
We would like to thank all the reviewers for excellent reviews!   
 
We found number of issues raised by the reviewers very helpful and the 
paper has benefitted from number of very constructive comments. 
 
 
A detailed point-by-point reply to all comments raised is given below. 
 
Referee: H. Seroussi 
 
The manuscript “The stability of grounding lines on retrograde slopes” 
presents an example of a stable grounding line for which a section 
rests on a retrograde bed slope using three-dimensional and vertically 
integrated two-dimensional models. One dimensional flow-line models 
showed that grounding lines are unconditionally unstable on retrograde 
bed slopes. Here, with two and three-dimensional models, the authors 
show that this statement does not hold as some configurations of stable 
grounding lines do exist on retrograde slope. 
 
This manuscript could lead the community to reevaluate the West Antarctic 
Ice Sheet Instability that was based on the assumption that the grounding 
lines located on retrograde bed slopes were always unstable. While this 
statement is generally true, there might be some locations where the 
grounding line might actually be stable. The manuscript is generally 
clear and the methods well described, the 
figures and references appropriate. The methods and results are stated 
clearly in a well-written text. I therefore recommend this manuscript for 
publication after addressing the few changes described below. 
 
 
We thank Helene Seroussi for her kind words. 
 
In the Numerical models section, you mention several purely numerical 
aspects, such as using linear, quadratic or cubic elements for Úa or 
the importance of mesh resolution. However, these aspects are never 
discussed in the Results or Discussion sections. I would have liked to 
see a paragraph in which you discuss the numerical aspects of the 
model and answer questions like: What level of mesh resolution was 
required to avoid mesh dependency? How long does it take to reach the 
steady-state? What is the impact of element type (linear, quadratic, 
cubic) in Úa? What is the influence of the initial conditions? 
 
It is true that we did not discuss in detail the effects of various 
numerical details of individual models on the results. In some way we 
feel we have addressed these issues by showing that two different 
numerical models produce almost identical results. In particular, both 
models give steady grounding lines on retrograde slope and this is the 
key result of the paper. We furthermore point out that both models 
participated in the recent model intercomparions MISMIP3D. 
 
With Ua, using 59 669 elements with 120 100 nodes, with median, maximum 
and minimum element sizes of 3 125 m, 20 080 m, and 1 452.6 m, 
respectively, instead of 228 537 elements with 457 340 nodes, with 
median, maximum and minimum element sizes of 569 m, 26 862 m and 86.7 m, 
respectively, caused a shift in the position for the grounding line along 
the medial line from 1092 to 1083 km.  In other words, changing the 
minimum element size by about a factor of 17 caused a about 10 km shift 
in the position of the grounding line.  



 
The initial condition has no effect on the solution. We run towards a 
steady state and we never encountered an example where the model would 
converge to different steady state depending on initial condition.   
 
In your simulations, as you mention in the text, only a section of the 
grounding line is located on retrograde slopes. Is it possible to have 
the entire grounding line on retrograde slope ? Do you think this 
stable grounding line on retrograde slope is something unusual due to 
the particular configuration with a deep trench in the middle of the 
bedrock and much higher bedrock on the sides ? Or do you think it 
could be something pretty common that was not noticed earlier as 
models were mainly relying on flow-line models ? 
 
 
These are interesting questions that we are not really in a position to 
answer fully. In the paper we show specific examples of grounding lines 
located on retrograde slopes, and that at least one such example CAN BE 
constructed is pretty much what the paper is all about. We do not try to 
give an overview over all possible such situations and we expect that 
doing so might be very difficult. 
 
A last point I am a little bit concerned about is the grounding line 
break up shown in Fig. 2. This pattern seems surprising and you 
mention that it is not a model or figure artefact. Do both models 
(Elmer and Úa) lead to this kind of break up ? Do you have the same 
pattern for other channel widths ? It seems to be caused by the very 
deep channel and the sudden variation in bedrock topography. Could you 
elaborate on this point. 
 
This is not an artefact, although at the same time the exact pattern will 
depend somewhat on grid resolution. At these locations the ice is either 
grounded or very close to be grounded over a region that is a few km wide 
and about 10km or so long. Consequently, the area breaks up in small 
regions of grounded patches. This is perfectly understandable given the 
flow pattern in this region where the ice move approximately tangential 
to the grounding line with the result that ice from the interior region 
of the ice shelf is advected sideways across this region. As the thicker 
ice in the centre region of the ice shelf is advected towards the margins 
and across the higher lying parts of the ocean floor, it hits the ground 
at a number of locations, giving rise to these isolated patches of 
grounded ice. 
 
Helene Seroussi also made a number of technical comments and we made all 
changes as suggested.  As suggested we also added a few lines on the 
automated remeshing algorithm used in Ua. 
 
 
 
 
 
 
 
 
 
 
 
 



Anonymous Referre #2 
 
My major concern is the use of the word “stable” instead of “steady 
state”. The grounding line would be stable if a steady state grounding 
had been perturbed by a change in accumulation, sea-level etc and 
reached a new steady state or equilibrium configuration. The paper has 
successfully shown that steady state configurations on retrograde 
slopes are possible, but not that they are stable. 
 
We are a bit puzzled by this comment. By the very definition of stability 
it is impossible that a solution will converge with time towards an 
unstable solution.  However, rather than arguing this point we have now 
added one figure that shows that if the steady-state solution is 
perturbed by changing the slipperiness and then changing it back to its 
original value, the grounding line position converges back to its 
previous position.  This will hopefully convince Referee #2 that the 
solutions are stable with respect to perturbations in this model 
parameter as well.  As we repeatedly state in the paper the solutions are 
clearly stable with respect to perturbations in thickness, because we 
start with a different thickness distribution, and the solutions then 
slowly converge towards the steady state solutions presented. 
 
The paper would be stronger with a few more sentences on how the 
findings differ with previous work, and a few more sentences on your 
actual results. For example, the only steady state of Goldberg et 
al. (in their Fig 12) which is obtained with parameters similar to 
Dupont and Alley, has a width which is similar to some of your 
experiments, and bed slope of 0.3. Thus, what is the bottom slope of 
your steady states? The other experiments of Goldberg et al. where no 
steady states on a retrograde slopes where obtained had a smaller bed 
slope and larger width than Dupont and Alley: : : Do you have a 
feeling whether it is the bed slope that is more important compared to 
the width? What is the shape of your grounding lines for all of your 
steady states? A simple map-plane view of your grounding lines for the 
different half-width could be placed in your figure 5. 
 
The bed slope along the grounding line varies from positive (reverse 
slope) to negative, and it is not clear how one can quantitatively state 
that bed slope is more important, or less important, than width.  
 
We have added a sentence making it clear that Goldberg has already 
presented results with a steady-state grounding line located on a 
retrograde slope. 
 
P2600, L2-4: “It is unclear what three-dimensional geometrical 
configuration, if any, used by Dupont and Alley (2005) in their example.”. 
I would remove this sentence as it does not add anything to your text, 
especially since Goldberg et al have managed to reproduce a similar 
configuration (their figure 12). 
 
We disagree with reviewer #2 on this point (more about this later) and 
have kept the sentence.  It is not clear what geometry would give rise 
the prescribed side drag and ice-front pressure prescribed in the Dupont 
and Alley paper and there is no guaranty that such a geometry exists. 
 
Reviewer #2 makes a number of other technical comments that we have taken 
into consideration. We have however not changed `stable' to `steady-
state'. As mentioned above our steady-state solutions are stable. If they 



were not, our numerical models would clearly not have converged with time 
towards those solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Comments by R. Walker 
 
R. Walker finds our comment that "It is unclear what three-dimensional 
geometrical configuration, if any, gives rise to the type of prescribed 
side drag used by Dupont and Alley (2005) in their example" puzzling and 
unduly negative. He points out that Dupont and Alley used, in addition to 
the prescribed side drag, a prescribed buttressing along the ice front.   
 
Answer: We still find it unclear what geometry will give rise to the side 
drag/front resistance in flow-line models of this type, and we stick to 
our original statement that there is no guaranty that any such geometry 
exists. The fact that Dupont and Alley not only used side-drag 
parameterisation but also prescribed the buttressing at the ice front 
only confounds the problem.  
 
Using a flow-line model to study the effects of transverse variations on 
stability is always going to be problematic. Even more so when the effect 
studied does not exist in a strict flow-line setting. The results then 
become entirely dependent on the parameterisation used. 
 
One should only use a flow-line model to address 1HD flow problems, or 
when deviations from strict 1HD setting are not expected to affect the 
results significantly.  Using a flow-line model to study process that 
does not exist in 1HD is simply not a very good idea. 
 
The side drag parameterisation assumes that the effects of transverse 
geometry can be accounted for by using a given channel width along the 
profile, for both the grounded and the floating sections. But what is 
this width? In our model the width of the channel does not change with 
distance, but the width of the ice shelf does.  So what is the width to 
be used when parameterizing the side drag? 
 
And if one were to use a fixed width in the side-drag parametrisation as 
done in Dupont and Alley, what kind of transverse geometry would give to 
that type of side drag?  Clearly constant channel width does not, as our 
example shows. Does such geometry exist? We think asking this question is 
entirely legitimate. We therefore stick to our original wording. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Interactive comment by G. Jouvet: 
 
This study addresses the problem of the existence of a steady 
Grounding Line (GL) on retrograde slopes in two horizontal dimensions 
(2HD). In the 1HD case, GLs on an upward-sloping bed are well-known to 
be unstable to small perturbations, this statement being supported by 
theoretical arguments. However, in the 2HD case, the same 
argumentation does not hold anymore because of possible buttressing 
effects, leaving open the existence of such stable GL. This paper 
provides an example of stable GL that is partly lying over a 
retrograde bedrock. To build such an example, the authors consider a 
channelized bedrock. On the sides, the GL – localized on an 
upward-sloping bed – is stable and sufficiently well-affixed to sustain 
the GL over central part (the channel) stable even if the bed is 
downward-sloping in this area. The authors use two different models 
(including the most accurate one, Stokes) to verify that the solution 
is not dependent on the model.  This is an interesting and 
well-written paper which presents original results. I recommend to 
accept this paper for publication after addressing or answering the 
listed points below. 
 
 
Answer:  
We thank G. Jouvet for his assessment of the paper. 
 
 
The chosen channelized geometry shows very sharp transitions of the 
bedrock along the y-axis. Taking a smaller fc would change the channel 
into a V-shaped valley and smooth the bed in y. In that case, I expect 
less buttressing and then a narrower range (or maybe empty) of wc (like 
on Fig. 5) that allows for a stable GL that is partly lying on a 
retrograde slope. It would be interesting to add few runs to study the 
effects of parameters fc and dc since there are directly related to the 
"level of ice-shelf buttressing at the GL" (line 276). 
 
We agree that further parameter studies would be of interest. However our 
intension here is simply to show that there ARE possible steady state 
solutions on retrograde slopes. We do provide such an example, and that 
is really what the paper is about. 
 
I believe that a part of the model is missing: nowhere it is written that 
the Weertman sliding law (Eq. (9)) applies under the grounded part only, 
and that a perfect sliding applies under the floating part (Eq. (9) in 
Pattyn and al, 2012). Did I miss something ? 
 
For the floating part the basal resistance term is dropped in the 
vertically integrated model.  
 
Since both models have been already published (lines 157 - 158), I 
wonder if they need to be re-described with this level of 
accuracy. Number of equations could be efficiently replaced by words 
and references. Also, it would be clearer to decouple/separate the 
full Stokes and the vertically integrated models by describing them 
successively, and not in mixed way. 
 



It is always difficult to find the right balance when it comes to 
describing a numerical model that has already been described in other 
papers. One of the other reviewers wanted a more detailed description. We 
have not taken out any part of the model description as it is presumably 
better to give too much information than to little. 
 
Lines 134 - 136 : I would have expect the vertically integrated ice flow 
model to be naturally coupled to the vertically averaged mass 
conservation equation dh/dt+ div (uh)= a and not to the local mass 
conservation equation (kinematic boundary condition, Eq. (13) in Pattyn 
and al, 2012). Was this choice made for the sake of the comparison 
between both models ? Do you have a reference for such coupling ? 
 
You are of course right that the vertically integrated model used a 
vertically integrated version of the mass balance. This should presumably 
be clear to most readers. For the sake of brevity we did not list the 
full set of model equations and boundary conditions. 
 
Lines 205 - 206 : The model comparison would be even more convincing if 
Elmer and Úa’s runs would have been performed independently. Indeed, 
starting one model from another one might influence the results and skew 
the comparison. Moreover, multiple steady state states are not excluded 
since no theory exists in 2HD. Do models agree even if both were run by 
starting with an initial constant ice thickness? 
 
The Elmer/Ice runs took a very long time and to start the runs with a 
solution far away from the expected steady-state solution would only have 
made the runs even larger.   
 
Lines 207 - 209 : The profiles across the central section agree well, but 
do the whole GLs and velocity fields also agree ? Additional data would be 
valuable for comparison. 
 
One could of course look at other parameters as well. However, it is not 
our intention to do a full model-model intercomparision here. Only to 
show that grounding line positions obtained with these two very different 
models agree. 
 
 
Lines 222 - 226 : Is the GL "protuberance" the consequence of the very 
abrupt channel walls, does it vanish when smoothing the bedrock in y ? 
 
We expect that you might be right here, but we have not done any 
numerical experiments to investigate this. 
 
Line 230 : Why is the ice thickness forced to be slightly positive and 
not positive ? Otherwise Eq. (5) degenerates ? (or for Stokes, you need 
to restrict the domain of computation only where the thickness is 
positive ?). Could you, please, give details the "numerical reasons" ? 
 
We could in principle have forced the thickness only to be positive 
instead of slightly positive. This would not have affected our results 
but the constrained minimisation problem that we need to solve at each 
time step would have taken longer to solve. If the thickness is allowed 
to become zero, then one can potentially end up with small patches of ice 
that are detached from each other and the system becomes singular. 
 
• Lines 231 - 257 : This paragraph (even if of interest) looks beside 



the point or at the wrong place. Indeed, a substantial part concerns 
the model description. I encourage the authors either to restore the 
first part (line 231 - 240) into the dedicated part "Numerical model" 
or to postpone the whole paragraph in appendix since it is not 
essential for the paper. 
 
We do find that it is presumably better to keep this paragraph in this 
place within the paper (in the result section rather than in the 
model-description section) because it is only relevant to the paper 
because of some of the aspects of the solutions themselves. 
 
Lines 256 - 258 : Regarding to the example of steady ice sheet you 
have built, it would be of great interest if you could give rise to 
"longitudinal stresses decreasing with respect to the ice thickness" 
in a figure, if this is possible. 
 
This is an interesting point, and in fact the subject of a follow-up 
paper that has now been submitted to TCD. 
 


