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Abstract

Numerical simulation of glacier dynamics in mountainous regions using low-order, shal-
low ice models is desirable for computational efficiency and their capability of includ-
ing ice dynamics in estimates of mountain glacier wastage worldwide. However, these
models present several difficulties when applied to complex topography. One such5

problem arises where dynamical mass flux over steep topography produces spurious
mass at a grid cell flux boundary if upstream cells receive positive mass balance. This
paper describes a vertically integrated, shallow ice model using a second order flux
limiting spatial discretization scheme that enforces mass conservation. An exact so-
lution to ice flow over a bedrock step is derived for a given mass balance forcing as10

a benchmark to evaluate the model performance in such a difficult setting. This bench-
mark should serve as a useful test for modellers interested in simulating glaciers over
complex terrain.

1 Introduction

The numerical simulation of earth’s glaciers and ice sheets is of growing importance15

to a thorough understanding of our planet’s response to climate change. These ice
masses are of special importance to concerns about changing water resources and
rising sea levels. Although the vast majority of fresh water capable of causing sea level
rise over the long-term lies in the Antarctic and Greenland ice sheets, arguably the
glaciers most susceptible to climate change in the near future lie at moderate to high20

latitudes in mountainous terrain. It has been shown that these glaciers are the largest
contributor to contemporary sea level rise and that they will contribute substantially to
sea level rise in the coming century (e.g. Radić and Hock, 2011; Marzeion et al., 2012)

This importance of alpine glaciers to sea level rise creates a need to understand their
behaviour in coming decades. One approach is to explicitly simulate glaciers at a sub-25

kilometer resolution over large, ice-covered regions of the globe. Such an approach
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demands models of ice dynamics capable of simulating mountain glaciers but with
numerical complexity that allows the simulation of O(107) grid nodes over century-long
model periods. High order ice dynamical models are capable of simulating individual
glaciers or large icesheets, but presently their computational demands restrict their use
over domains with very large numbers of grid nodes. By reducing the complexity of the5

stresses that are simulated in a dynamical model, greater computational effort can be
put into addressing large scale problems at some cost to model accuracy. One such
model is the vertically integrated, shallow-ice formulation such as the finite element
solution described by Fastook and Chapman (1989). A similar formulation has been
used to simulate mountain glacier complexes in the Sierra Nevada, USA during the10

last deglaciation (Plummer and Phillips, 2003) and glacier advances on the summit of
Mauna Kea, Hawaii during the last deglaciation (Anslow et al., 2010).

One major problem with standard numerical solvers for shallow ice models is a ten-
dency not to conserve mass in regions where thin ice is draped over steep bed topog-
raphy. Many of the spatial discretization schemes developed for ice sheets (Huybrechts15

and Payne, 1996), where steep bed topography is rarely an issue, will spuriously cre-
ate mass there. Where surface gradients are large, this mass creation can lead to very
large errors in modelled steady states. This paper describes the application of a sec-
ond order flux limiting spatial scheme to the numerical solution of such a model that
ensures mass conservation. Furthermore, we describe a benchmark test case along20

with an analytical exact solution upon which models can be tested for mass conser-
vations when such situations arise. Confirming that a shallow-ice model can meet the
benchmark described here along with the benchmarks for the transient simulation of
a growing ice sheet described by Bueler et al. (2005) is strongly recommended prior to
conducting simulations of glaciers over rough topography.
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2 Standard shallow ice models and numerical methods

In a Cartesian coordinate system with the xy plane oriented horizontally, the basic
shallow ice model for isothermal ice satisfying Glen’s law (Glen, 1958) can be cast as
(Fowler and Larson, 1978; Morland and Johnson, 1980)5

∂s
∂t

+∇ ·q = ṁ, q =
2A(ρg)n

n+2
hn+2|∇s|n−1∇s, (1)

where s(x,y ,t) is ice surface elevation, h(x,y ,t) = s(x,y ,t)−b(x,y) is ice thickness,
b(x,y) is bed elevation and A and n are the usual constants in Glen’s law, while ρ and
g are ice density and acceleration due to gravity, respectively, and ṁ is surface mass
balance. ∇ is the usual two-dimensional gradient operator.10

Importantly, Eq. (1) holds only where there is ice, so where h > 0, and shallow ice
models are intrinsically free boundary models in which parts of the domain may be
ice free. A complete formulation of the ice flow problem must therefore incorporate
a means of evolving ice-covered and ice-free parts of the domain geometrically. In ice-
free parts of the domain, h = 0 and s = b. Ice will grow if ṁ > 0, but not otherwise.15

Taken together, this implies that, when h = 0,

∂s
∂t

+∇ ·q ≥ ṁ, (2)

and negative ice thicknesses are never realized, as is required physically. In addition,
at the ice margin (the free boundary between regions where h = 0 and h > 0), mass
must be conserved and in addition we expect the surface s to be at least continuous.20

This implies

q ·n = 0, h = 0 (3)

at this free boundary, with n normal to the free boundary in the xy-plane. The formula-
tion Eq. (1)–(3) is known mathematically as an obstacle problem (Evans, 1998) which

4040

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

can be used to re-write the problem in so-called weak form as a variational inequality
(Calvo et al., 2002; Jouvet et al., 2011; Jouvet and Bueler, 2012). This allows vari-
ous theoretical advances to be made, mostly in demonstrating the well-posedness of
shallow ice problems.5

Our aim here is more practical, and addresses directly a few shortcomings in widely
used numerical methods for solving shallow ice problems. A frequently used approach
is to treat Eq. (1) as a parabolic (i.e. diffusion) problem, writing it in the form

∂s
∂t

−∇ · (D∇s) = ṁ (4)

where10

D(h, |∇s|) =
2A(ρg)n

n+2
hn+2|∇s|n−1 (5)

is a diffusion coefficient. This underlies the numerical methods first developed in Ma-
haffy (1976) and described in more detail in Huybrechts and Payne (1996). Roughly,
these update ice surface elevation si(x,y) = s(x,y ,ti) by using a lagged diffusivity
Di = D(hi, |∇si|) and solving for an unconstrained updated ice surface elevation s̃i+1

15

through

s̃i+1 − si

∆t
−∇ · (Di∇s̃i+1) = ṁi+1, (6)

where ∆t = ti+1 − ti. The actual ice thickness is then updated by truncating this so-
lution anywhere the unconstrained ice surface elevation corresponds to negative ice
thickness, so20

si+1 = max(s̃i+1,b). (7)
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A slightly more self-consistent approach to the inequaltiy constraints governing Eq. (1)
and Eq. (3) would be to apply Eq. (6) only where s̃i+1 > b, and to demand instead that

s̃i+1 − si

∆t
−∇ · (Di∇s̃i+1) ≥ ṁi+1, (8)

where s̃i+1 = 0, while not allowing negative s̃i+1 at all. This is mathematically equivalent
of finding the updated ice thickness by minimizing the functional5

J(s̃) =
∫
Ω

(
s̃− si

)2

2∆t
+Di|∇s̃|2dΩ, (9)

subject to s̃ ≥ b, where Ω is the entire domain (i.e. the union of ice-covered and ice
free regions). In other words, si+1 = argmins̃≥bJ(s̃), and this can be solved numerically
using projected successive over-relaxation (PSOR) methods (Glowinski, 1984) that are
similar to solving Eq. (6) with the projection step Eq. (7).10

Importantly, however, the continuum formulation of Eq. (6)–(7) as well as of Eq. (9)
is misleading: Di = 0 anywhere the ice thickness hi is zero, suggesting that ice flow
alone should not be able to expand the ice covered area, when clearly this should be
possible. In the methods described above, a spatial discretization must be applied first,
and the nature of this spatial discretization is crucial.15

In particular, spatial discretization schemes designed for diffusion equations of the
form of Eq. (4) with bounded difffusivities D may spuriously generate negative ice thick-
nesses. In fact, such methods may not be appropriate at all in settings where bed
topography is steep. The easiest way to understand this is to re-write Eq. (1) as a con-
servation law for ice thickness h = s−b,20

∂h
∂t

−∇ ·
[

2A(ρg)n

n+2
hn+2|∇(b+h)|n−1∇(b+h)

]
= ṁ where h > 0, (10)
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with an analogous inequality to Eq. (2) holding where h = 0. In steep terrain, the gra-
dient term ∇(b+h) may now be dominated by bed slope ∇b, leading approximately to
the hyperbolic problem (see also Fowler and Larson, 1978)

∂h
∂t

−∇ ·
[

2A(ρg)n

n+2
hn+2|∇b|n−1∇b

]
= ṁ. (11)

In the absence of a surface mass balance term (i.e. when ṁ = 0), this hyperbolic equa-
tion in its continuum form preserves positivity, i.e. given non-negative initial conditions5

on h, negative h will never be generated. Spatial discretizations appropriate for hy-
perbolic equations will maintain this property. However, discretizations designed for
parabolic problems, including the symmetric centered difference schemes described
in, e.g. Huybrechts and Payne (1996), may not preserve positivity for h, and can there-
fore spuriously generate negative ice thicknesses. The projection step Eq. (7) of course10

will then set ice thickness back to zero where this occurs. However, in the process, this
causes the numerical scheme to create mass, which can severely affect its results.

Two of the most widely used discretizations in ice sheet models are those referred to
as “type I” and “type II” by Huybrechts and Payne (1996), and these are appropriate for
the primarily diffusive case of small bed slopes. Essentially, we can view these as finite15

volume discretizations on a regular mesh, with ice surface elevation piecewise constant
on each cell. The location of cell centers are (xk ,yl ) on a grid with uniform spacing such
that ∆x = xk+1 −xk and ∆y = yl+1 − yl . We label the cells by indices (k, l ) and denote
the normal component of flux on cell boundaries such that the y-component of flux on
the cell edge between cells (k, l ) and (k, l +1) is qy

k,l+ 1
2

and the x-component of flux on20

the cell edge between cells (k, l ) and (k +1, l ) is qx
k+ 1

2 ,l
(Fig. 1).
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The type I and II schemes both relate these fluxes to differences in surface elevation
through

qy ,i+1

k,l+ 1
2

= −Di
k,l+ 1

2

s̃i+1
k,l+1 − s̃i+1

k,l

∆y
(12)

qx,i+1

k+ 1
2 ,l

= −Di
k+ 1

2 ,l

s̃i+1
k+1,l − s̃i+1

k,l

∆x
(13)

where Di
k,l+ 1

2
and Di

k+ 1
2 ,l

are the diffusivities evaluated on the cell boundaries. The fully

discretized version of Eq. (4) is then5

s̃i+1
k,l − si

k,l

∆t
+
qx,i+1

k+ 1
2 ,l

−qx,i+1

k− 1
2 ,l

∆x
+
qy ,i+1

k,l+ 1
2

−qy ,i+1

k,l− 1
2

∆y
= ṁi

k,l , (14)

and the projection step Eq. (7) is applied cell-wise.
Huybrechts and Payne’s type I and II schemes only differ in how they handle the

diffusivities Di
k,l+ 1

2
and Di

k+ 1
2 ,l

, with type I using an averaged ice thickness at the cell

boundary,10

Di
k+ 1

2 ,l
=

2A(ρg)n

n+2

hi
k,l −hi

k+1,l

2

n+2


si

k,l+1 − si
k,l−1 + si

k+1,l+1 − si
k+1,l−1

4∆y

2

+

si
k+1,l − si

k,l

∆x

2


n−1
2

, (15)

4044

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and type II using an average over the factor hn+2 that appears in the definition of D,

Di
k+ 1

2 ,l
=

2A(ρg)n

n+2

hi
k,l

n+2
−hi

k+1,l
n+2

2



si

k,l+1 − si
k,l−1 + si

k+1,l+1 − si
k+1,l−1

4∆y

2

+

si
k+1,l − si

k,l

∆x

2


n−1
2

. (16)

With these discretizations, Mahaffy’s projection scheme has performed well in many ice
sheet models, and in particular, has reproduced a number of known analytical solutions5

outlined in Bueler et al. (2005, 2007). However, these analytical benchmarks all refer
to the case of a flat bed, for which we have h = s. Our aim here is to explore a number
of complications that arise precisely when this is not the case. That is, we wish to study
complications that are typically associated with bed undulations, and which become
particularly relevant for modelling mountain glaciation.10

3 Mass conservation problems in Mahaffy’s scheme

One simple yet problematic case is the one of a mountain glacier sitting in a u-shaped
valley. Mahaffy’s scheme with a type I or type II diffusivity can generate a spurious
mass flux out of the bare rock sidewall of a u-shaped valley into a glacier in the bottom
of that valley. Here, we have a cell in which hi

k,l = si
k,l −bk,l = 0 adjacent to a cell in15

which hi
k+1,l > 0 and yet we also have si

k,l > si
k+1,l , as displayed in Fig. 2a1. That is, the

ice-free cell has a higher surface elevation than the ice-covered cell. Consequently we

1Subsequently we focus on mass conservation problems along the x-axis, but they can
equally be generated in three dimensions.
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expect that qx
k+ 1

2 ,l
and either type I or type II scheme above predict ice flowing from the

ice-free into the ice-covered cell. If ice does flow out of the ice-free cell, then the time
stepping scheme (Eq. 14) will predict a negative ice thickness for the respective cell20

after a single time step. The post-processing step (Eq. 7) then sets the actual surface
elevation si+1

k,l back to the bed elevation bk,l . In terms of mass conservation, we have
just extracted mass from the ice-free cell (k, l ) and transferred it to the ice-covered
cell (k +1, l ). In the post processing step (Eq. 7), we have added that mass back into
the cell (k, l ) in a bid to avoid unphysical negative ice thickness. Formulated this way,
Mahaffy’s scheme therefore creates mass.

This mass conservation issue was previously recognized by Plummer and Phillips
(2003), who proposed a slightly modified scheme that prevents such a mass violation.5

In particular, Plummer and Phillips (2003) set Di
k+ 1

2 ,l
to either the type I or type II val-

ues suggested above except at cell boundaries that correspond to a glacier-rock wall
boundary. These can be recognized as boundaries with indices (k + 1

2 , l ) for which we
have

(si
k,l − si

k+1,l )(h
i
k,l −hi

k,l ) < 0 and hi
k,lh

i
k+1,l = 0. (17)10

The first of these statements says that ice thickness is greater in the cell that is at
a lower elevation, while the second statement says that one of the cells has zero ice
thickness (which must therefore be the one with the greater surface elevation). For
these cell boundaries, Plummer and Phillips (2003) set Di

k+ 1
2 ,l

= 0 and they also apply

an analogous scheme for Di
k,l+ 1

2
at cell boundaries parallel to the y-axis.15

There is however another possible complication that is not captured by this adjust-
ment of diffusivities. This can occur when a relatively thin glacier flows over a steep
bedrock step, as in an icefall. Figure 2b shows the situation we have in mind. Here
we can generate a significant ice flux out of the upstream grid cell (k, l ) at the top of
the ice fall, simply because of the large surface slope between the upstream cell (k, l )20
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and the downstream cell (k +1, l ).This large flux can then lead to more ice flowing out
of the grid cell (k, l ) in a single time step from ti to ti+1 than was present at time ti.
The updated ice thickness value s̃i+1

k,l −bk,l becomes negative after a single time step

and the projection step (Eq. 7) sets it si+1
k,l back to zero. A small amount of ice mass is

created in the process. At time ti+2, the upstream cell is likely to acquire a non-zero ice25

thickness si+2
k,l again as ice can flow into it from above with qx,i+2

k− 1
2 ,l

> 0, which is possible

in Plummer and Philips’ scheme, but cannot flow out since Eq. (17) is satisfied at the
downstream boundary during this time step. After time ti+2, we can therefore return to
the same situation as time ti, with a thin ice cover in cell (k, l ) and a steep surface slope
into cell (k+1, l ). Mass can therefore be created on alternating time steps, causing the5

resulting error to grow over time.
The main reason why the type I and type II schemes above are able to create mass

in this way is that they do not limit the flux across a cell boundary as the ice thickness in
the upstream cell goes to zero. Consider a vanishingly small ice thickness in cell (k, l )
whose bed elevation is greater than the surface elevation in the next cell downstream,10

bk,l > si
k+1,l . With a type I scheme, the flux across the k+ 1

2 , l cell boundary is then still

qx,i+1

k+ 1
2 ,l

=
2A(ρg)n

n+2

hi
k+1,l

2

n+2∣∣∣∣∣∣
si+1
k+1,l −bi

k,l

∆x

∣∣∣∣∣∣
n−1

bi
k,l − si

k+1,l

∆x
, (18)

which does not go to zero as hk,l does, and a finite amount of mass can therefore
still be extracted from a cell with vanishingly small mass content. This occurs because
the diffusivity on the cell boundary is dominated by the non-zero ice thickness in the15

downstream cell (k + 1
2 , l ). An analogous observation applies to type II schemes.

Below, we will illustrate this shortcoming of type I and type II discretizations further
by showing that they fail to reproduce certain analytic steady state solutions to the shal-
low ice equations. Before we do so, we propose an alternative scheme for computing
diffusivities that alleviates the mass conservation issue described above.20
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4 A mass-conserving scheme

The difficulties of conserving mass with both, type I and type II schemes, are all rooted
in the computation of the diffusivities Di

k+ 1
2 ,l

and Di
k,l+ 1

2
. These numerical artifacts stem

from the evaluation of the ice thickness term hn+2 in the definition of diffusivity (Eq. 5). In
both schemes, h on the (k+ 1

2 , l ) cell boundary is evaluated numerically as an average
over the ice thicknesses in the adjacent cells. Consequently, the diffusivity on the cell
boundary does not go to zero when the ice thickness in just one of these cells goes to5

zero.
When there is an advancing ice margin, it is important that the diffusivity should not

go to zero at a cell boundary adjoining the ice free cell. Otherwise ice could never flow
from an ice-covered cell into an ice free cell, and the ice margin could never advance
due to flow. However, we need to avoid the reverse situation in which too much ice10

flows from a barely ice-covered cell into another cell with lower surface elevation.
To do this, a flux limiting scheme is required and one can adapt a second order Mono-

tone Upstream-centered Schemes for Conservation Laws (MUSCL, e.g. van Leer,
1979; Gottlieb and Shu, 1998) for the ice flux discretization, which is total variation
diminishing. A distinct feature of MUSCL schemes is the separation of flux at the cell15

boundary (k + 1
2 , l ) into two components, the (k + 1

2
+

, l ) and (k + 1
2
−

, l ) term, which we
define below for our application along with the two components for the (k − 1

2 , l ) cell
boundary. Ice thickness h at the cell boundary is once again the dominant term in the
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flux discretization, so we can define

hi

k+ 1
2
−

,l
= hi

k,l +
1
2
φ(rk,l )(h

i
k+1,l −hi

k,l ) (19)20

hi
k+ 1

2
+

,l
= hi

k+1,l −
1
2
φ(rk+1,l )(h

i
k+2,l −hi

k+1,l ) (20)

hi

k− 1
2
−

,l
= hi

k,l +
1
2
φ(rk−1,l )(h

i
k,l −hi

k−1,l ) (21)

hi
k− 1

2
+

,l
= hi

k+1,l −
1
2
φ(rk,l )(h

i
k+1,l −hi

k,l ) (22)

with

rk,l =
hi
k,l −hi

k−1,l

hi
k+1,l −hi

k,l

(23)

the ratio of downstream to upstream ice thickness change and φ(rk,l ) being the flux
limiting function. We investigate the usability of two flux limiters in our study, the minmod5

limiter φmm(r) and superbee limiter φsb(r) (Roe, 1986):

φmm(r) = max[0,min(1, r)] (24)

φsb(r) = max[0,min(2r,1),min(r,2)]. (25)

Using the ice thickness estimates from Eq. (20), we can define two flux terms at the10

cell boundary

Di
k+ 1

2
+

,l
=

2A(ρg)n

n+2
hi
k+ 1

2
+

,l

n+2


si

k,l+1 − si
k,l−1 + si

k+1,l+1 − si
k+1,l−1

4∆y

2

+

si
k+1,l − si

k,l

∆x

2


n−1
2

(26)
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and Di

k+ 1
2
−

,l
by using Eq. (19) instead of Eq. (20). To limit the flux at the cell boundary,15

one defines a minimum and maximum diffusivity such that

Di
k+ 1

2 ,l ,min
= min(Di

k+ 1
2
−

,l
,Di

k+ 1
2
+

,l
) (27)

Di
k+ 1

2 ,l ,max
= max(Di

k+ 1
2
−

,l
,Di

k+ 1
2
+

,l
) (28)

and constructs a diffusivity for the (k + 1
2 , l ) cell boundary as

Di
k+ 1

2 ,l
=



Di
k+ 1

2 ,l ,min
if si

k+1,l ≤ si
k,l and hi

k+ 1
2
−

,l
≤ hi

k+ 1
2
+

,l
,

Di
k+ 1

2 ,l ,max
if si

k+1,l ≤ si
k,l and hi

k+ 1
2
−

,l
> hi

k+ 1
2
+

,l
,

Di
k+ 1

2 ,l ,max
if si

k+1,l > si
k,l and hi

k+ 1
2
−

,l
≤ hi

k+ 1
2
+

,l
,

Di
k+ 1

2 ,l ,min
if si

k+1,l > si
k,l and hi

k+ 1
2
−

,l
> hi

k+ 1
2
+

,l
,

(29)5

The diffusivities Di
k− 1

2 ,l
, Di

k,l+ 1
2
, and Di

k,l− 1
2

can be constructed in a similar manner.

Note that the local surface slopes are used to identify the upstream direction, which is
needed in a MUSCL scheme to assign the right limited flux terms. We recall that our
initial equation was

∂s
∂t

+∇ ·q = ṁ, (30)10

which can be discretized in time, as an alternative to Eq. (6), explicitly using a forward
Euler scheme

s̃i+1 − si

∆t
−∇ · (Di∇si) = ṁi. (31)
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All that is left to do is to define the gradient of the flux in its fully discretized form:

∇ · (Di∇si) =
Di
k+ 1

2 ,l

si
k+1,l−s

i
k,l

∆y −Di
k− 1

2 ,l

si
k,l−s

i
k−1,l

∆y

∆y
+15

Di
k,l+ 1

2

si
k,l+1−s

i
k,l

∆x −Di
k,l− 1

2

si
k,l−s

i
k,l−1

∆x

∆x
. (32)

The value for the time step ∆t used is crucial in this forward scheme to provide nu-
merically stable solutions. A stability condition can be used to automatically calculate
a suitable value as

∆t = cstab
min(∆x2,∆y2)

max(Di
k+ 1

2 ,l
,Di

k− 1
2 ,l

,Di
k,l+ 1

2

,Di
k,l− 1

2

)
. (33)

Hindmarsh (2001) analysed time stepping stability criteria and reports for explicit
time stepping schemes cstab <

1
2n for one dimensional and cstab <

1
2(n+1) for two dimen-

sional configurations. In case of n = 3 this leads to cstab < 1.666̇ and cstab < 1.125,5

respectively.

5 One-dimensional steady states

A good way to test a shallow ice code is to compare results with analytically computable
solutions (Bueler et al., 2005, 2007). Below we present such a steady-state solution
which includes bed topography and a prescribed accumulation rate which is a function10

of position only. We construct a family of steady state profiles and test how accurately
the numerical shallow ice algorithms described above are able to reproduce them.
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In one dimension with the assumption of steady state, the shallow ice model (Eq. 1)
can be written in the form

qx = ṁ, (34)15

where the subscript “x” denotes an ordinary derivative, and

q = −
2A(ρg)n

n+2
hn+2|sx |n−1sx. (35)

To simplify matters, we assume that accumulation rate a depends only on position x
and is such that there is a single ice-occupied region occupying the interval 0 < x < xm.
Here xm is the margin position, which must be determined as part of the solution. At20

x = xm,

h|x=xm
= 0 q|x=xm

= 0, (36)

and we have

h > 0 for 0 < x < xs. (37)

In addition, we assume that there is no inflow of ice at the fixed upstream boundary
x = 0. In that case, ice flux q can be found explicitly as a function of position for any
x < xm:5

q =

x∫
0

ṁ(x′)dx′. (38)

To simplify our notation, we write Q(x) =
∫x

0 ṁ(x′)dx′. Given ṁ(x), Q(x) is then a known
function of position. The unknown margin position is then determined implicitly by the
second condition in Eq. (36),

Q(xm) = 0. (39)10

4052

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Given xm, ice thickness h must then be found as a function of position through solving
the differential equation q =Q(x), or

−
2A(ρg)n

n+2
hn+2|sx |n−1sx =Q(x) (40)

subject to the first condition in Eq. (36), h(xm) = 0.
There are no general methods for solving Eq. (40) analytically. To get around this,15

we restrict our choice of bed topography to generate a tractable problem. Our objective
is to develop a test for numerical shallow ice codes that incorporate bed topography.
Consequently, we do not wish to put b ≡ 0. On the other hand, Eq. (40) is easiest to
deal with for a flat bed, in which case sx = hx. To make use of this, we consider a bed
for which b is a step function,20

b(x) =
{
b0 x < xs,
0 x > xs,

(41)

where b0 and xs are constants, and we assume that 0 < xs < xm.
In the interval 0 < x < xs and xs < x < xm, this allows us to write Eq. (40) as

−
2A(ρg)n

n+2
hn+2|hx |n−1hx =Q(x), (42)

which we can re-write as5

h
n+2
n hx = −

[
(n+2)

2A(ρg)n

] 1
n

|Q(x)| 1
n−1Q(x). (43)

Integrating using the boundary condition h(xm) = 0, and subsequently solving for h, we
get

h(x) =

 (2n+2)(n+2)
1
n

4A
1
nρg

xm∫
x

|Q(x′)| 1
n−1Q(x′)dx′


2

2n+2

. (44)

4053

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in the interval xs < x < xm.10

At the bedrock step at x = xs, we can therefore define an ice thickness just down-
stream of the step as

hs+ = lim
x→x+

s

h(x) =

 (2n+2)(n+2)
1
n

4A
1
nρg

xm∫
x

|Q(x′)| 1
n−1Q(x′)dx′


2

2n+2

. (45)

In order to extend the solution to x < xs, we can then integrate Eq. (43) backwards from
x = xs:15

h(x)
2n+2
n = h

2n+2
n

s− +
(2n+2)(n+2)

1
n

4A
1
nρg

xm∫
x

|Q(x′)| 1
n−1Q(x′)dx′, (46)

where hs− = limx→x−
s
h(x). To close this solution, it remains to determine the ice thick-

ness hs− at the top of the bedrock step.
In general, we expect the surface elevation s to be continuous. But s = h+b, so this

implies

hs− +b0 = hs+ or hs− = hs+ −b0. (47)

This must the be substituted in Eq. (46) with hs+ given by Eq. (45).
It is, however, possible that hs− computed in this way is negative. Specifically, this5

occurs when hs+ computed in Eq. (45) is less than b0. In that case, Eq. (47) cannot
hold as h will be negative just upstream of the bedrock step, and will therefore violate
the condition given in Eq. (37). A more acceptable solution can instead be obtained in
the case that hs+ < b0 if we put hs− = 0 in Eq. (46).

Allowing for this possibility, the required analytical steady-state solution is given by10

Eqs. (46) and (44), with hs− determined by

hs− = max(hs+ −b0,0). (48)
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This solution, with a discontinuity in surface elevation, may seem an unnatural test
for a shallow ice model. However, it can be shown that the solution we have given is
in fact the correct limit of a solution with a continuous but steep bedrock step as the15

width of that bedrock step goes to zero. In numerical simulations with finite grid size,
steep steps in bed topography may not be well resolved, and it is desirable to have
a numerical scheme that remains robust when this is the case.

Crucial to the mechanism for mass creation described in Eq. (18) was a setting
in which bedrock elevation bk,l in the upstream cell (k, l ) is greater than ice surface20

elevation sk+1,l in the downstream cell, and this is precisely the situation realized when
there is a sufficiently tall bedrock step hs− = 0 as advocated above. In fact, we show
explicitly in Appendix A that there are conditions under which type I and II schemes
cannot reproduce such steady states.

6 A specific, explicit solution for a bedrock step

The solutions in Eqs. (44) and (46) are still given in terms of the general flux Q(x) =∫x
0 ṁ(x′)dx′. Next, we give a choice Q(x) that allows us to compute h explicitly, and

which is such that the corresponding accumulation rate function ṁ =Q′(x) is sensible
(in particular, which satisfies the obvious requirement that Q(0) = 0 and which is such5

that ṁ is negative for x > xm, so that there is indeed a single ice body in steady state).
This is given by

Q(x) =
ṁ0

x2n−1
m

xn|xm −x|n−1(xm −x), (49)

with a corresponding accumulation rate function

ṁ(x) =
nṁ0

x2n−1
m

xn−1|xm −x|n−2(xm −x)[|xm −x| −x]. (50)10
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Q satisfies Q(xm) = 0, and xm can indeed be identified with the steady-state margin
position. In addition ṁ < 0 if x > xm, so there is no ice outside the margin xm.

With this choice of a and Q, we have

|Q(x′)| 1
n−1Q(x′) =

ṁ
1
n
0

x
2n−1
n

m

x(xm −x), (51)

and hence the ice surface profile in Eqs. (44) and (46) can be computed as

h(x) =

 (2n+2)(n+2)
1
n ṁ

1
n
0

24A
1
nρgx

2n−1
n

m

(xm +2x)(xm −x)2


2

2n+2

(52)

for xs < x < xm, and5

h(x) =

h 2n+2
n

s− −h
2n+2
n

s+ +
(2n+2)(n+2)

1
n ṁ

1
n
0

24A
1
nρgx

2n−1
n

m

(xm +2x)(xm −x)2


2

2n+2

(53)

for 0 < x < xs. Here hs+ and hs− are given through the calculations

hs+ =

 (2n+2)(n+2)
1
n ṁ

1
n
0

24A
1
nρg

(xm +2x)(xm −x)2


2

2n+2

(54)

hs− = max(hs+ −b0,0). (55)
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7 Numerical benchmark experiments10

7.1 Cliff benchmark

To demonstrate the performance of our newly introduced scheme and to showcase
our explicit solution as a benchmark for numerical ice flow schemes in mountainous
regions, we numerically implement Eqs. (13) and (14)2. In one case, we use the diffu-
sivity from Eq. (15) and refer to results from this setup as type I results. In the other15

case, we compute results by using the diffusivity from Eq. (26) along with the superbee
flux limiter, Eq. (25), which we label “MUSCL superbee”. Using the minmod flux lim-
iter, Eq. (24), gives slightly different results, which we will discuss below. For temporal
evolution, we solve Eq. (31) with an adequate stability condition as mentioned earlier.

First let us define a set of parameters for the explicit solution (Eqs. 52 and 53).20

We use xm =20 000 m, xs = 7000 m, b0 = 500 m, ṁ0 =2 myr−1, A = 1×10−16 yr−1Pa−3,
n = 3, ρ = 910 kgm−3, and g = 9.81 ms−2 as well as a spatial resolution of ∆x = 200 m.
The time stepping stability parameter in Eq. (33) is cstab = 0.165.

Results for the type I scheme and MUSCL superbee scheme are displayed in Fig. 3
in comparison with a result computed with Eqs. (52) and (53). We plot numerical re-
sults in 1000 yr intervals for a 50 000 yr evolution of the models. The MUSCL superbee5

scheme (blue lines in Fig. 3) converges towards the steady-state solution (magenta
line in Fig. 3), whereas the classical type I scheme fails to do so and creates a large
amount of spurious mass.

We compare volume estimates between the model outputs and the explicit solu-
tion. Integrating the steady-state solution results in a target two dimensional volume of10

4.443984×106 m2. After 50 000 yr of evolution, the “MUSCL superbee” scheme ends
with a volume of 4.399017×106 m2, or a relative error of −1.012 %. The classical type
I scheme leads to a volume of 10.93219×106 m2, or a relative error of 146.0 %. Con-
vergence of the MUSCL scheme with both flux limiters as well as the type I scheme

2A Python version of the 1-D code is included in the Supplement.
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for different ∆x towards the explicit solution is demonstrated in Table 1. Note that the15

relative error of the type I scheme is increasing with increasing ∆x.
The mass conservation problem in Mahaffy’s scheme, described in Sect. 3, has been

tested with our new scheme as well. We recreate a setup similar to the one displayed in
Fig. 2a, with as spatial resolution of ∆x = 200 m and let it evolve of 50 000 yr with ṁ = 0.
The result is displayed in Fig. 4. We monitor the changes in ice volume, which should be20

zero as ṁ = 0. After 50 000 yr, the solutions with the MUSCL superbee scheme (blue
lines in Fig. 4) as well as the MUSCL minmod scheme (not shown) conserve mass
whereas the type I scheme has a relative volume error of −9.5 % in comparison with
the intial volume. The earlier decribed modification to the type I scheme, Eq. (17), has
not been applied in this comparison, which demonstrated that both of our schemes25

have no mass conservation difficulties in this test as well. Thus a correction step as
described in Eq. (17) is not required when using our schemes.

7.2 Bueler C benchmark

The Bueler C benchmark (Bueler et al., 2005) is an ideal test case to compare finite
difference discretization schemes with a time evolving exact solution. In this bench-
mark, a time evolving mass balance is given to the flow code to grow an ice dome over
15 208 yr, after which the numerical solution is compared to the exact one. We take
error in central dome ice thickness, edome = |hexact(0,0)−hnum(0,0)|, and maximum ice5

thickness difference in the whole domain, emax = max(|hexact −hnum|), as our perfor-
mance measures. Figure 5 displays the decrease in edome and emax with increasing
grid point number, N, for same benchmark setup as displayed in Fig. 7 and 8 in Bueler
et al. (2005).

In both cases we demonstrate that the MUSCL scheme can outperform the type I10

scheme for smaller grid sizes (N ≥ 240, ∆x ≤ 6250 m) if the right flux limiter is chosen,
i.e. the superbee limiter (cf. Eq. 25). This is an anticipated result as the MUSCL scheme
is second order and thus more accurate than the type I scheme, but it is surprising that
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an unfortunate choice of flux limiter, i.e. the minmod limiter (cf. Eq. 24), makes the
MUSCL scheme perform worse in comparison to the type I scheme.15

8 Conclusions

After revisiting a well known mass conservation problem of finite difference models
for glacier flow in mountainous regions, we have identified another complication which
arises with very steep topography. In that case, several widely-used numerical schemes
will extract excess mass from cells with thin ice cover, and subsequently add mass to20

these cells again to avoid negative ice thicknesses, thereby violating mass conserva-
tion.

To overcome both problems, we propose to use a second order flux limiting spatial
discretization for the diffusion term in the standard shallow ice equation. In this contri-
bution we have investigated the applicability of a MUSCL scheme with two different flux25

limiters, the minmod and the superbee.
As a benchmark to evaluate the performance of the MUSCL scheme in comparison

to type I and II schemes in such steep topographies, we have derived an exact solution
to ice flow over a bedrock step for a given mass balance forcing. Using this newly
derived exact solution in combination with the well established exact solutions of Bueler
et al. (2005), we find the MUSCL scheme in combination with the superbee flux limiter5

the best suitable spatial discretization for mountain glacier flow models, which has no
difficulties with the above mentioned mass conservation issues.

Our newly developed exact solution for ice flow over a bedrock step adds another
case of exact solution based benchmarks to the existing ones (Bueler et al., 2005,
2007), with which numerical ice flow models should be evaluated. If finite difference10

shallow ice flow models are to be applied in mountainous regions with complex topog-
raphy, we anticipate that our proposed scheme and benchmark will help significantly to
improve and evaluate such models.
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Appendix A

The failure of type I / type II schemes in computing steady states15

With the analytical solutions above in place, we can illustrate further why type I and
type II schemes can fail. Consider the discretized steady-state shallow ice equations in
one spatial dimension, discretized using a finite volume-type scheme as above. Using
only one subscript label to indicate cells numbered along the x-axis, we have

qx
k+ 1

2
−qx

k− 1
2

∆x
= ṁk (A1)

for an ice-covered cell, where

qx
k+ 1

2

= Dk+ 1
2

sk+1 − sk
∆x

. (A2)

Let qx
1
2
= 0, so the cell boundary to the left of the cell k = 1 is a domain boundary with

no inflow, corresponding to x = 0 in the continuum solutions above. Assuming that cells5

1,2, . . . ,k are ice covered, Eq. (A1) then shows that

qx
k+ 1

2

=
k∑

j=1

ṁj∆x, (A3)

which is analogous to the statement that q(x) =
∫x

0 ṁ(x′)dx′ in the continuum problem
above.

Suppose that there is a single ice mass between x = 0 and the margin x = xm, and10

that there is no ice for x > xm. Let the discrete margin position be the cell boundary
km+ 1

2 , so that hk > 0 for k ≤ km but hk = 0 for k > km, and similarly qx
k+ 1

2
> 0 for k ≤ km

but qx
k+ 1

2
= 0 for k > km. Equation (A3) of course holds only for k ≤ km. It can be shown

4060

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

from Mahaffy’s projection step that the margin location km in steady state is then given
by the value of km that satisfies both of the following inequalities15

km∑
j=1

ṁj∆x > 0 and
km+1∑
j=1

ṁj∆x < 0, (A4)

which are equivalent to the statement that
∫xm

0 ṁ(x′)dx′ = 0 in the continuum formula-
tion above; it is easy to show that the margin location defined by these inequalities
converges to the continuum solution of

∫xm

0 ṁ(x′)dx′.
Given a discrete margin location km, ice thicknesses hk for k ≤ km can then be com-20

puted recursively, starting with ice thickness just upstream of the margin at k = km. For
each k ≤ km, we have flux qx

k+ 1
2

explicitly through Eq. (A3). To be definite, consider

a type I discretization for diffusivity, though the argument below can also be applied in
slightly modified form to a type II discretization. With sk = hk +bk , we then have

2A(ρg)n

n+2

(
hk +hk+1

2

)n+2∣∣∣∣hk +bk −hk+1 −bk+1

∆x

∣∣∣∣ hk +bk −hk+1 −bk+1

∆x
= (A5)

qx
k+ 1

2

=
k∑

j=1

ṁj∆x. (A6)

This nonlinear equation must then be solved for hk given ice thickness hk+1 at the next5

grid cell downstream, as well as the bed elevations bk and bk+1. This procedure is
started with k = km, for which we have hm+1 = 0.

Problems arise in this procedure if at some value of k we have bk > hk+1 +bk+1.
This occurs when surface elevation in the (k +1)th cell is lower than bed elevation in
the kth cell. If we also demand that hk ≥ 0, then one can show that the expression on10

the left-hand side of Eq. (A5) is bounded below by a quantity qmin that depends only
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on bed geometry and on ice thickness downstream from the current cell,

2A(ρg)n

n+2

(
hk +hk+1

2

)n+2∣∣∣∣hk +bk −hk+1 −bk+1

∆x

∣∣∣∣ hk +bk −hk+1 −bk+1

∆x
≥ (A7)

2A(ρg)n

n+2

(
hk+1

2

)n+2∣∣∣∣bk −hk+1 −bk+1

∆x

∣∣∣∣ bk −hk+1 −bk+1

∆x
= qmin(hk+1,bk ,bk+1). (A8)

15

Hence no non-negative solution for hk can be computed from Eq. (A5) if

qx
k+ 1

2

< qmin(hk+1,bk ,bk+1).

In this situation, the assumption we have made in arriving at Eq. (A5) must break
down. In particular, the assumption of a single connected ice mass in which hk > 0 for
k ≤ km must fail for the discrete solution even if it holds for the continuum problem, and20

the discrete solution will not approximate the continuous solution. Again, this occurs
because the flux qx

k+ 1
2

does not go to zero even as the ice thickness hk in the upstream

cell does.

Supplementary material related to this article is available online at:
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-supplement.
zip.
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Radić, V. and Hock, R.: Regionally differentiated contribution of mountain glaciers and ice caps570

to future sea-level rise, Nat. Geosci., 4, 91–94, doi:10.1038/ngeo1052, 2011.
Roe, P. L.: Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18,

337–365, doi:10.1146/annurev.fluid.18.1.337, 1986.
van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel

to Godunov’s method, J. Comput. Phys., 32, 101–136, doi:10.1016/0021-9991(79)90145-1,575

1979.

4064

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/tcd-6-3177-2012
http://dx.doi.org/10.5194/tcd-6-3177-2012
http://dx.doi.org/10.5194/tcd-6-3177-2012
http://dx.doi.org/10.1016/S0277-3791(03)00081-7
http://dx.doi.org/10.1038/ngeo1052
http://dx.doi.org/10.1146/annurev.fluid.18.1.337
http://dx.doi.org/10.1016/0021-9991(79)90145-1


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Relative volume errors, REvol = (Vnumerical − Vexact)/Vexact ·100, for our schemes and the
type I scheme for different spatial resolutions. Vexact = 4.443984×106 m2 in the 2-D case de-
scribed in Sect. 7 with results plotted in Fig. 3.

∆x REvol MUSCL minmod REvol MUSCL superbee REvol type I

1000 m −8.024 % −5.605 % 121.568 %
500 m −4.419 % −3.038 % 137.077 %
250 m −2.088 % −1.328 % 144.522 %
200 m −1.622 % −1.012 % 146.000 %
125 m −0.892 % −0.488 % 148.213 %
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Fig. 1. Basic grid setup and definition of fluxes.

4066

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 4037–4069, 2012

Mountain glacier
model benchmark

A. H. Jarosch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

y
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z a)

b)

Fig. 2. The valley glacier case in (a) and the icefall case in (b). Bedrock in grey and ice in light
blue.
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52 53

Fig. 3. Comparison of the “MUSCL superbee” scheme (blue lines) with a classical “type I”
scheme (red lines) and a solution computed with Eqs. (52) and (53) (magenta line). For both
numerical schemes, solutions are plotted at 1000 yr intervals for a 50 000 yr evolution.
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Fig. 4. Comparison of the “MUSCL superbee” (blue lines), with a classical “type I” scheme (red
lines) for the mass conservation problem described in Sect. 3. The initial surface is displayed
as a magenta line. For both numerical schemes, solutions are plotted at 1000 yr intervals for
a 50 000 yr evolution.
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Fig. 5. Results of the Bueler C benchmark (cf. Sect. 7.2) for increasing grid point number N
on a log-log scale. The maximum error in the whole domain, emax, is displayed in (a), and (b)
shows the central dome height error edome.

4070

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/4037/2012/tcd-6-4037-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

