdribed the adequate information, except BCC-CSM1.1 and CNRM-
Sect. 4. Finally, Sect. 5 summarizes our results and preposeCM5, assimilate anomalies. Those anomalies are calculated
conclusions. for both model and observations by subtracting their respec

tive climatology, computed over the same reference period.

Working with anomalies does not prevent model biases but it
2 Models and observation data 20 avoids the initialization of the model with a state whichde t

far from its own climatology and thus limits model drift (e.g
Models data were obtained from the CMIP5 (Taylor et al., Pierce et al., 2004; Smith et al., 2007; Troccoli and Palmer,
2011) multi-model ensemble: http://pcmdi3.linl.gov/iesy  2007; Keenlyside et al., 2008; Pohimann et al., 2009), as dis
home.htm. We have analysed results of historical simulacussed in Sect. 4.
tions from 24 models which have the required data availgble. The model skill is measured through its representation of
Among these models, 10 of them provide results for hindcasthe sea ice concentration (the fraction of grid cell covered
simulations. Both historical and hindcast simulationssisin by sea ice) and sea ice extent (the sum of the areas of all
in ensemble simulations of various sizes. Models and theilgrid cells having an ice concentration of at least 15 %). We
respective modeling groups are listed in Table 1, along withconsider the sea ice extent over the whole Southern Ocean
the number of members in each model historical and hindgasind for models, it has been calculated on the original models
simulations. The models have different spatial resoludioth  grids. For each model providing an ensemble of simulations,
representation of physical processes. The spatial résolut the model mean is the average over the members belonging
of models components is summarized in Table S1 of the Ontp the ensemble. The multi-model mean is then derived by
line Supplement Table of this paper. A reference is alsogive computing the mean of the individual models means, without
for more complete documentation. 25 applying any weighting to the models. Sea ice concentration

We give specific information on the treatment of ozone in comes from the satellite observation of the National Snow

Table 2, as a basis for the discussion presented in Sect. 3.3nd Ice Data Centre (NSIDC) (Comiso, 1999, updated 2008).
The AC&C/SPARC ozone database (Cionni et al., 2011) isThe sea ice extent is then derived from this data set follgwin
used to prescribe ozone in most of the models without arthe method described in Cavalieri et al. (1999) and appled b
interactive chemistry. In this database, stratospherimeg, Cavalieri and Parkinson (2008) for the period 1979-2006.
for the period 1979-2009 is zonally and monthly averaged.
It depends on the altitude and it takes solar variability int
account. Whether they have interactive chemistry or pre-3 Historical simulations
scribed stratospheric ozone, the 24 models analyzed in this
study thus take into account the stratospheric ozone deplet The historical simulations are driven by external forcimgl a
in their historical simulations. This is an improvementcgin  are initialized without observational constraints. Theise-
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ulations are here used to assess the mean state and the varhe monthly standard deviation indicates that the varabil

ability of the models using recent observations. ity strongly differs between models. In February, 15 mod-
els have a standard deviation higher than the observed one
3.1 Mean state and variability a0 and all of the 24 models overestimate the standard deviation

during September. Consequently, the multi-model mean of

In afirst step, we analyze the mean sea ice concentration oveétandard deviations does not fit very well the observations.
the period 1979-2005. Fig. 1 shows the multi-model meanit overestimates the standard deviation all over the year, p
of sea ice concentration in the Southern Ocean and comparaularly during winter. The interannual variability in s
the simulated sea ice edge to the observed one. Resulis afgodels is significantly larger during winter months than-dur
given for February (September), the month during which theing summer months. As a result, these models have a pro-
observed sea ice extent reaches its minimum (maximum). Imounced seasonal cycle of their standard deviation, in con-
February, the multi-model mean underestimates the sea icast to the observations, which display a relatively canist
cover in the Belligshausen and Amundsen Seas as well as igalue throughout the year.
the eastern part of the Ross Sea. In the Western Ross Sga andThe analysis of Fig. 2b tells us two important things. On
in small parts of the Weddell Sea and of the Indian Oceanthe one hand, it points out the inability of the majority of
sector, the multi-model mean overestimates the sea ice exnodels to reproduce the observed interannual variabifity.
tent. In September, the shape of the sea ice edge computgfhrticular, they all overestimate the winter interannuai-v
from multi-model mean roughly fits the observations. How- apility. On the other hand, it highlights the fact that some
ever, the multi-model mean overestimates the sea ice ¢ovahodels are characterized by a very different magnitude of
everywhere exceptin the Indian Ocean sector and in the Easthe interannual variability from one season to the other. In
ern part of the Ross Sea sector. order to avoid a loss of information, we have thus chosen

This reasonable multi-model mean extent is the result ofin the following analysis to work with seasonal mean rather
the average of a wide range of individual behaviors. To ac-than with annual mean and to treat the summer and winter
count for this variety of mean model states, we have plpt-separately.
ted, for individual models, the mean of sea ice extent of each
month of the year during the period 1979-2005. Figure 2a3.2 Trend over the period 1979-2005
confirms that the multi-model mean fits quite well the obser-
vations, especially during winter months. However, the sea For the historical simulations, we have computed for each
sonal cycle of sea ice extent of the various models is largelymember of the ensemble the trend from 1979 to 2005 of
spread around the observations and the timing of the minisummer (average of January, February and March) and win-
mum/maximum sea ice extent varies from one model tastheer (average of July, August and September) sea ice extent.
other. In summer, 16 of the models underestimate the sea icEach trend has been computed through a linear regression of
extent. In particular, CNRM-CM5 and MIROCS5 are nearly the yearly values (between 1979 and 2005) of the summer
sea ice free during summer. The latter strongly underestior winter sea ice extentn addition to a direct evaluation of
mates the ice extent all over the year and its winter sea icenodel skill, one of our goals is to analyse if a relationstap c
extent is smaller than some models summer sea ice extenibe established between the mean state, the interannual vari
On the contrary, CCSM4 and CSIRO-Mk3.6.0 overestimateability simulated by the model and the ability to reproduce
the sea ice extent during the whole year, especially duringhe observed trend.
summer. In winter, when the simulated sea ice cover reaches Observations show that the summer sea ice extent ex-
its maximum, the sea ice extent ranges from approximatelypanded between 1979 and 2005, at a rate of approximately
5x10° to 24x10° km? while the observations display a sea 149 000km? per decade. This trend is significant at the 90%
ice extent of about 1¥10° km?. 10 models underestimate level. In Fig. 3a, it appears that almost all of the simula-
the sea ice extent in September. tions performed with the 24 models fail in simulating the

Since the internal variability of the climate system may sign of this observed trend. Only three models (FGOALS-
also have played a role in the observed expansion of sea icg2, GFDL-CM3 and GISS-E2-R) have an ensemble mean
cover, we assess its representation in models by computingith a positive trend while most of them simulate a relatvel
the standard deviation of the sea ice extent for each montlarge negative trend. For four additional models (CCSM4,
of the year, over the period 1979-2005 (Fig. 2b). Here, toCSIRO-Mk3.6.0, HadCM3 and MRI-CGCM3), some en-
obtain both the ensemble mean of each model and the multisemble members display a positive trendhmong them,
model mean of standard deviations, an average of the irdividCSIRO-Mk3.6.0 and GFDL-CM3 are the only models dis-
ual standard deviations has been performed. We have choseraying a positive trend significant at the 90% level in one
to detrend data before computing the standard deviation irof their members, as in the observations (see Table S2 of
order to suppress the direct impact of a trend on the stanthe Online Supplement Table of this paper). Nevertheless,
dard deviation that could obscure our analysis of the potenCSIRO-Mk3.6.0 has a mean summer sea ice extent much
tial links between those two variables discussed in Se2t. 3. larger than what is observed while GFDL-CM3 is well be-
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low the observations. Moreover, CSIRO-Mk3.6.0 has amdn-showing a decrease in winter sea ice extent. However, as
terannual variability which is on average twice the one ef th noticed for summer, a few of them have ensemble members
observations. displaying positive trends (BCC-CSM1.1, CSIRO-Mk3.6.0,
For summer sea ice extent, some given models displayPSL-CM5A-LR and MRI-CGCM3). Two of three BCC-
a standard deviation that could be quite different betweenCSM1.1 historical simulation members present a positive
members (Fig. 3b). Besides, the individual means ofisentrend. The last one has a very negative trend, reaching
semble members performed with the same model are rela-2520 x 103 km?decade~'. Contrarily, the mean sea ice ex-
tively similar (Fig. 3a). The range of values reached by the tent does not vary much between members of BCC-CSM1.1,
trends of the different members belonging to one model'sall of them being larger than the observations. CSIRO-
simulation also differs strongly from one model to the other Mk3.6.0 ensemble contains 10 members. They all simulate
(Fig. 4a). We quantify the various ranges provided by.#hea mean sea ice extent in winter relatively close to the ob-
different models thanks to the ensemble standard deviatioservations. Only one member shows an increase in sea ice
of the trends, for models that have at least 3 members irextent.
th_eir historical simulations. This ensemble standard -devi Figure 3d confirms that all the 24 models overestimate the
ation of the trends stands between 260G per decade

5 interannual variability in winter. It also underlines thect
for MIROC-ESM and 47000@m*~ per decade for BCC-  hat simulations that have an ensemble mean of the trends

CSM1.1 (see Table S2 of the Online Supplement Table 0f|sq 16 the observed one have generally a standard deviatio
this paper). On average, tl'12e ensemble standard deviatiqynich, is much larger than the one of the observations. IPSL-
of the trend equals 166 0B~ per decade. If we consider ~psa-MR single member, which has a trend and a mean

this average as an estimate of the range of the trend that Caglate relatively close to the observations, has a standard d

be associated with internal variability, the observedp®si_  iation greater than 0:810° km? while the observed stan-

) :
trend of 14900@&m= per decade is well among the values 4.4 deviation stands around 0.2306 km2. GFDL-CM3

that could be due to natural processes alone and compatiblg 4 model that has a very high standard deviation (around 4
with the available ensemble of model results. Nevertheless;mag the standard deviation of the observations). It is als

given that many models have an interannual variability thaty odel with a large range of trends reached by its members
is much larger than the one of the observations, it is not sur Fig. 4b).

whether the range of the trends they provide is represee‘{gti G( ) ) S )
of the reality. For winter sea ice extent, colnS|der.|ng ‘again quels
The comparison between the trend, the mean extent anf'@t have at least 3 members in their historical simu-
standard deviation does not display any clear link in summeftions, the ensemb{!e s;andard ?ewatlon of the trends
between those variables, some of the models that simulat§2/1€s between 10010° km*decade™" for FGOALS-s2 and
an increase in the ice extent in at least one of their nfm-704<10° I?m2docadefl for BCC-CSM1.1 (see Table S3
bers overestimating the observed mean and variabilityesom©' e Online Supplement Table of this paper). On aver-
underestimating it. Figure 3b also underlines the fact tha?98: this eznsemblelstandard deviation of the trends equals
models with little ice during summer often have a small in- 428 000am” decade™". As for summer, if this value is repre-
terannual variability of summer sea ice extent, in agreemenSentative of the range of tre2nds due to internal variability
with results of Goosse et al. (2009a). Moreover, the spfead@PServed trend of 86 00Gn~ per decade appears compati-
of the sea ice extent trends and standard deviations of menf® With natural processes and the model ensemble. How-
bers belonging to one model ensemble grows with the meaffVer: the model biases in their r.epresentatlon of the_ vegian
summer sea ice extent. in winter during the last 30 yr is even larger than in sum-
Winter sea ice extent has also increased between 1979 arfj€": making this estimate of the uncertainty based on model
2005, by approximatel$6 000km? per decade. This trerfy €sults very questionable.
is not significant at the 90% leveTwo models have an en- From this analysis of historical simulations, it appears
semble mean whose trend is positive: GFDL-CM3 and IPSL-that among all the simulations analyzed, only a few of them
CM5A-MR (Fig. 3c). The ensemble mean of GFDL-CM3 (5 present a positive trend of the sea ice extent, for both summe
members) has a positive trend which is close to the observednd winter. 2 members over 85 have a statistically signifi-
one but it strongly underestimates the mean winter sea ice excant positive trend over the last 30 yr in summer (12 have a
tent. It is also an ensemble whose members are highly scapositive one) and 10 over 85 have a positive trend in winter.
tered along the trend axis, three having a positive tremar(fr  Those positive values appear thus as relatively rare events
approximatelyd70 x 103 to 1300 x 103 km2decade™!) and  but are within the range of internal variability, accordiiag
two having a negative one (from approximatelg90 x 103 model results. The important point here is that such posi-
to —1120 x 103km?decade™!). The IPSL-CM5A-MR enss tive trends are generally found in models that overestimate
semble is made up of one member only. Its trend and itghe interannual variability. Because of their high interaal
mean are both close to observations. variability, such models can provide a large range of pdssib
The 22 remaining models all have an ensemble mearirends, some of them agreeing with the observations.
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3.3 Stratospheric ozone so 4.1 Impact of the initialization on the simulated trends

CMIP5 models all take into account the stratospheric ozonel'he models used for the hindcast analysis have been chosen
depletion that occurred during the last 30 yr (see Table 2 foron the basis of the availability of their results. Fortuhate
details). However, this improvement compared to CMIP3we see on Fig. 2 that these 10 models (dotted lines) corestitut
brought to the stratospheric ozone does not lead to majoa subset which represents reasonably well the variety of gen
changes in their representation of the trend in sea ice extereral circulation models. In order to outline the effect of th
in the Southern Ocean. initialization on the simulated trend in sea ice extentgiach
To go a step further, we discuss if the way stratospherionodel, we have computed the ensemble mean of the trends
ozone is treated has an influence on the results. The modn hindcast simulations spanning the period 1981-2005, for
els with interactive chemistry (activated during the siaaul Wwinter and summer extent, and compared them to the ones
tion or used in an offline simulation to compute the ozenefrom historical simulations (i.e. uninitialized), overetsame
dataset) and the ones whith higher atmospheric verticai res time period. This period has been chosen as no hindcast was
lution (> 35 layers) have on average a slightly smaller extentstarted in 1979. Here, the hindcasts were initialized in Jan
of sea ice in summer (Fig. 3a, respectively circle and trian-uary 1981 for all the models except HadCM3, whose hind-
gle orange symbols). In winter, the models with high atmo-cast members were started in November 1980. On Fig. 5
spheric resolution underestimate the sea ice extent wiglest showing the trend in sea ice extent computed from hindcast
ones with interactive chemistry overestimate it (Fig. 3¢)e ~ Simulations against the one computed from historical samul
influence on the trend is hardly detected. This shows thattions, a dot located on the lingx) = x means that the trend
on average, the inclusion of an interactive chemistry or anin hindcast simulation equals the one of historical simarat
increased vertical resolution do not make major difference If the trend simulated by hindcast is greater (smaller) than
compared to other models. s one computed from historical simulation, then the dot wéll b
Looking now at individual models, we have seen in above (below) the ling(z) =z.
Sect. 3.2 that CSIRO-Mk3.6.0, GFDL-CM3 and IPSL- Regarding summer sea ice extent (Fig. 5a), the initializa-
CM5A-MR provide results for sea ice extent trend in win- tion through a data assimilation procedure does not improve
ter in relatively good agreement with observations but with Systematically the simulated trend. HadCM3, MIROC4h
much too high a standard deviation for GFDL-CM3 amd and MRI-CGCM3 hindcasts trends are closer to the obser-
IPSL-CM5A-MR. CSIRO-Mk3.6.0 has a quite coarse resolu- vation than are their historical trends but they remain neg-
tion in its atmosphere component (18 vertical layers) aed pr ative. BCC-CSM1.1, CNRM-CM5, IPSL-CM5A-LR and
scribes the ozone from the AC&C/SPARC database. GFDL-MPI-ESM-LR simulate a more negative trend in their hind-
CM3 and IPSL-CM5A-MR have a finer resolution (48 and 39 casts than in their historical runs. FGOALS-g2 has a largely
layers, respectively). They both have interactive chamst positive trend in its hindcast while the trend in its histori
but IPSL-CM5A-MR treats the interaction between ozone cal simulation is slightly negative. CCSM4 hindcast digila
and climate through a semi offline approach. Again, froma slightly positive trend while the one of its historical sim
the available ensemble, the representation of ozone in modation is negative.
els does not seem to be the dominant factor influencing the When initialized through data assimilation of obser-
simulation of the trend in sea ice extent. sss  vations, CCSM4, FGOALS-g2, CNRM-CM5 and BCC-
CSM1.1 present a systematic drift (not shown). This drift
is likely responsible for the high positive or negative titen
4 Hindcast simulations found in the hindcasts of these modefuch a drift has its
origin in the initialization of a model with a state that fesc
We have shown in Sect. 3 that the lack of agreement betweeit to produce much more (or less) sea ice than has its clima-
simulated and observed variance over the last 30 yr does ndblogical mean. After the initialization, the model does no
allow us to confidently establish the link between the inter- have any constraint from observations anymore and the simu-
nal variability and the positive trend found in observasion lation tends to go back towards the model’s climatoldge
of the sea ice extent. Nevertheless, if this link exists dnd i do not have information about the method used to initialize
the internal variability in the Southern Ocean is in some ssaythe models FGOALS-g2 and CCSM4. The use of raw data
predictable, an adequate initialization of the system khou in the initialization procedures applied to BCC-CSM1.1 and
improve the results of the simulated evolution of the sea iceto CNRM-CM5 may partly account for the drift occurring in
extent. This hypothesis is tested in this section using thetheir hindcast simulations.
hindcast simulations performed in the framework of CMIP5.  Similarly, for winter sea ice extent, the initializationtbvi
In contrast to the historical simulations, the hindcastSisireco Observations does not systematically lead to a simulated
tialized through data assimilation of observations. Thimda trend in better agreement with observations. Figure 5b show
assimilation method and the variables assimilated vampfro that hindcast simulations of MIROC4h, MIROC5 and MRI-
one model to the other, as summarized in Table 3. CGCM3 have trends that are slightly closer to the observa-
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tion than are the historical trends. The 7 other models peroutstrip the 95% significant level. The 7 remaining mod-
form worse or do not offer any improvement when theysareels present one or two peaks of significant correlation sev-
initialized with observations. As in the case of summer seaeral years after the initialization and almost all the medel
ice extent (Fig. 5a), FGOALS-g2 simulates a large positivehave a negative correlation during most of the 10yr. The
trend in its winter sea ice extent when it is initialized with emergence of correlation later on in the simulation can occu
observations and CNRM-CM5 has a more negative trend irrandomly or it might still be a consequence of the initializa
its hindcast, for the same reasons as the one proposed abov&n. Indeed, models might undergo an initial shock due to
For BCC-CSM1.1, the hindcast trend in winter sea ice extenthe initialization procedure before getting stabilized &en-
does not differ significantly from the historical trend. efit from the initialization. For winter sea ice extent (Fig,
Results presented in Fig. 5 show that the initialization of the correlation is significantly positive during the firstaye
models through data assimilation of observation does nofor CCSM4, MIROCS5 and MPI-ESM-LR models, indicat-
bring significant improvement on the simulated trend. Whening some predictive skill. Then the correlation decreases a
raw data are used instead of anomalies, the initializagien a reaches negative values. A negative correlation is alsodou
parently deteriorates the trend in sea ice extent simulated inthe other models. The significant correlation after orarye
models. Corrections can be introduced to take into accountn three models in winter likely arises from the initialicat
that kind of biases (e.g. Troccoli and Palmer, 2007; Van-but the memory of the system is apparently not sufficient to
nitsem and Nicolis, 2008). Nevertheless, such a procedur&eep a significant correlation during the following years-U
requires a larger amount of initialized simulations spagni like in the Arctic, sea ice around the Antarctic is relatyvel
several decades. Proposing such a method for sea ice and aypung. It disappears almost entirely during the melting sea
alyzing how it would impact the analysis of the trend is out son and recovers during winter months, preventing this sea

of the scope of our study. ice to retain information from initialization. The oceamca
o5 keep the information over longer periods but in the avadabl
4.2 Correlation between models and observations experiments, its role appears weak during the first year afte

_ initialization. Still, it may be responsible for the emenge
The forecast skill of the models can also be assessed by amf correlation several years after initialization, for bsum-

alyzing the predictions a few years ahead. To do so, former and winter sea ice extent, through local interactions or
each model, we computed the anomaly correlation cQgffiyajeconnections with remote areas.

cient used in Pohimann et al. (2009): In any case, the skill of model predictions for Southern

TN M () — ] [or(t) — ] Ocean sea ice extent is quite poor compared to the one ob-
COR(t) = =Y - (1)  tained for other variables. For instance, Kim et al. (2012)
\/vazl S (1) =223 Moi(t) —a]? have analyzed hindcasts results from seven CMIP5 models

es and have shown that these models have a high skill in fore-
wheret is the lead time (in years};;; are the hindcast simu-  casting surface temperature anomalies over the IndiarthNor
lations,i is the ensemble index (different indices correspondatiantic and Western Pacific Ocean, up to 6-9yr ahead.
to different times when the hindcast simulations are stjrte Matej et al. (2012a) have pointed out a significant corretati
andj is the index of the member belonging to the ensemblepetween hindcast and observations for the Atlantic Merid-

i. IV is the number of ensembles and is the number of, jonal Overturning Circulation (AMOC) strength at 2618
members within each ensemblg.is the observation cover- yp to 4 yr ahead.

ing the time period spanned by the ensembl&he overbar

stands for the climatological mean of the uninitializeds¢hi

torical) simulation and of the observations, overthe aredy 5 Summary and conclusions
period (here 1981-2005).

The correlation between hindcast simulations and obserFrom 24 CMIP5 models available to date, we have analyzed
vations is shown for summer (Fig. 6) and winter (Fig. 7) searesults of historical and hindcast simulations. This i sti
ice extent. This correlation has been computed from assea small ensemble but we consider that it is diverse enough
ries of 4 hindcasts ensemble simulations, initialized yver to constitute a reasonable sample to draw conclusions about
5yr between January 1981 and January 1996 (every 5yr bezurrent models behavior in the Southern Ocean.
tween November 1980 and November 1995 for HadCM3). The multi-model mean reproduces well the observed sum-
The 95 % significance level is computed using a t-test. Thismer and winter sea ice edge as well as the annual cycle of
significance level varies from one model to another becausgea ice extent. The skill of individual models is much lower.
of the different number of members in each model ensemblerhe majority of the biases in the simulated Southern Ocean
(see Table 1). sea ice highlighted for CMIP3 models persist for the CMIP5

In summer, none of the 10 models analyzed here ha®nes. Furthermore, all the models analyzed here overesti-
a significant correlation for the first year after initialian mate the variability of the sea ice extent in winter. In addi-
(Fig. 6). HadCM3, IPSL-CM5A-LR and MIROC4h never tion, we saw that, in contrast to observations, the vaitsbil
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in some models can vary significantly from one season to thedata. In this hypothesis, constraining the model with obser
other. We have thus chosen to analyze seasonal means rathextions would put the system in a state that favors an in-
than annual mean but the conclusions are similar whether werease in ice extent, for instance because of a more strati-
consider summer or winter sea ice extent. fied or colder oceanHowever, results from hindcast simu-
The analyses performed in this paper aimed at bettessunlations have shown that there is no systematic improvement
derstand the role played by the internal variability in thee o of the simulation of sea ice extent observed trend. Previous
served increase of sea ice extent in the Southern Ocean. Ostudies have demonstrated that models have a high poten-
approach can be summarized in three questions that we caial predictability in the Southern Ocean region at decadal
now partly answer. time scales (e.g. Latif et al., 2010), i.e. there exists inlai®
Firstly, are the trend of winter and summer observed-sealeterministic decadal variability. The test in real coiufis
ice extent (statistically significant at the 90% level fonsu  has not shown such predictability for sea ice extent. This
mer but not for winter) compatible with a combination of may be due to some inadequate representation of physics
the forced response and the internal variability accortiing and/or feedbacks in models but also to the initializatiom pr
model results? The models generally respond to the externaledure. Indeed, observations required to initialize prigpe
forcing by a decrease in their sea ice extent. Our anabysithe system are quite sparse in that area and the time period
of its representation in the different models has shown thathey cover is relatively short. Furthermore, data asstinita
the inclusion of stratospheric ozone depletion does notmodmethods used in general circulation models are essentially
ify strongly the sign of the simulated trend in sea ice extentbased on a nudging and improvement may be expected if
in the Southern Ocean compared to CMIP3, in which onlymore sophisticated methods are applied and systematically
half of the models took into account this forcing. Moreowgr, tested in the Southern Ocean.
models with interactive chemistry or with higher atmospher
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Table 1. Model name, Institute and number of members in models lesticeind hindcast simulations.

Model name Institute 1D Modeling center Number of Number of
members in members in
historical hindcasts

BCC-CSM1.1 BCC Beijing Climate Center, China Meteoroladiddministration 3 4

CanESM2 CCCMA Canadian Centre for Climate Modelling and psia 5 -

CCSM4 NCAR National Center for Atmospheric Research 6 10

CNRM-CM5 CNRM-CERFACS  Centre National de Recherches Metegiques / Centre Europeen de 10 10

Recherche et Formation Avancees en Calcul Scientifique

CSIRO-Mk3.6.0 CSIRO-QCCCE Commonwealth Scientific andistdal Research Organization in col- 10 -

laboration with Queensland Climate Change Centre of Esned

EC-EARTH EC-EARTH EC-EARTH consortium 1 -

FGOALS-g2 LASG-CESS LASG, Institute of Atmospheric Phgsichinese Academy of Sciences 1 3

and CESS, Tsinghua University

FGOALS-s2 LASG-IAP LASG, Institute of Atmospheric Physi€@hinese Academy of Sciences 3 -

GFDL-CM3 NOAA GFDL NOAA Geophysical Fluid Dynamics Labooay 5 -

GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Lataiory 1 -

GISS-E2-R NASA GISS NASA Goddard Institute for Space Stsidie 5 -

HadCM3 MOHC Met Office Hadley Centre 10 10

HadGEM2-CC MOHC Met Office Hadley Centre 1 -

HadGEM2-ES MOHC Met Office Hadley Centre 1 -

INM-CM4 INM Institute for Numerical Mathematics 1 -

IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 4 6

IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace 1 -

MIROC4h MIROC Atmosphere and Ocean Research Institute (Omeersity of Tokyo), 3 3

National Institute for Environmental Studies, and Japareray for
Marine-Earth Science and Technology
MIROC5 MIROC Atmosphere and Ocean Research Institute (Thieddsity of Tokyo), 1 6
National Institute for Environmental Studies, and Japarerfay for
Marine-Earth Science and Technology

MIROC-ESM MIROC Japan Agency for Marine-Earth Science ardhhology, Atmosphere 3 -

and Ocean Research Institute (The University of Tokyo), ldational
Institute for Environmental Studies

MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Scierand Technology, Atmosphere 1 -

and Ocean Research Institute (The University of Tokyo), Idational
Institute for Environmental Studies

MPI-ESM-LR MPI-M Max Planck Institute for Meteorology 3 13 (in 30-

year hindcast)

MRI-CGCM3 MRI Meteorological Research Institute 3 3

NorESM1-M NCC Norwegian Climate Centre 3 -
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Table 2. Summary of atmospheric vertical resolution and stratosplozone representation. Models in bold are the ones wiihtanactive
chemistry, activated during the CMIP5 simulations or ortdthated in an offline simulation used to compute the ozornassd prescribed in

the CMIP5 simulations.

Model name Atmospheric Stratospheric ozone
vertical resolution
BCC-CSM1.1 26 layers Prescribed;
Top layerat2.9 hPa  AC&C/SPARC ozone databasé¢
(Cionni etal., 2011).
CanESM2 35 layers Prescribed
Top layer at 1 hPa AC&C/SPARC ozone databas¢
(Cionni etal., 2011)
CCSM4 26 layers Prescribed;
Data from an offline simula-
tion of the CAM3.5 model with
a fully interactive chemistry
(Landrum et al., 2012)
CNRM-CM5 31 layers Interactive chemistry (Voldoire
Top layer at 10 hPa etal., 2012).
CSIRO-Mk3.6.0 18 layers Prescribed;
AC&C/SPARC ozone databasg
(Cionni et al., 2011)
EC-EARTH 62 layers Prescribed;
Top layer 5 hPa AC&C/SPARC ozone databasge
(Cionni et al., 2011)
FGOALS-g2 26 layers No information available to ug.
FGOALS-s2 26 layers No information available to us.
Top layer at 2.19 hPa
GFDL-CM3 48 layers Interactive chemistry (Donner
etal., 2011).
GFDL-ESM2M 24 layers Prescribed;
AC&C/SPARC ozone databasge
(Cionni etal., 2011).
GISS-E2-R 40 layers Prescribed;
Top layer at 0.1 hPa Observational analyses of Ranj-
del and Wu (1999).
HadCM3 19 layers Prescribed;
Observational analyses of Ran-
del and Wu (1999)
HadGEM2-CC 60 layers Prescribed;
Top layer at 0.006 hPa AC&C/SPARC ozone databasé¢
(Cionni etal., 2011).
HadGEM2-ES 38 layers Prescribed;
Top layer at 4 hPa AC&C/SPARC ozone databasé¢
(Cionni etal., 2011).
INM-CM4 21 layers Prescribed;
Top layer at 10 hPa AC&C/SPARC ozone databas¢
(Cionni etal., 2011).
IPSL-CM5A-LR 39 layers Prescribed;
Top layer at 0.04 hPa Data from an offline simula-
tion of the LMDz-REPROBUS
model (Szopa et al., 2012).
IPSL-CM5A-MR 39 layers Prescribed;
Top layer at 0.04 hPa Data from an offline simula-
tion of the LMDz-REPROBUS
model (Szopa et al., 2012).
MIROC4h 56 layers Prescribed;
Top layer at 40 km Data from an offline simulation
of Kawase et al. (2011).
MIROC5 40 layers Prescribed;
Top layer at 3 hPa Data from an offline simulation
of Kawase et al. (2011).
MIROC-ESM 80 layers Prescribed;
Top layer at 0.003 hPa Data from an offline simulation
of Kawase et al. (2011).
MIROC-ESM- 80 layers Interactive chemistry (Watan-
CHEM Top layer at 0.003 hPa abe etal., 2011).
MPI-ESM-LR 47 layers Prescribed;
Top layer at 0.01 hPa  AC&C/SPARC ozone databas¢
(Cionni etal., 2011).
MRI-CGCM3 48 layers Interactive chemistry (Yuki-
Top layer at 0.01 hPa moto etal., 2011).
NorESM1-M 26 layers No information available to us.
Top layer at 2.9 hPa
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Table 3. Data assimilation methods used by the 10 models providinddaist simulations.

Model name Data assimilation method References

BCC-CSM1.1 Nudging to 3D ocean tempera- Gao et al. (2012)
ture (raw data).

CCSM4 Information not available to us

CNRM-CM5 Nudging to 3D ocean tempera- ftp://ftp.cerfacs.fr/pub/
ture and salinity (raw data) as a globc/exchanges/
function of depth and space, sea cassou/Michael/
surface temperature and salinity AspenCMIP5.

nudging (raw data). wrkshopcassoL2.ppt
FGOALS-g2 No information available to us.
HadCM3 Nudging to 3D ocean temper- http://www.met.reading.

ature and salinity (anomalies), ac.uk/swr06jir/
nudging to 3D atmosphere tem- presentations/
perature and wind speed, nudg- JIR.deptseminar.pptx
ing to surface pressure.

IPSL-CM5A- Nudging to sea surface tempera- Swingedouw et al.

LR ture (anomalies). (2012)

MIROC4h Incremental analysis update Chikamoto et al. (2012)
(IAU) of 3D ocean temperature
and salinity (anomalies).

MIROC5 Incremental analysis update Chikamoto et al. (2012)
(IAU) of 3D ocean temperature
and salinity (anomalies).

MPI-ESM-LR Nudging to 3D ocean tempera- Matei et al. (2012b)
ture and salinity (anomalies), ex-
cept in the area covered by sea
ice.

MRI-CGCM3 No information available to us.
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Fig. 1. Multi-model mean of sea ice concentration, computed frostohnical simulations over the period 1979-2005. Whitedk)dine
refers to the seaice edge, i.e. the 15 % concentration lintlitsomulti-model ensemble mean (observations, Comisd,1@8dated 2008).
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(a) 1979-2005 sea ice extent monthly mean (b) 1979-2005 sea ice extent monthly standard deviation
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Fig. 2. (a) Monthly mean of Southern Ocean sea ice extent, computedtbegueriod 1979-2005(b) Standard deviation of detrended
Southern Hemisphere sea ice extent, computed over thedpE9it®—2005 for each month of the year. Colors correspondet@nsemble
mean of historical simulations from 24 different models.tted lines refer to models that provide both historical amatibast simulations
but here, results are only from historical simulations. r@ebold line is the multi-model mean. Black bold line referobservations
(Cavalieri and Parkinson, 2008).
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(a) 1979-2005 JFM trend VS. mean (b) 1979-2005 JFM trend VS. standard deviation
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(a) 1979-2005 JFM sea ice extent trend range
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Fig. 4. Ensemble mean, minimum and maximum value of the sea icetexeéewl for the period 1979—2005 over the whole Southern @cea
for summer(a) and winter(b). The different colors correspond to the historical sirmolat from the 15 models that have at least 3 members
in their ensemble. Dots refer to the ensemble means of thdgreHorizontal bars show the minimum and the maximum valubkeotrend
reached by the members of one model ensemble. Black dasteed Ifor the trend of the observations (Cavalieri and Padkin 2008)
surrounded by 2 standard deviations (grey shade).
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(a) 1981-2005 JFM hindcast VS. historical trend
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Fig. 5. Hindcast vs. historical Southern Ocean sea ice extent foersimmen(a) and winter(b), computed over the period 1981-2005. The
different colors refer to the different models. For each eipthe dot refers to the ensemble mean of the trends and timhtal (vertical)
bar shows the ensemble mean of the standard deviations ti&tids in the historical (hindcast) simulations. Blackaguis for the trend
of the observations (Cavalieri and Parkinson, 2008). Thicat and the horizontal black bars are for the standardatien of the observed

trend. Dashed line represents the liffe) = x.
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Fig. 6. Correlation between Southern Ocean summer (JFM) sea iestémtmodels results and observations. For each modelpthelation
is computed from a series of 4 hindcasts ensembles, iii@kvery 5yr between January 1981 and January 1996 (belNeeember 1980
and November 1995 for HadCM3). In each plot, the dashed éfexs to the 95 % significance level.
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