Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S1: The same as Fig. 1 but by using the ECMWF reanalysis.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S2: The as Fig. 2 but by using the ERA-INTERIM reanalysis.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S3: The as Fig. 3 but by using the ECMWF reanalysis (ERA-40 over 1958-1978 and ERA-INTERIM over 1979-2011).

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S4a: The as Fig. 3 but by using the same CTC with a similarity index based on SLP from the NCEP-NCAR reanalysis instead on Z500. The top figures shows the SLP anomalies in respect to the JJA SLP mean over 1958-2011 as well as the isobars for each classes. The corresponding Z500 is shown bellow.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S4b: The same as Fig. 1C but for the MSLP-based CTC.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S5: a) RMSE of the Z500 analogue surface for each day of the summers 1992-2011 (20 yrs x 92 days = 1840 days) in respect to the corresponding daily Z500 surface. The RMSE is normalised here by the standard deviation of the daily Z500 surfaces over the summers 1992-2011. b) Correlation coefficient between the daily Z500 analogue surface and the corresponding daily Z500 surface. c) Same as a) but for T700. d) Same as b) but for T700.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fig. S6: The same as Fig. S5 but with a similarity index (used to find analogues) computed only over the area covering Greenland (lon: 70°W-20°W; lat: 60°N-85°N).

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fettweis et al., 2012

Tables S1: Sensitivity of the parameters in the analogue flow method.

	R _{z500}	RMSE _{z500}	R _{T700}	RMSE _{T700}	Trend ₁₉₉₂₋₂₀₁₁	Trend ₁₉₈₂₋₂₀₁₁
CTRL run	0.99	13.2	0.85	1.26	71%	67%
40-day windows instead of 30-day	0.99	11.8	0.85	1.28	76%	71%
20-day windows instead of 30-day	0.99	15.2	0.86	1.24	69%	63%
15 years instead of 15 years	0.99	15.1	0.86	1.25	70%	65%
5 years instead of 15 years	0.99	13.5	0.84	1.29	72%	69%
daily anomaly instead of raw value	0.97	18.8	0.85	1.27	62%	58%
average instead of median	0.99	13.3	0.86	1.28	70%	65%
1958-2011 as reference period instead of 1961-1990	0.88	10.8	0.86	1.23	71%	67%
ECMWF reanalysis instead of NCEP-NCAR	0.99	13.1	0.85	1.25	65%	60%

where R_{Z500} (resp. RMSE_{Z500}) is the average correlation (resp. RMSE) over the area covering the GrIS of the daily Z500 surfaces and the analogues based one over 1992-2011 and Trend₁₉₉₂₋₂₀₁₁ is the percentage of the T700 1992-2011 trend over the area covering the GrIS resolved by the analogues based one.

Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet

Fettweis et al., 2012

Tables S2: List of the 28 CMIP5 models used for Fig. 4:

ACCESS1-0

ACCESS1-3

BCC-CSM1-1

BNU-ESM

CanESM2

CCSM4

CESM1-BGC

CMCC-CM

CNRM-CM5

CSIRO-Mk3-6-0

FGOALS-s2

FIO-ESM

GFDL-CM3

GFDL-ESM2M

GISS-E2-R

HadGEM2-AO

HadGEM2-CC

HadGEM2-ES

INMCM4

IPSL-CM5A-MR

IPSL-CM5B-LR

MIROC5

MIROC-ESM-CHEM

MIROC-ESM

MPI-ESM-LR

MPI-ESM-MR

MRI-CGCM3

NorESM1-M

The model plotted in black in Fig. 4 is BNU-ESM (RCP 8.5 scenario)