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Abstract. The stability of marine ice sheets grounded on beds that slope upwards in the overall di-

rection of flow is investigated numerically in two horizontal dimensions. We give examples of stable

grounding lines on such retrograde slopes illustrating that marine ice sheets are not unconditionally

unstable in two horizontal dimensions. Retrograde bed slopes at the grounding lines of marine ice

sheets, such as the West Antarctic Ice Sheet (WAIS), do not per se imply an instability, nor do they5

imply that these regions are close to a threshold of instability. We therefore question those estimates

of the potential near-future contribution of WAIS to global sea level change based solely on the

notion that WAIS, resting on retrograde slope, must be inherently unstable.

1 Introduction

Large parts of the West Antarctic Ice Sheet (WAIS) rest below sea level on a bedrock sloping down-10

wards towards the ice sheet’s cent-re. It has been argued that such marine-type ice sheets on retro-

grade slopes are inherently unstable and susceptible to rapid disintegration (e.g. Weertman, 1974).

The question of WAIS being potentially subject to a marine ice-sheet instability (MISI) is of utmost

importance for any quantitative estimates of future sea level change, because it raises the possibility

of WAIS rapidly contributing several meters of sea level change.15

The possibility of a MISI and the conditions under which such an instability could manifest itself

have been investigated by a number of authors. To date most analytical and numerical work has

focused on analysing the stability regime of MISI in situations where the problem geometry and the

flow field varies primarily in along-flow direction. The problem can then be treated as a problem in

one horizontal dimension (1HD).20

In what can be considered to be the first quantitative study of this problem Weertman (1974)
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concluded that a marine-based ice sheet resting on a retrograde slope is inherently unstable. Further

work by Thomas and Bentley (1978) reached similar conclusions and gave increased weight to the

idea of a MISI and its relevance to WAIS. Hindmarsh (1993, 1996) revisited this problem and found,

in contrast to previous work, a marine-type ice sheet resting on a retrograde slope to be neutrally25

stable and therefore not susceptible to an unstable retreat or advance once perturbed away from

a steady state. Schoof (2007a), in a further study of this same problem, however concluded that

rapidly sliding marine-based ice sheet do not exhibit neutral equilibrium and that steady grounding

lines cannot be stable on retrograde bed slopes.

The difficulty in settling the question of whether marine-type ice sheets are subject to MISI, has30

been further confounded by the fact that the numerical solution of this problem has turned out to be

more difficult than originally envisioned. Vieli and Payne (2005) showed that calculated grounding-

line positions, using some commonly used numerical procedures, exhibited a strong dependency

on grid size. A recent model intercomparison experiment (Pattyn et al., 2012) focusing on a 1HD

problem furthermore demonstrated that models based on the shallow-ice approximation – a class35

of models frequently used to simulate the dynamics of large ice masses – do not allow for correct

description of grounding-line motion. Encouragingly though, the same intercomparison experiment

also showed a good overall agreement between numerical models that both (a) account for horizontal

transmission of stresses between the grounded and the floating parts, and (b) employ very high spatial

resolution (less than one ice thickness) in the vicinity of the grounding line. These models produced40

in turn steady-state solutions that were in a close agreement with a semi-analytical solution (Schoof,

2007a) of this problem. This combination of theoretical work (Schoof, 2007a) and communal effort

by the numerical community (Pattyn et al., 2012) has therefore now provided a general consensus

that rapidly sliding 1HD marine-based ice sheets are indeed subject to the MISI. However, the more

general case in two horizontal dimensions (2HD) is still unanswered.45

The possible stabilising effect of ice-shelf buttressing on grounding-line position has been investi-

gated in several recent studies. Dupont and Alley (2005) presented an example of a stable grounding

line on a retrograde slope. Their model was a 1HD flow-line model using a parameterized side drag

and a varying degree of imposed buttressing at the calving front. The resulting buttressing at the

grounding line was, thus, prescribed and not calculated, and it is unclear what three-dimensional50

geometrical configuration, if any, gives rise to the type of prescribed side drag used by Dupont and

Alley (2005) in their example. Similar flow-line modelling approach was used by Jamieson et al.

(2012) to study transverse flow effects. Jamieson et al. (2012) state that lateral drag can give rise

to ‘transient stabilizations’ on reverse bed slopes. Stability is a property of steady states and the

meaning of the term “transient stabilizations’ as used by Jamieson et al. (2012) is unclear.55

To our knowledge the only study showing stable grounding lines on retrograde slopes, while re-

solving stresses in both horizontal dimensions, is that of Goldberg et al. (2009). Goldberg et al.

(2009) performed a series of numerical experiments using a vertically integrated model that ac-
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counted for all the stress terms in 2HD otherwise missing in vertically integrated 1HD models. One

of their numerical experiments suggested that ice-shelf buttressing might restore stability and they60

concluded that a further investigation was warranted.

Recently, Katz and Worster (2010) investigated the stability of ice-sheet grounding lines in 2HD

numerically using a vertically integrated formulation of the force balance at the grounding line. They

concluded that unstable retreat of grounding lines over retrograde beds is a “robust” feature of such

models. Katz and Worster (2010) assumed the stress vector at the grounding line to be aligned in65

the direction normal to the grounding line. Their model study did therefore not fully account for

the variation of stresses in 2HD. The fact that Katz and Worster (2010) did not find an example of

a stable grounding line on a retrograde slope in 2HD clearly does not exclude the possibility that

such an example may exist.

It is, hence, currently not clear if the MISI applies unconditionally in 2HD. On the other hand, to70

date neither an analytical or a numerical example of a stable grounding-line configuration of a marine

ice sheet resting on a retrograde slope has been found. The purpose of this work is to provide such

an example, and to show that the MISI does not hold unconditionally in 2HD.

2 Problem definition

The model setup is motivated by the “Marine Ice Sheet Model Intercomparison Project” (MISMIP)75

experiment 3 (Pattyn et al., 2012), and can be considered to represent a three-dimensional (i.e. two

horizontal dimensional) extension of that problem. The MISMIP experiment 3 was in turn inspired

by Schoof (2007a) who, in his analysis of grounding-line dynamics in one horizontal dimension,

used a particular type of bed profile to demonstrate the marine instability mechanism. This MISMIP

experiment 3 has become a benchmark case for assessing and testing the capability of numerical80

models to simulate the advance and retreat of the grounding line. The experiment also provides

a striking example of the marine instability mechanism in 1HD.

The model domain used here stretches from 0 to 1 800 km in x direction, and from−120 to 120 km

in y direction. For x= 0, both horizontal velocity components are set to zero, i.e. u(0,y) = v(0,y) =

0, and along the left and right hand sides where y =±120 km, the y component is set to zero, i.e.85

v(x,±120km) = 0. No shear stresses are applied, and the ice is allowed to flow freely, along the left

and right side margins, i.e. for y =±120 km. Along the ice shelf edge, at x= 1800 km, the ocean

pressure is applied. The form of this shelf-edge boundary condition is specific to the two models

used and is described below.

The bed geometry used here can be written as90

B(x,y) =Bx(x)+By(y), (1)
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where

Bx(x) =B0− 2184.8 (x/750000)2

+1031.72 (x/750000)4

− 151.72 (x/750000)6, (2)95

and

By(y) =
dc

1+ e−2(y−wc)/fc
+

dc
1+ e2(y+wc)/fc

, (3)

where the units are meters, and B(x,y) stands for the topography of the ocean floor.

The bed is in the form of a channel incised into a slowly undulating plane with an overall down-100

ward slope in x direction (see Fig. 1). The parameter fc controls the slope of the flanks, dc controls

the depth of the channel, and wc is the half-width of the channel. The only parameter that is varied

in the model runs described below is the half-width (wc).

As can be seen from Eqs. (1)–(3), the slope of the bed in x direction is independent of y, i.e.

∂2yxB(x,y) = 0. The slope in x direction is zero at x= 0, x= xa and x= xb where xa = 973.7km105

and xb = 1265.7km, and for xa < x < xb the bed slopes upwards (∂xB(x,y)> 0) and is retrograde

across the entire domain, i.e. ∂xB(x,y)> 0 for xa < x < xb independently of y. The values for the

geometrical parameters B0, fc, dc used in all runs are listed in Table 1.

3 Numerical models

We use two different numerical models: 1) a three-dimensional full Stokes model, and 2) a verti-110

cally integrated model of a type commonly used in glaciology to model the flow of ice sheets and

ice streams. Both models are based on the finite elements method and both are capable of using

unstructured grids with spatially variable element sizes. The full Stokes solver uses the open source

finite element software package Elmer and the solver will be referred to here as “Elmer/Ice”. The

equations representing the vertically integrated model are solved using a finite element code devel-115

oped by one of the authors (G. Hilmar Gudmundsson), and the code will here be referred to as “Úa”.

Most of the calculations presented here were obtained with Úa. The Elmer/Ice code was primarily

used to demonstrate that the some key aspects of the results obtained with Úa are not specific to that

model.

The vertically integrated model used here is one of the most commonly used models in glaciology120

for describing the flow of ice shelves and ice streams. Derivation of the model can be found, for

example, in Hutter (1983), Morland (1984), Muszynski and Birchfield (1987), MacAyeal (1989),

and Baral and Hutter (2001) and properties of the linearised equations are discussed in some detail

in Gudmundsson (2008).

The full Stokes model includes all the terms of the Stokes equations, i.e.125

σpq,q + fp = 0, (4)
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where σpq are the components of the Cauchy stress tensor, and fp the components of the body force,

with f = ρg(0,0,−1)T .

The vertically integrated model solves a simplified stress balance that, following (Hindmarsh,

2012), can be written on the form130

∇T
h · (hT )+ tbh = ρgh∇h s, (5)

where

T =

2τxx + τyy τxy

τxy 2τyy + τxx

 , (6)

with

∇T
h = (∂x,∂y), (7)135

where h, when used as a subscript, is a mnemonic for “horizontal”. In the above equation τij are the

components of the deviatoric stress tensor, s is the surface topography, h is the ice thickness, ρ is

the ice density, g is the gravitational acceleration, and tbh is the horizontal part of the bed-tangential

basal traction tb where

tb = σn̂− (n̂T ·σn̂)n̂, (8)140

with n̂ being a unit normal vector to the bed pointing into the ice.

Both models employ the Weertman sliding law

tb = C−1/m|vb|1/m−1vb, (9)

where vb

vb = v− (n̂T ·v)n̂, (10)145

is the basal sliding velocity, C is the basal slipperiness, and m a stress exponent.

Both models also employ Glen’s flow law

ε̇ij =Aτn−1τij , (11)

where τ is the second invariant of the deviatoric stress tensor

τ =
√
τpqτpq/2, (12)150

ε̇ij are the strain rates, A is the rate factor, and n a stress exponent.

In addition to the equations above (and not listed here) both models use appropriate forms of

the mass-conservation equation for an incompressible medium, and employ the kinematic boundary

conditions along free upper and lower surfaces.
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Along the calving front a pressure boundary condition is applied that corresponds to ocean surface155

level at z = 0, i.e.

σ n̂=−pwn̂, (13)

where n̂ is a unit normal vector pointing horizontally outward from the ice front, and pw is the

hydrostatic pressure in the ocean. The surface of the ocean (S) is at S = 0, and the oceanic pressure

is pw = ρwg(S− z) for z < S and zero otherwise, where ρw is the ocean density.160

For vertically integrated model the boundary condition at the ice-shelf edge at x= 1800km takes

the form

T n̂=
1

2
%ghn̂, (14)

provided the ice is fully floating at the calving front, and where

%= ρ(1− ρ/ρw). (15)165

In the vertically integrated model the floating condition takes the form h < hf where

hf = ρwH/ρ, (16)

where H is the ocean depth. The quantity hf represents the maximum possible ice-shelf thickness

at any location. A detailed description of the contact condition that arises in the treatment of the

grounding line in the full Stokes model, and its implementation, is given in Favier et al. (2012).170

The two numerical codes, i.e. Elmer/Ice and Úa, have been used extensively in the past to calculate

grounding-line migrations for various different setups (Durand et al., 2009a; Gagliardini et al., 2010;

Pattyn et al., 2012). Both models participated in the recently finalised “Marine Ice Sheet Model

Intercomparison Project” (MISMIP) (see Pattyn et al., 2012) and results from these two models were

submitted to the ongoing “Marine Ice Sheet Model Intercomparison Project for Planview Models”175

(manuscript submitted to Journal of Glaciology).

Automated remeshing was used to ensure a highly dense discretisation of the area around the

grounding line. Calculations of grounding-line migration are known to require a finely resolved

mesh around the grounding-line area (e.g. Durand et al., 2009b). How accurate the mesh needs to be

is a question that is difficult to answer a priori, but can be answered easily by performing a number180

of runs using increasingly fine meshes until no resolution dependent behaviour is seen.

Runs performed with solver Úa were done using linear, quadratic, and cubic triangular ele-

ments, however the set of results from Úa shown here were obtained using quadratic elements.

The Elmer/Ice solver used linear prismatic elements stabilised using the bubble-stabilising method.

The exact sizes and number of elements varied between runs, but, as an example, results shown be-185

low using Úa for a half-width of wc = 50 km used a mesh of 228 537 elements with 457 340 nodes,

with median, maximum and minimum element sizes of 569m, 26 862m, and 86.7m, respectively.
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The region around the grounding line, and areas where ice thickness changed most markedly was

resolved much more finely than other areas. Úa uses an automated remeshing algorithm where the

mesh is refined based on several possible user-defined criteria. The criteria used in the runs shown190

here were: 1) distance from flotation, and 2) second derivative of ice thickness. The first criterion

gives small elements in the vicinity of the grounding line, and is similar to the one used by Goldberg

et al. (2009).

A fully implicit forward integration procedure was used by Úa, with the prognostic and the diag-

nostic equations being solved simultaneously using the Newton-Raphson method. Further details of195

the solution procedure of the full Stokes model Elmer/Ice can be found in Durand et al. (2009a).

4 Results

A number of runs using the parameters listed in Table 1 and the bed geometry defined by Eqs. (1)–(3)

were performed and the runs continued until steady state was reached. Steady state was considered

to have been reached once both the mean rate of surface elevation change over the surface nodes was200

less than 0.001ma−1.

The values used for surface accumulation a, the slipperiness parameter C and the stress exponent

m in Weertman’s sliding law (Eq. 9), and the stress exponent n in Glen’s flow law (Eq. 11) are

identical to those used in MISMIP experiment 3a (see Pattyn et al., 2012). The surface accumulation,

a, is set at a= 0.3ma−1 across the whole surface. Note that the surface accumulation is in units of205

ice equivalent, and the actual mass flux across the surface is ρa= 270kga−1m−2.

An example of calculated steady-state grounding-line position is given in Fig. 2. This particular

run was obtained with Úa for wc = 50km. Note that in Fig. 2 only a part of the model domain is

shown and that the whole domain stretches in x direction from 0 to 1800 km. A perspective plot of

the same model output, showing the whole model domain, is given in Fig. 3.210

As Fig. 2 shows the grounding line (shown in black) curves considerably within the xy plane. At

the left and right-hand side margins of the numerical domain (y =±120km), the grounding line is

located at approximately x= 1400km. Where the grounding line crosses the medial line (y = 0),

it is located at about x= 1100km. As a consequence, a sizeable confined ice shelf is formed. The

upper and lower limits of retrograde bed slope, xa = 973.7km and xb = 1265.7km, are marked by215

two magenta lines in the Fig. 2. As the figure illustrates, sections of stable grounding line are located

on retrograde slopes. A perspective plot showing the steady-state model geometry is given in Fig. 3.

Inspection of Figs. 2 and 3 reveals that the highest velocities along the grounding line, and the largest

ice thicknesses, are found in the area of retrograde slope.

The steady-state geometry shown in Figs. 2 and 3 was arrived at by starting with an initial constant220

ice thickness of 100m. In the span of several thousand of years the numerical solution converged

slowly to the steady-state solution shown in the figures, and the possibility of the steady-state being
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unstable with respect to perturbations in ice thickness can be excluded. To illustrate that the steady-

state solution shown in Figs. 2 and 3 is stable with respect to perturbations in other key model

parameters as well, the steady state solution was subjected to perturbations in both basal slipperi-225

ness (C). Starting from steady state, the slipperiness was increased/decreased by a factor of 2/0.5,

respectively. The perturbations were applied for 100 years and the models then run towards steady

state. The resulting grounding-line positions at the medial line are shown in Fig. 4 as functions

of time. As the figure shows, the grounding lines reverted with time back to the original position

once the perturbations were no longer applied. The grounding line is, hence, stable with respect to230

perturbations in slipperiness.

Comparison between results obtained by Elmer/Ice and Úa is given in Fig. 5 for wc = 50 km.

As can be seen the surface profiles obtained with the two models closely agree, and in both cases

the grounding line is located at a section of the bed with a retrograde slope. Another model-

intercomparison experiment using wc = 40 km resulted in a similarly close agreement. The results235

obtained with Elmer/Ice were arrived at by starting with the final geometry as given by Úa and run

until a new steady-state was reached.

Runs were performed with half-widths (wc) ranging from 20 to 70 km. Each run was started by

taking an ice-thickness distribution from a previous run for a similarly shaped bedrock as a starting

point. Again the possibility of the models runs converging with time to an unstable steady-state can240

be excluded.

The steady-state grounding-line position (xgl) at the medial line (y = 0) for several different mod-

els with half-widths (wc) ranging from 20 to 70 km is shown in Fig. 6. These calculations were

performed for the vertically integrated model (see Eq. 5) with the numerical code Úa. The results

indicate a gradual change in grounding-line position as a function of channel width. Several cases245

of stable steady-state grounding lines located on retrograde slopes were found. As expected, the

grounding line is no longer located on retrograde slopes for both large and small wc values. Fig-

ure 6 suggest that, for this particular parameter set used (see Table 1), grounding lines are located on

retrograde slopes for wc within the range of 35 to 55 km.

A close inspection of Fig. 2 reveals that at around (x,y) = (1400,±50)km, the grounding line250

(shown in black) extends some distance downstream and appears to break up in a few isolated regions

of grounded ice. This is not an artefact of the figure. In this area the ice is either grounded or close

to be grounded, and in the course of the transient run towards steady state various smaller patches of

ice become either grounded or ungrounded.

A further, in our view an entirely realistic, feature found in a number of our model runs are small255

(on the order of one ice thickness in horizontal dimension) regions of thin ice that form downstream

of the grounding line within the unconfined section of the ice-shelf. For numerical purposes, the

thickness was forced to be slightly positive. In the runs shown here, the minimum thickness was set at

10m. This thickness constraint was implemented in a similar manner in both Elmer/Ice and Úa. The
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method used in Elmer/Ice is described in Durand et al. (2009a). The Úa solver uses for this purpose260

an active-set method where any violated thickness constraints are activated using Lagrange multiplier

approach. The modified system is then solved again, and the sign of the Lagrange multipliers (or

“slack variables” as these variables are sometimes referred to in this context) used to determine if an

active constraint should subsequently be inactivated, or if further constraints need to be included in

the active set. This procedure is repeated until the active set no longer changes, before progressing265

to next time step. The number of active constraints differed between runs and changed in the course

of the transient calculations, but the number of active nodal constraints was usually less than 10. For

the final steady-state solution shown in Fig. 2, for example, the thickness constraint was activated

at 7 nodes in total (the total number of nodes in the finite-element mesh at the end of this run was

457 340). These 7 nodes were located at approximately (x,y) = (1460,±88)km. This is a region of270

the ice-shelf that is subjected to strong longitudinal extension and comparatively small concomitant

transverse compression. Runs with different minimum ice thickness constraints of 1m, and 0.1m,

showed that the exact value of the thickness constraint used was, for the purpose of the model

exercise, irrelevant, and had no effect of whether the grounding line was located on a retrograde

slope or not.275

5 Discussion

The basis for the MISI is the idea of ice flux at the grounding line being a monotonically increasing

function of ice thickness (hgl) at the grounding line. If this holds, then a simple heuristic argument

(Weertman, 1974) shows steady-state grounding-line positions of marine-type ice sheets on retro-

grade slopes to be unstable. As shown by Schoof (2007b) ice flux can be expressed as a function of280

both hgl and longitudinal stress, with ice flux being an increasing function of both of these variables.

It turns out that in 1HD, longitudinal stress is also an increasing function of thickness and, hence, ice

flux always an increasing function of hgl in 1HD. It is important to realise that this argument does not

hold in 2HD. In 2HD it is conceivable, in principle, to have a configuration where longitudinal stress

decreases with thickness with the overall effect of flux being a decreasing function of thickness. In285

that case, the MISI is not expected to operate and a stable grounding-line positions on a retrograde

slopes become a possibility. However, hitherto, no such example of a stable grounding line in 2HD

has been provided.

The absence of such a specific counter-example may have been taken to suggest that the MISI

applies unconditionally to the 2HD situation. Observations of grounding lines located on reverse290

bed slopes have been used repeatedly in the past as the sole basis on which to argue that large

sections of WAIS are either unstable, or close to a threshold of instability (e.g. Ross et al., 2012).

Some recent estimates (e.g. Bamber et al., 2009) of potential sea-level rise from WAIS implicitly

assume that MISI operates in 2HD. By providing a numerical example of a marine-type ice sheet
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in a stable steady-state configuration with the grounding line located on a retrograde slope we have295

now shown marine ice sheets to be conditionally stable. Our finding that marine-type ice sheets

on retrograde slopes are not unconditionally stable do not contradict, and are fully compatible with,

theoretical and numerical work showing that, in 1HD, rapidly sliding marine ice sheets on retrograde

slopes are unconditionally unstable.

For our particular parameter set (see Table 1) we find stable grounding-line positions for half-300

widths between the approximate range of 35 to 55 km. We do not expect this range of half-widths

values (wc) to remain the same for other parameter sets. Neither do we expect the existence of

stable grounding-line positions on retrograde slopes to be a simple function of channel widths. The

stability regime can be expected to be primarily determined by the level of ice-shelf buttressing at

the grounding line, with the buttressing in turn being a (potentially complicated) function of bed305

geometry and ice rheology. The stability of a given marine ice-sheet configuration can most likely

not be assessed from geometrical considerations (bedrock slope, ice-stream width, etc.) only, and

each situation may require targeted modelling efforts.

In many situations the sensitivity of ice sheets to external forcing is of key interest. We stress that

here we have only addressed the very different question of the stability of marine-type ice sheets.310

Our results do not, for example, exclude the possibility that the sensitivity of grounding-line position

to changes in basal melt rates depends on bed slopes. Note in this respect that in 1HD (and provided

the horizontal variation of shear stresses can be ignored), the grounding-line position is independent

of any forcing to which an unconfined ice shelf is subjected to. In other words, in 1HD the sensitivity

of (stable) grounding-line positions to oceanic forcing is not only independent of bed slope, but zero.315

Although we have not investigated this possibility here, we find it likely that the 2HD situation is, in

this respect, also sharply different from the 1HD case.

Numerical modelling has shown ice sheets to respond to changes in ice-shelf melting in com-

plicated and at times non-intuitive ways (Walker et al., 2008; Gagliardini et al., 2010). We do not

discard the possibility that further work, using both 2HD and 3D models, may show grounding lines320

on retrograde slopes to be stable yet at the same time highly sensitive to changes in external forcing

such as ice-shelf melt rates.

6 Conclusions

We have provided specific numerical examples of model geometries for which sections of stable

grounding lines are located on retrograde slopes. We conclude that marine ice sheets on retrograde325

slopes are not unconditionally unstable.

Our confidence in our model results is strengthened by the fact that we have solved the flow

problem using two different numerical codes (Úa and Elmer/Ice), based on two different set of

model assumptions.
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The conditional stability in 2HD does not contradict previous findings of unconditional instability330

in 1HD. These differences simply show that the 1HD and the 2HD problems differ fundamentally in

this respect. Real ice sheets are of course three dimensional features and we caution against applying

arguments to ice sheets that are inherently tied to 1HD. These stark differences between the 1HD

and the 2HD cases should also be considered in any applications of 1HD flow-line models, and the

use of 1HD flow-line models to investigate the stability regime of marine ice sheets is problematic.335

Observations of retrograde bed slopes at the grounding lines of marine ice sheets, such as the West

Antarctic Ice Sheet, do not as such imply an unstable mode of retreat or advance, nor do they imply

that such regions are close a threshold of instability. Questions regarding stability of a given marine

ice-sheet configuration are unlikely to be answered without targeted modelling efforts.
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specific densities of ice and ocean. The variable a is the surface mass balance in the units of ice equivalent. The
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Fig. 1. Bedrock geometry. Upper panel: map-plane view of bedrock geometry with a corresponding colorbar

below. Lower panel: longitudinal section of bed along the medial line (y = 0).
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Fig. 2. Map-plane view of surface velocities obtained with the numerical code Úa for a channel half-width of

wc = 50km. Values of all other model parameters are listed Table 1. The two magenta lines at x= 973.7km

and x= 1265.7km indicate where bedrock slope in x direction is equal to zero. The strip 973.7km< x <

1265.7km is an area of retrograde slope where the bed slopes upwards in x direction. The grounding line

marking the division between grounded and floating ice is shown as a thick black line. The arrows represent

surface velocities, with the corresponding colorbar shown to the right. To make the direction of the shortest

velocity vectors visible in the figure, the speed has been set to 100 ma−1 wherever calculated velocities are

less than that value.
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Fig. 3. A perspective plot of the steady-state geometry obtained with the numerical code Úa for a channel half-

width of wc = 50km. Shown is the upper and lower glacier surface and the ocean bathymetry. The grounding

line is drawn as a red line along the upper and the lower glacier surface.
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Fig. 4. Grounding-line positions as functions of time following perturbations in basal slipperiness (C). The

grounding line positions shown are for y = 0, i.e. where the grounding lines cross the medial line. Both runs

started from the steady-state solution shown in Fig. 2. The value of C was changed by a factor of 1/2 and 2

from the value listed in Table 1. The perturbations were applied for 100 years, and the model then run towards

steady state. As the figure shows both models converged back to the original steady state, showing that the

initial steady state is stable with respect to such perturbations in C.
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Fig. 5. Longitudinal surface profiles along the medial line (y = 0) obtained with both the full Stokes solver

Elmer/Ice (red lines) and the vertically-integrated solver Úa (blue lines). The calculations were done for a chan-

nel half-width of wc = 40km. The thick black line is the ocean floor.
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Fig. 6. Stable grounding-line positions along the medial line as a function of channel half-width. The data

points shown as black circles are based on resuls obtained using Úa. The data points shown as green stars were

obtained with Elmer/Ice
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