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Abstract. Observations over the last 30 yr have shown that
the sea ice extent in the Southern Ocean has slightly in-
creased since 1979. Mechanisms responsible for this positive
trend have not been well established yet.In this study, we
tackle two related issues: is the observed positive trend com-5

patible with the internal variability of the system and do the
models agree with what we know about the observed internal
variability?For that purpose, we analyze the evolution of sea
ice around the Antarctic simulated by 24 different general
circulation models involved in the 5th Coupled Model Inter-10

comparison Project (CMIP5), using both historical and hind-
cast experiments. Our analyses show that CMIP5 models
respond to the forcing, including the one induced by strato-
spheric ozone depletion, by reducing the sea ice cover in the
Southern Ocean. Some simulations display an increase in sea15

ice extent similar to the observed one.According to models,
the observed positive trend is compatible with internal vari-
ability. However, models strongly overestimate the variance
of sea ice extent and the initialization methods currently used
in models do not improve systematically the simulated trends20

in sea ice extent.On the basis of those results, a critical role
of the internal variability in the observed increase in the sea
ice extent in the Southern Ocean could not be ruled out but
current models results appear inadequate to test more pre-
cisely this hypothesis.25

1 Introduction

The way climate models reproduce the observed character-
istics of sea ice has received a lot of attention (e.g. Flato,
2004; Arzel et al., 2006; Parkinson et al., 2006; Lefebvre and30

Goosse, 2008a; Sen Gupta et al., 2009). One conclusion of
those studies is that the models skill is higher in the Northern
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Hemisphere than in the Southern Hemisphere. In particu-
lar, simulations performed for the 3rd Coupled Model Inter-
comparison Project (CMIP3) are generally able to reproduce35

relatively well the timing of the seasonal cycle of Southern
Ocean sea ice extent but fail in simulating the observed am-
plitude (Parkinson et al., 2006). Furthermore, the models are
usually unable to simulate the observed increase in Southern
Ocean sea ice extent (e.g. Arzel et al., 2006; Parkinson et al.,40

2006), which is estimated to be of 11 200±2680km2yr−1

between 1979 and 2006 (Comiso and Nishio, 2008). At
the regional scale, the 1979–2006trend in observed sea ice
extent is positive in all the sectors of the Southern Ocean,
except in the Bellingshausen-Amundsen Seas sector, and the45

Ross Sea sector exhibits the largest positive trend (e.g. Cava-
lieri and Parkinson, 2008; Comiso and Nishio, 2008). Lefeb-
vre and Goosse (2008a) have studied the trend simulated by
several CMIP3 models in the different sectors of the South-
ern Ocean and they have shown that these models were not50

able to reproduce this observed spatial structure.
The observed increase in sea ice extent during the past

decades is statistically significant at the 95% significant level
(e.g. Cavalieri and Parkinson, 2008). However, its potential
causes are still debated. We do not know the part of this trend55

that can be attributed to external forcing and the one that is
due to natural variability. This issue has already been ad-
dressed for the Arctic sea ice extent (e.g. Kay et al., 2011)
but remains poorly investigated for the Southern Ocean sea
ice.60

Several studies dealing with the potential role of the forced
response have pointed out the relationship between strato-
spheric ozone depletion over the past few decades (Solomon,
1999) and changes in the atmospheric circulation at high lat-
itudes (e.g. Turner et al., 2009; Thompson et al., 2011). In-65

deed, variations of sea ice extent in the Southern Ocean are
strongly influenced by changes in the atmosphere circula-
tion (e.g. Holland and Raphael, 2006; Goosse et al., 2009b).
However, the link between atmospheric circulation and the
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sea ice extent integrated over the Southern Ocean is not70

straightforward (e.g. Lefebvre and Goosse, 2008b; Stammer-
john et al., 2008; Landrum et al., 2012) and several recent
studies came to the conclusion that the stratospheric ozone
depletion does not lead to an increase in the sea ice extent
(e.g. Sigmond and Fyfe, 2010; Smith et al., 2012; Bitz and75

Polvani, 2012). A second potential cause of the observed
expansion of sea ice cover relies on an enhanced stratifica-
tion of the ocean which would inhibit the heat transfer to
the surface. This strengthened stratification is mainly dueto
a freshening of the surface water, triggered by an increase in80

the precipitation over the Southern Ocean, the melting of the
ice shelf and changes in the production and transport of sea
ice (e.g. Bitz et al., 2006; Zhang, 2007; Goosse et al., 2009b;
Kirkman and Bitz, 2010). Liu and Curry (2010) pointed
out that an enhanced hydrological cycle may also increase85

the snowfalls at high latitudes in the Southern Ocean. In
that case, the snow cover on thicker sea ice would raise the
surface albedo, strengthen the insulation between the atmo-
sphere and the ocean, and thus would protect the sea ice from
melting.Nevertheless, this mechanism mainly impacts thick90

ice because for thin ice, the higher snow load leads to seawa-
ter flooding and to the formation of snow ice. This decreases
the effect of the initial increase in snow thickness.

Another hypothesis suggests that the positive trend in the
Southern Ocean sea ice extent could arise from the internal95

variability of the system that masks the warming signal in
the Southern Oceanthat should characterize the response to
an increase in greenhouse gases concentration, according to
climate models. In this framework, some recent studies have
drawn the attention on the importance of distinguishing the100

lack of agreement between models from the lack of signifi-
cant signal (e.g. Tebaldi et al., 2011; Deser et al., 2012). A
trend can be significant from a statistical point of view, i.e.
if it is above a threshold of significance computed through a
statistical test. This does not imply that its value is outside105

of the range that can be reached by the internal variability.
For instance, Landrum et al. (2012) have pointed out that
large interannual variability in simulated sea ice concentra-
tion leads to late 20th Century trends in sea ice concentra-
tion that are not always statistically significant for individual110

members of an ensemble simulation. The observed positive
trend of Southern Ocean sea ice extent is statistically signif-
icant at the 95% level for the last 30 yr (e.g. Cavalieri and
Parkinson, 2008). However, this time period is too short to
properly assess the multidecadal variability of the system.115

Consequently, we cannot estimate if this trend is exceptional
or if similar conditions have already occurred many times
in the recent past.The period spanning the last 30 yr dur-
ing which sea ice cover slightly expanded in the Southern
Ocean might follow a large melting that may have happened120

before 1979 (e.g. de la Mare, 1997, 2009; Cavalieri et al.,
2003; Curran et al., 2003; Cotté and Guinet, 2007; Goosse
et al., 2009b).This suggests that multidecadal variability in
the Southern Ocean is large but the available data does not

allow a quantitative estimate of its value. The results from125

model simulations appear thus to be crucial to balance this
lack of observations. Provided that models are compatible
with the available observations, they can help addressing the
issue whether the observed positive trend in the Antarctic sea
ice extent is due to external forcing or to internal variability,130

or to both of them.
The decreasing trend in many model simulations may be

due to a misrepresentation of the response of the circulation
and/or of the hydrological cycle to the forcing.Alternatively,
the observed changes may belong to the range of the trends135

that can be attributed to the internal variability of the system.
In this hypothesis, the positive trend observed over the last
decades is just one particular realization among all the possi-
ble ones. A negative trend in one model simulations does not
imply necessarily a disagreement between model and data140

as another simulation with the same model (another member
of an ensemble, for instance) would likely display a positive
one. Furthermore, if this is valid and if the internal variabil-
ity is to some extent predictable, an adequate initialization of
the system could lead to a better simulation of the evolution145

of the sea ice cover around the Antarctic.
In this paper, we examine outputs from general circulation

models (GCMs) following the 5th Coupled Model Intercom-
parison Project (CMIP5) protocol.To further study the role
of the internal variability in the increasing trend in sea ice ex-150

tent in the Southern Ocean and in the apparent disagreements
between models and observations, we deal with two kinds of
simulations: historical and hindcast (or decadal) simulations.
The first ones are driven by external forcing and are initial-
ized without observational constraints. They are used to as-155

sess how well each model simulates the observed mean state,
variability and trends in sea ice concentration and extent.The
objective is to study the possible links between the internal
variability of the system and the simulated trend in sea ice
extent.Our purpose is, on the one hand, to test if the internal160

variability of the models agrees with the one of the observa-
tions. On the other hand, we check if the observed positive
trend stands in the range of trends provided by models inter-
nal variability. Analyzing the mean state also appears to be
important here because of its impact on the simulated vari-165

ability (e.g. Goosse et al., 2009a). In addition to those points
related to the variability of the system, the way stratospheric
ozone is taken into account in models is also discussed to es-
timate if this has a significant impact on the simulated trends.
However, it is out of the scope of this study to discuss specific170

mechanisms that link the sea ice extent and the stratospheric
ozone variations.

The second kind of simulations, the hindcasts, are also
driven by external forcing but, in contrast to the historical
simulations, are initialized through data assimilation ofob-175

servations. Consequently, these simulations allow us to as-
sess how the state of the system in the early 80’s impacts the
variability of the models and their representation of the trend
over the last 30 yr. Idealized model studies have shown high
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potential predictability at decadal time scales in the Southern180

Ocean (e.g. Latif et al., 2010), i.e. models have determinis-
tic decadal variability, in particular for surface temperatures
(Pohlmann et al., 2004). The predictive skill of the models
at decadal time scales is also discussed here to see if this po-
tential predictability is confirmed in real applications.185

An initial investigation of the results of CMIP5 models
has shown that, in agreement with previous studies related to
CMIP3 models (e.g. Lefebvre and Goosse, 2008a),current
GCMs do not simulate a spatial structure of the trend in sea
ice extent similar to the observed one. This spatial structure190

might as well arise from the internal variability. In such a
case, models would not have to fit the observed pattern, as
discussed above. However, this remains a hypothesis and
we have chosen to focus on the sea ice extent in the whole
Southern Ocean rather than in the individual sectors to avoid195

the additional complexity associated with the spatial struc-
ture of the changes.Models and observation data are briefly
presented in Sect. 2. The time period we analyze is limited
by the available observations. For the Southern Ocean, val-
idation data are quite sparse before 1979. We therefore ex-200

amine outputs between 1979 and 2005. Results provided by
models historical simulations are presented and discussedin
Sect. 3. The analyses of hindcast simulations are describedin
Sect. 4. Finally, Sect. 5 summarizes our results and proposes
conclusions.205

2 Models and observation data

Models data were obtained from the CMIP5 (Taylor et al.,
2011) multi-model ensemble: http://pcmdi3.llnl.gov/esgcet/
home.htm. We have analysed results of historical simula-
tions from 24 models which have the required data available.210

Among these models, 10 of them provide results for hindcast
simulations. Both historical and hindcast simulations consist
in ensemble simulations of various sizes. Models and their
respective modeling groups are listed in Table 1, along with
the number of members in each model historical and hindcast215

simulations. The models have different spatial resolutionand
representation of physical processes. The spatial resolution
of models components is summarized in Table S1 of the On-
line Supplement Table of this paper. A reference is also given
for more complete documentation.220

We give specific information on the treatment of ozone in
Table 2, as a basis for the discussion presented in Sect. 3.3.
The AC&C/SPARC ozone database (Cionni et al., 2011) is
used to prescribe ozone in most of the models without an
interactive chemistry. In this database, stratospheric ozone225

for the period 1979–2009 is zonally and monthly averaged.
It depends on the altitude and it takes solar variability into
account. Whether they have interactive chemistry or pre-
scribed stratospheric ozone, the 24 models analyzed in this
study thus take into account the stratospheric ozone depletion230

in their historical simulations. This is an improvement since

the CMIP3 simulations. Indeed, nearly half of the CMIP3
models prescribed a constant ozone climatology (Son et al.,
2008). Nevertheless, some of the models have a coarse at-
mosphere resolution which sometimes does not encompass235

the whole stratosphere. In that case, processes related to the
interaction between radiation and ozone as well as the ex-
change between the stratosphere and the troposphere may be
represented rather crudely.

The hindcast simulations were initialized from a state that240

has been obtained through a data assimilation procedure, i.e.
constrained to be close to some observed fields. There is
a large panel of data assimilation methods but most of the
models involved in CMIP5 assimilate observations through
a nudging. This method consists in adding to the model equa-245

tions a term that slightly pulls the solution towards the obser-
vations (Kalnay, 2007). MIROC4h and MIROC5 incorporate
observations in their data assimilation experiments by an in-
cremental analysis update (IAU). Details about this method
can be found in Bloom et al. (1996). Table 3 summarizes250

the data assimilation method corresponding to each model,
as well as the variable it assimilates. The relevant docu-
mentation was not available to us for CCSM4, FGOALS-
g2 and MRI-CGCM3. All the models for which we have
the adequate information, except BCC-CSM1.1 and CNRM-255

CM5, assimilate anomalies. Those anomalies are calculated
for both model and observations by subtracting their respec-
tive climatology, computed over the same reference period.
Working with anomalies does not prevent model biases but it
avoids the initialization of the model with a state which is too260

far from its own climatology and thus limits model drift (e.g.
Pierce et al., 2004; Smith et al., 2007; Troccoli and Palmer,
2007; Keenlyside et al., 2008; Pohlmann et al., 2009), as dis-
cussed in Sect. 4.

The model skill is measured through its representation of265

the sea ice concentration (the fraction of grid cell covered
by sea ice) and sea ice extent (the sum of the areas of all
grid cells having an ice concentration of at least 15 %). We
consider the sea ice extent over the whole Southern Ocean
and for models, it has been calculated on the original models270

grids. For each model providing an ensemble of simulations,
the model mean is the average over the members belonging
to the ensemble. The multi-model mean is then derived by
computing the mean of the individual models means, without
applying any weighting to the models. Sea ice concentration275

comes from the satellite observation of the National Snow
and Ice Data Centre (NSIDC) (Comiso, 1999, updated 2008).
The sea ice extent is then derived from this data set following
the method described in Cavalieri et al. (1999) and applied by
Cavalieri and Parkinson (2008) for the period 1979–2006.280

3 Historical simulations

The historical simulations are driven by external forcing and
are initialized without observational constraints. Thesesim-
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ulations are here used to assess the mean state and the vari-
ability of the models using recent observations.285

3.1 Mean state and variability

In a first step, we analyze the mean sea ice concentration over
the period 1979–2005. Fig. 1 shows the multi-model mean
of sea ice concentration in the Southern Ocean and compares
the simulated sea ice edge to the observed one. Results are290

given for February (September), the month during which the
observed sea ice extent reaches its minimum (maximum). In
February, the multi-model mean underestimates the sea ice
cover in the Belligshausen and Amundsen Seas as well as in
the eastern part of the Ross Sea. In the Western Ross Sea and295

in small parts of the Weddell Sea and of the Indian Ocean
sector, the multi-model mean overestimates the sea ice ex-
tent. In September, the shape of the sea ice edge computed
from multi-model mean roughly fits the observations. How-
ever, the multi-model mean overestimates the sea ice cover300

everywhere except in the Indian Ocean sector and in the East-
ern part of the Ross Sea sector.

This reasonable multi-model mean extent is the result of
the average of a wide range of individual behaviors. To ac-
count for this variety of mean model states, we have plot-305

ted, for individual models, the mean of sea ice extent of each
month of the year during the period 1979–2005. Figure 2a
confirms that the multi-model mean fits quite well the obser-
vations, especially during winter months. However, the sea-
sonal cycle of sea ice extent of the various models is largely310

spread around the observations and the timing of the mini-
mum/maximum sea ice extent varies from one model to the
other. In summer, 16 of the models underestimate the sea ice
extent. In particular, CNRM-CM5 and MIROC5 are nearly
sea ice free during summer. The latter strongly underesti-315

mates the ice extent all over the year and its winter sea ice
extent is smaller than some models summer sea ice extent.
On the contrary, CCSM4 and CSIRO-Mk3.6.0 overestimate
the sea ice extent during the whole year, especially during
summer. In winter, when the simulated sea ice cover reaches320

its maximum, the sea ice extent ranges from approximately
5×106 to 24×106 km2 while the observations display a sea
ice extent of about 17×106 km2. 10 models underestimate
the sea ice extent in September.

Since the internal variability of the climate system may325

also have played a role in the observed expansion of sea ice
cover, we assess its representation in models by computing
the standard deviation of the sea ice extent for each month
of the year, over the period 1979–2005 (Fig. 2b). Here, to
obtain both the ensemble mean of each model and the multi-330

model mean of standard deviations, an average of the individ-
ual standard deviations has been performed. We have chosen
to detrend data before computing the standard deviation in
order to suppress the direct impact of a trend on the stan-
dard deviation that could obscure our analysis of the poten-335

tial links between those two variables discussed in Sect. 3.2.

The monthly standard deviation indicates that the variabil-
ity strongly differs between models. In February, 15 mod-
els have a standard deviation higher than the observed one
and all of the 24 models overestimate the standard deviation340

during September. Consequently, the multi-model mean of
standard deviations does not fit very well the observations.
It overestimates the standard deviation all over the year, par-
ticularly during winter. The interannual variability in some
models is significantly larger during winter months than dur-345

ing summer months. As a result, these models have a pro-
nounced seasonal cycle of their standard deviation, in con-
trast to the observations, which display a relatively constant
value throughout the year.

The analysis of Fig. 2b tells us two important things. On350

the one hand, it points out the inability of the majority of
models to reproduce the observed interannual variability.In
particular, they all overestimate the winter interannual vari-
ability. On the other hand, it highlights the fact that some
models are characterized by a very different magnitude of355

the interannual variability from one season to the other. In
order to avoid a loss of information, we have thus chosen
in the following analysis to work with seasonal mean rather
than with annual mean and to treat the summer and winter
separately.360

3.2 Trend over the period 1979–2005

For the historical simulations, we have computed for each
member of the ensemble the trend from 1979 to 2005 of
summer (average of January, February and March) and win-
ter (average of July, August and September) sea ice extent.365

Each trend has been computed through a linear regression of
the yearly values (between 1979 and 2005) of the summer
or winter sea ice extent.In addition to a direct evaluation of
model skill, one of our goals is to analyse if a relationship can
be established between the mean state, the interannual vari-370

ability simulated by the model and the ability to reproduce
the observed trend.

Observations show that the summer sea ice extent ex-
panded between 1979 and 2005, at a rate of approximately
149 000km2 per decade. This trend is significant at the 90%375

level. In Fig. 3a, it appears that almost all of the simula-
tions performed with the 24 models fail in simulating the
sign of this observed trend. Only three models (FGOALS-
g2, GFDL-CM3 and GISS-E2-R) have an ensemble mean
with a positive trend while most of them simulate a relatively380

large negative trend. For four additional models (CCSM4,
CSIRO-Mk3.6.0, HadCM3 and MRI-CGCM3), some en-
semble members display a positive trend.Among them,
CSIRO-Mk3.6.0 and GFDL-CM3 are the only models dis-
playing a positive trend significant at the 90% level in one385

of their members, as in the observations (see Table S2 of
the Online Supplement Table of this paper). Nevertheless,
CSIRO-Mk3.6.0 has a mean summer sea ice extent much
larger than what is observed while GFDL-CM3 is well be-
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low the observations. Moreover, CSIRO-Mk3.6.0 has an in-390

terannual variability which is on average twice the one of the
observations.

For summer sea ice extent, some given models display
a standard deviation that could be quite different between
members (Fig. 3b). Besides, the individual means of en-395

semble members performed with the same model are rela-
tively similar (Fig. 3a).The range of values reached by the
trends of the different members belonging to one model’s
simulation also differs strongly from one model to the other
(Fig. 4a). We quantify the various ranges provided by the400

different models thanks to the ensemble standard deviation
of the trends, for models that have at least 3 members in
their historical simulations. This ensemble standard devi-
ation of the trends stands between 26 000km2 per decade
for MIROC-ESM and 470 000km2 per decade for BCC-405

CSM1.1 (see Table S2 of the Online Supplement Table of
this paper). On average, the ensemble standard deviation
of the trend equals 166 000km2 per decade. If we consider
this average as an estimate of the range of the trend that can
be associated with internal variability, the observed positive410

trend of 149 000km2 per decade is well among the values
that could be due to natural processes alone and compatible
with the available ensemble of model results. Nevertheless,
given that many models have an interannual variability that
is much larger than the one of the observations, it is not sure415

whether the range of the trends they provide is representative
of the reality.

The comparison between the trend, the mean extent and
standard deviation does not display any clear link in summer
between those variables, some of the models that simulate420

an increase in the ice extent in at least one of their mem-
bers overestimating the observed mean and variability, some
underestimating it. Figure 3b also underlines the fact that
models with little ice during summer often have a small in-
terannual variability of summer sea ice extent, in agreement425

with results of Goosse et al. (2009a). Moreover, the spread
of the sea ice extent trends and standard deviations of mem-
bers belonging to one model ensemble grows with the mean
summer sea ice extent.

Winter sea ice extent has also increased between 1979 and430

2005, by approximately86 000km2 per decade. This trend
is not significant at the 90% level.Two models have an en-
semble mean whose trend is positive: GFDL-CM3 and IPSL-
CM5A-MR (Fig. 3c). The ensemble mean of GFDL-CM3 (5
members) has a positive trend which is close to the observed435

one but it strongly underestimates the mean winter sea ice ex-
tent. It is also an ensemble whose members are highly scat-
tered along the trend axis, three having a positive trend (from
approximately470× 103 to 1300× 103km2decade−1) and
two having a negative one (from approximately−290×103440

to −1120× 103 km2decade−1). The IPSL-CM5A-MR en-
semble is made up of one member only. Its trend and its
mean are both close to observations.

The 22 remaining models all have an ensemble mean

showing a decrease in winter sea ice extent. However, as445

noticed for summer, a few of them have ensemble members
displaying positive trends (BCC-CSM1.1, CSIRO-Mk3.6.0,
IPSL-CM5A-LR and MRI-CGCM3). Two of three BCC-
CSM1.1 historical simulation members present a positive
trend. The last one has a very negative trend, reaching450

−2520×103 km2decade−1. Contrarily, the mean sea ice ex-
tent does not vary much between members of BCC-CSM1.1,
all of them being larger than the observations. CSIRO-
Mk3.6.0 ensemble contains 10 members. They all simulate
a mean sea ice extent in winter relatively close to the ob-455

servations. Only one member shows an increase in sea ice
extent.

Figure 3d confirms that all the 24 models overestimate the
interannual variability in winter. It also underlines the fact
that simulations that have an ensemble mean of the trends460

close to the observed one have generally a standard deviation
which is much larger than the one of the observations. IPSL-
CM5A-MR single member, which has a trend and a mean
state relatively close to the observations, has a standard de-
viation greater than 0.8×106 km2 while the observed stan-465

dard deviation stands around 0.25×106 km2. GFDL-CM3
is a model that has a very high standard deviation (around 4
times the standard deviation of the observations). It is also
a model with a large range of trends reached by its members
(Fig. 4b).470

For winter sea ice extent, considering again models
that have at least 3 members in their historical simu-
lations, the ensemble standard deviation of the trends
varies between 100×103 km2decade−1 for FGOALS-s2 and
1704×103 km2decade−1 for BCC-CSM1.1 (see Table S3475

of the Online Supplement Table of this paper). On aver-
age, this ensemble standard deviation of the trends equals
428 000km2decade−1. As for summer, if this value is repre-
sentative of the range of trends due to internal variability, the
observed trend of 86 000km2 per decade appears compati-480

ble with natural processes and the model ensemble. How-
ever, the model biases in their representation of the variance
in winter during the last 30 yr is even larger than in sum-
mer, making this estimate of the uncertainty based on model
results very questionable.485

From this analysis of historical simulations, it appears
that among all the simulations analyzed, only a few of them
present a positive trend of the sea ice extent, for both summer
and winter. 2 members over 85 have a statistically signifi-
cant positive trend over the last 30 yr in summer (12 have a490

positive one) and 10 over 85 have a positive trend in winter.
Those positive values appear thus as relatively rare events
but are within the range of internal variability, accordingto
model results. The important point here is that such posi-
tive trends are generally found in models that overestimate495

the interannual variability. Because of their high interannual
variability, such models can provide a large range of possible
trends, some of them agreeing with the observations.
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3.3 Stratospheric ozone

CMIP5 models all take into account the stratospheric ozone500

depletion that occurred during the last 30 yr (see Table 2 for
details). However, this improvement compared to CMIP3
brought to the stratospheric ozone does not lead to major
changes in their representation of the trend in sea ice extent
in the Southern Ocean.505

To go a step further, we discuss if the way stratospheric
ozone is treated has an influence on the results. The mod-
els with interactive chemistry (activated during the simula-
tion or used in an offline simulation to compute the ozone
dataset) and the ones whith higher atmospheric vertical reso-510

lution (≥35 layers) have on average a slightly smaller extent
of sea ice in summer (Fig. 3a, respectively circle and trian-
gle orange symbols). In winter, the models with high atmo-
spheric resolution underestimate the sea ice extent while the
ones with interactive chemistry overestimate it (Fig. 3c).The515

influence on the trend is hardly detected. This shows that,
on average, the inclusion of an interactive chemistry or an
increased vertical resolution do not make major differences
compared to other models.

Looking now at individual models, we have seen in520

Sect. 3.2 that CSIRO-Mk3.6.0, GFDL-CM3 and IPSL-
CM5A-MR provide results for sea ice extent trend in win-
ter in relatively good agreement with observations but with
much too high a standard deviation for GFDL-CM3 and
IPSL-CM5A-MR. CSIRO-Mk3.6.0 has a quite coarse resolu-525

tion in its atmosphere component (18 vertical layers) and pre-
scribes the ozone from the AC&C/SPARC database. GFDL-
CM3 and IPSL-CM5A-MR have a finer resolution (48 and 39
layers, respectively). They both have interactive chemistry
but IPSL-CM5A-MR treats the interaction between ozone530

and climate through a semi offline approach. Again, from
the available ensemble, the representation of ozone in mod-
els does not seem to be the dominant factor influencing the
simulation of the trend in sea ice extent.

4 Hindcast simulations535

We have shown in Sect. 3 that the lack of agreement between
simulated and observed variance over the last 30 yr does not
allow us to confidently establish the link between the inter-
nal variability and the positive trend found in observations
of the sea ice extent. Nevertheless, if this link exists and if540

the internal variability in the Southern Ocean is in some way
predictable, an adequate initialization of the system should
improve the results of the simulated evolution of the sea ice
extent. This hypothesis is tested in this section using the
hindcast simulations performed in the framework of CMIP5.545

In contrast to the historical simulations, the hindcasts are ini-
tialized through data assimilation of observations. The data
assimilation method and the variables assimilated vary from
one model to the other, as summarized in Table 3.

4.1 Impact of the initialization on the simulated trends550

The models used for the hindcast analysis have been chosen
on the basis of the availability of their results. Fortunately,
we see on Fig. 2 that these 10 models (dotted lines) constitute
a subset which represents reasonably well the variety of gen-
eral circulation models. In order to outline the effect of the555

initialization on the simulated trend in sea ice extent, foreach
model, we have computed the ensemble mean of the trends
in hindcast simulations spanning the period 1981–2005, for
winter and summer extent, and compared them to the ones
from historical simulations (i.e. uninitialized), over the same560

time period. This period has been chosen as no hindcast was
started in 1979. Here, the hindcasts were initialized in Jan-
uary 1981 for all the models except HadCM3, whose hind-
cast members were started in November 1980. On Fig. 5
showing the trend in sea ice extent computed from hindcast565

simulations against the one computed from historical simula-
tions, a dot located on the liney(x)= x means that the trend
in hindcast simulation equals the one of historical simulation.
If the trend simulated by hindcast is greater (smaller) thanthe
one computed from historical simulation, then the dot will be570

above (below) the liney(x)= x.
Regarding summer sea ice extent (Fig. 5a), the initializa-

tion through a data assimilation procedure does not improve
systematically the simulated trend. HadCM3, MIROC4h
and MRI-CGCM3 hindcasts trends are closer to the obser-575

vation than are their historical trends but they remain neg-
ative. BCC-CSM1.1, CNRM-CM5, IPSL-CM5A-LR and
MPI-ESM-LR simulate a more negative trend in their hind-
casts than in their historical runs. FGOALS-g2 has a largely
positive trend in its hindcast while the trend in its histori-580

cal simulation is slightly negative. CCSM4 hindcast displays
a slightly positive trend while the one of its historical simu-
lation is negative.

When initialized through data assimilation of obser-
vations, CCSM4, FGOALS-g2, CNRM-CM5 and BCC-585

CSM1.1 present a systematic drift (not shown). This drift
is likely responsible for the high positive or negative trends
found in the hindcasts of these models.Such a drift has its
origin in the initialization of a model with a state that forces
it to produce much more (or less) sea ice than has its clima-590

tological mean. After the initialization, the model does not
have any constraint from observations anymore and the simu-
lation tends to go back towards the model’s climatology.We
do not have information about the method used to initialize
the models FGOALS-g2 and CCSM4. The use of raw data595

in the initialization procedures applied to BCC-CSM1.1 and
to CNRM-CM5 may partly account for the drift occurring in
their hindcast simulations.

Similarly, for winter sea ice extent, the initialization with
observations does not systematically lead to a simulated600

trend in better agreement with observations. Figure 5b shows
that hindcast simulations of MIROC4h, MIROC5 and MRI-
CGCM3 have trends that are slightly closer to the observa-
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tion than are the historical trends. The 7 other models per-
form worse or do not offer any improvement when they are605

initialized with observations. As in the case of summer sea
ice extent (Fig. 5a), FGOALS-g2 simulates a large positive
trend in its winter sea ice extent when it is initialized with
observations and CNRM-CM5 has a more negative trend in
its hindcast, for the same reasons as the one proposed above.610

For BCC-CSM1.1, the hindcast trend in winter sea ice extent
does not differ significantly from the historical trend.

Results presented in Fig. 5 show that the initialization of
models through data assimilation of observation does not
bring significant improvement on the simulated trend. When615

raw data are used instead of anomalies, the initialization ap-
parently deteriorates the trend in sea ice extent simulatedby
models. Corrections can be introduced to take into account
that kind of biases (e.g. Troccoli and Palmer, 2007; Van-
nitsem and Nicolis, 2008). Nevertheless, such a procedure620

requires a larger amount of initialized simulations spanning
several decades. Proposing such a method for sea ice and an-
alyzing how it would impact the analysis of the trend is out
of the scope of our study.

4.2 Correlation between models and observations625

The forecast skill of the models can also be assessed by an-
alyzing the predictions a few years ahead. To do so, for
each model, we computed the anomaly correlation coeffi-
cient used in Pohlmann et al. (2009):

COR(t)=

∑N

i=1

∑M

j=1
[xij(t)− x̄][oi(t)− ō]

√

∑N

i=1

∑M

j=1
[xij(t)− x̄]2

∑N

i=1
M [oi(t)− ō]2

(1)630

wheret is the lead time (in years),xij are the hindcast simu-
lations,i is the ensemble index (different indices correspond
to different times when the hindcast simulations are started)
andj is the index of the member belonging to the ensemble
i. N is the number of ensembles andM is the number of635

members within each ensemble.oi is the observation cover-
ing the time period spanned by the ensemblei. The overbar
stands for the climatological mean of the uninitialized (his-
torical) simulation and of the observations, over the analyzed
period (here 1981–2005).640

The correlation between hindcast simulations and obser-
vations is shown for summer (Fig. 6) and winter (Fig. 7) sea
ice extent. This correlation has been computed from a se-
ries of 4 hindcasts ensemble simulations, initialized every
5 yr between January 1981 and January 1996 (every 5 yr be-645

tween November 1980 and November 1995 for HadCM3).
The 95 % significance level is computed using a t-test. This
significance level varies from one model to another because
of the different number of members in each model ensemble
(see Table 1).650

In summer, none of the 10 models analyzed here has
a significant correlation for the first year after initialization
(Fig. 6). HadCM3, IPSL-CM5A-LR and MIROC4h never

outstrip the 95 % significant level. The 7 remaining mod-
els present one or two peaks of significant correlation sev-655

eral years after the initialization and almost all the models
have a negative correlation during most of the 10 yr. The
emergence of correlation later on in the simulation can occur
randomly or it might still be a consequence of the initializa-
tion. Indeed, models might undergo an initial shock due to660

the initialization procedure before getting stabilized and ben-
efit from the initialization. For winter sea ice extent (Fig.7),
the correlation is significantly positive during the first year
for CCSM4, MIROC5 and MPI-ESM-LR models, indicat-
ing some predictive skill. Then the correlation decreases and665

reaches negative values. A negative correlation is also found
in the other models. The significant correlation after one year
in three models in winter likely arises from the initialization
but the memory of the system is apparently not sufficient to
keep a significant correlation during the following years. Un-670

like in the Arctic, sea ice around the Antarctic is relatively
young. It disappears almost entirely during the melting sea-
son and recovers during winter months, preventing this sea
ice to retain information from initialization. The ocean can
keep the information over longer periods but in the available675

experiments, its role appears weak during the first year after
initialization. Still, it may be responsible for the emergence
of correlation several years after initialization, for both sum-
mer and winter sea ice extent, through local interactions or
teleconnections with remote areas.680

In any case, the skill of model predictions for Southern
Ocean sea ice extent is quite poor compared to the one ob-
tained for other variables. For instance, Kim et al. (2012)
have analyzed hindcasts results from seven CMIP5 models
and have shown that these models have a high skill in fore-685

casting surface temperature anomalies over the Indian, North
Atlantic and Western Pacific Ocean, up to 6–9 yr ahead.
Matei et al. (2012a) have pointed out a significant correlation
between hindcast and observations for the Atlantic Merid-
ional Overturning Circulation (AMOC) strength at 26.5◦ N690

up to 4 yr ahead.

5 Summary and conclusions

From 24 CMIP5 models available to date, we have analyzed
results of historical and hindcast simulations. This is still
a small ensemble but we consider that it is diverse enough695

to constitute a reasonable sample to draw conclusions about
current models behavior in the Southern Ocean.

The multi-model mean reproduces well the observed sum-
mer and winter sea ice edge as well as the annual cycle of
sea ice extent. The skill of individual models is much lower.700

The majority of the biases in the simulated Southern Ocean
sea ice highlighted for CMIP3 models persist for the CMIP5
ones. Furthermore, all the models analyzed here overesti-
mate the variability of the sea ice extent in winter. In addi-
tion, we saw that, in contrast to observations, the variability705
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in some models can vary significantly from one season to the
other. We have thus chosen to analyze seasonal means rather
than annual mean but the conclusions are similar whether we
consider summer or winter sea ice extent.

The analyses performed in this paper aimed at better un-710

derstand the role played by the internal variability in the ob-
served increase of sea ice extent in the Southern Ocean. Our
approach can be summarized in three questions that we can
now partly answer.

Firstly, are the trend of winter and summer observed sea715

ice extent (statistically significant at the 90% level for sum-
mer but not for winter) compatible with a combination of
the forced response and the internal variability accordingto
model results? The models generally respond to the external
forcing by a decrease in their sea ice extent. Our analysis720

of its representation in the different models has shown that
the inclusion of stratospheric ozone depletion does not mod-
ify strongly the sign of the simulated trend in sea ice extent
in the Southern Ocean compared to CMIP3, in which only
half of the models took into account this forcing. Moreover,725

models with interactive chemistry or with higher atmospheric
vertical resolution do not provide better results that the other
ones. Nevertheless, natural variability can overwhelm thein-
fluence of the forced response, leading to a positive trend in
some ensemble members. This case appears relatively rare730

among the available simulations. However, if we consider
the wide range of trends each model provides because of its
own dynamics only, the positive observed trend in sea ice
extent can be accounted for by internal variability.

Secondly, does the models internal variability agree with735

the one of the observations? From our model analysis, pos-
itive trend in sea ice extent, such as the observed one, can
arise from internal variability. Nevertheless, to have confi-
dence in this conclusion, the models internal variability must
fit the one of the observations. Unfortunately, we have shown740

that the models often have a climatological mean which is far
from the observations or too high an interannual variability,
or even both. None of the CMIP5 models provides thus a
reasonable estimate of all the main characteristics of the sea
ice cover over the last decades in the Southern Ocean, in con-745

trast to the Arctic (e.g. Stroeve et al., 2012; Massonnet et al.,
2012). Moreover, the few models that display an increase in
sea ice extent have such a large variability that the sign of the
trend is not robust. Because of those models biases, we can-
not reasonably consider the results of these models as a good750

representation of the behavior of the Southern Ocean sea ice.
As a consequence, even if the positive observed trend in sea
ice extent is compatible with the models internal variabil-
ity, the biases of these models prevent us from firmly assess-
ing the link between the internal variability in the Southern755

Ocean and the observed increase in sea ice extent.
Thirdly, how does the initialization method impact the

simulated evolution of sea ice extent in the Southern Ocean?
If the internal variability is important, a correct initializa-
tion of the model state may lead to a better agreement with760

data. In this hypothesis, constraining the model with obser-
vations would put the system in a state that favors an in-
crease in ice extent, for instance because of a more strati-
fied or colder ocean.However, results from hindcast simu-
lations have shown that there is no systematic improvement765

of the simulation of sea ice extent observed trend. Previous
studies have demonstrated that models have a high poten-
tial predictability in the Southern Ocean region at decadal
time scales (e.g. Latif et al., 2010), i.e. there exists in models
deterministic decadal variability. The test in real conditions770

has not shown such predictability for sea ice extent. This
may be due to some inadequate representation of physics
and/or feedbacks in models but also to the initialization pro-
cedure. Indeed, observations required to initialize properly
the system are quite sparse in that area and the time period775

they cover is relatively short. Furthermore, data assimilation
methods used in general circulation models are essentially
based on a nudging and improvement may be expected if
more sophisticated methods are applied and systematically
tested in the Southern Ocean.780
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Table 1. Model name, Institute and number of members in models historical and hindcast simulations.

Model name Institute ID Modeling center Number of
members in
historical

Number of
members in
hindcasts

BCC-CSM1.1 BCC Beijing Climate Center, China Meteorological Administration 3 4
CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis 5 -
CCSM4 NCAR National Center for Atmospheric Research 6 10
CNRM-CM5 CNRM-CERFACS Centre National de Recherches Meteorologiques / Centre Europeen de

Recherche et Formation Avancees en Calcul Scientifique
10 10

CSIRO-Mk3.6.0 CSIRO-QCCCE Commonwealth Scientific and Industrial Research Organization in col-
laboration with Queensland Climate Change Centre of Excellence

10 -

EC-EARTH EC-EARTH EC-EARTH consortium 1 -
FGOALS-g2 LASG-CESS LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

and CESS,Tsinghua University
1 3

FGOALS-s2 LASG-IAP LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 3 -
GFDL-CM3 NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 5 -
GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 1 -
GISS-E2-R NASA GISS NASA Goddard Institute for Space Studies 5 -
HadCM3 MOHC Met Office Hadley Centre 10 10
HadGEM2-CC MOHC Met Office Hadley Centre 1 -
HadGEM2-ES MOHC Met Office Hadley Centre 1 -
INM-CM4 INM Institute for Numerical Mathematics 1 -
IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 4 6
IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace 1 -
MIROC4h MIROC Atmosphere and Ocean Research Institute (TheUniversity of Tokyo),

National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

3 3

MIROC5 MIROC Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

1 6

MIROC-ESM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), andNational
Institute for Environmental Studies

3 -

MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), andNational
Institute for Environmental Studies

1 -

MPI-ESM-LR MPI-M Max Planck Institute for Meteorology 3 10 (3 in 30-
year hindcast)

MRI-CGCM3 MRI Meteorological Research Institute 3 3
NorESM1-M NCC Norwegian Climate Centre 3 -
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Table 2. Summary of atmospheric vertical resolution and stratospheric ozone representation. Models in bold are the ones with aninteractive
chemistry, activated during the CMIP5 simulations or only activated in an offline simulation used to compute the ozone dataset prescribed in
the CMIP5 simulations.

Model name Atmospheric
vertical resolution

Stratospheric ozone

BCC-CSM1.1 26 layers
Top layer at 2.9 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

CanESM2 35 layers
Top layer at 1 hPa

Prescribed
AC&C/SPARC ozone database
(Cionni et al., 2011)

CCSM4 26 layers Prescribed;
Data from an offline simula-
tion of the CAM3.5 model with
a fully interactive chemistry
(Landrum et al., 2012)

CNRM-CM5 31 layers
Top layer at 10 hPa

Interactive chemistry (Voldoire
et al., 2012).

CSIRO-Mk3.6.0 18 layers Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011)

EC-EARTH 62 layers
Top layer 5 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011)

FGOALS-g2 26 layers No information available to us.
FGOALS-s2 26 layers

Top layer at 2.19 hPa
No information available to us.

GFDL-CM3 48 layers Interactive chemistry (Donner
et al., 2011).

GFDL-ESM2M 24 layers Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

GISS-E2-R 40 layers
Top layer at 0.1 hPa

Prescribed;
Observational analyses of Ran-
del and Wu (1999).

HadCM3 19 layers Prescribed;
Observational analyses of Ran-
del and Wu (1999)

HadGEM2-CC 60 layers
Top layer at 0.006 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

HadGEM2-ES 38 layers
Top layer at 4 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

INM-CM4 21 layers
Top layer at 10 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

IPSL-CM5A-LR 39 layers
Top layer at 0.04 hPa

Prescribed;
Data from an offline simula-
tion of the LMDz-REPROBUS
model (Szopa et al., 2012).

IPSL-CM5A-MR 39 layers
Top layer at 0.04 hPa

Prescribed;
Data from an offline simula-
tion of the LMDz-REPROBUS
model (Szopa et al., 2012).

MIROC4h 56 layers
Top layer at 40 km

Prescribed;
Data from an offline simulation
of Kawase et al. (2011).

MIROC5 40 layers
Top layer at 3 hPa

Prescribed;
Data from an offline simulation
of Kawase et al. (2011).

MIROC-ESM 80 layers
Top layer at 0.003 hPa

Prescribed;
Data from an offline simulation
of Kawase et al. (2011).

MIROC-ESM-
CHEM

80 layers
Top layer at 0.003 hPa

Interactive chemistry (Watan-
abe et al., 2011).

MPI-ESM-LR 47 layers
Top layer at 0.01 hPa

Prescribed;
AC&C/SPARC ozone database
(Cionni et al., 2011).

MRI-CGCM3 48 layers
Top layer at 0.01 hPa

Interactive chemistry (Yuki-
moto et al., 2011).

NorESM1-M 26 layers
Top layer at 2.9 hPa

No information available to us.
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Table 3. Data assimilation methods used by the 10 models providing hindcast simulations.

Model name Data assimilation method References
BCC-CSM1.1 Nudging to 3D ocean tempera-

ture (raw data).
Gao et al. (2012)

CCSM4 Information not available to us
CNRM-CM5 Nudging to 3D ocean tempera-

ture and salinity (raw data) as a
function of depth and space, sea
surface temperature and salinity
nudging (raw data).

ftp://ftp.cerfacs.fr/pub/
globc/exchanges/
cassou/Michael/
AspenCMIP5
wrkshopcassou2.ppt

FGOALS-g2 No information available to us.
HadCM3 Nudging to 3D ocean temper-

ature and salinity (anomalies),
nudging to 3D atmosphere tem-
perature and wind speed, nudg-
ing to surface pressure.

http://www.met.reading.
ac.uk/∼swr06jir/
presentations/
JIR deptseminar.pptx

IPSL-CM5A-
LR

Nudging to sea surface tempera-
ture (anomalies).

Swingedouw et al.
(2012)

MIROC4h Incremental analysis update
(IAU) of 3D ocean temperature
and salinity (anomalies).

Chikamoto et al. (2012)

MIROC5 Incremental analysis update
(IAU) of 3D ocean temperature
and salinity (anomalies).

Chikamoto et al. (2012)

MPI-ESM-LR Nudging to 3D ocean tempera-
ture and salinity (anomalies), ex-
cept in the area covered by sea
ice.

Matei et al. (2012b)

MRI-CGCM3 No information available to us.
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Fig. 1. Multi-model mean of sea ice concentration, computed from historical simulations over the period 1979–2005. White (black) line
refers to the sea ice edge, i.e. the 15 % concentration limit of the multi-model ensemble mean (observations, Comiso, 1999, updated 2008).
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Fig. 2. (a) Monthly mean of Southern Ocean sea ice extent, computed overthe period 1979–2005.(b) Standard deviation of detrended
Southern Hemisphere sea ice extent, computed over the period 1979–2005 for each month of the year. Colors correspond to the ensemble
mean of historical simulations from 24 different models. Dotted lines refer to models that provide both historical and hindcast simulations
but here, results are only from historical simulations. Orange bold line is the multi-model mean. Black bold line refersto observations
(Cavalieri and Parkinson, 2008).
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(a) 1979−2005 JFM trend VS. mean
 

(b) 1979−2005 JFM trend VS. standard deviation

(c) 1979−2005 JAS trend VS. mean (d) 1979−2005 JAS trend VS. standard deviation
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Fig. 3. Sea ice extent trend for the period 1979–2005 over the whole Southern Ocean vs. mean(a, c)and standard deviation(b, d). The first
row corresponds to summer (JFM), the second to winter (JAS).The different colors correspond to the historical simulations from 24 different
models. For each color, the small dots refer to model individual members and the symbol specified in the legend is for the model ensemble
mean. The number of members in each model is indicated in brackets in the legend. Orange refers to multi-model means: diamond sign is
for the average over all the models, circle sign is for the mean of models with interactive chemistry (in bold in Table 2) and triangle sign is
for the mean of models with 35 atmospheric levels or more on the vertical. Black square is for the observations (Cavalieriand Parkinson,
2008), surrounded by 2 standard deviations (black dashed lines).
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Fig. 4. Ensemble mean, minimum and maximum value of the sea ice extent trend for the period 1979–2005 over the whole Southern Ocean
for summer(a) and winter(b). The different colors correspond to the historical simulations from the 15 models that have at least 3 members
in their ensemble. Dots refer to the ensemble means of the trends. Horizontal bars show the minimum and the maximum value of the trend
reached by the members of one model ensemble. Black dashed line is for the trend of the observations (Cavalieri and Parkinson, 2008)
surrounded by 2 standard deviations (grey shade).
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(a) 1981−2005 JFM hindcast VS. historical trend (b) 1981−2005 JAS hindcast VS. historical trend
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Fig. 5. Hindcast vs. historical Southern Ocean sea ice extent trendfor summer(a) and winter(b), computed over the period 1981–2005. The
different colors refer to the different models. For each model, the dot refers to the ensemble mean of the trends and the horizontal (vertical)
bar shows the ensemble mean of the standard deviations of thetrends in the historical (hindcast) simulations. Black square is for the trend
of the observations (Cavalieri and Parkinson, 2008). The vertical and the horizontal black bars are for the standard deviation of the observed
trend. Dashed line represents the liney(x)= x.
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Fig. 6. Correlation between Southern Ocean summer (JFM) sea ice extent in models results and observations. For each model, the correlation
is computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (betweenNovember 1980
and November 1995 for HadCM3). In each plot, the dashed line refers to the 95 % significance level.
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Fig. 7. Correlation between Southern Ocean winter (JAS) sea ice extent in models results and observations. For each model, the correlation
is computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (betweenNovember 1980
and November 1995 for HadCM3). In each plot, the dashed line refers to the 95 % significance level.


